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ABSTRACT 11 

There is a current lack of consensus on whether the ancestral parity mode was oviparity (egg-12 

laying) or viviparity (live-birth) in amniotes and particularly in squamates (snakes, lizards, 13 

and amphisbaenids). How transitions between parity modes occur at the genomic level has 14 

primary importance for how science conceptualizes the origin of amniotes, and highly 15 

variable parity modes in Squamata. Synthesizing literature from medicine, poultry science, 16 

reproductive biology, and evolutionary biology, I review the genomics and physiology of five 17 

broad processes (here termed the ‘Main Five’) expected to change during transitions between 18 

parity modes: eggshell formation, embryonic retention, placentation, calcium transport, and 19 

maternal–fetal immune dynamics. Throughout, I offer alternative perspectives and testable 20 

hypotheses regarding proximate causes of parity mode evolution in amniotes and squamates. 21 

If viviparity did evolve early in the history of lepidosaurs, I offer the nucleation site 22 

hypothesis as a proximate explanation. The framework of this hypothesis can be extended to 23 

amniotes to infer their ancestral state. I also provide a mechanism and hypothesis on how 24 
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squamates may transition from viviparity to oviparity and make predictions about the 25 

directionality of transitions in three species. After considering evidence for differing 26 

perspectives on amniote origins, I offer a framework that unifies (1) the extended embryonic 27 

retention model and (2) the traditional model which describes the amniote egg as an 28 

adaptation to the terrestrial environment. Additionally, this review contextualizes the origin 29 

of amniotes and parity mode evolution within Medawar’s paradigm. Medawar posited that 30 

pregnancy could be supported by immunosuppression, inertness, evasion, or immunological 31 

barriers. I demonstrate that this does not support gestation or gravidity across most amniotes 32 

but may be an adequate paradigm to explain how the first amniote tolerated internal 33 

fertilization and delayed egg deposition. In this context, the eggshell can be thought of as an 34 

immunological barrier. If serving as a barrier underpins the origin of the amniote eggshell, 35 

there should be evidence that oviparous gravidity can be met with a lack of immunological 36 

responses in utero. Rare examples of two species that differentially express very few genes 37 

during gravidity, suggestive of an absent immunologically reaction to oviparous gravidity, 38 

are two skinks Lampropholis guichenoti and Lerista bougainvillii. These species may serve 39 

as good models for the original amniote egg. Overall, this review grounds itself in the 40 

historical literature while offering a modern perspective on the origin of amniotes. I 41 

encourage the scientific community to utilize this review as a resource in evolutionary and 42 

comparative genomics studies, embrace the complexity of the system, and thoughtfully 43 

consider the frameworks proposed. 44 
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I. INTRODUCTION 102 

A synthetic review is needed to improve the conceptual framework used to research 103 

the evolution of oviparity (egg-laying) and viviparity (live-birth) in amniotes (birds, non-104 

avian reptiles, and mammals). Squamates (snakes, lizards and amphisbaenids) are particularly 105 

unique amongst amniotes because they have highly variable parity modes (Fig. 1B, C). 106 

Beginning with the first phylogenetic analyses on the subject, heated scientific disagreement 107 

persisted over the labile nature of evolutionary transitions between parity modes (Blackburn, 108 

1999, de Fraipont, Clobert & Barbault, 1996; Griffith et al., 2015; Harrington & Reeder, 109 

2017; Lee & Shine, 1998; Pyron, 2015; Pyron & Burbrink, 2014; Recknagel, Kamenos & 110 

Elmer, 2018; Recknagel et al., 2021b). A growing number of transcriptomic and genomic 111 

studies analysing the molecular underpinnings of reproductive mode evolution in squamates 112 

(e.g. Brandley et al., 2012; Cornetti et al., 2018; Gao et al., 2019; Griffith et al., 2016, 2017a; 113 

Foster et al., 2020, 2022; Recknagel et al., 2021a; Yurchenko, Recknagel & Elmer, 2020; 114 

Xie et al., 2022) and recent advances in palaeontology contribute to the discussion (Jiang et 115 

al., 2023; Norell et al., 2020). It is prudent to acknowledge that the relative difficulty of a 116 

phenotypic change cannot be determined from morphology alone or by unidentified 117 

physiological mechanisms. At least theoretically, any phenotypic change could be facilitated 118 

by simple genomic changes [e.g. a single nucleotide polymorphism (SNP)] or any 119 

combination of multi-omic changes to any number of loci. As research begins to reveal the 120 

molecular networks involved with parity mode evolution, it is important to avoid bias that 121 

could be introduced by prior assumptions on the feasibility of transitions. This reality brings 122 

weight to ancestral state reconstructions that identify highly labile transitions in squamates 123 

(Pyron & Burbrink, 2014) and an early origin of viviparity in amniotes (Jiang et al., 2023).  124 
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 The earliest estimates predicted that viviparity evolved independently between 91 and 125 

97 times in squamates (Blackburn, 1982, 1985, 1992). These estimates assumed that 126 

oviparity was the ancestral state and, based on the theoretical arguments of Dollo’s law, that 127 

reversals back to oviparity should be exceedingly rare (Blackburn, 1992; Fitch, 1970; Neill, 128 

1964; Tinkle & Gibbons, 1977). An intermediate phenotype when re-evolving an eggshell 129 

has been considered as physiologically unviable, preventing reversals (Blackburn, 1995; 130 

Griffith et al., 2015). This was demonstrated when experimentally induced extended egg 131 

retention in phrynosomatid lizards resulted in adverse embryonic development attributed to 132 

impeded gas exchange imposed by the eggshell (Mathies & Andrews, 1999, 2000; Parker & 133 

Andrews, 2006). However, assuming this fitness valley applies to all clades is presumptive.   134 

 Intermediate phenotypes as fitness valleys assumes that (1) eggshells inherently 135 

impede gas exchange and (2) an eggshell must re-evolve before a reversal back to oviparity is 136 

possible (Griffith et al., 2015). By contrast, eggshells are considered a component of the 137 

placenta in viviparous rough earth snakes (Haldea striatula) and in viviparous reproductively 138 

bimodal European common lizards (Zootoca vivipara) and yellow-bellied three-toed skinks 139 

(Saiphos equalis) (Stewart, 2013). Additionally, Saiphos equalis is a reproductively bimodal 140 

skink that has an oviparous population with incubation times as short as 5 days, thus embryos 141 

spend a significant time in utero within an eggshell (Smith, Austin & Shine, 2001). A 142 

surprising example of eggshells being compatible with full embryonic development includes 143 

a report of a captive tortoise that retained viable eggs until the hatching stage (Kuchling & 144 

Hofmeyr, 2022).  145 

 Several studies predict early origins of viviparity in squamates (Jiang et al., 2023; 146 

Pyron & Burbrink, 2014) and reversals back to oviparity (de Fraipont et al., 1996; Fenwick, 147 

Greene & Parkinson, 2011; Harrington & Reeder, 2017; Lee & Shine, 1998; Pyron & 148 

Burbrink, 2014; Recknagel et al., 2018). Saiphos equalis proved the possibility of reversals 149 
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when a viviparous individual oviposited an egg prior to birthing fully developed young 150 

within the same litter (Laird, Thompson & Whittington, 2019). The unusual absence of an 151 

egg-tooth in oviparous Arabian sand boas (Eryx jayakari) (Lynch & Wagner, 2010; Staub & 152 

Emberton, 2002) serves as additional biological evidence of a reversal, although this has been 153 

challenged (Griffith et al., 2015). Importantly, extended embryonic retention (EER), 154 

characteristic of oviparous squamates compared to birds, is viewed as compatible with labile 155 

transitions (Jiang et al., 2023). Current expectations are that oviparity may re-evolve more 156 

easily in squamate lineages that recently evolved viviparity and which have not lost specific 157 

avian eggshell-matrix proteins (Laird et al., 2019; Xie et al., 2022). 158 

Although models that restrict parity mode evolution to be unidirectional (from 159 

oviparity to viviparity) are shown to be poor fits for squamates (Pyron & Burbrink, 2014; 160 

Recknagel et al., 2021b), there is resistance to the proposition that viviparity originated early 161 

in Squamata (e.g. Griffith et al., 2015). The most recent ancestral state reconstruction, built 162 

from biomineralization and parity mode data across 80 extinct and extant amniotes using a 163 

single structured Markov model, inferred viviparity with EER in the first amniotes and in the 164 

most recent common ancestor of lepidosaurs (squamates and sphenodontians) (Jiang et al., 165 

2023). A testable hypothesis regarding a molecular mechanism that may have supported a 166 

transition to viviparity at the base of lepidosaurs and EER at the base of amniotes (Sections 167 

III.3 and VII) may help conclude decades-long debates.  168 

Discoveries of viviparity in ancient amniotes are numerous, dating back to the Early 169 

Permian (Chuliver, Scanferla & Smith, 2022; Motani et al., 2014; Piñeiro et al., 2012; Jiang 170 

et al., 2023). EER and/or viviparity in the last common ancestor of amniotes may not be 171 

unreasonable. A compelling example is the report that Ikechosaurus sp., a basal 172 

archosauromorph, reached an articulated stage of embryonic development inside a 173 

parchment-shelled egg (Jiang et al., 2023). 174 
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 The ecological drivers of parity mode evolution are beyond the scope of this review. 175 

However, it is generally proposed that viviparity increases protection from adverse 176 

environmental conditions (Ma et al., 2018; Pincheira-Donoso et al., 2017), and a general 177 

trend that supports this is the higher frequency of viviparous squamates, relative to oviparous, 178 

observed at increasing distances from the equator. The cold-climate hypothesis suggests that 179 

viviparity is an adaptation to cold climates, and this is generally accepted by the scientific 180 

community (e.g. Ma et al., 2018; Zimin et al., 2022). Consistent with the cold-climate 181 

hypothesis, a recent study that utilized 65 million years of global paleoclimate data, squamate 182 

phylogeny and parity data for over 3,000 taxa showed that persistent, stable cold climates are 183 

correlated with transitions to viviparity (Recknagel et al., 2021b). Less focus has been given 184 

to the adaptive nature of oviparity, which should incur less of a maternal burden given the 185 

shortened length of embryonic retention. Higher offspring mass and reproductive output is 186 

associated with oviparity in laboratory-housed Zootoca vivipara, leading authors to propose 187 

that oviparity may be advantageous when individuals live at optimal temperatures for 188 

embryonic development (Recknagel & Elmer, 2019).  189 

Regarding the evolutionary genomics of parity mode evolution, two recent studies 190 

reached alternate conclusions when they compared differential gene expression during 191 

pregnancy across viviparous vertebrates, ranging from sea horses (Hippocampus 192 

abdominalis) to humans (Homo sapiens) (Foster et al., 2022; Recknagel et al., 2021a). 193 

Recknagel et al. (2021a) highlighted the overlap of differentially expressed genes during 194 

gestation across viviparous amniotes and vertebrates, whereas Foster et al. (2022) concluded 195 

that different genes with similar functions are recruited to the placenta and uterus to support 196 

independent origins of viviparity. Improved contiguity of assemblies, more comprehensive 197 

annotations, analysis of total RNA rather than messenger RNA (mRNA), and advanced 198 
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approaches to comparative transcriptomics may clarify the level of molecular convergence 199 

across independent origins of viviparity. 200 

The recent ancestral state reconstruction that estimated EER in the most recent 201 

common ancestor of amniotes (Jiang et al., 2023) brings support to the EER model of 202 

amniote origins (Hubrecht, 1910). The EER model postulates that amniote extraembryonic 203 

membranes (including the chorion, allantois, and amnion) arose through pressure to support 204 

survival of the embryo in the uterine environment for an extended period of time compared to 205 

anamniotes [see Laurin (2005) for a summary of earlier ancestral reconstructions of EER]. 206 

Interestingly, delayed egg deposition is ancestral to amniotes (Starck, Stewart & Blackburn, 207 

2021). Essentially, when the terms ‘delayed egg deposition’ or ‘extended embryonic 208 

retention’ are applied to amniotes they both describe longer embryonic retention relative to 209 

anamniotes. Therefore, it is prudent to consider how EER may have influenced the origin of 210 

amniotes. I emphasize that the EER model is agnostic to the parity mode of the first amniote. 211 

The EER model juxtaposes the traditional perspective that the original amniote egg 212 

washed ashore and adapted to the terrestrial environment over evolutionary time (e.g. Romer, 213 

1957). Importantly, regardless of where the first amniote egg was deposited (i.e. dry land or 214 

in water), the EER model offers an explanation for how the eggshell and extraembryonic 215 

membranes originated. For example, the origin of delayed egg deposition with internal 216 

fertilization should have been met with adaptations to support uterine exposure to foreign 217 

tissue (see Section VI). The eggshell, as an immunological barrier, may represent that 218 

adaptation. The environmental context of an adaptation matters. The eggshell for example 219 

develops early in utero, and amniotes are the only vertebrates with uterine secreted shell 220 

coats (reviewed in Menkhorst & Selwood, 2008). Extraembryonic membranes, interestingly, 221 

begin development when the ectoderm first emerges, during the earliest stages of gastrulation 222 

(Chuva de Sousa Lopes et al., 2022). In birds, reptiles and mice, the emergence of these 223 
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membranes begins with the formation of amniochorionic fold(s) that develop into the chorion 224 

and amnion (e.g. Chuva de Sousa Lopes et al., 2022). The amnion develops from the epiblast 225 

while the egg is in utero (Chuva de Sousa Lopes et al., 2022). Across amniotes, the egg stays 226 

in utero until at least the primitive streak stage or early somite stage (Starck et al., 2021). 227 

Ferner & Mess (2011) describe the development of the amnion as a prerequisite for survival 228 

of the egg on land. This is further explored by Starck et al. (2021) who describe the myogenic 229 

contractility of the amnion as a potential adaptation to maintain separation of the embryo 230 

from extraembryonic materials. Cataloguing where the chorion and allantois (jointly called 231 

the chorioallantois) complete development (in utero or ex utero) across the amniote 232 

phylogeny would provide further evolutionary insights. 233 

The scientific community has been hesitant to infer that extraembryonic membranes 234 

originated in response to EER. The chorioallantois and amnion may have originated to 235 

support embryonic gas and water supply given the deficits of these resources in utero. 236 

Without substantial amounts of water, converting yolk nutrients to somatic tissue is 237 

impossible (Thompson & Speake, 2003). Water is the primary resource provisioned by the 238 

mother of viviparous squamates and it is stored in extraembryonic membranes (Lourdais et 239 

al., 2015). Improper water and gas exchange are associated with poor chorioallantoic blood 240 

flow (Wootton, McFadyen & Cooper, 1977). If extraembryonic membranes developed as an 241 

adaptation to the uterine environment, this translates to an egg arriving on land with 242 

exaptations to support gas and water exchange. I highlight that the EER model does not 243 

necessarily oppose the traditional paradigm, but rather adds context. Ultimately, I provide a 244 

list of evolutionary events that unify the traditional paradigm with the EER model to explain 245 

the origin of amniotes more holistically (see Section VII).  246 

Throughout this review, considering viviparity as the most extreme form of EER, I 247 

hope I engage readers with thinking about the EER model in a new light. With a deep review 248 
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of interdisciplinary literature and associated supplementary materials across amniotes, I 249 

explore genomic and physiological features of gestation and gravidity, including those that 250 

could be exploited to support labile shifts, and those that may facilitate or impede reversals. I 251 

provide the nucleation site hypothesis to describe how lepidosaurs may have transitioned to 252 

viviparity early in their evolutionary history (Section III.3), a phylogenetic framework to 253 

infer ancestral states based on mechanisms of maternal–embryonic calcium provisioning 254 

(Section V.2), evolutionary pathways that may support transitions between parity modes (see 255 

Section VII), and a unified framework to understand the origin of amniotes (see Section VII). 256 

I advocate for using squamates as a model to understand the ancestral state of the amniote 257 

egg. Future work should consider this thoughtfully and embrace the complexity of the 258 

system. I hope this review serves as a foundation for further research on the evolutionary 259 

history of the amniote egg and reproductive mode evolution.  260 

 261 

(1) Terminology 262 

 I use the conventional definition of viviparity as retention of eggs until the stage when 263 

the embryo is fully developed (Blackburn & Stewart, 2021; van Dyke, Brandley & 264 

Thompson, 2014). Oviparity is defined by embryos that develop outside the mother. I use the 265 

terms gravidity and gestation to describe the period of internal retention of the embryo in 266 

oviparous and viviparous taxa, respectively. Vertebrate placentas are conventionally defined 267 

by apposition of parental and fetal tissues (Mossman, 1937). It is accepted that all viviparous 268 

squamates have a chorioallantoic placenta under this definition (Blackburn & Stewart, 2021; 269 

Stewart & Blackburn, 1988). The avian chorioallantoic membrane and mammalian 270 

chorioallantoic placenta are homologous (Metcalfe & Stock, 1993). I sometimes refer to this 271 

organ as the chorioallantoic tissue to describe it for both parity modes. Oviposition refers to 272 

the process and act of egg-laying, while parturition refers to the process and act of giving 273 
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birth to live young. Parition refers to both oviposition and parturition (Blackburn, 1992; 274 

Smith, 1975).  275 

 276 

(2) Main Five physiological changes of parity mode transitions 277 

 Several physiological features are expected to change during transitions between 278 

oviparity and viviparity (Fig. 1). I consider herein five physiological features (hereafter the 279 

‘Main Five’): (1) length of embryonic retention (Murphy & Thompson, 2011; Packard, Tracy 280 

& Roth, 1977) – only viviparous mothers retain the embryo for the entirety of development; 281 

(2) eggshell formation (Heulin et al., 2005; Packard et al., 1977; van Dyke et al., 2014) – 282 

viviparous embryos generally do not have an eggshell; (3) exchange of water, gas and/or 283 

nutrients (Blackburn, 1992, 2015a; Thompson, Stewart & Speake, 2000; Thompson & 284 

Speake, 2006); (4) embryonic calcium provisioning (Packard et al., 1985; Shadrix et al., 285 

1994; Thompson & Speake, 2006) – sources of embryonic calcium and timing of uterine 286 

calcium secretions generally differ between oviparous and viviparous reproduction; and (5) 287 

maternal–fetal immune dynamics (e.g. Graham et al., 2011; Hendrawan et al., 2017; Foster et 288 

al., 2020) – viviparous reproduction is associated with maternal and embryonic exposure to 289 

foreign tissues, which is likely to require enhanced regulation of maternal–fetal immune 290 

systems. 291 

 292 

II. LENGTH OF EMBRYONIC RETENTION 293 

Viviparous amniotes retain the embryo until it is fully developed, but oviparous amniotes 294 

retain the embryo for a fraction of that time. Rather than using precocious hatching and 295 

parturition (PH&P), like that of opossums and early viviparous mammals (Wagner et al., 296 

2014), squamates evolve viviparity through extended egg retention (García-Collazo et al., 297 
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2012; Shine, 1983). Thus, processes affecting the length of embryonic retention are expected 298 

to change to support transitions between parity modes (van Dyke et al., 2014). 299 

 300 

(1) Parturition and oviposition 301 

The genes and hormones involved with initiating and ending gestation may provide 302 

insights into the tools squamates can co-opt to change the length of embryonic retention 303 

during parity mode transitions. Parition terminates embryonic retention. Parturition can be 304 

divided into four parts (Terzidou, 2007; Vannuccini et al., 2016): quiescence (Phase 0); 305 

activation (Phase 1); stimulation (Phase 2); and involution (Phase 3). In eutherian mammals, 306 

several processes contribute to the initiation and termination of gestation including 307 

inflammation (Challis et al., 2009; Hansen et al., 2017), maternal recognition of pregnancy 308 

(MRP), mechanical stretch of uterine tissues (Sooranna et al., 2004; Shynlova et al., 2008), 309 

and fluctuating concentrations of corticotropin-releasing hormone (CRH), progesterone, and 310 

oestrogen (Challis et al., 2000).  311 

 312 

(a) Quiescence and sustained progesterone production in reproductive tissues 313 

EER could be achieved by triggering mechanisms that extend uterine quiescence, i.e. 314 

inactivity of the uterus. Inhibition of myometrial contractions through sustained progesterone 315 

production supports quiescence across different viviparous amniotes (Bazer, 1992; Casey & 316 

MacDonald, 1997; Fergusson & Bradshaw, 1991; Ilicic et al., 2017; Murphy & Thompson, 317 

2011; Putnam et al., 1991; Soloff et al., 2011). The corpus luteum, a transient progesterone-318 

producing organ, releases progesterone during gestation. Extended lifespan of the corpus 319 

luteum likely aided the evolution of viviparity in mammals (Amoroso, 1968; Callard et al., 320 

1992; Stouffer & Hennebold, 2015). Thus, early research on squamate viviparity also 321 

explored the influence of corpus luteum lifespan. The lifespan of corpora lutea is associated 322 



 14 

with oviparous egg retention and oviposition (Diaz, Alonso-Gomez & Delgado, 1994; Fox & 323 

Guillette 1987; Jones & Guillette, 1982). Eggshell formation in oviparous whiptail lizards 324 

(Cnemidophorus uniparens) is even disrupted by experimental removal of corpora lutea 325 

(Cuellar, 1979). However, the lifespan of corpora lutea does not consistently correlate with 326 

length of embryonic retention in viviparous squamates like it does in mammals (Albergotti & 327 

Guillette, 2011; Callard et al., 1992).  328 

Maternal recognition of pregnancy (MRP) refers to the early signalling of the embryo to 329 

prevent luteolysis (Thatcher, Meyer & Danet-Desnoyers, 1995), i.e. degradation of the corpus 330 

luteum, which takes place in the absence of pregnancy. MRP enables continued progesterone 331 

production by the corpus luteum to support uterine quiescence during early gestation. An 332 

independent evolution of MRP is reported for Macropodidae, a lineage of marsupial 333 

mammals (Freyer, Zeller & Renfree, 2003), and endometrial recognition of pregnancy is 334 

known in the opossum (Griffith et al., 2019). MRP has not been explicitly studied in 335 

squamates, but is assuredly present: the corpora lutea are not degraded in the earliest stages 336 

of gravidity/gestation in oviparous or viviparous squamates (Callard et al., 1992; Albergotti 337 

& Guillette, 2011).  338 

Different genes are signalled by embryos for MRP across mammals. Human chorionic 339 

gonadotropin hormone (hCG) establishes MRP (Ross, 1979; Behrman et al., 1993; Duncan, 340 

McNeilly & Illingworth, 1998; Duncan, 2000; Ticconi et al., 2007). In pigs, MRP is 341 

hypothesized to be triggered by collaborative signalling of oestradiol (E2) and prostaglandins 342 

(PGs) (Geisert et al., 2023). Similarly, glycoproteins, E2 and prostaglandin E2 (PGE2) have 343 

been implicated in signalling MRP in horses (Equus caballus) (Klein & Troedsson, 2011; 344 

Klein, 2016). In ruminants, embryonic signalling of interferon tau (IFN-) establishes MRP 345 

(Bazer, 2013; Bazer, Spencer & Ott, 1997; Thatcher et al., 1995). During gestation in the 346 

uterus of viviparous African ocellated skinks (Chalcides ocellatus), four receptors for IFN-, 347 
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IFN-, IFN-, and IFN- are differentially expressed but no expression of IFN- was 348 

detected compared to non-gestational uterine tissue (Brandley et al., 2012). I was unable to 349 

find expression patterns of MRP signalling homologs in other squamate reproductive tissues. 350 

Should MRP occur in squamates, it may be signalled by genes that are clade specific, as in 351 

mammals. This makes comparative evaluation of the influence of MRP on the evolution of 352 

viviparity an interesting avenue for future research.  353 

The evolution of viviparous EER may be sufficiently supported by maintenance of 354 

chorioallantoic progesterone production coupled with eggshell loss (Griffith et al., 2017a). 355 

This theory may be broadly applicable across amniotes given that the most recent common 356 

ancestor of amniotes likely had a chorioallantois with an endocrine function (Griffith et al., 357 

2017a). Following death of the corpus luteum during gestation, placental progesterone 358 

production supports EER in eutherian mammals (Castracane & Goldzieher, 1986; Rothchild, 359 

2003; Spencer & Bazer, 2004). Viviparous Italian three-toed skinks (Chalcides chalcides) 360 

shift to chorioallantoic progesterone production following degradation of corpora lutea 361 

during gestation (Guarino et al., 1998). The placenta of viviparous southern snow skinks 362 

(Carinascincus microlepidotus) produces minimal progesterone but has a strong capacity to 363 

convert pregnenolone to progesterone (Girling & Jones, 2003). Whereas all genes involved 364 

with a known biosynthesis pathway for progesterone production are expressed in the placenta 365 

of horses, only some of these genes were detected in the chorioallantois of chickens (Gallus 366 

gallus), viviparous southern grass skinks (Pseudemoia entrecasteauxii), and oviparous and 367 

viviparous southeastern sliders (Lerista bougainvillii) (Griffith et al., 2017a). Thus, if 368 

chorioallantoic progesterone production has supported multiple origins of viviparity in 369 

amniotes, it is not evidenced by a conserved ancestral gene expression pattern for the 370 

biosynthesis of progesterone (Griffith et al., 2017a). Nonetheless, parity trait genes in a 371 

reproductively bimodal lizard, Zootoca vivipara, are associated with progesterone-binding 372 
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functions (Recknagel et al., 2021a), highlighting the role of progesterone in squamate 373 

reproduction.  374 

Other female reproductive tissues in squamates express genes involved with progesterone 375 

biosynthesis: StAR-related lipid transfer domain protein 3 (StARD3) and hydroxy-delta-5-376 

steroid dehydrogenase (HSD3B1). STARD3 is significantly upregulated in the uterine tissue 377 

during pregnancy in viviparous Chalcides ocellatus, along with significant differential 378 

expression of seven paralogs (Brandley et al., 2012). While StARD3 is expressed during 379 

gestation in Zootoca vivipara, it is not significantly differentially expressed compared to 380 

oviparous counterparts; HSD3B1, on the other hand, is significantly upregulated during mid-381 

gestation (Recknagel et al., 2021a). Compared to non-gestational samples, HSD3B1 is 382 

significantly upregulated in the uterus during early and late gestation in viviparous 383 

individuals of reproductively bimodal Saiphos equalis (Foster et al., 2020). Oviparous 384 

individuals from the same species did not exhibit this expression pattern (Foster et al., 2020). 385 

Activity of HSD3B1 was detected in the mucosal epithelium of oviparous eastern garden 386 

lizards (Calotes versicolor) (Kumari, Sarkar & Shivanandappa, 1992), and in the uterine 387 

glands of oviparous keeled Indian mabuya (Eutropis carinata) (Mundkur & Sarkar, 1982). 388 

Other genes involved with the biosynthesis of progesterone (e.g. steroidogenic acute 389 

regulatory protein or cytochrome-P450-family-11-subfamily-A-polypeptide-1) serve as 390 

further candidates for exploring the relationship between organ-specific patterns of 391 

progesterone production and the evolution of EER in viviparous squamates.  392 

For progesterone to prevent myometrial contractions and support quiescence, there must 393 

be progesterone receptors (PGRs) in the uterus (Mesiano, Wang & Norwitz, 2011; Young et 394 

al., 2011). In humans, progesterone responsiveness is related to specific ratios of the PGRs, 395 

PR-A and PR-B in myometrial cells (Young et al., 2011). Minimal research exists on PGR 396 

expression in squamate reproductive tissues. One study found that in the uterus of the yolk 397 
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sac in viviparous Pseudemoia entrecasteauxii, one progesterone receptor gene, PGRMC2, is 398 

upregulated compared to non-gestational uterine tissue (Griffith et al., 2016). Another 399 

progesterone receptor gene, PGR, is downregulated in the uterus of the chorioallantoic 400 

placenta and yolk sac placenta compared to non-gestational uterine tissue (Griffith et al., 401 

2016). Downregulation of both PGR and PGRMC2 in the uterus during gestation was 402 

detected in viviparous Chalcides ocellatus (Brandley et al., 2012). While PGR is 403 

differentially expressed at mid-gestation in viviparous compared to oviparous individuals, 404 

PGRMC1 and PGRMC2 are not differentially expressed (Recknagel et al., 2021a). However, 405 

admixture mapping revealed that the three SNPs most highly associated with gestation length 406 

in Zootoca vivipara are in close proximity to PGRMC1 (Recknagel et al., 2021a). Measuring 407 

expression of PGRs and their ratios in uteruses of oviparous and viviparous squamates will 408 

help elucidate the receptors needed to support progesterone responsiveness in squamate 409 

uteruses and their relationship to EER. 410 

 411 

(b) Activation and progesterone withdrawal 412 

The activation stage of parturition is marked by the withdrawal, or functional withdrawal, 413 

of progesterone leading to an oestrogen-dominated response during the next stage: 414 

stimulation (Bakker, Pierce & Myers, 2017; Fergusson & Bradshaw, 1991). Progesterone 415 

may be withdrawn in response to environmental stimuli in reptiles during parturition (Shine 416 

& Guillette, 1988). In mammals, activation is marked by increasing concentrations of CRH 417 

and contraction-associated proteins (CAPs) including connexin-43, prostaglandins, oxytocin 418 

receptors, prostanoid receptors and cell signalling proteins (Bakker et al., 2017; Ilicic et al., 419 

2017; Leadon et al., 1982; Pashen & Allen, 1979; Whittle et al., 2000). Pro-inflammatory 420 

cytokines and chemokines, prostaglandin synthase-2 (COX-2, also referred to as PTGS-2), 421 

and nuclear factor kappa B (NF-κB) also influence activation in mammals (Christiaens et al., 422 
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2008; Lappas et al., 2002; Lappas & Rice, 2007; Lindström & Bennett, 2005; Olson, 2003; 423 

Terzidou, 2007).  424 

Some similar patterns are associated with oviposition in birds. In chickens, prostaglandin 425 

F (PGF) concentrations increase in the hours leading up to oviposition (Takahashi et al., 426 

2004). Experimental injection of oxytocin and arginine vasotocin (AVT), which are similar 427 

neurohypophyseal peptides, revealed that uterine tissues of chickens maintain responsiveness 428 

to oxytocin but are more sensitive to AVT (Ewy, 1970). Murphy & Thompson (2011) 429 

provide an extensive list of resources on progesterone and oestrogen assays across oviparous 430 

and viviparous squamates. Future research should consider exploring parallels between 431 

mechanisms of activation in mammals and squamates. Any process that can trigger or stall 432 

activation could be exploited over evolutionary time to influence EER.  433 

 434 

(c) Stimulation and electrical gradients, inflammation, and hormonal regulation 435 

Mechanical stretch, electrical gradients, inflammatory processes, and hormonal regulation 436 

contribute to stimulation, the phase when contractions, cervical ripening and dilation occur. 437 

Stimulation involves contributions from maternal and fetal tissues. As early as 460 BC there 438 

was uncertainty over the proportional influence of mother or fetus on the initiation of 439 

parturition. Hippocrates proposed that the fetus initiates parturition by pushing its feet on the 440 

fundus of the uterus. Although the reality is not so cartoonish, mechanical stretch of the 441 

uterus from the growing embryo does play a role in parturition (Lefebvre et al., 1995; 442 

Tamizian & Arulkumaran, 2004; Wray et al., 2015).  443 

Physical stretching of the uterus causes an influx of calcium and Na+, altering the muscle 444 

action potential and enabling contractions (Kao & McCullough, 1975). Calcium further 445 

activates voltage-gated calcium channels on myometrial cell membranes, enhancing the 446 

influx of calcium ions and mediating the force and speed of myometrial contractility 447 
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(Arrowsmith & Wray, 2014; Wray et al., 2015). The influence of uterine overdistension on 448 

parition in birds and non-avian reptiles has not yet been examined to my knowledge. 449 

However, differentially expressed genes functionally enriched the gene ontology (GO) term 450 

for ‘voltage-gated calcium channel activity’ in uterine tissues during gravidity and gestation 451 

in Saiphos equalis (Foster et al., 2020). A uterine response to overdistension is among the 452 

many possible explanations for this. It may be important to consider the influence of uterine 453 

overdistension on squamate parity mode transitions, because if bioelectrical responses to 454 

uterine overdistension are a common feature of vertebrate parturition, reduced distension may 455 

be a barrier to reversals back to oviparity. Uterine overdistension may influence parturition 456 

by triggering an ‘inflammatory pulse’ that activates further myometrial contractility, which 457 

leads to preterm birth in primates (Adams Waldorf et al., 2015).  458 

During parturition, there is an influx of uterine and embryonic pro-inflammatory genes 459 

and immune cells (Adams Waldorf et al., 2015; Charpigny et al., 2003; Mesiano et al., 2002; 460 

Park et al., 2005). Uterine contractions in humans involve actions of PGs, oxytocin, CRH, 461 

cytokines, and neutrophils (Adams Waldorf et al., 2015; De Rensis et al., 2012; Olson & 462 

Hertelendy, 1983; Park et al., 2005; Sykes et al., 2014; Terzidou, 2007).  463 

The cycling concentrations of the neuropeptide CRH support parturition in humans. This 464 

has been compared to a biological clock that is initiated at early stages of gestation 465 

(Lockwood, 2004; McLean & Smith, 2001). Increased production of CRH facilitates 466 

parturition by interacting with the CRH receptors, CRH-R1 and CRH-R2, which are 467 

suggested to promote myometrial relaxation or contractility, respectively (Hillhouse & 468 

Grammatopoulos, 2001). Altered regulation, phenotype or function of hormones that act as 469 

biological clocks, like CRH, may have a particularly strong influence on evolutionary 470 

changes to length of embryonic retention, a trait inherently related to time.  471 
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Placental CRH production has only been identified in primates thus far (Challis et al., 472 

2005; Emanuel et al., 1994; Florio et al., 2002; Hillhouse & Grammatopoulos, 2001; Karteris 473 

et al., 1998; Mendelson, 2009; Robinson et al., 1989). Placental CRH production may, 474 

therefore, be unique to primates. However, the amino acid sequence of CRH is highly 475 

conserved in vertebrates (Noy et al., 2017), indicating there is a possibility for shared 476 

function across diverse taxa. Like CRH cycling in mammals, timely fluctuations of AVT 477 

stimulate uterine contractions, enabling oviposition in birds, turtles, and lizards (Ewy, 1970; 478 

Fergusson & Bradshaw, 1991; Guillette & Jones, 1980; Jones et al., 1987; Rzasa, 1978; Wu 479 

et al., 2019).  480 

PGE2 and prostaglandin F2 (PGF2) influence uterine contractions and cervical 481 

relaxation for parition across many amniotes, including humans (Terzidou, 2007), domestic 482 

pigs (De Rensis et al., 2012), chickens (Hertelendy, Yeh & Biellier, 1974; Olson, Shimada & 483 

Etches, 1986), and loggerhead turtles (Caretta caretta) (Guillette et al., 1991). Injections of 484 

PGF2 and PGE2 induce parturition in viviparous Yarrow’s spiny lizards (Sceloporus 485 

jarrovi) and raukawa geckos (Woodworthia maculatus) (Cree & Guillette, 1991; Guillette et 486 

al., 1992). However, no injected dosages of PGF2 or PGE2 induced oviposition in 487 

oviparous collard lizards (Crotaphytus collarus), eastern fence lizards (Sceloporus 488 

undulatus), six-lined racerunners (Aspidoscelis sexlineatus), or striped plateau lizards 489 

(Sceloporus virgatus) (Guillette et al., 1991). It is interesting that injections of PGF2 and 490 

PGE2 induced parturition in viviparous lizards but did not induce oviposition in the 491 

oviparous lizards studied. Therefore, it is plausible that regulatory or functional changes to 492 

PGF2 and/or PGE2 in squamates could facilitate changes to the length of embryonic 493 

retention to support transitions between reproductive modes. However, induction of 494 

parturition with PGF2 in viviparous Woodworthia maculatus only worked following 495 

injection of -adrenoceptor (Cree & Guillette, 1991).  496 
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PGF2 decreases progesterone concentrations during phase 2 of parturition, stimulation 497 

(De Rensis et al., 2012). In humans, biosynthesis of PGs is driven largely by the enzyme 498 

COX-2 (= PTGS-2) rather than COX-1 (Slater et al., 1995, 1999). This helps maintain the 499 

decreased progesterone/oestrogen ratio of phase 2, stimulation. In ovariectomized viviparous 500 

garter snakes (Thamnophis elegans), higher oestrogen levels stimulated increased thickness 501 

of uterine epithelial cells and glandular activity, whereas administration of progesterone had 502 

little effect on uterine histology (Mead, Eroschenko & Highfill, 1981). Uterine pig models 503 

revealed that oestrogen stimulates involuntary contraction and relaxation (peristalsis) of the 504 

uterus (Mueller et al., 2006). 505 

The softening of the cervix is important during the stimulation stage of parturition. A 506 

hormone related to insulin, relaxin, promotes myometrial softening in humans, domestic pigs, 507 

and turtles (Mercado-Simmen et al., 1982; Sorbera, Giannoukos & Collard, 1988; Weiss & 508 

Goldsmith, 2001). The cervix also softens in response to actions of PGE2. PGE2 activates 509 

pro-inflammatory cytokines, interleukin (IL)-8 and tumour necrosis factor (TNF)-, resulting 510 

in activation of the collagenases and matrix metalloproteinases involved in cervical softening 511 

(Bakker et al., 2017). This causes a positive feedback loop between IL-8 and PGE2 synthesis 512 

(Denison et al., 1998; Denison, Calder & Kelly, 1999a; Terzidou, 2007; Li et al., 2010). 513 

Upregulation of IL-8 is also promoted by the protein complex NF-kB during parturition in 514 

humans (Elliott, 2001). Stimulated by fetal signalling of surfactant protein A (SP-A), 515 

increased production of NF-kB and IL-1 is associated with parturition in mice (Mus 516 

musculus) (Mendelson & Condon, 2005; Mendelson, 2009).  517 

A few studies focus on the role of cytokines on squamate reproduction but not explicitly 518 

during oviposition or parturition (Hendrawan et al., 2017; Paulesu et al., 1995, 2005a, 2008; 519 

Paulesu, Romagnoli & Bigliardi, 2005b). Some studies detected expression of cytokines 520 

during late gestation (Foster et al., 2020; Gao et al., 2019; Recknagel et al., 2021a). TNF- 521 
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related activity was only detected at this time in viviparous tussock cool-skinks (Pseudemoia 522 

entrecasteauxii) which were found to downregulate TNF--induced genes (TNFAIP6 and 523 

TNFAIP8L2) in the ‘uterus of the chorioallantoic placenta’ and TNFAIP6, TNFAIP1, and 524 

TNFAIP2 in the ‘uterus of the yolk-sac placenta’ compared to non-gestational uterine tissues 525 

(Griffith et al., 2016).  526 

Altered expression or phenotype of contractility agonists, oxytocin receptors and 527 

oestrogen receptors, and contractility antagonists, progesterone receptors and -adrenergic 528 

receptors (Ravanos et al., 2015) may also change the length of embryonic retention to 529 

support transitions between parity modes. Differences in length of embryonic retention in the 530 

oviparous and viviparous agamas, Phrynocephalus przewalskii and Phrynocephalus 531 

vlangalii, respectively, appears to be driven by regulatory differences in prostaglandins, 532 

COX-2, an AVT receptor (MTR), -adrenergic receptors, and oestrogen receptors. During 533 

oviposition, P. przewalskii exhibited promotion of contractions through downregulation of 534 

genes associated with the -adrenergic receptor (ADRB2), and upregulation of COX-2 and 535 

prostaglandin, and absent (potentially lost) expression of genes for two oestrogen receptors 536 

(ESR1 and ESR2) and the AVT receptor (MTR) (Gao et al., 2019). During the stage of 537 

gestation corresponding to oviposition, its viviparous sister species, P. vlangalii, exhibited a 538 

different pattern: inhibition of contractions caused by upregulation of ADRB2 and 539 

downregulation of genes for two oestrogen receptors (ESR1, ESR2), MTR, COX-2, and 540 

prostaglandin (Gao et al., 2019). Three viviparous squamates, Saiphos equalis, Chalcides 541 

ocellatus, and Pseudemoia entrecasteauxii, share some of these expression patterns (COX-2, 542 

MTR, and ADRB, respectively) thought to be involved with EER in viviparous P. vlangalii 543 

(Brandley et al., 2012; Foster et al., 2020; Gao et al., 2019; Griffith et al., 2016), and ADRB2 544 

is upregulated at mid-gestation in viviparous Zootoca vivipara compared to oviparous 545 

individuals of this species (Recknagel et al., 2021a). Overexpressed genes in viviparous 546 
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uterine tissues of Zootoca vivipara also functionally enriched beta 1 and beta 2 adrenergic 547 

receptor signalling pathways (Recknagel et al., 2021a). The latter study, which compared 548 

uterine expression profiles during gestation across viviparous species of squamates, rodents, 549 

canines, ungulates, and humans, concluded that shared regulatory networks are recruited to 550 

support viviparity (Reckangel et al., 2021a).  551 

Recently, in humans, the only classical major histocompatibility antigen (C-MHC) 552 

expressed by trophoblasts (specialized placental cells) was found to be associated with 553 

parturition: human leukocyte antigen (HLA)-C is significantly increased during labour in 554 

term and preterm placentas compared to non-labouring placentas (Hackmon et al., 2017). The 555 

authors suggested a mechanism whereby fetal HLA-C open conformers on the placenta 556 

provoke inflammation of maternal tissues, leading to parturition (Hackmon et al., 2017). 557 

Expression of MHC alloantigens, i.e. foreign antigens to the host, by fetal cells is also 558 

associated with parturition in cows and horses (Benedictusa, Koets & Ruttena, 2015; Davies 559 

et al., 2004; Joosten, Sanders & Hensen, 1991; Rapacz-Leonard et al., 2018). Around one 560 

month prior to parturition in cows, the endometrial epithelium thins and eventually 561 

disappears completely, putting the antigen-presenting trophoblasts (Adams et al., 2007) in 562 

contact with maternal connective tissue of the endometrium (Podhalicz-Dzięgielewska et al., 563 

2000). Fetal MHC alloantigens are proposed to promote the loosening of contact between 564 

maternal and fetal tissues (Benedictusa et al., 2015). MHC molecules are expressed during 565 

gestation in some squamates (Murphy, Thompson & Belov, 2009) but their role in 566 

oviposition or parturition has not yet been considered to my knowledge. Identifying the 567 

presence or absence of MHC alloantigens on embryonic tissues before and during parition 568 

across more diverse taxa may reveal how ubiquitous the influence of embryonic MHC 569 

molecules is. 570 
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Involution (phase 3) occurs after the embryo(s) is released. In eutherian involution, the 571 

placenta detaches, and the uterus shrinks. This is supported by actions of prostaglandins 572 

(Husslein, 1984) and oxytocin (Terzidou, 2007). It seems unlikely that processes of 573 

involution are related to evolutionary changes to the length of embryonic retention.  574 

 575 

(2) Unique qualities of oviposition and parturition in sauropsids  576 

The physiology of avian oviposition is dependent on a circadian schedule (Williams, 577 

2012), with the general model of an ‘open period’ when eggs are laid, separated by ‘laying 578 

gaps’. Chicken ovulation and oviposition cycles have an 8-h open period where luteinizing 579 

hormone (LH) and progesterone levels increase, initiating ovulation. At the extreme, the 580 

ancient murrelet (Synthliboramphus antiquus), oviposits a two-egg clutch at seven-day 581 

intervals (Williams, 2012). Longer laying intervals have been associated with longer intervals 582 

between initiations of yolk development (Astheimer & Grau, 1990). In contrast to birds, 583 

oviparous squamates retain eggs for longer than the ovarian cycle (Tinkle & Gibbons, 1977). 584 

Non-avian reptiles are unique in that they are the only ectothermic amniotes. This makes 585 

them uniquely reliant on temperature for embryonic retention and associated embryonic 586 

signalling to indicate the stage of embryonic development. Additionally, females are the 587 

heterogametic sex in several squamates, leading some researchers to suggest that 588 

chromosome linkage evolution may increase the speed of evolution in genes associated with 589 

gestation length (Recknagel et al., 2021a). Admixture mapping, made possible by the natural 590 

hybridization of oviparous and viviparous populations of Zootoca vivipara, revealed 439 591 

candidate genes associated with embryonic retention (Recknagel et al., 2021a). Eleven of 592 

these genes were also associated with eggshell traits (Recknagel et al., 2021a), underscoring 593 

the pleiotropic roles of some genes putatively involved in squamate parity mode evolution.  594 

 595 
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(3) Pre-term birth and embryonic retention mechanisms 596 

The literature on the genetics of pre-term birth may be a fruitful avenue of research to 597 

inform understanding on the evolutionary genomics of embryonic retention length. A 598 

genome-wide association study (GWAS) investigating preterm birth across over 43,000 599 

women identified variants in six genes (EBF1, EEFSEC, AGTR2, WNT4, ADCY5 and RAP2C) 600 

associated with gestation length (Zhang et al., 2017). These likely act at the level of the 601 

maternal genome (Zhang et al., 2017). Whole-genome sequencing across family trios 602 

revealed 160 variants associated with eight clinical phenotypes of preterm birth in non-603 

coding regions of 66 genes, intergenic regions, and long intergenic non-coding RNAs 604 

(Knijnenburg et al., 2019). Many differentially expressed genes and methylation patterns of 605 

genes associated with very early pre-term birth (< 28 weeks) are involved with growth factor 606 

signalling, inflammation- and immunity-related pathways (Knijnenburg et al., 2019). Slower 607 

increases of CRH (Ellis et al., 2002) and higher expression of neurokinin B are also 608 

associated with pre-term birth in humans (Torricelli et al., 2007). Performing similar 609 

integrative studies, and examining homologs of genes involved with human pre-term birth in 610 

squamates may provide further candidate genes that could impact the length of embryonic 611 

retention across amniotes. Some evolutionary studies are taking implications of pre-term 612 

birth into account. For example, a comparative evolutionary transcriptomics study across 613 

therians, monotremes, squamates, and an amphibian recently associated HAND2 with preterm 614 

birth in eutherian mammals (Marinić et al., 2021).  615 

In humans, pregnancy loss from infection follows distorted ratios of immune factors at 616 

the maternal–fetal interface (Arenas-Hernandez et al., 2016; Chaturvedi et al., 2015; 617 

Chattopadhyay et al., 2010). Future research on the evolution of lengthened embryonic 618 

retention to support viviparity may benefit from exploring ratios of immune cells in the 619 

uterus and embryonic tissues during term and pre-term pregnancy in squamates. I direct 620 
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researchers to the literature on the reptile immune system and on immune cell ratios at the 621 

maternal–fetal interface during term and pre-term mammalian pregnancy for further 622 

exploration (Yang, Zheng & Lin, 2019; Zimmerman, Vogel & Bowden, 2010; Zimmerman, 623 

2020).  624 

 625 

(4) Discussion and future directions – embryonic retention and parity mode evolution 626 

The physiological processes involved at the start of gestation (MRP) and the end of 627 

gestation (parition) in birds and mammals provide insights into the genes and hormones 628 

squamates may co-opt to alter length of embryonic retention during transitions between 629 

parity modes. Unsurprisingly, hormones like oestrogen and progesterone play important roles 630 

in parition across amniotes. Further processes to be examined in squamates include signalling 631 

of homologous genes for MRP, placental progesterone production, novel pathways for 632 

biosynthesis of progesterone, the role of beta 1 and beta 2 adrenergic receptor signalling 633 

pathways, fluctuating ratios of progesterone receptors, the lifespan of the corpus luteum 634 

across a broader range of taxa, production and circulation of homologs for AVT and CRH or 635 

other similarly structured genes, expression of fetal alloantigens and inflammatory cytokines 636 

in utero, and the influence of uterine overdistension on contractions. Regarding squamate 637 

parity mode transitions, the role of uterine overdistension in mammalian parturition suggests 638 

that a lack of uterine overdistension may be a hurdle for reversals back to oviparity. 639 

Understanding the evolutionary physiology and genomics of embryonic retention in 640 

oviparous and viviparous squamates will benefit from focused attention on reproductively 641 

bimodal species (Whittington et al., 2022) and from genomics/physiological research across 642 

more taxa that vary in reproductive modes. 643 

 644 

III. EGGSHELL FORMATION 645 
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Oviparous amniotic embryos develop within an eggshell that is at least partially 646 

mineralized, whereas viviparous embryos generally do not. Evolutionary transitions between 647 

parity modes therefore require changes to the process of eggshell formation. Primarily, the 648 

eggshell serves as physical protection and as a calcium reserve. The eggshell matrix contains 649 

immune properties and pores that enable gas exchange and water uptake, though the extent of 650 

this is variable across species (Attard et al., 2021; Packard et al., 1977). The history of 651 

research on the evolutionary morphology of the amniote egg is important for future 652 

comparative research (Blackburn & Stewart, 2021). Controversially, some have suggested 653 

that the amniote eggshell originated multiple times (Aoki, 1993). Interestingly, across 654 

vertebrates, only amniotes have uterine-secreted shell coats (Menkhorst & Selwood, 2008). Is 655 

this evidence of a single common ancestor? Or evidence of competition with the amniote 656 

embryo (with extraembryonic membranes that compete for resources) in utero? Science has 657 

yet to reveal the answer.  658 

Birds have hard calcareous eggshells. Other than two lineages of geckos with hard 659 

shells, oviparous squamates have parchment-shelled eggs with a thin layer of calcium 660 

deposits on the outer surface of the shell membrane (Blackburn & Stewart, 2021; Choi et al., 661 

2018). Monotremata (egg-laying mammals) have an eggshell but far less has been 662 

documented about its structure compared to other amniotes (e.g. Legendre, Choi & Clarke, 663 

2022). The structure and physiological mechanisms involved in eggshell calcification are best 664 

resolved in birds (Choi et al., 2018; Francesch et al., 1997; Jonchère et al., 2010, 2012; Rose-665 

Martel, Du & Hincke, 2012). Eggshell deposition in tuatara, Sphenodon punctatus, and 666 

squamates differs dramatically from birds (Choi et al., 2018). Viviparous squamates lack an 667 

eggshell, absorb the eggshell during gestation, or have a shell with only a thin layer of 668 

calcium deposits. 669 
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The earliest records of amniote eggshells have features characteristic of archosaur 670 

eggshells, including the mammillary layer (Stein et al., 2019; Legendre et al., 2022). Recent 671 

reconstructions are consistent with a thin eggshell in ancestral dinosaurs (Norell et al., 2020; 672 

Stein et al., 2019). It is important to consider that the semi-rigid shells of lepidosaurs and 673 

testudines are not homologous (Legendre et al., 2022); the microstructure of Archelosauria 674 

(birds, crocodiles, turtles and dinosaurs) and lepidosaur eggshells is remarkably different 675 

(Choi et al., 2018); and recent reconstructions of the composition and ultrastructure of 676 

dinosaur eggshells revealed that a calcified hard eggshell originated three times in dinosaurs 677 

(Norell et al., 2020). In the remainder of this section, I consider how structural, mineral, 678 

genomic/transcriptomic, and proteomic information on amniote eggshells can inform 679 

scientific understanding of the ancestral eggshell of amniotes and lepidosaurs.  680 

The genetic drivers of eggshell formation are not resolved in squamates. Two oviparous 681 

lizards, Lerista bougainvillii and Lampropholis guichenoti, differentially express either two 682 

or zero genes, respectively, in utero in gravid versus non-gravid comparisons (Griffith et al., 683 

2016). However, the study only measured gene expression at one developmental stage, 684 

making it difficult to infer if regulatory changes influence eggshell formation. A subsequent 685 

reanalysis of the data for L. guichenoti revealed 269 differentially expressed genes during 686 

gravidity, markedly few compared to other vertebrates in the study (Foster et al., 2022). 687 

Furthermore, the expression profile was not consistent across biological replicates (Foster et 688 

al., 2022). By contrast, oviparous Saiphos equalis and Phrynocephalus przewalskii have over 689 

1,800 differentially expressed genes during gravidity compared to the non-gravid state 690 

(Foster et al., 2020; Gao et al., 2019). It is interesting to see drastically different uterine gene 691 

expression profiles associated with oviparity.  692 

Some genetically determined traits are known to be evolutionarily labile in squamates, 693 

such as venom and limb reduction (Camaiti et al., 2021; Sites, Reeder & Wiens, 2011). In 694 
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Saiphos equalis, shell characteristics of facultatively paritioned oviparous and viviparous 695 

embryos are similar, leading the authors to infer that both parity modes utilize the same 696 

machinery to produce egg coverings (Laird et al., 2019). In this species, environmental 697 

influences on gestation length, rather than genetic influences on eggshell thickness, may play 698 

a more dominant role in parity mode evolution (Laird et al., 2019). In Zootoca vivipara, 699 

Recknagel et al. (2021a) identified 38 candidate genes associated with eggshell traits and 700 

concluded that the genetic architecture of eggshell traits is simpler than that of gestation 701 

length.  702 

 703 

(1) Mineral composition of eggshells 704 

The different mineral compositions of eggshells across amniotes may provide insights 705 

into the differing physiological conditions and evolutionary histories under which they 706 

formed (Table 1). Taxa use a polymorph of calcium carbonate – calcite, aragonite or vaterite 707 

– to construct the eggshell (Hincke et al., 2012). Amorphous calcium carbonate (ACC) is a 708 

transient non-crystalline precursor of calcite and aragonite that is important in many 709 

calcification processes in invertebrates (Hincke et al., 2012). It was recently shown to control 710 

avian eggshell mineralization (Rodríguez-Navarro et al., 2015). 711 

In birds, the organic components of uterine fluid promote the formation of calcite 712 

(Hernández-Hernández et al., 2008a,b,c). Most amniotes use this polymorph (Hernández-713 

Hernández et al., 2008a,b; Legendre et al., 2022). However, turtle eggshells are 714 

predominately developed with aragonite (Choi et al., 2022; Mikhailov, 1997). The eggshell 715 

of most squamates consists of an inner fibrous protein layer overlain by calcium carbonate 716 

that can be a single layer or scattered crystals (Choi et al., 2018; Packard & DeMarco, 1991; 717 

Stewart et al., 2010).  718 
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There are differing accounts of the microstructure of monotreme eggshells, however 719 

conceptus coats include three layers including a zona pellucida, mucoid coat and shell coat 720 

(Frankenberg & Renfree, 2018). Further studies are needed to test for secondary homology. 721 

Monotreme shells are described as proteinaceous, permeable, and flexible (Hughes, 1984). 722 

Marsupials lack an eggshell but have an eggshell coat, similar to that of monotremes 723 

(Frankenberg & Renfree, 2018), that is secreted by the epithelial cells and endometrial glands 724 

early in embryonic development prior to implantation (Roberts, Breed & Mayrhofer, 1994; 725 

Roberts & Breed, 1996). Upon hatching of the shell coat and attachment of the embryo, a 726 

cooperative inflammatory response ensues (Stadtmauer & Wagner, 2020a,b).  727 

 728 

(2) Uterine glands and the evolution of parity modes 729 

Eggshell formation occurs in the uterus where the uterine glands secrete precursors of the 730 

eggshell (Girling, 2002; Guillette, Fox & Palmer, 1989; Jonchère et al., 2010; Nys et al., 731 

2004; Picariello, Ciarcia & Angelini, 1989; Stewart & Ecay, 2010). Uterine glands are critical 732 

for gravidity/gestation in both oviparous and viviparous amniotes (Braz et al., 2018; Burton 733 

et al., 2002; Cooke et al., 2013). For example, in humans, uterine glands provide 734 

histiotrophic nutrition to the early embryo (Burton et al., 2002). In reptiles, precursors for the 735 

proteinaceous eggshell membrane are secreted by the uterine glands (Corso, Delitala & 736 

Carcupino, 2000; Heulin et al., 2005; Palmer, Demarco & Guillette, 1993). Calcium secretion 737 

can also involve uterine epithelial cells (Herbert, Thompson & Lindsay, 2006; Thompson et 738 

al., 2007). The uterine epithelium of the soft-shelled turtle (Lissemys punctata punctata) and 739 

the eastern collared skink (Chrotaphytus collaris) stain positive for calcium (Guillette et al., 740 

1989; Sarkar, Sarkar & Maiti, 1995).  741 

Viviparous squamates have an absent or reduced eggshell membrane to facilitate gas 742 

exchange (Blackburn, 1993; Braz et al., 2018). Some viviparous squamates are encased in the 743 
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thin membrane, with or without detectable calcium (Stewart, 2013), throughout development. 744 

Others have the membrane only in the early stages of embryonic development as in the garter 745 

snakes Thamnophis radix and T. sirtalis (Blackburn & Lorenz, 2003).  746 

Reduced number or size of eggshell glands leads to reduced eggshell membrane thickness 747 

in viviparous squamates. In chickens, variation in size and spacing of eggshell glands may 748 

also be important for eggshell structure (Guillette & Jones, 1985). In the reproductively 749 

bimodal Saiphos equalis, the density of eggshell glands plays a role in eggshell thickness 750 

(Stewart et al., 2010). In the reproductively bimodal lizard Zootoca vivipara, viviparous 751 

individuals have a uterine glandular layer that is less developed during the stage of eggshell 752 

formation compared to oviparous individuals (Heulin et al., 2005). Additionally, in Lerista 753 

fragilis, which lays eggs that hatch within just hours of oviposition, the uterus contains very 754 

few mucosal glands (Guillette, 1992). In the fence lizard (Sceloporus a. aeneus), the irregular 755 

surface of the eggshell was attributed to the irregular spacing of shell glands (Guillette & 756 

Jones, 1985). In an oviparous gecko Hemidactylus turcicus, the eggshell glands have loosely 757 

packed secretory granules that produce a hard, calcareous shell (Girling, Cree & Guillette, 758 

1998). In a comparison of oviparous and viviparous water snakes from the genus Helicops, 759 

viviparous embryos have thinner shell membranes which are associated with reduced size of 760 

eggshell glands (Braz et al., 2018). In an oviparous gecko Saltuarius wyberba, their secretory 761 

granules are tightly packed, and their shell is soft and parchment-like (Girling et al., 1998). In 762 

a viviparous relative Hoplodactylus maculatus, there are far fewer eggshell glands, and where 763 

there are glands, the secretory granules are smaller and more electron dense (Girling, Cree & 764 

Guillette, 1997; Girling et al., 1998). Smaller eggshell gland size during or after 765 

vitellogenesis is also found in other viviparous squamates compared to oviparous 766 

counterparts (Braz et al., 2018; Gao et al., 2019; Heulin et al., 2005). To my knowledge, in 767 
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monotremes the relationship between eggshell thickness and shell gland size, density or 768 

compaction of secretory granules has not been explored.  769 

In the oviparous Przewalski’s toadhead agama lizard (Phrynocephalus przewalskii), 148 770 

genes are highly expressed in the uterus during the stage of eggshell gland development (Gao 771 

et al., 2019). Only three of these are highly expressed in P. vlangalii, a viviparous close 772 

relative, at this time, suggesting that differences between oviparous and viviparous eggshell 773 

gland development require regulatory changes to dozens of genes (Gao et al., 2019). In the 774 

grey short-tailed opossum (Monodelphis domestica), a marsupial, proliferation of uterine 775 

glands is not induced by the conceptus (Griffith et al., 2019). 776 

 777 

(3) Evolutionary implications of the physiology of eggshell formation 778 

Presumably because of the influence it has on food production, the process of eggshell 779 

formation has been studied most extensively in chickens (Hincke et al., 2012). During 780 

eggshell formation in birds, uterine fluid containing a supersaturation of ionized calcium and 781 

bicarbonate ions surrounds the egg (Nys et al., 1991). Transport of calcium in the uterus 782 

correlates with plasma membrane Ca2+-ATPase (PMCA) activity and with concentrations of 783 

calbindin-D28K within shell gland epithelial cells (Herbert et al., 2006; Wasserman et al., 784 

1991). This leads to the spontaneous precipitation of calcium carbonate into calcite (Hincke 785 

et al., 2012). In the oviparous lizard Lampropholis guichenoti, immunofluorescence 786 

microscopy revealed activity of PMCA in the uterus at the time of eggshell calcification 787 

(Thompson et al., 2007).  788 

Eggshell formation begins with the eggshell membrane. Two unciliated cell types in the 789 

uterus contribute to eggshell membrane formation in a viviparous skink Chalcides ocellatus 790 

tiligugu (Corso et al., 2000). One secretes sulfated glycosaminoglycans to form the inner 791 

shell membrane, and the other secretes acidic glycoproteins to form the outer layers (Corso et 792 
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al., 2000). Simple alveolar glands in the lamina propria secrete collagen fibres (Corso et al., 793 

2000). Inhibition of fibre formation or cross-linking, typically caused by aminoproprionitrile 794 

or a copper deficiency, causes distorted formations of the eggshell membrane in birds (Arias 795 

et al., 1997; Chowdhury & Davis, 1995; Hincke et al., 2012).  796 

In characteristic archosaur eggshells (Choi et al., 2018; Legendre et al., 2022), organic 797 

aggregates are deposited onto the shell membrane creating mammillary knobs, which are 798 

absent in lepidosaur shells (Choi et al., 2018). Mammillary knobs are a distinct layer between 799 

the outer eggshell membrane and the calcified shell matrix layer (Hamilton, 1986). Part of the 800 

mammillary knobs, called basal caps, are embedded into the outer eggshell membrane fibres 801 

(Tyler, 1965). Mammillary knobs serve as regions of crystal initiation where ACC is 802 

deposited (Gautron et al., 2021) and converted into calcite crystals with no intermediate 803 

phase (Rodríguez-Navarro et al., 2015). Cones are formed that radiate in all upward 804 

directions, extending up to the shell matrix layer (Tyler, 1965). Despite the direct relationship 805 

between mammillary knobs and calcium carbonate crystallization (Rao et al., 2015), the 806 

protein comprising mammillary knobs remains uncharacterized. A keratan sulfate (KS)-807 

proteoglycan, ‘mammillan’, has been implicated in the composition of mammillary knobs 808 

(Fernandez et al., 2001; Hincke et al., 2012). Any given proteoglycan is a product of multiple 809 

coding genes and biosynthesis of KS-proteoglycans is non-trivial (Caterson & Melrose, 2018; 810 

Funderburgh, 2002; Iozzo & Schaefer, 2015). However, investigations into the keratan 811 

sulfate proteoglycan proposed as ‘mammillan’ and identifying its properties that facilitate (or 812 

regulate) calcium deposition (P-FCD) has far-reaching implications given that KS-813 

proteoglycans are proving to be important players in neurological and cancer research 814 

(Leiphrakpam et al., 2019). The role of homologs of ‘mammillan’ in eggshell formation in 815 

squamates may reveal more about the evolutionary history of the eggshell in amniotes. 816 
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Perhaps presence of homologous proteoglycans in the eggshell can reveal whether the 817 

eggshell is truly a synapomorphy or if it is a convergently evolved trait.  818 

 Parsimony would suggest that all oviparous amniotes shared an ancestral process of 819 

eggshell formation. In archosaurs, the process of eggshell formation relies on mammillary 820 

knobs and upward growth of calcite, as described above. In lepidosaur eggshells, which have 821 

substantially less calcite growth, calcium is deposited on the surface of the eggshell 822 

membrane and, in the case of gekkonids and the tuatara, crystal growth proceeds inward 823 

toward the centre (Choi et al., 2018). The strikingly divergent structure and directionality of 824 

eggshell formation between Archosauria and Lepidosauria suggests that the dissimilar 825 

processes of eggshell formation are a result of genetic drift (e.g. Schiffman & Ralph, 2022), 826 

selection for specific eggshell traits, or, in the case of an early origin of viviparity in amniotes 827 

(Jiang et al., 2023) and/or lepidosaurs (Pyron & Burbrink, 2014), eggshells evolved 828 

convergently.  829 

Hypothetically, if a version of the avian eggshell was the microstructure for basal 830 

lepidosaurs, loss of mammillan may have prevented calcium deposition because this is the 831 

site at which calcium carbonate spontaneously precipitates into calcite. Given that embryonic 832 

signalling supports at least two main differences between oviparous and viviparous 833 

squamates – the timing of calcium secretions and the length of embryonic retention (Griffith 834 

et al., 2015, 2017a; Stewart & Ecay, 2010) – the loss of mammillan may have supported an 835 

early origin of viviparity in squamates. It would have theoretically facilitated (1) an early loss 836 

of the eggshell, (2) enhanced contact between maternal and embryonic tissues and (3) 837 

enhanced signalling from the embryo to support both altered timing of calcium secretions and 838 

hormonal signalling for EER. This potential mechanism for an early origin of viviparity in 839 

squamates is proposed here, for the first time, as the nucleation site hypothesis. The 840 

evolutionary timing for when calcite crystal growth became associated with mammillan at 841 
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nucleation sites is important to this hypothesis, and inferences that can be gained from 842 

applying it to the evolution of oviparity and viviparity. If calcite was deposited on top of 843 

mammillan in early amniotes the loss of it could disrupt eggshell formation and result in a 844 

relatively fast transition to viviparity or EER. Disruption to the formation of the hypothesized 845 

KS-proteoglycan that forms mammillan could be relatively easy to achieve given that 846 

proteoglycans are formed by multiple genes.  847 

Extending to the ancestral state of amniotes (e.g. Jiang et al., 2023; Laurin, 2005; Romer, 848 

1957), absence of functional ‘mammillan’ with P-FCD in squamates and mammals would be 849 

consistent with a derived state of calcified eggshells in archosaurs. Absence of functional 850 

‘mammillan’ with P-FCD exclusively in lepidosaurs would be consistent with the nucleation 851 

site hypothesis. Presence of functional ‘mammillan’ with P-FCD across Amniota, especially 852 

if it is identified in the eggshell, would provide a homologous product through which 853 

amniotes may have originally deposited eggshell calcium (regardless of there being a 854 

mammillary layer). Overall, identifying the evolutionary trajectories of the biosynthetic 855 

pathway of ‘mammillan’ across amniotes is likely to create a better picture of the evolution of 856 

the amniote egg. However, investigating the ultrastructure of the monotreme eggshell is 857 

likely to provide faster insights than attempts to identify mammillan across amniotes. If the 858 

monotreme eggshell has nucleation sites, like Archelosaurs, then it would be most 859 

parsimonious to conclude that nucleation sites were lost in Lepidosaurs.  860 

New recommendations for estimating the ancestral microstructure of amniote eggshells 861 

have recently been put forth, which abandon the traditional classification of hard/soft/semi-862 

rigid shells (Legendre et al., 2022). Including the structure of eggshell membranes in 863 

oviparous and viviparous amniotes (e.g. Corso et al., 2000) would also improve phylogenetic 864 

reconstructions of the amniote eggshell. 865 
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Several pieces of biological evidence lend themselves to an early origin of viviparity in 866 

lepidosaurs and the nucleation site hypothesis including the lack of homology between the 867 

semi-rigid shells of testudines and lepidosaurs (Legendre et al., 2022), the later stage of 868 

embryonic development when eggs are commonly oviposited in squamates (Blackburn, 869 

1995), and the more predominant reliance on yolk calcium rather than eggshell calcium in 870 

squamates compared to archelosaurs (Packard, 1994; Stewart & Ecay, 2010). Viviparity in 871 

the most recent common ancestor of lepidosaurs may provide clear evolutionary insights on 872 

these phenomena.  873 

Other features of eggshells are also worth consideration. In chickens, ovotransferrin is 874 

present in the eggshell membrane and basal cap layer (Gautron et al., 2001b). Ovotransferrin 875 

promotes the development of elongated crystals (Gautron et al., 2001b). The resulting shell 876 

matrix is made up of the crystal layer and cuticle (Hamilton, 1986). On the inner portion of 877 

the avian eggshell, it is unclear what prevents growing crystalized cones from extending into 878 

the inner membrane or the albumen. Collagen type X has been implicated (Arias et al., 1993, 879 

1997; Hincke et al., 2012). The role of collagen type X in creating a boundary that prevents 880 

calcite from passing through the eggshell membrane could inform squamate eggshell 881 

deposition (as discussed, they deposit calcium only on the outer surface, or crystals grow 882 

inwards).  883 

Over 500 proteins are found in the chicken eggshell matrix (Mann, Maček & Olsen, 884 

2006; Mikšík et al., 2007, 2010). Ovocleidin-116 (OC-116), ovocalyxin-36 (OCX-36 or 885 

BPIFB4), ovocalyxin-21 (OCX-21), and ovocleidin-17 (OC-17) are important for avian 886 

eggshell formation (Hernández-Hernández et al., 2008a; Jonchère et al., 2010; Tian et al., 887 

2010). OC-116, OC-36, OCX-21, and OC-17 are some of the most differentially expressed 888 

genes during eggshell calcification in chickens (Gautron et al., 2007; Hincke et al., 1999, 889 

2012; Jonchère et al., 2010). OCX-21 may serve as a chaperone protein along with the 890 
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protein endoplasmin (ENPL) to facilitate proper folding of the avian eggshell matrix 891 

(Jonchère et al., 2010). In birds, OC-17 is concentrated in the inner mammillary cone layer, it 892 

interacts strongly with ACC, and is implicated in early stages of biomineralization of the 893 

eggshell (Gautron et al., 2021). The only non-avian eggshell matrix protein, pelovaterin, was 894 

identified in the Chinese soft-shell turtle (Pelodiscus sinensis) (Lakshminarayanan et al., 895 

2005).  896 

Originally considered avian specific, several homologs of avian eggshell matrix proteins 897 

have now been identified in non-avian reptiles and mammals (Le Roy et al., 2021). A recent 898 

study found a significantly reduced number of intact avian eggshell matrix proteins in 899 

viviparous squamates compared to oviparous squamates, a pattern that was especially 900 

apparent in snakes (Xie et al., 2022). This study also found that OC-17 was absent in 901 

viviparous squamates but was always present in the oviparous species in the data set (Xie et 902 

al., 2022). Due to this, and to the central role of OC-17 in avian eggshell formation in birds, 903 

they ascribe losing intact OC-17 to the prevention of reversal back to oviparity (Xie et al., 904 

2022). However, given that OC-17 is implicated in initiation of mineralization in the 905 

mammillary cone layer, which is absent in squamates, the necessity of OC-17 for squamate 906 

eggshell formation requires further investigation. Other genes, like osteopontin (OPN or 907 

SPP1), also play a central role in biomineralization of the avian eggshell and should be 908 

investigated in squamates before conclusions about fixed states are made. 909 

OCX-36 and other bactericidal/permeability-increasing (BPI) family B proteins (also 910 

called LPLUNCs) are now thought to have a common origin in vertebrates with multiple 911 

duplication events (Gautron et al., 2007; Tian et al., 2010). Orthologs of OCX-36 are found 912 

in Archelosauria and Monotremata (Le Roy et al., 2021). In birds, OCX-36 plays a role in 913 

innate immune responses and is found in high concentrations in the inner eggshell membrane 914 

(Gautron et al., 2007, 2011; Tian et al., 2010). 915 
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OC-116 is homologous to mammalian MEPE, which plays a role in bone and teeth 916 

mineralization (Bardet, Delgado & Sire, 2010a; Bardet et al., 2010b). In birds, OC-116 917 

influences shell thickness, elastic modulus, and egg shape (Le Roy et al., 2021). OC-116 was 918 

identified in a crocodile, Crocodylus siamensis, proteome (Le Roy et al., 2021; Mikšík et al., 919 

2018). Synteny analysis across seven turtle species and platypus (Ornithorhynchus anatinus) 920 

revealed absence of MEPE/OC116 (Le Roy et al., 2021). Other genes and long non-coding 921 

RNAs (lncRNAs) are purported to be important for the quality of eggshell formation in hens; 922 

these include FGF14, COL25A1, GPX8, and several members of the solute carrier protein 923 

(SLC) gene family (Yang et al., 2020). Research into lncRNAs activity in squamate 924 

reproductive tissues during embryonic development represents another valuable avenue for 925 

research. 926 

Various evolutionary genomics studies have revealed candidate genes for shell formation 927 

in squamates (e.g. Recknagel et al., 2021a; Gao et al., 2019. Many candidates have deep 928 

evolutionary origins. Seven of the genes expressed during eggshell gland development in 929 

Phrynocephalus przewalskii (HYPOU1, KCNMA1, P4HB, PRDX4, PTN, RRBP1 and 930 

TRAM1) are purported to be important for eggshell calcification in chickens (Brionne et al., 931 

2014). Given this overlap across species that diverged over 300 million years ago (Shen et 932 

al., 2011), these are excellent candidates for further exploration.  933 

A functional genomics study harnessed hybridizations of oviparous and viviparous 934 

individuals of Zootoca vivipara to reveal 17 SNPs and 38 genes associated with eggshell 935 

traits (Recknagel et al., 2021a). These genes enriched terms related to cell communication 936 

and the immune system, while differentially expressed genes during gravidity enriched 937 

pathways for transforming growth factor (TGF) (Recknagel et al., 2021a). The three loci with 938 

the strongest association with eggshell traits mapped closely to LGMN, LYPLA1, and CRTC1 939 

(Recknagel et al., 2021a). The association of these genes with eggshell traits is particularly 940 
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interesting. LGMN, for example, is involved with the cadherin pathway. Cadherins have an 941 

established role in squamate reproduction, where they influence embryonic attachment in 942 

viviparous taxa (Wu, Thompson & Murphy, 2011). LGMN is also differentially expressed 943 

across many viviparous squamates and mammals (Recknagel et al., 2021a). Thus, LGMN 944 

appears to support both oviparous and viviparous gestation in different ways. There are a 945 

number of ways to approach exploring how LGMN may support both maternal–fetal 946 

interconnectivity (viviparous individuals) and eggshell formation (oviparous individuals). 947 

Cell-to-cell communication analysis using single-cell data on uteruses of a reproductively 948 

bimodal species would enable researchers to identify different interaction networks of LGMN 949 

and associated cells in oviparous versus viviparous individuals. 950 

During gravidity in Saiphos equalis, two GO terms associated with calcium homeostasis 951 

are enriched by the set of upregulated genes (Foster et al., 2020). However, most of these 952 

genes are associated with regular cellular responses to calcium and even those associated 953 

with calcium transport are upregulated in both early and late stages of gravidity (Foster et al., 954 

2020). Their role in eggshell formation in this uniquely labile species is therefore ambiguous.  955 

In oviparous individuals of another reproductively bimodal skink, Lerista bougainvillii, 956 

only two genes are significantly differentially expressed in gravid uterine tissue compared to 957 

non-gravid uterine tissue (Griffith et al., 2016). Few genes are differentially expressed in 958 

gravid uterine tissue of the oviparous Lampropholis guichenoti, compared to non-gravid 959 

uterine tissue (Foster et al., 2022; Griffith et al., 2016). The genes involved in the shelling 960 

process in these species may not involve changes in expression from the non-gravid state. 961 

The dissimilarity in uterine gene expression profiles across lizards during gravidity suggests 962 

there may be multiple ways in which oviparous squamates shell their eggs. Given the 963 

variation already observed, eggshell deposition in squamates should be considered in a 964 

phylogenetic context and under the different evolutionary histories inferred by ancestral state 965 
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reconstructions (Harrington & Reeder, 2017; Pyron & Burbrink, 2014). Table S1 (see online 966 

Supporting Information) compares candidate genes associated with eggshell formation and 967 

shell gland development in squamates to those of birds.  968 

 969 

(4) Pleiotropy of genes and proteins involved with eggshell formation 970 

Substantial pleiotropy of genes involved with eggshell formation would imply that, 971 

regardless of parity mode, taxa have innately conserved toolkits that can be readily exploited 972 

to form an eggshell for oviparous gestation. In addition to the candidate genes associated with 973 

both gestation length and eggshell traits in Zootoca vivipara (Reckagel et al., 2021a), several 974 

genes associated with eggshell deposition have pleiotropic effects within species or have 975 

different effects in oviparous versus viviparous amniotes. Osteopontin (SPP1 or OPN) is 976 

found in bone and kidneys, and transports calcium to other tissues in the body (Pines, 977 

Knopov & Bar, 1995). It plays an important role in calcium carbonate biomineralization of 978 

the avian eggshell (Gautron et al., 2021). It is highly expressed in the chicken uterus during 979 

calcification (Jonchère et al., 2010) but supports pregnancy recognition and implantation in 980 

sheep (Bazer et al., 2011). Improper functioning of SPP1 in the uterus leads to cracked and 981 

abnormal shells in birds (Arazi et al., 2009; Hincke et al., 2008).  982 

When expressed in the uterus, some bone morphogenic protein-coding genes (BMPs) aid 983 

eggshell calcification (Jonchère et al., 2010). BMPs are part of the TGF- superfamily and 984 

are involved with the formation of new cartilage and bone, and with biomineralization in 985 

corals and molluscs (Canalis, Economides & Gazzero, 2003; Lelong, Mathieu & Favrel, 986 

2000; Zoccola et al., 2009). Chordin (CHRD) is an antagonist of the BMP pathway. BMP-987 

binding endothelial regulatory protein (BMPER) and CHRD are expressed in the chicken 988 

uterus during the stage of eggshell calcification (Jonchère et al., 2010). Regulation of BMPs 989 

by CHRD is essential for early embryogenesis and adult homoeostasis. 990 



 41 

BMPER and seven BMPs are expressed during gestation in Chalcides ocellatus, a 991 

viviparous skink (Brandley et al., 2012). Most of these are upregulated (Brandley et al., 992 

2012). BMP genes are expressed during both gravidity and non-gravidity in oviparous Lerista 993 

bougainvillii and Lampropholis guichenoti (Griffith et al., 2016). BMP2 is upregulated in 994 

oviparous late gestation compared to viviparous late gestation in the reproductively bimodal 995 

lizard Saiphos equalis (Foster et al., 2020). 996 

Differential expression of BMPR1B is associated with differences in eggshell quality in 997 

chickens (Yang et al., 2020). Another study associated stage-specific high expression of 998 

BMPR1B with the stage corresponding to EER and placentation in Phrynocephalus vlangalii 999 

(Gao et al., 2019). They identified a co-expression network of highly expressed genes, 1000 

including BMPR1B, that they associated with placentation (Gao et al., 2019). BMPR1B also 1001 

reaches significant levels of differential expression in uterine tissues of two other gestating 1002 

viviparous lizards, Chalcides ocellatus and Pseudemoia entrecasteauxii, compared to non-1003 

gestational uterine tissue (Brandley et al., 2012; Griffith et al., 2016). Receptors for BMPs 1004 

are also expressed in the uterus during gestation in two other viviparous lizards, 1005 

Phrynocephalus vlangalii and Pseudemoia entrecasteauxii (Gao et al., 2019; Griffith et al., 1006 

2016). Perhaps unsurprisingly, BMPR1B is also differentially expressed in the uterus of 1007 

viviparous Zootoca vivipara compared to oviparous individuals during gestation.  1008 

The potential role of these genes in squamate eggshell formation remains unclear. In 1009 

vertebrates, BMPs influence dorsal–ventral axis patterning during early embryogenesis and 1010 

growth of skeletal structures in post-natal tissues (Medeiros & Crump, 2012). It therefore 1011 

may be difficult to disentangle their roles in embryonic development, placental development, 1012 

and eggshell deposition. Future research on them may inform scientific understanding of 1013 

parity mode evolution. 1014 
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SLIT genes are purported to be involved with folding the eggshell matrix in chickens 1015 

(Jonchère et al., 2010). The SLIT2 gene functions across birds and mammals in diverse 1016 

organs, and encodes a protein that provides a structural framework for protein–protein 1017 

interactions (Jonchère et al., 2010; Marillat et al., 2002). In a functional genomics study, 1018 

SLIT2 was identified as an important gene for eggshell traits in Zootoca vivipara (Recknagel 1019 

et al., 2021a). SLIT2 is among the 50 most downregulated genes in the uterus during 1020 

pregnancy in the viviparous Chalcides ocellatus compared to non-pregnancy (Brandley et al., 1021 

2012). However, in the uterus of the yolk-sac placenta in the viviparous skink Pseudemoia 1022 

entrecasteauxii, SLIT2 is upregulated compared to non-reproductive uterine tissue (Griffith et 1023 

al., 2016). SLIT3 is differentially expressed during the stage of placentation in the viviparous 1024 

agama lizard Phrynocephalus vlangalii (Gao et al., 2019). SLIT genes also play a role in 1025 

axonal pathfinding and neuronal migration in rats (Marillat et al., 2002). SLIT2 was 1026 

associated with reproduction in humans (Chen et al., 2015).  1027 

Podocalyxin (PODXL) is a sialoprotein associated with eggshell calcification in chickens 1028 

(Jonchère et al., 2010). In the viviparous Qinghai toad-headed agama lizard (Phrynocephalus 1029 

vlangalii), a weighted gene correlation network analysis associated PODXL with uterine 1030 

structural changes (Gao et al., 2019). The gene may play a role in placentation in these 1031 

species given that it was also differentially expressed in the uterus during the stage of 1032 

placentation (Gao et al., 2019). Interestingly, PODXL is downregulated in the uterus of the 1033 

yolk-sac placenta in another viviparous skink Pseudemoia entrecasteauxii (Griffith et al., 1034 

2016). Based on its role in chickens and P. vlangalii, PODXL is a good candidate for further 1035 

research on the molecular evolution of eggshell formation and placentation in squamates.  1036 

 1037 

(5) Eggshell formation termination 1038 
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When eggshell formation is terminated, the egg is still bathed in the supersaturated 1039 

calcium and bicarbonate ion fluid (Hincke et al., 2012). Some component(s) of the terminal 1040 

uterine fluid may prevent precipitation of calcium carbonate (Gautron, Hincke & Nys, 1997), 1041 

such as phosphate anions (Lin & Singer, 2005). The presence of phosphorus in the superficial 1042 

layers of the chicken shell suggest that it may be a factor preventing deposition of calcite 1043 

crystals in the terminal stage. Additionally, the high concentration of OCX-32 in the outer 1044 

eggshell and cuticle suggest that OCX-32 may inhibit proteinaceous crystal growth in the 1045 

terminal stage of eggshell calcification (Gautron et al., 2001a). It is informative to viviparous 1046 

reproduction and consistent with the nucleation site hypothesis that exposure to precursors of 1047 

the eggshell does not necessitate eggshell deposition. The influence of phosphate anions and 1048 

OCX-32 on inhibition of calcium carbonate precipitation on the eggshell membrane of 1049 

viviparous squamate embryos has not been examined to my knowledge.  1050 

 1051 

(6) Rotating the egg for eggshell formation 1052 

Oviparous amniotes rotate the egg for calcium formation and viviparous mammals rotate 1053 

the embryos for parturition. One hurdle to reversing back to oviparity may be re-evolving 1054 

rotation of the egg for shell formation early in gravidity (Griffith et al., 2015). Given the 1055 

complex musculature of the uterus across taxa, which allows for multidirectional force 1056 

application for parturition and eggshell formation, it is difficult to determine the degree of 1057 

difficulty of re-evolving appropriate timing of egg rotation. Cadherins and hormonal 1058 

signalling support embryonic attachment (Wu et al., 2011; Biazik et al., 2012), which could 1059 

theoretically prevent rotation of the egg. Oviparous taxa lack embryonic attachment, enabling 1060 

the uterus to rotate the egg for eggshell formation. This rotation does not happen until later in 1061 

gestation for eutherian mammals when, for example, the embryo detaches and cadherins 1062 

become less concentrated (Wu et al., 2011). A possible candidate gene for studying this is 1063 
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CDH5, the only gene that is differentially expressed in all viviparous squamates studied thus 1064 

far (Recknagel et al., 2021a). Genes that enrich the GO term for ‘voltage-gated calcium 1065 

channel activity’ are also useful candidates for investigating uterine rotation associated with 1066 

eggshell formation because voltage-gated calcium channels are involved in creating the 1067 

action potential of cells and in muscle contractions. 1068 

 1069 

(7) Discussion and future directions – eggshell formation and parity mode evolution 1070 

The process of eggshell formation is more resolved in birds than in non-avian reptiles and 1071 

monotremes (Choi et al., 2018; Frankenberg & Renfree, 2018). Table S1 presents overlaps 1072 

gleaned from the literature which are candidates for further research. Of particular interest are 1073 

avian eggshell matrix proteins (Alföldi et al., 2011; Le Roy et al., 2021; Tian et al., 2010; 1074 

Xie et al., 2022), genes with biomineralization functions, candidate genes associated with 1075 

eggshell traits in Zootoca vivipara (Recknagel et al., 2021a), and homologs for avian 1076 

eggshell matrix proteins identified in the Anolis carolinensis genome (Alföldi et al., 2011; 1077 

Tian et al., 2010). Additionally, genes purported to be important for eggshell calcification in 1078 

chickens that are also associated with eggshell gland formation in an oviparous lizard, 1079 

Phrynocephalus przewalskii, are relevant: HYPOU1, KCNMA1, P4HB, PRDX4, PTN, RRBP1 1080 

and TRAM1 (Brionne et al., 2014; Gao et al., 2019). Overlaps between the genes associated 1081 

with gestation length and eggshell traits in Zootoca vivipara (Recknagel et al., 2021a) hint at 1082 

the potential for single genes to affect multiple traits relevant to parity mode transitions. The 1083 

nucleation site hypothesis also offers a simple evolutionary mechanism to investigate the 1084 

evolutionary history of amniote parity mode evolution (see Section III.3). Complementary to 1085 

the nucleation site hypothesis are that dissimilar eggshells and eggshell deposition processes 1086 

evolved through selective pressure, genetic drift, or both. Fortunately, the nucleation site 1087 

hypothesis can be utilized to ascertain the likelihood of this.  1088 
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 1089 

IV. PLACENTATION AND TRANSPORT OF EMBRYONIC WATER, GAS, AND 1090 

NUTRIENTS 1091 

The evolutionary pressures on fluid allocation, gas exchange and nutrient transport should 1092 

differ between oviparous and viviparous taxa because their sources of all or some of these 1093 

resources differ (Blackburn, 1992; Bonnet et al., 2001; Bonnet, Naulleau & Shine, 2017; van 1094 

Dyke et al., 2014). In viviparity, maternal gas and water are accessed through the 1095 

chorioallantois, which is especially important in the latter half of development (van Dyke et 1096 

al., 2014; Carter, 2012). Nutrients can be available from the yolk, maternal transfer, or both 1097 

yolk and maternal transfer. As such, changes to the uterus, yolk sac, and chorioallantois are 1098 

possible during transitions between parity modes. Interestingly, whereas other amniotes can 1099 

rely on the albumen for fluid allocation, squamates lack an albumen (Blackburn & Stewart, 1100 

2021). Instead, the eggshells of various squamates support uptake of water from the 1101 

environment (Blackburn & Stewart, 2021). The evolutionary implications of this have not 1102 

been documented to my knowledge.  1103 

 1104 

(1) Anatomy and methods of water, gas and nutrient provisioning 1105 

The embryonic membranes regulate embryonic fluid transport, nutrient supply, 1106 

respiration, immunity, and waste (Brace, 1997; Burton & Tullett, 1985; Ferner & Mess, 1107 

2011; Packard & Packard, 1980). Fluids are important for the developing embryo because 1108 

they prevent desiccation and compression (Ferner & Mess, 2011; Packard & Packard, 1980). 1109 

Over- or under-abundance of embryonic sac fluids leads to reproductive failure (Chamberlain 1110 

et al., 1984; Fedakâr, Semiz & Peker, 2016; Hadi, Hodson & Strickland, 1994; Mercer et al., 1111 

1984). Water is the predominant resource provisioned by the mother in most viviparous 1112 

squamates (Lourdais et al., 2015).  1113 
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Oxygen flux in embryonic mammals is largely determined by oxygen-diffusing capacity 1114 

of the placenta, the rates of blood flow in the umbilical and uterine arteries, and the oxygen 1115 

capacities and affinities of fetal and maternal blood (Carter, 2009). Reptilian and mammalian 1116 

blood vessels differ in basic characteristics such as capillary density, capillary surface, and 1117 

oxygen diffusion gradients (Pough, 1980). Oviparous taxa regulate gas exchange through 1118 

pores in their eggshells.  1119 

Patterns of embryonic nutrient exchange can be broadly categorized into lecithotrophy, 1120 

i.e. obtaining nutrients from the yolk, and placentotrophy or matrotrophy, where nutrients are 1121 

obtained from the mother. Taxa belonging to Archelosauridae are generally lecithotrophic. 1122 

The ancestral state of mammals was most likely oviparous matrotrophy that later evolved into 1123 

viviparous matrotrophy in therians (Blackburn, 2005). The ancestral state of reptiles was 1124 

likely lecithotrophy (Blackburn, 2005). Most viviparous squamates are lecithotrophic, some 1125 

are lecithotrophic and matrotrophic, and a few have specializations for substantial 1126 

matrotrophy (e.g. Blackburn, 2015a; Stewart & Thompson, 1993; Thompson et al., 1999; van 1127 

Dyke et al., 2014). Even in lecithotrophic viviparous squamates some organic or inorganic 1128 

nutrients pass through the chorioallantoic placenta (Blackburn, 2005; Swain & Jones, 1997, 1129 

2000; Stewart & Ecay, 2010; Thompson et al., 1999; Thompson & Speake, 2002). Reversals 1130 

may be most unlikely in lineages that have specialized placentas for substantial nutrient 1131 

exchange because they would need to re-evolve lecithotrophy. Highly matrotrophic 1132 

squamates are extremely rare (Blackburn, 2015a).  1133 

 1134 

(2) Evolutionary history of yolk-sac formation and yolk processing 1135 

Vitellogenesis is the process of yolk formation in the oocyte, providing the embryo with a 1136 

valuable source of nutrients, primarily through the accumulation of the precursor proteins to 1137 

yolk: vitellogenins. Vitellogenin is produced in the liver, in a process called hepatic 1138 
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vitellogenesis, and is transported to the maturing ovum (Ho, 1987). Vitellogenins were lost in 1139 

all mammals except monotremes (Brawand, Wahli & Kaessmann, 2008). They are a primary 1140 

source of nutrition for other amniotes. Functionally similar to vitellogenin, caseins have 1141 

persisted in all mammalian milks (Brawand et al., 2008). Active functioning of the yolk sac 1142 

is restricted to the first trimester in placental mammals (Kuzima, 2023), where it plays an 1143 

essential role in early nutrient supply (Shibata, Makihara & Iwasawa, 2023). The detection of 1144 

glycodelin in the yolk-sac epithelium also supports this (Burton et al., 2002). In the yolk sac 1145 

of bats, dogs, and non-human primates the mesoderm-derived layer is absorptive and may 1146 

transfer substances from the exocoelomic cavity where the yolk sac is located (Enders, 1147 

Wimsatt & King, 1976; Freyer & Renfree, 2009; King & Wilson, 1983; Lee et al., 1983).  1148 

The morphology of the yolk sac and process of vitellogenesis differs between birds and 1149 

non-avian reptiles. In birds, during the process of meroblastic cleavage, the zygote’s cells 1150 

divide while the yolk component does not. The yolk forms a large, fluid, non-cellularized 1151 

mass surrounded by the extraembryonic yolk sac. The formation of the yolk-sac placenta in 1152 

birds has the following pattern: first the bilaminar omphalopleure forms, followed by the 1153 

trilaminar omphalopleure; blood vessels move into folds of the extraembryonic endoderm, 1154 

becoming stratified epithelium; and finally, the folds carrying the blood vessels reach the 1155 

peripheral regions of the yolk only with the centre of the yolk mass remaining uncellularized 1156 

(Starck, 2021). Intensive development of haemopoietic tissue surrounding the blood vessels 1157 

during most of embryonic development, thus far, appears to be unique to birds (Starck, 1158 

2021). Compared to non-avian sauropsids, the unique pattern of yolk processing in birds 1159 

facilitates faster embryonic development (Blackburn, 2021). 1160 

The yolk sac characteristic of non-avian reptilian eggs may serve as a model for the 1161 

transition between the egg of anamniotes and that of amniotes (Blackburn, 2021; Elinson et 1162 

al., 2014). A series of recent papers, covering species of snakes, lizards, crocodiles, and 1163 
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turtles, indicate that these taxa utilize similar developmental pathways of yolk-sac formation 1164 

and yolk processing that differ from birds (Blackburn, 2021; Blackburn et al., 2019; Elinson 1165 

et al., 2014; Elinson & Stewart, 2014; Stinnett et al., 2011). Across these taxa, a 1166 

bilaminar/trilaminar omphalopleure overgrows the yolk mass, and the yolk mass is invaded 1167 

by proliferating endodermal cells that phagocytose the yolk material. These cells form 1168 

clumps, progressively filling the yolk mass. Small blood vessels derived from yolk-sac 1169 

vasculature invade the yolk-sac cavity and the endodermal cells arrange in monolayers 1170 

around these vessels, forming “spaghetti bands” (Blackburn, 2021). The yolk sac of 1171 

Pantherophis guttatus is one suitable model for studying the transition of the yolk sac from 1172 

anamniotes to amniotes (Elinson & Stewart, 2014; Elinson et al., 2014).  1173 

A major difference between avian and non-avian reptilian yolk-sac formation is the 1174 

morphology and extent of vascularization and cellularization in the yolk sac cavity (Starck, 1175 

2021). Birds have a yolk sac with an absorptive endodermal lining that digests nutrients and 1176 

sends them into blood circulation (Starck, 2021) whereas snakes, lizards, turtles, and 1177 

crocodilians have a yolk sac that becomes invaded by endodermal cells that proliferate and 1178 

phagocytose yolk material (Blackburn, 2021). In these taxa, yolk material becomes 1179 

cellularized, digested, and transported by vitelline vessels to the developing embryo 1180 

(Blackburn, 2021). Factors involved with cellularization of the yolk sac are proposed to 1181 

include cell cycle regulators and structural proteins (Elinson et al., 2014). Generation of these 1182 

cells is suspected to be reliant on processes of angiogenesis (Elinson et al., 2014). Few 1183 

transcriptomic profiles of yolk-sac placentas in reptiles have been documented to my 1184 

knowledge (Griffith et al., 2016). Significant overlaps in the yolk-sac transcriptomes of 1185 

human, mouse, and chicken, including apoliproteins and SLC transporters, however, suggest 1186 

functional conservation (Cindrova-Davies et al., 2017).  1187 
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As discussed in Section II.1, progesterone inhibits myometrial contractility, but it also 1188 

inhibits oestrogen-induced hepatic vitellogenin synthesis (Custodia-Lora, Novillo & Callard, 1189 

2004; Callard et al., 1992). Variable progesterone concentrations in circulation throughout 1190 

gestation in viviparous squamates may reflect a trade-off to allow oestrogen expression to 1191 

support hepatic vitellogenin synthesis during embryonic development, thus supporting 1192 

nutrient provisioning during the lengthened embryonic retention. Although hepatic 1193 

vitellogenesis usually ceases during gestation, vitellogenin synthesis and mother-to-embryo 1194 

transfer was detected in one viviparous fish, Xenotoca eiseni, during gestation (Iida et al., 1195 

2019). Future research should consider the timing of vitellogenin synthesis throughout the 1196 

reproductive cycle in gestating and non-gestating viviparous squamates to investigate this 1197 

further.  1198 

 1199 

(3) Evolutionary history of placentotrophy in mammals and squamates 1200 

Traditionally, it was thought that placentotrophy evolved after viviparity in squamates 1201 

(Packard et al., 1977; Shine & Bull, 1979). Further research demonstrated that matrotrophy 1202 

preceded the evolution of viviparity in mammals, whereas in squamates the potential for both 1203 

incipient matrotrophy and evolution of placentotrophy after viviparity is supported (Stewart 1204 

& Ecay, 2010). The incipient matrotrophy model relies on evidence that (1) uterine 1205 

provisioning of nutrients pre-dates the origin of viviparity (Blackburn, 1985, 1992, 2006), (2) 1206 

uterine and embryonic tissues have a close anatomical and physiological association in 1207 

viviparous taxa, and (3) some degree of placental transfer of organic or inorganic molecules 1208 

occurs in viviparous taxa (Stewart & Ecay, 2010).  1209 

Placentation and implantation are not homologous in mammals compared to squamates 1210 

(Griffith, van Dyke & Thompson, 2013b). Several placental specializations for gas and 1211 

nutrient exchange are unique to mammals, including erosion of the uterine mucosa, 1212 
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extensively invasive implantation, haemochorial contact, retention of a vascularized 1213 

choriovitelline membrane, and countercurrent patterns of blood flow (Blackburn, 2005). This 1214 

enables extensive exchange of nutrients in addition to water and gas. The vast majority of 1215 

viviparous squamates have the most superficial type of chorioallantoic placenta called an 1216 

epitheliochorial placenta (Blackburn, 1993). 1217 

Nutrient provisioning through placentotrophy is obligate for embryonic development in 1218 

only five lineages of squamates, all of which are scincid lizards (Blackburn, 2000; Flemming 1219 

& Blackburn, 2003; Ramírez-Pinilla, Rueda & Stashenko, 2011; van Dyke et al., 2014). For 1220 

example, Pseudemoia entrecasteauxii is a moderately matrotrophic viviparous skink, with 1221 

roughly half of embryonic nutrient uptake from the yolk and half through a specialized cyto-1222 

epitheliochorial placenta (Adams et al., 2005; Speake, Herbert & Thompson, 2004; Stewart 1223 

& Thompson, 1993, 2009).  1224 

Specializations of the chorioallantoic placenta for nutrient provisioning in some 1225 

squamates include elaborate structures for uterine secretion and absorption, including 1226 

placentomes, chorionic areolae, hypertrophied uterine mucosa, and chorionic epithelia 1227 

modified for absorption (Blackburn, 2005). In squamates, specializations for gas exchange 1228 

across the chorioallantoic placenta include decreased diffusion distance between maternal 1229 

and fetal capillaries, uterine vascularity, shell membrane deterioration, and modifications of 1230 

both fetal and maternal blood properties (Blackburn, 1998, 2005; Blackburn & Lorenz, 2003; 1231 

Blackburn & Vitt, 2002). 1232 

Mammalian placenta-specific genes have deep origins in vertebrates (Rawn & Cross, 1233 

2008). One study that looked at placentation and gene expression across a small sample of 1234 

divergent amniotes found only one gene with a placentotrophy-specific pattern of gene 1235 

expression, DIO3 (Griffith et al., 2017a). In mammals, DIO3 is an imprinted gene and 1236 

preferentially paternally expressed. The authors suggest that the gene may increase offspring 1237 
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resource uptake during pregnancy in the horse and a viviparous lizard, Pseudemoia 1238 

entrecasteauxii, where it is recruited to the placenta (Griffith et al., 2017a).  1239 

 1240 

(4) Genes involved with embryonic water, gas, and nutrient transport 1241 

Water transport in animals is regulated by a family of molecular water channels called 1242 

aquaporins (AQs or AQPs) (Borgnia et al., 1999). In humans, AQP1, AQP3, AQP4, AQP8 1243 

and AQP9 are found in the placenta but further research is needed to understand how these 1244 

influence water fluxes between maternal and fetal tissues (Damiano, 2011). Transcriptomic 1245 

analysis on uterine tissue of the gestating viviparous skink Chalcides ocellatus revealed 1246 

differential expression of AQP1, AQP3, AQP5, AQP6, AQP8, AQP9 and AQP11 when 1247 

compared to non-gestating uteruses (Brandley et al., 2012). In birds, AQP1 is expressed in 1248 

the chorioallantoic membrane, and it is suggested to influence angiogenesis throughout 1249 

embryonic development (Ribatti et al., 2002). In a viviparous lizard, Pseudemoia 1250 

entrecasteauxii, AQP8 and AQP9 were more highly expressed in the chorioallantoic placenta 1251 

compared to the yolk-sac placenta (Griffith et al., 2016). During gestation in both oviparous 1252 

and viviparous populations of the reproductively bimodal skink Saiphos equalis, several 1253 

genes involved with water homeostasis are upregulated in the uterus including AQP1, AQP3 1254 

and AQP12B (Foster et al., 2020). In uteruses of Saiphos equalis, AQP5 and AQP8 are 1255 

upregulated during oviparous late gestation compared to viviparous late gestation. In sheep, 1256 

AQP3 is differentially expressed during gestation, where it serves a dual role of water 1257 

transport to the embryo and fetal urea export (Johnston et al., 2000). This is similar to the 1258 

function of AQP9 in humans (Damiano, 2011). Immunocytochemistry reveals that AQP1 and 1259 

AQP3 are expressed in the uterus of the highly placentotrophic South American scincid 1260 

lizard, Mabuya sp. (Wooding, Ramirez-Pinilla & Forhead, 2010). In Zootoca vivipara, AQP9 1261 

is upregulated at mid-gestation (Recknagel et al., 2021a).  1262 
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Some molecules are implicated in the regulation of aquaporins including insulin (INS), 1263 

hCG, cyclic AMP (cAMP) and cystic fibrosis transmembrane conductance regulator (CFTR) 1264 

(Damiano, 2011). Genes predicted to be involved with reproduction in Anolis carolinensis 1265 

are enriched for the GO term for cAMP-mediated signalling (Alföldi et al., 2011). Further 1266 

comparative research could elucidate the functional differences of aquaporins in oviparous 1267 

and viviparous amniotes and how they relate to the differing conditions under which these 1268 

embryos develop.  1269 

Genes involved with embryonic oxygen transport pre-date the origin of amniotes. 1270 

Haemoproteins arose in evolutionary history well before they were used for placental oxygen 1271 

transfer (Hardison, 1998). In mammals, adult [alpha (HBA); beta (HBB, HBD)] and 1272 

embryonic haemoglobins [alpha (HBZ, HBA); beta (HBE, HBG, and HBH)] are involved 1273 

with oxygen transport (Carter, 2012). Some of these are unique to eutherian mammals 1274 

following a series of duplication events (Opazo, Hoffmann & Storz, 2008). However, fetal 1275 

haemoglobins are found in turtles, lizards, and snakes (Pough, 1980). HBA, HBB and HBM 1276 

are all significantly downregulated in the uterine tissue of the viviparous Chalcides ocellatus 1277 

during gestation compared to non-gestation (Brandley et al., 2012). The oxygen demands of 1278 

reptile embryos are relatively low until stage 30, when most oviparous squamates oviposit 1279 

(Shine & Thompson, 2006). In viviparous and oviparous species with long egg retention, 1280 

embryonic demand for maternal provision of oxygen and removal of CO2 increases at this 1281 

stage. 1282 

Improper water, gas and nutrient exchange can occur due to poor chorioallantoic blood 1283 

flow (Wootton et al., 1977). Thus, viviparous taxa require greater degrees of vascularization 1284 

and vasodilation to facilitate enhanced requirements for maternal resources compared to 1285 

oviparous taxa. Rather than increasing the size of the placenta, increasingly dense blood 1286 

vessels can support fetal growth without compromising space for embryonic growth as 1287 
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occurs in some pigs (Ford, 1997; Vonnahme, Wilson & Ford, 2002). In populations of 1288 

oviparous individuals of Saiphos equalis with extended egg retention, there is expansion of 1289 

the uterine vascular bed and thickening of the chorioallantoic tissue that supports increased 1290 

embryonic growth in the later portion of oviparous gravidity (Parker et al., 2010). In the 1291 

viviparous scincid lizard Eulamprus quoyii, angiogenesis, the formation of new blood 1292 

vessels, and expansion of the vessel-dense elliptical area of the uterus is associated with 1293 

supporting increased embryonic oxygen demand (Murphy et al., 2010).  1294 

Several protein-coding genes are known to be involved with angiogenesis, 1295 

vascularization, and vasodilation in utero. Differential gene expression analyses on oviparous 1296 

and viviparous individuals of Zootoca vivipara revealed pathways for angiogenesis were 1297 

enriched in viviparous female reproductive tissues; and pathways for angiogenesis were 1298 

enriched across genes under divergent selection in oviparous and viviparous Z. vivipara 1299 

individuals (Recknagel et al., 2021a). However, a study that examined expression patterns 1300 

across chickens (oviparous), horses (viviparous), two viviparous squamates, and one 1301 

oviparous squamate found that no examined genes for angiogenesis showed a viviparity-1302 

specific expression pattern, based on differentially expressed genes between pregnant and 1303 

non-pregnant state (Griffith et al., 2017a). Other than the chicken, the only oviparous taxa 1304 

included in this study was a reproductively bimodal skink, Lerista bougainvillii (Griffith et 1305 

al., 2017a).  1306 

In the uterine tissue of gestating viviparous skinks and rats, several genes for 1307 

angiogenesis are upregulated: EPAS1, HIF1A and VEGFA (Brandley et al., 2012; 1308 

Whittington et al., 2015, 2017). Proteins involved in vascularization and vasodilation in utero 1309 

include members of the vascular endothelial growth factor (VEGF) gene family, VEGF 1310 

receptors (VEGFRs), placental growth factor (PGF) and nitric oxide synthase (NOS) 1311 

(Blomberg et al., 2010; Reynolds et al., 2006; Risau, 1997; Torry et al., 2003; Vonnahme, 1312 
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Wilson & Ford, 2001). In Saiphos equalis, different homologs of NOS experience different 1313 

patterns of gene expression across the oviparous and viviparous stages of gestation/gravidity 1314 

(Foster et al., 2020). One homolog of NOS is upregulated during oviparous late gestation, and 1315 

another is upregulated during viviparous late gestation (Foster et al., 2020). Several genes 1316 

involved with angiogenesis and vascular morphogenesis are downregulated in the pre-1317 

implantation uterus of a marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata): 1318 

ADGRA2, ADGRB2, ANGPTL1, EPHB4, ISM1, PDZRN3, RHOJ, TNMD and VEGFD 1319 

(Whittington et al., 2018). 1320 

In humans, immune factors are also responsible for increasing embryonic blood supply. 1321 

Embryonic non-classical MHC class I molecule, HLA-G, and uterine natural killer (uNK) 1322 

cells support an increased embryonic blood supply (Moffett & Loke, 2006; Rajagopalan et 1323 

al., 2006). A similar pattern of utilizing immune properties to support embryonic blood 1324 

supply has not been identified yet in squamates.  1325 

Lipids are a main energy source for embryos. Lipoprotein lipase (LPL) is an important 1326 

enzyme in lipid transport. LPL is significantly expressed on the syncytiotrophoblasts, which 1327 

are specialized placental cells, of humans (Lindegaard et al., 2005), and in the endometrium 1328 

of cows (Forde et al., 2011), and pigs (Ramsay et al., 1991), where it plays a role in lipid 1329 

mobilization. A viviparous lizard, Pseudemoia entrecasteauxii, increases capacity for lipid 1330 

transport towards the end of pregnancy (Griffith et al., 2013a). The uterine tissue of the yolk-1331 

sac placenta in this species had significantly higher expression of LPL than the uterine tissues 1332 

of the chorioallantoic placenta (Griffith et al., 2013a), leading the authors to suggest that the 1333 

yolk-sac placenta is the major site of lipid transport. LPL expression was not detected during 1334 

pregnancy in the viviparous skink Chalcides ocellatus (Blackburn, 1992; Brandley et al., 1335 

2012). Instead, lipid transport may be facilitated by fatty acid binding proteins in this species 1336 
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(Chmurzyńska, 2006; Brandley et al., 2012). These are also active in the mammalian placenta 1337 

(Haggarty, 2002).  1338 

Apolipoproteins are also suitable candidates for transport of fatty acids, cholesterol, and 1339 

phospholipids. Five apolipoprotein genes (APOA1, APOA2, APOA4, APOE and APOM) and 1340 

APOA1BP are significantly upregulated in the pregnant uterus of the viviparous skink 1341 

Chalcides ocellatus (Brandley et al., 2012). APOA1BP is also upregulated in the uterus of the 1342 

chorioallantoic placenta and yolk-sac placenta compared to non-gestational uterine tissues in 1343 

Pseudemoia entrecasteauxii (Griffith et al., 2016). Additionally, upregulation of 136 genes 1344 

that encode SLCs in the pregnant uterus of Chalcides ocellatus are associated with transport 1345 

of inorganic ions, metals, glucose, amino acids, peptides, fatty acids, and carboxylic acids 1346 

(Brandley et al., 2012). 1347 

A supply of amino acids is required for embryonic development. SLCs have important 1348 

transport functions, including the transport of amino acids, and thus they are considered to be 1349 

important for gestation (Foster et al., 2022). However, a recent study found no overlap in the 1350 

amino-acid-transporting SLCs upregulated in placentas of the viviparous placentotrophic 1351 

vertebrates studied, which included eight representatives from Mammalia, Reptilia, and 1352 

Chondrichthyes (Foster et al., 2022). However, SLC38A3 was upregulated in all viviparous 1353 

species except Rattus norvegicus (Foster et al., 2022).  1354 

Cathepsins and phospholipases are important for uterine secretions for embryonic 1355 

development in horses, pigs, sheep, and cattle (Bazer, 1975; Satterfield et al., 2007; Song et 1356 

al., 2010). Cathepsins are present in yolk sacs of humans and mice. They function to degrade 1357 

proteins to free amino acids (Cindrova-Davies et al., 2017). Two genes for cathepsin L 1358 

(CTSL1 and CTSL2) are upregulated in the uterus during gestation in Chalcides ocellatus 1359 

(Brandley et al., 2012). CTSL is also upregulated in the uterus during the pre-implantation 1360 

phase in the marsupial Sminthopsis crassicaudata (Whittington et al., 2018), and in the uterus 1361 
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of the chorioallantoic placenta and uterus of the yolk-sac placenta during gestation in 1362 

Pseudemoia entrecasteauxii (Griffith et al., 2016). 1363 

In viviparous individuals of the reproductively bimodal lizard Saiphos equalis, many 1364 

genes for cellular adhesion are upregulated during late gestation (Foster et al., 2020). The 1365 

authors postulated that this helps facilitate maternal–fetal signalling and paracellular transport 1366 

(Foster et al., 2020). Gao et al. (2019) identified a set of genes in Phrynocephalus vlangalii 1367 

that were differentially expressed in the uterus during the placentation stage and these 1368 

enriched GO terms were functionally related to the process of placentation. This included an 1369 

oestrogen receptor (ESR1) and two growth factor receptors (GHR and IGF1R) (Gao et al., 1370 

2019). 1371 

Finally, the proteomes of the ovary and placenta from obligately placentotrophic Mabuya 1372 

sp. lizards can serve as a useful resource for examining nutrient provisioning in squamates 1373 

(Hernández-Díaz, Torres & Ramírez-Pinilla, 2017). In the placenta they found protein 1374 

expression involved with nutrient metabolism, transport, protein synthesis, and embryonic 1375 

development (Hernández-Díaz et al., 2017).  1376 

 1377 

(5) Uterine glands: adenogenesis, placenta development and histotrophy 1378 

In addition to their role in eggshell deposition in oviparous taxa, uterine glands also 1379 

secrete growth factors and cytokines that support placental development in mammals. In 1380 

humans, these include TGF-, epidermal growth factor (EGF), vascular endothelial growth 1381 

factor (VEGF, and leukemia inhibitory factor (LIF) (Hempstock et al., 2004). In eutherians, 1382 

TGF- supports placental development by regulating proliferation and invasion rates of 1383 

placental cell lines (Caniggia et al., 2000; Hempstock et al., 2004; Lafontaine et al., 2011).  1384 

Histotrophy (also called histiotrophy) occurs when nutrients are secreted into the uterine 1385 

lumen from vesicles of the columnar epithelial cells of the uterus and taken up by the 1386 
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embryo. Histotrophic nutrient provisioning is documented across amniotes including 1387 

marsupials (Whittington et al., 2018), several ungulate taxa (Bazer et al., 2011; Han et al., 1388 

2016; Gao et al., 2009), and humans (Burton et al., 2002), and appear to occur in some 1389 

viviparous squamates (van Dyke et al., 2014). In humans, histotrophic nutrient provisioning 1390 

occurs during the first trimester. The intervillous space is filled with fluid containing uterine 1391 

gland secretions that are phagocytosed by the syncytiotrophoblasts and represent the initial 1392 

nutrient source for the fetus (Burton et al., 2002). Two of these glycoproteins are epithelial 1393 

mucin (MUC1) and glycodelin A (GdA) (Burton et al., 2002). Interestingly, the MUC15 gene 1394 

is upregulated during pregnancy in the uterus of oviparous and viviparous Saiphos equalis 1395 

individuals (Foster et al., 2020). This also occurs in the chorioallantoic placenta of 1396 

Pseudemoia entrecasteauxii during gestation (Griffith et al., 2016). Several mucins are 1397 

expressed in the uterus in non-gravid and gravid samples from oviparous individuals of 1398 

Lerista bougainvillii and Lampropholis guichenoti (Griffith et al., 2016).  1399 

A survey of viviparous squamates with modest to extensive placentotrophy revealed a 1400 

prevalence of histotrophic nutrient provisioning rather than haemotrophy, i.e. transfer of 1401 

nutrients between maternal and fetal blood streams (Blackburn, 2015b). Embryos of 1402 

Chalcides chalcides have extensive placentotrophy that supports substantial maternal nutrient 1403 

provisioning and histotrophy (Blackburn, 2015a). Histotrophy may reduce parent–offspring 1404 

conflict and give the mother control over nutrient provisioning compared to haemotrophy 1405 

(Blackburn, 2015b).  1406 

Chalcides ocellatus has less extensive placentotrophy than C. chalcides but the gestating 1407 

uterus still illustrates expression of many genes associated with organic and inorganic 1408 

nutrient transport (Blackburn, 2015a). Multiple TGF- genes are differentially expressed in 1409 

the uterus during gestation in C. ocellatus, however most these are downregulated compared 1410 

to non-gestational uterine tissue (Murphy et al., 2012). The influence of TGF- on placental 1411 
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development and nutrient provisioning in Chalcides spp. remains to be explored. A TGF- 1412 

receptor (TGFBR1) was associated with placental development in Phrynocephalus vlangalii 1413 

(Gao et al., 2019).  1414 

Essential to histotrophy is adenogenesis, i.e. the generation of endometrial glands. 1415 

Adenogenesis allows for the secretion of histotrophs. The period of early development during 1416 

which adenogenesis occurs is highly variable among vertebrates but it is required for 1417 

embryonic survival (Gray et al., 2001, 2002; Spencer & Bazer, 2004). Genes involved with 1418 

adenogenesis in sheep include insulin-like growth factor 1 (IGF-1), IGF-2, PAX2, LHX1 1419 

(also known as LIM1) and EMX2, genes in the abdominal-B HOXA cluster, members of both 1420 

Wnt and Hedgehog (Hh) gene families (Fazleabas, Kim & Strakova, 2004), prolactin (PRL), 1421 

fibroblast growth factor 7 (FGF7), FGF10, FGFR2IIIb, hepatocyte growth factor (HGF), a 1422 

receptor tyrosine kinase (c-Met), and cadherins (Fazleabas, 2007).  1423 

In the gestating uterus of Chalcides ocellatus, insulin-like growth factor-binding protein 5 1424 

(IGFBP5) is one of the most significantly downregulated genes compared to non-gestational 1425 

uterine tissue (Brandley et al., 2012). IGFBP5 is evolutionarily conserved and 1426 

multifunctional, with an important role in regulating IGF signalling, including that of IGF-1 1427 

and IGF-2 (Duan & Allard, 2020). Other than adenogenesis in sheep, IGFs serve an 1428 

important role in the growth of fetal and maternal tissues in mammals (Gibson et al., 2001; 1429 

Kampmann et al., 2019). 1430 

 Genes involved with histotrophic secretion in the marsupial Sminthopsis crassicaudata 1431 

include AP4S1, HYOU1, and SRPRA (Whittington et al., 2018). Genes for nutrient 1432 

transporters significantly upregulated at this time are APOL6 (cholesterol transport; 1433 

Baardman et al., 2013), PLA2G10 (hydrolysis of fatty acids during pregnancy; Miele, 1434 

Cordella-Miele & Mukherjee, 1987) and a wealth of SLCs (for transport of sugar, ions, 1435 

anions, glucose, fatty acids, calcium and zinc; Whittington et al., 2018). Subsequent research 1436 
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has identified downregulation of HYOU1 at early and mid-gestation; and downregulation of 1437 

SRPRA at mid-gestation in viviparous Zootoca vivipara compared to oviparous individuals 1438 

(Recknagel et al., 2021a). In a reproductively bimodal skink, Saiphos equalis, PLA2G10 is 1439 

upregulated during viviparous late gestation compared to oviparous late gestation (Foster et 1440 

al., 2020). Upregulation of SLCs also occurs in the viviparous skink Chalcides ocellatus 1441 

(Brandley et al., 2012; Van Dyke et al., 2014) and in the uterus during pregnancy in the 1442 

marsupial Monodelphis domestica (Hansen, Schilkey & Miller, 2016).  1443 

Uterine glands are also important for secretions of eggshell precursors. It is possible that 1444 

genes involved with adenogenesis of uterine glands may be similarly used to support 1445 

histotrophic nutrient provisioning during transitions to viviparity, but further research is 1446 

necessary. Specialized uterine areolar glands are found in some Mabuya lizards, a genus with 1447 

oviparous species and viviparous species that utilize placentotrophy and histotrophy (Corso et 1448 

al., 1988, 2000; Jerez & Ramírez-Pinilla, 2001; Ramírez-Pinilla, 2006; Vieira, De Perez & 1449 

Ramírez-Pinilla, 2007; Visser, 1975). Transcriptomic research focused on histotrophic 1450 

nutrient provisioning, placental development, and secretions of eggshell precursors in 1451 

oviparous and viviparous Mabuya spp. would complement the literature on this genus.  1452 

 1453 

(6) Discussion and future directions – embryonic nutrients, gas and water supply  1454 

Many genes for placental functions in mammals have deep origins in vertebrates (Rawn 1455 

& Cross, 2008). In pairwise comparisons of different viviparous amniotes, there is overlap in 1456 

hormones and proteins (SLC superfamily, insulin-like growth factors, aquaporins and solute 1457 

carrier proteins, etc.) involved in uterine remodelling, placentation, and placental transport. 1458 

The relationship of these observations to embryonic nutrient provisioning and the evolution 1459 

of the amniotic egg requires further investigation. Table S2 illustrates how genes mentioned 1460 
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above for water, gas, and nutrient transport are expressed in reproductive tissues of 1461 

squamates during gravidity and gestation. 1462 

If specific genes or physiological processes impact more than one of the Main Five 1463 

categories, this could have a disproportionate influence on transitions. Such an overlap has 1464 

already been identified in Zootoca vivipara, where 11 genes are associated with both eggshell 1465 

traits and gestation length (Recknagel et al., 2021a). The SLC gene superfamily is involved 1466 

with both nutrient transport (Brandley et al., 2012; Whittington et al., 2018) and eggshell 1467 

deposition (Yang et al., 2020). Adenogenesis is essential for histotrophic nutrient 1468 

provisioning and secretion of eggshell precursors. Additionally, progesterone production 1469 

influences both uterine quiescence, which is an important state to maintain in lengthened 1470 

embryonic retention, and also inhibits hepatic vitellogenesis, an important process for 1471 

lecithotrophic nutrient provisioning. Thus, examining the role of SLC gene superfamily 1472 

members, processes of adenogenesis, and progesterone production during embryonic 1473 

development in oviparous and viviparous squamates may reveal how interconnected the Main 1474 

Five are.  1475 

 1476 

V. EMBRYONIC CALCIUM PROVISIONING  1477 

The embryonic growth stage represents the greatest demand for calcium (Ecay et al., 1478 

2017; Packard & Packard, 1984; Stewart & Ecay, 2010). To support this, peak uterine 1479 

concentrations of calcium are highest either during eggshell deposition or later in 1480 

development, presumably during the embryonic growth phase, in oviparous and viviparous 1481 

taxa, respectively (Linville et al., 2010; Stewart et al., 2009a). Regardless of parity mode, 1482 

embryonic metabolism drives calcium uptake (Packard & Packard, 1984). The calcium 1483 

source(s) utilized have clade-specific implications on the genomic and/or physiological 1484 

changes required to transition between parity modes. 1485 
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 1486 

(1) Phylogenetic context of embryonic calcium sources 1487 

Calcium can be acquired by the embryo in three forms: calcium carbonate in the eggshell, 1488 

calcium bound to proteins and lipids in the yolk, and/or free ionic calcium from maternal 1489 

delivery through the placenta (Stewart & Ecay, 2010). These correspond with five calcium 1490 

mobilization patterns: (1) birds, turtles and crocodiles predominantly depend on the eggshell; 1491 

(2) most squamates, regardless of parity mode, predominantly depend on the yolk; (3) some 1492 

squamate species are reliant on both the eggshell and yolk; (4) some viviparous squamate 1493 

species are reliant on both the yolk and placenta; and (5) therian mammals and rare 1494 

viviparous squamates predominantly depend on the placenta (Blackburn, 2015a; Hoenderop, 1495 

Nilius & Bindels, 2005; Jenkins & Simkiss, 1968; Kovacs, 2015; Packard, 1994; Stewart et 1496 

al., 2009a; Stewart, Ecay & Heulin, 2009b; Stewart & Ecay, 2010; Thompson et al., 1999, 1497 

2000; Ramírez-Pinilla, 2006).  1498 

From an evolutionary perspective, squamate eggs might serve as the best models of the 1499 

ancestral amniote egg. Unlike birds, oviparous squamates generally rely on yolk calcium 1500 

rather than eggshell calcium. The yolk sac of non-avian reptiles is argued to be a good model 1501 

for the transition between the egg of anamniotes and amniotes (Blackburn, 2021). Taken 1502 

together, and given that hard calcified eggshells of archosaurs are likely derived (as discussed 1503 

in Section III.3), squamate eggs may have the closest resemblance to the ancestral amniote 1504 

egg. Interestingly, to my knowledge, oviparous squamates do not sequester calcium from the 1505 

eggshell into the yolk during incubation (Packard, 1994).  1506 

 1507 

(2) Hypotheses on calcium mobilization and the evolution of parity modes 1508 

It was hypothesized that a predominant reliance on eggshell calcium should constrain 1509 

lineages to oviparity because the evolution of viviparity would result in a lost calcium source 1510 
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(hereafter the eggshell calcium constraint hypothesis) (Stewart & Ecay, 2010; Packard et al., 1511 

1977; Packard & Packard, 1984). This hypothesis suggested that viviparity should only 1512 

evolve in lineages predominately reliant on yolk calcium (Packard et al., 1977; Packard & 1513 

Packard, 1984). Fittingly, birds, turtles and crocodilians generally rely on eggshell calcium, 1514 

and they are constrained to oviparity (Anderson, Stoyan & Ricklefs, 1987). Consistent with 1515 

the eggshell calcium constraint hypothesis, most viviparous squamates rely predominantly on 1516 

yolk calcium (Stewart & Castillo, 1984; Stewart & Ecay, 2010; van Dyke et al., 2014). 1517 

Subsequent research revealed that viviparity is not constrained by a prerequisite reliance 1518 

on yolk calcium. Oviparous scincid skinks studied thus far rely on both eggshell and yolk 1519 

calcium (Linville et al., 2010; Shadrix et al., 1994; Stewart et al., 2009a,b; Stewart & 1520 

Thompson, 1993). Calcium placentotrophy contributes substantially to embryonic 1521 

development in several viviparous squamates including Pseudemoia entrecasteauxii, 1522 

Eulamprus quoyi, Zootoca vivipara, Saiphos equalis, and a species of Mabuya lizard (Ecay et 1523 

al., 2017; Linville et al., 2010; Ramírez-Pinilla, 2006; Ramírez-Pinilla et al., 2011; Stewart & 1524 

Thompson, 1993). These taxa, with the exception of Zootoca vivipara, are in the family 1525 

Scincidae (Burbrink et al., 2020), which is also the family with the most independent origins 1526 

of viviparity in squamates according to most estimates (Blackburn, 1982, 1985, 1999a; Pyron 1527 

& Burbrink, 2014).  1528 

To understand the breadth of physiological conditions from which oviparity and 1529 

viviparity evolve in squamates, future research should examine calcium transport in other 1530 

lineages. Studies focused on snakes would be particularly informative given the sparse 1531 

literature on them. Helicops angulatus, a reproductively bimodal water snake from South 1532 

America, is an ideal model for this (Braz, Scartozzoni & Almeida-Santos, 2016). Thus far, 1533 

many oviparous snakes are known to show intermediate reliance on yolk and eggshell 1534 

calcium. This has not precluded viviparity from evolving in these lineages.  1535 
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The presence of embryos during EER may trigger positive feedback stimuli for continued 1536 

uterine calcium secretions which may support placental calcium transport, and thus incipient 1537 

calcium matrotrophy (Stewart & Ecay, 2010). This is postulated to resemble the hormonal 1538 

and mechanical stress mechanisms implicated in avian eggshell formation and uterine 1539 

calcium secretions (Bar, 2009a; Stewart & Ecay, 2010). The influx of calcium late in 1540 

viviparous gestation may be triggered in part by embryonic growth that over distends the 1541 

uterus. This is seen in studies on myometrial stretch in mammals when uterine overdistension 1542 

triggers spikes in calcium (Kao & McCullough, 1975; e.g. Wray et al., 2015).  1543 

Dramatic changes to activity in the chorioallantois should not be required during parity 1544 

mode transitions because these homologous tissues (Metcalfe & Stock, 1993) transport 1545 

calcium regardless of parity mode (Ecay, Stewart & Blackburn, 2004; Tuan & Scott, 1977; 1546 

Tuan & Knowles, 1984; Tuan, Scott & Cohn, 1978; Tuan et al., 1986). Specialized placental 1547 

structures in some viviparous squamates enhance calcium provisioning but specialization is 1548 

not required for placental calcium transport (Stewart et al., 2009a,b; Stewart & Ecay, 2010; 1549 

Thompson et al., 2000). Loss of chorioallantoic calcium transport capacity would be 1550 

disadvantageous to either parity mode. Growing research reveals that, like mammals, 1551 

placentotrophy and viviparity can evolve concurrently in squamates (Blackburn, 2015a; Ecay 1552 

et al., 2017; Stewart & Ecay, 2010).  1553 

Placing these previously proposed models in a phylogenetic context, the calcium 1554 

transport method of oviparous ancestors likely has an influence on the method of calcium 1555 

transport used for viviparous taxa, i.e. matrotrophic calcium provisioning, lecithotrophic 1556 

calcium provisioning, or a combination of the two. Consistent with the nucleation site 1557 

hypothesis, when viviparity arises from oviparous ancestors with embryos that depended 1558 

predominantly on eggshell calcium, this should favour a transition to viviparity via incipient 1559 

calcium matrotrophy because the chorioallantois already plays the major role in transporting 1560 
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calcium from the eggshell to the embryo. Since the reproductive mode and calcium 1561 

provisioning of oviparous ancestors are essentially unknown, researchers can use the closest 1562 

oviparous relatives as proxies. Similarly, viviparous taxa that are in close phylogenetic 1563 

proximity to oviparous taxa that depend on lecithotrophic calcium provisioning should 1564 

remain reliant on yolk calcium. Together, these guidelines provide a framework from which 1565 

researchers can form hypotheses about the calcium provisioning method of a viviparous 1566 

lineage if the calcium provisioning method of oviparous close relatives is known, or vice 1567 

versa. Measurements of the proportional contribution of different calcium sources during 1568 

development have only been reported for select taxa (e.g. Packard, 1994; Stewart, 2013; 1569 

Stewart & Ecay, 2010; Stewart, Ecay & Blackburn, 2004). Once validated, the framework 1570 

(i.e. the calcium provisioning method of close relatives) could help increase the speed at 1571 

which science measures and infers the evolutionary history of calcium provisioning across 1572 

amniotes and squamates. Collection of these data across the squamate phylogeny may enable 1573 

assignment of these hypotheses to specific clades. 1574 

Embryonic calcium source could have implications on the physiological changes required 1575 

to transition between parity modes. Reliance on yolk calcium should require essentially no 1576 

mechanistic changes for calcium transport. On the other hand, calcium matrotrophy requires 1577 

regulatory changes in the uterus, like timing of calcium secretions (Griffith et al., 2015). 1578 

However, regardless of parity mode (1) the uterus secretes calcium, (2) the chorioallantois 1579 

transports calcium, and (3) embryonic metabolism drives uptake of calcium. Assuming 1580 

maternal tissue remains responsive to embryonic metabolism, the joint evolution of 1581 

matrotrophic calcium provisioning with viviparity may require little to no physiological 1582 

adjustments.  1583 

The diversity of embryonic calcium provisioning patterns in viviparous squamates may 1584 

not be fully explained by the eggshell calcium constraint hypothesis (Packard et al., 1977; 1585 
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Packard & Packard, 1984) or incipient calcium matrotrophy (Stewart & Ecay, 2010). Both 1586 

hypotheses implicitly assume that viviparity equates to a lost eggshell. In one viviparous 1587 

squamate, Haldea striatula, and in viviparous populations of two reproductively bimodal 1588 

lizards, Zootoca vivipara and Saiphos equalis, the calcified eggshell is considered as a 1589 

component of the placenta (Stewart, 2013). Some other viviparous squamates have transient 1590 

calcified patches on their embryonic membranes (Blackburn, 1998; Heulin, 1990; Qualls, 1591 

1996) suggesting that uterine calcium-secreting capabilities in early gestation may be retained 1592 

in some viviparous lineages. In the case of reversals, it remains unknown how the uterus 1593 

shifts back to early calcium secretions after ovulation (Blackburn, 2015b; Griffith et al., 1594 

2015).  1595 

 1596 

(3) Embryonic calcium-provisioning mechanisms 1597 

In vertebrates, specialized tissues that recover environmental calcium and transport it into 1598 

blood circulation maintain conserved mechanisms for intracellular calcium transport 1599 

(Bronner, 2003; Hoenderop et al., 2005). These include the uterus, chorioallantoic tissues, 1600 

and yolk splanchnopleure (Bronner, 2003; Hoenderop et al., 2005; Stewart, 2013). Therefore, 1601 

uterine and embryonic tissues may be pre-adapted for maternal and embryonic calcium 1602 

provisioning. 1603 

In birds, a sub-compartment of the mammillary layer of the eggshell is the calcium 1604 

reserve body (Chien, Hincke & McKee, 2009), which contains microcrystals of calcite that 1605 

are dissolved and transported as calcium to the embryo (Chien et al., 2009). Calcium is 1606 

eroded from the eggshell by acid released from villus cavity cells (VCCs) in the 1607 

chorioallantoic membrane (Anderson, Gay & Schraer, 1981; Narbaitz, Kacew & Sitwell, 1608 

1981; Packard & Lohmiller, 2002; Simkiss, 1980). This increases the carbonic anhydrase 1609 

activity of the cells enabling calcium to be released into the cavity between the eggshell and 1610 
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the chorionic epithelium, where it is taken up by capillary covering cells (CCCs) in the 1611 

chorioallantoic membrane (Coleman & Terepka, 1972). In some species this erosion leads to 1612 

a gradual weakening of the eggshell that facilitates hatching (Chien, Hincke & McKee, 1613 

2008). In chickens, transcalcin, a calcium binding protein (CaBP), is credited for the calcium-1614 

transporting capacity of the chorioallantoic membrane (Tuan & Knowles, 1984; Tuan & Ono, 1615 

1986; Tuan & Scott, 1977; Tuan et al., 1978, 1986). The presence of VCCs and CCCs in the 1616 

chorioallantois of viviparous squamates would indicate a known route through which calcium 1617 

can be absorbed.  1618 

Transcellular calcium transport has been modelled as a three-step process involving the 1619 

proteins calbindin-D9K and calbindin-D28K, and the highly calcium-specific ion channels of 1620 

the transient receptor potential vanilloid gene family (TRPV5 and TRPV6) (Stewart & Ecay, 1621 

2010). Across vertebrates, this machinery is shared in epithelial tissues with significant roles 1622 

in calcium transport (Hoenderop et al., 2005). Oestrogen and vitamin D3 have regulatory 1623 

roles in this process.  1624 

Calbindin-D9K, calbindin-D28K, TRPV5, and TRPV6 are involved with calcium 1625 

exchange in multiple organs of birds, squamates, and mammals. Broadly, activity of 1626 

calbindin-D9K and/or calbindin-D28K is associated with patterns of calcium absorption in 1627 

the mammalian kidney and uterus (Bindels, 1993; Luu et al., 2004), murine uterus and 1628 

placenta (Lafond & Simoneau, 2006; Koo et al., 2012), and chicken duodenum and uterus 1629 

(Bar, 2009b; Yang et al., 2013). In humans, calbindin-D9K and calbindin-D28K are critical 1630 

to the active transport of Ca2+ across placental cells (Faulk & McIntyre, 1983; Belkacemi, 1631 

Simoneau & Lafond, 2002; Belkacemi et al., 2004). A study on rats suggests that calbindin-1632 

D9K increases by over 100-fold in the last 7 days of gestation (Glazier et al., 1992), when the 1633 

embryo gains the majority of calcium. TRPV6 is involved with maternal–fetal calcium 1634 

transport in mice (Suzuki et al., 2008). Increased TRPV6 and calbindin-D28K expression 1635 
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occurs during eggshell formation in chickens (Yang et al., 2013). Given the involvement of 1636 

these genes in both eggshell deposition and embryonic calcium transport, squamates may 1637 

have exploited this pathway to support transitions. Expression of these genes during gestation 1638 

or gravidity in squamates has been detected (e.g. calbindin-d9K in Saiphos equalis and 1639 

calbindin-d28k in Zootoca vivipara) (Foster et al., 2020; Recknagel et al., 2021a).  1640 

In several viviparous lizards, embryonic uptake of calcium is associated with placental 1641 

expression of calbindin-D28K (Stewart et al., 2011; Stinnett et al., 2011). In both oviparous 1642 

and viviparous embryos of Zootoca vivipara, a sharp increase in calcium uptake in late 1643 

development coincides with increased calbindin-D28K and PMCA production by the 1644 

chorioallantois (Stewart et al., 2011). In oviparous corn snakes (Pantherophis guttatus), 1645 

expression of calbindin-D28K in the yolk sac and chorioallantoic membrane coincides with 1646 

growth of these tissues and calcium transport activity (Ecay et al., 2004).  1647 

Viviparous embryos of Zootoca vivipara, a reproductively bimodal lizard, incubated ex 1648 

utero respond to availability of calcium by increasing expression of calbindin-D28K (Ecay et 1649 

al., 2017). In this species, embryonic recognition of environmental calcium stimulates a 1650 

transcellular calcium-transporting mechanism and may also alter chorioallantoic membrane 1651 

paracellular permeability to calcium (Ecay et al., 2017). The authors proposed that there is a 1652 

calcium sensing receptor (CaSR) on chorionic epithelial cells to support this in both 1653 

oviparous and viviparous Zootoca vivipara embryos (Ecay et al., 2017), similar to the CaSRs 1654 

expressed by vertebrate cells involved in calcium homeostasis (Brennan et al., 2013).  1655 

As mentioned in Section III.2, PMCA activity is associated with eggshell deposition in 1656 

birds and oviparous squamates (Bar, Rosenberg & Hurwitz, 1984; Hincke et al., 2012; 1657 

Wasserman et al., 1991). PMCA is also crucial for calcium transport in late embryonic 1658 

development in rats (Glazier et al., 1992). In the viviparous scincid lizards Niveoscincus 1659 

metallicus, N. ocellatus, and Pseudemoia spenceri, PMCA was expressed in uterine glandular 1660 
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and surface epithelia during pregnancy but only P. spenceri expressed it throughout gestation 1661 

(Herbert et al., 2006). Na+/Ca2+ exchangers (NCXs), are also important for placental calcium 1662 

transport in humans (Belkacemi et al., 2005). 1663 

Calciotropic hormones (involved with calcium transport), and phosphotropic hormones 1664 

(involved with phosphorus transport) operate via an interconnected pathway (Andrukhova et 1665 

al., 2016; Biber, Hernando & Forster, 2013; Blaine, Chonchol & Levi, 2015; Erben & 1666 

Andrukhova, 2015). Phospho- and calciotropic hormones are important regulators of fetal 1667 

serum mineral concentrations (Kovacs, 2015). Evidence from viviparous amniotes suggests 1668 

that these are suitable candidates for embryonic calcium provisioning. In mice, genes 1669 

encoding parathyroid hormone (PTH) and PTH-related peptide (PTHrP) are important 1670 

regulators of placental calcium transport (Kovacs et al., 1996; Simmonds et al., 2010). A 1671 

non-exhaustive list of additional candidates for embryonic calcium provisioning includes 1672 

fibroblast growth factor 23 (Bar, 2009a; Erben & Andrukhova, 2015; Stewart & Ecay, 2010), 1673 

the annexin gene family (Matschke et al., 2006), carbonic anhydrase (Narbaitz et al., 1981; 1674 

Tuan & Knowles, 1984), and CaBPs. 1675 

 1676 

(4) Discussion and future directions – calcium provisioning and parity mode evolution 1677 

Phylogenetic frameworks enable researchers to make broader testable hypotheses about 1678 

the evolutionary history of traits in specific clades. Such a framework is proposed in Section 1679 

V.2 to infer ancestral parity modes in the context of calcium provisioning in amniotes. 1680 

Implications gleaned from taxon-specific studies then can be explored in distantly related 1681 

analogous groups.  1682 

Genes involved with calcium transport in uterine and embryonic tissues have been 1683 

described across mammals, birds, and reptiles. Like other amniotes, activity of calbindin-1684 

D28K and PMCA supports embryonic calcium provisioning across diverse oviparous and 1685 
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viviparous squamates. Their involvement with both eggshell deposition and embryonic 1686 

calcium provisioning makes these particularly interesting candidates for parity mode 1687 

evolution. The regulatory influence of other molecules in calcium transport, like PTH, PTHrP 1688 

and NCXs has not been evaluated thoroughly in squamates. Additional reviews on 1689 

mechanisms of embryonic calcium provisioning in squamates can be found in the literature 1690 

(Stewart, 2013; Stewart & Ecay, 2010). 1691 

Additionally, I add a speculation. Perhaps lineages with incipient calcium matrotrophy 1692 

could more feasibly revert to oviparity because of the continued role of the uterus in calcium 1693 

provisioning. However, this hypothesis only holds if maternal provisioning of calcium is not 1694 

synonymous with maternal provisioning of all nutrients. 1695 

 1696 

VI. MATERNAL–FETAL IMMUNE DYNAMICS 1697 

Medawar (1953) pointed out a paradigm between the peripheral body’s normal attack 1698 

response to allografts (foreign tissue) and uterine tolerance to embryos. This was inspired by 1699 

earlier work by Owen (1945). Stricter regulation of the maternal and fetal immune systems is 1700 

expected for viviparous reproduction because of contact between uterine and embryonic 1701 

tissues. Oviparity may pose less of an immunological challenge. Medawar suggested that 1702 

barriers, inertness and/or immunosuppression enable pregnancy. This formed the foundation 1703 

of decades of medical research on immune dynamics between maternal, embryonic, and 1704 

paternal immune factors.  1705 

In recent years, there have been calls for a reappraisal of Medawar’s paradigm (Chaouat, 1706 

2016; Moffett & Loke, 2004, 2006; Mor et al., 2011; Stadtmauer & Wagner, 2020b; 1707 

Yoshizawa, 2016). Moffett & Loke (2006) caution against conceptualizing embryos as 1708 

analogues of allografts. To my knowledge, this perspective has yet to reach the evolutionary 1709 

literature on squamate parity mode evolution (Foster et al., 2020; Graham et al., 2011; Gao et 1710 
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al., 2019; Murphy & Thompson, 2011; van Dyke et al., 2014; Murphy et al., 2009; 1711 

Recknagel et al., 2021a). Importantly, challenges to Medawar’s paradigm do not preclude 1712 

immunological responses to viviparity. They simply suggest that the immune environment of 1713 

the uterus is uniquely evolved to support exposure to foreign tissue. My perspective is that 1714 

Medawar’s paradigm is an excellent hypothesis to describe explicitly the origin of the first 1715 

amniote (e.g. lack of immune response in utero made possible by the evolution of the 1716 

eggshell). 1717 

The uterine immune system has a distinct evolutionary history from the periphery. It 1718 

enables cooperative dynamics with foreign tissues. It supports fertilization and early 1719 

embryonic development. This should have started evolving, distinct from the periphery, since 1720 

internal fertilization first originated. To contextualize this, I discuss the changing landscape 1721 

of immunological research at the maternal–fetal interface and what it means in the context of 1722 

amniote parity mode evolution. Overall, I hope readers consider how the uterus evolved to 1723 

support internal gestation, and which model systems may be appropriate to investigate this.  1724 

 1725 

(1) Comparing amniote immune systems 1726 

Cellular components of the innate immune system are conserved across jawed vertebrates 1727 

(Uribe et al., 2011; Zimmerman, Vogel & Bowden, 2010). The general machinery of the 1728 

adaptive immune system is ancient despite divergences and convergences across all domains 1729 

of life (Ghosh et al., 2011; Morales et al., 2017; Müller et al., 2018; Rimer, Cohen & 1730 

Friedman, 2014). Diversification of antigen receptor genes likely occurred independently in a 1731 

lineage-specific fashion (Boehm et al., 2018). Compared to mammals, the avian immune 1732 

system requires less antigen (Larsson, Carlander & Wilhelmsson, 1998). Birds also have 1733 

faster but shorter antibody responses, potentially due to their higher body temperatures 1734 

(Zimmerman et al., 2010).  1735 
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Reptiles have the same general components as the mammalian immune system 1736 

(Zimmerman, 2020). However, the reptilian immune system may not fit neatly into the two 1737 

arms of mammalian immune systems: innate and adaptive (Zimmerman et al., 2010; 1738 

Zimmerman, 2020). Expanding upon this is beyond the scope of this review, but it is worth 1739 

considering in future evolutionary research. Squamates may serve as a better comparative 1740 

model for understanding the evolution of the uterine immune system. Active research on the 1741 

peripheral reptilian immune system (Zimmerman et al., 2010; Zimmerman, 2020) and uterine 1742 

immune activity in squamates (Graham et al., 2011; Hendrawan et al., 2017; Murphy et al., 1743 

2009; Paulesu et al., 1995, 2008, 2005b) will support future insights. I refer readers to articles 1744 

by Zimmerman et al. (2010), Zimmerman (2020), Ghorai & Priyam (2018), and a book by 1745 

Williams (2012) for more information on the reptilian and avian immune systems.  1746 

 1747 

(2) Medawar’s paradigm 1748 

Tolerance towards the foreign fetus was postulated to occur through immunological 1749 

inertness, immunosuppression or immunotolerance mechanisms (Medawar, 1953). 1750 

Theoretically, immunotolerance could be established if there are relatively small quantities of 1751 

alloantigens present, resulting in regulatory responses rather than activating responses. 1752 

Contradicting this, the larger the alloantigen difference between the mother and embryo the 1753 

bigger and healthier the placenta is in rats (Chaouat et al., 2010). In humans, divergent HLA 1754 

profiles between mother and embryo do not lead to detrimental immune responses (Tilburgs, 1755 

Scherjon & Claas, 2010). Instead, cooperative inflammatory responses between maternal and 1756 

fetal tissues support reproduction (Stadtmauer & Wagner, 2020a). In humans, microchimeric 1757 

cell populations, i.e. the presence of cells from one individual in another genetically distinct 1758 

individual, are now considered a normal expectation of pregnancy (Nelson, 2012). 1759 
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In his 1991 Nobel Lecture, Medawar acknowledged that maternal and embryonic tissues 1760 

have regular exposure to alloantigens (Medawar, 1991). It has become clear that the maternal 1761 

immune system actively responds to fetal alloantigen rather than responding solely with 1762 

ignorance or anergy (Arck & Hecher, 2013). Neither maternal immunosuppression/privilege 1763 

nor embryonic inertness/immaturity fully explain immune dynamics during gestation in 1764 

mammals, including those with simple epitheliochorial placentation (Chaouat et al., 2010; 1765 

Chavan, Griffith & Wagner, 2017; Moffett & Loke, 2004, 2006; Stadtmauer & Wagner, 1766 

2020a).  1767 

 1768 

(3) Perspectives on the evolution of the uterine immune system 1769 

Viviparous reproduction existed long before the origin of mammals and, to my 1770 

knowledge, no evidence suggests there was immune conflict within these taxa (Chaouat, 1771 

2016). Placentotrophy existed as far back as the invertebrate clade Bryozoa (Ostrovsky, 1772 

2013; Schwaha et al., 2019), suggesting an ancient history for supportive maternal–fetal 1773 

immune dynamics. Differing from Medawar’s paradigm, Matzinger, who proposed the 1774 

‘danger model’ for the immune system (Matzinger, 2007), stated “Reproduction cannot be a 1775 

danger. It does not make evolutionary sense” (Chaouat, 2016, p. 48). 1776 

In mammals, self–non-self discrimination as a framework to describe the functioning of 1777 

the immune system has been challenged (Pradeu & Vitanza, 2011). Immune interactions at 1778 

the maternal–fetal interface may be more nuanced (e.g. Chaouat, 2016; Moffett & Loke, 1779 

2004, 2006). The ‘maternal–fetal interface’ may be better conceptualized as ‘maternal–fetal 1780 

intra-action’ given the dynamics between maternal and fetal immune systems in mammals 1781 

(Yoshizawa, 2016). It is unclear if these insights apply to other viviparous amniotes.  1782 

In mammals, immune factors in the uterus and placenta appear to be specifically evolved 1783 

to support maternal–fetal immune dynamics. Several cell types have unique functions and/or 1784 
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phenotypes in utero: uNK cells, uterine macrophages, and uterine T regulatory cells (Faas & 1785 

de Vos, 2017; Mold et al., 2008, 2010; Mold & McCune, 2011). An immunosuppressive 1786 

antigen, HLA-G, is almost exclusively expressed by trophoblasts (Faulk & Temple, 1976; 1787 

Kovats et al., 1990; Rajagopalan & Long, 2012; Rouas-Freiss et al., 1997). Taken from an 1788 

evolutionary perspective, this suggests that the uterine immune system in viviparous 1789 

mammals evolved unique responses to allogenic tissues that differ from those in the 1790 

periphery. Whether the evolution of this system pre-dates mammals remains to be explored.  1791 

It is suggested that viviparous reproduction is immunologically compatible in species 1792 

with a less-active adaptive immune system, like sharks (Chaouat, 2016). In these clades, 1793 

innate immune cells, like uNK cells, may be sufficient to regulate immune responses during 1794 

pregnancy (Moffett & Loke, 2004; Chaouat, 2016). Given that there is an unclear distinction 1795 

between the innate and adaptive immune system in reptiles (Zimmerman, 2020), determining 1796 

the immunological difficulty of evolving viviparity in squamates requires further 1797 

investigation.  1798 

In uterine tissue of oviparous and viviparous skinks maternal antigens are expressed prior 1799 

to and during pregnancy (Murphy et al., 2009), but the viviparous species in that study have a 1800 

unique expression profile of MHC antigens which may ‘hide’ the embryo from the maternal 1801 

immune system. Similarly, in a reproductively bimodal skink, Saiphos equalis, both 1802 

oviparous and viviparous gravidity/gestation is associated with expression of MHC genes 1803 

(Foster et al., 2020). Regardless of parity mode, S. equalis expresses genes associated with 1804 

immunocompetence, including MHC genes such as H2-EA (Foster et al., 2020). The similar 1805 

profile between the oviparous and viviparous state is attributed to the very long egg retention 1806 

utilized by oviparous S. equalis (Foster et al., 2020). This highlights that EER is generally 1807 

accompanied by immunological responses in utero, which is relevant to the EER model on 1808 

amniote origins.  1809 
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Some of these genes expressed by S. equalis are also expressed in viviparous Chalcides 1810 

ocellatus during gestation, including complement component (C3, C9) genes and MHC genes 1811 

(Brandley et al., 2012; Foster et al., 2020). The majority of immune genes expressed during 1812 

pregnancy in S. equalis have immunoglobulin receptor binding functions (Foster et al., 1813 

2020), an important feature of eutherian pregnancy that prevents rejection of the fetus 1814 

through actions of the maternal innate immune system (Alijotas-Reig, Llurba & Gris, 2014). 1815 

In another reproductively bimodal skink, Zootoca vivipara, immune system response genes 1816 

are enriched in the set of genes under divergent selection in oviparous and viviparous 1817 

genomes (Recknagel et al., 2021a).  1818 

 1819 

(4) Implications of the reptilian immune system and morphology on parity mode 1820 

evolution 1821 

Ectothermic reptiles may inherently have a more tolerogenic uterine environment 1822 

compared to mammals due to their slower antibody response. It can take up to six weeks to 1823 

reach peak concentrations (Ingram & Molyneux, 1983; Grey, 1963; Marchalonis, Ealey & 1824 

Diener, 1969; Pye et al., 2001; Origgi et al., 2001; Work et al., 2000). A slower metabolism 1825 

also makes several reptiles more tolerogenic to pathogens (Ghorai & Priyam, 2018).  1826 

During pregnancy in the viviparous skink Chalcides ocellatus, there is a reduced response 1827 

to in vitro exposure to the mitogens concanavalin A (Con A), phytohemagglutinin (PHA), 1828 

and Escherichia coli lipopolysaccharide (LPS) (Saad & El Deeb, 1990). Oviparous lizards 1829 

exhibit immune activation trade-offs during reproductive cycles (Cox, Peaden & Cox, 2015; 1830 

Durso & French, 2018; French, Johnston & Moore, 2007; Uller, Isaksson & Olsson, 2006).  1831 

In the majority of viviparous squamates, the eggshell membrane is absorbed during 1832 

pregnancy (Blackburn, 1993). In mammals, epitheliochorial placentation (the most 1833 

superficial and non-invasive placenta type) is sufficient to cause immunorecognition from the 1834 
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mother. In mammals, trophoblasts are antigen presenting and actively participate in 1835 

maternal–fetal immune dynamics. A gene with fusogenic properties characteristic of 1836 

trophoblast syncytins was identified in the Mabuya sp. lizard placenta (Cornelis et al., 2017).   1837 

A few viviparous squamates have placentas with characteristics similar to placentas found 1838 

in eutherian mammals, i.e. syncytialized cell layers, specialized zones such as areolae and 1839 

placentomes, or cellular invasion of maternal tissues by the fetus (Blackburn & Flemming, 1840 

2012; Jerez & Ramírez-Pinilla, 2001; Vieira et al., 2007). The increased contact here may 1841 

require more tightly regulated immune dynamics at the maternal–fetal interface compared to 1842 

other viviparous squamates.  1843 

 1844 

(5) The inflammation paradox 1845 

In mammals, implantation evolved from an ancestral inflammatory attachment reaction 1846 

(Griffith et al., 2017b). Inflammation is the most crucial system to support implantation, but 1847 

it is also the greatest threat to the continuation of pregnancy (Chavan et al., 2017). This 1848 

phenomenon is called the inflammation paradox. In humans, numbers of immune cells 1849 

including uterine macrophages, T cells of multiple subtypes, uNK cells, dendritic cells, and 1850 

natural killer T (NKT) cells increase until implantation and remain abundant in the uterus 1851 

throughout the first trimester (Bulmer et al., 1991; Bulmer, Williams & Lash, 2010). Early 1852 

implantation in humans is characterized by high numbers of pro-inflammatory T helper (Th)-1853 

1 cells and levels of cytokines (IL-6, IL-8, and TNF-α) (Yoshinaga, 2008). The exploitation 1854 

of inflammatory mechanisms for eutherian implantation and the shift towards non-1855 

inflammatory activity to maintain pregnancy may have been key in enabling EER in 1856 

eutherians (Griffith et al., 2017b).  1857 

How the inflammation paradox applies to viviparous squamates is unclear, given that 1858 

placentation in squamates and mammals in not homologous (Griffith et al., 2013b). In 1859 
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extrauterine pregnancies of mammals with non-invasive placentas, the embryo will invade 1860 

extrauterine tissue because it is not inhibited by uterine secretions (Vogel, 2005; Samuel & 1861 

Perry, 1972). However, in Pseudemoia entrecasteauxii, a viviparous skink that also has a 1862 

non-invasive placenta, extrauterine pregnancy does not result in invasive implantation of 1863 

extrauterine tissues (Griffith et al., 2013b). The inherent invasive nature of mammalian 1864 

embryos outside of the uterus, compared to the non-invasive nature of viviparous squamate 1865 

embryos studied thus far, suggests that the parent–offspring conflict and the inflammation 1866 

paradox may be less pronounced in viviparous squamates compared to viviparous mammals.  1867 

 1868 

(6) Inertness and barriers at the maternal-fetal interface 1869 

The uterine environment is not inert or sterile (Agostinis et al., 2019; Erlebacher, 2013; 1870 

Moffett & Loke, 2006; Munoz-Suano, Hamilton & Betz, 2011; Murphy et al., 2009; 1871 

Yoshimura, Okamoto & Tamura, 1997). In humans, the decidual layer of the uterus during 1872 

pregnancy is comprised of ~40% leukocytes (Ander, Diamond & Coyne, 2019; Manaster & 1873 

Mandelboim, 2010). This cellular subpopulation has 70% uNK cells, 10–20% antigen-1874 

presenting cells (APCs) including macrophages and dendritic cells, and 3–10% T cells of 1875 

several subtypes (Abrahams et al., 2004; Hanna et al., 2006; Kämmerer et al., 2006; Le 1876 

Bouteiller & Piccinni, 2008; Liu et al., 2017; Manaster & Mandelboim, 2010; Moffett-King, 1877 

2002; Moffett & Loke, 2006; Roussev et al., 2008). There is an abundance of decidual large 1878 

granular lymphocytes (LGLs), CD3-NK cells and CD3+ activated cytotoxic T cells in the 1879 

human uterus that have cytotoxic properties and produce cytokines, and these are affected by 1880 

fetal MHC molecules (Rieger, 2002).  1881 

Birds also have immunocompetent cells in their oviducts. T and B cells are present in the 1882 

chicken ovary where they are stimulated by oestrogen (Barua & Yoshimura, 1999; 1883 

Withanage et al., 2003; Zettergren & Cutlan, 1992). Other immunocompetent cells in the 1884 
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chicken oviduct include IgG+, IgA+ and CD3+ (Yoshimura et al., 1997). Immune-competent 1885 

cells located throughout the mucosal tissue of avian oviductal segments include 1886 

macrophages, APCs expressing MHC class II antigens, helper T cells and cytotoxic T cells, 1887 

and premature B cells (Das, Isobe & Yoshimura, 2008). 1888 

Inert barriers between maternal and fetal tissues may ‘hide’ the embryo. In oviparous 1889 

taxa, the eggshell may serve as a barrier. However, the antimicrobial properties of the 1890 

eggshell matrix in birds demonstrate that even the eggshell is not inert. The FAS (FS-7 1891 

associated) ligand, also called APO-1 or CD95, is a type II membrane protein belonging to 1892 

the TNF superfamily that was proposed to serve as a barrier in humans and rodent embryonic 1893 

tissue because it causes apoptosis of surrounding maternal immune cells (Kayisli et al., 2003; 1894 

Makrigiannakis et al., 2008). 1895 

Medawar (1991) suggested that an impermeable placenta strictly regulates molecular 1896 

exchanges, preventing rejection of the embryo. Synctiotrophoblasts lack cellular junctions 1897 

and thus were postulated to serve as this barrier (Ander et al., 2019). However, the growing 1898 

data on bidirectional cellular traffic of APCs, even in mammals with non-invasive placentas, 1899 

rejected this hypothesis (Bakkour et al., 2014; Burlingham & Bracamonte-Baran, 2015; 1900 

Fujiki et al., 2008; Turin et al., 2007). 1901 

 1902 

(7) T cell populations and mammalian viviparity 1903 

 In mammals, immune dynamics at the maternal–fetal interface are established through 1904 

innate and adaptive immune responses. There is a delicate balance between ratios of T helper 1905 

type 1 (Th1), Th2, Th17, Treg (regulatory T cells) and memory T cells at the maternal–fetal 1906 

interface in eutherian mammals during gestation (Chaouat et al., 1997; Kieffer et al., 2019; 1907 

Peck & Mellins, 2010; Saito et al., 2010; Wu et al., 2014). A shift in utero from Th1 cells to 1908 

Th2 cells during gestation in mammals equates to a shift from pro-inflammation to anti-1909 
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inflammation. The galectin proteins GAL-13 and GAL-14 expressed by syncytiotrophoblasts, 1910 

bind to T cells where they inhibit activation, induce apoptosis, and enhance IL-8 production 1911 

(Balogh et al., 2019).  1912 

 Growing research is revealing the central role of Tregs at the maternal–fetal interface 1913 

during pregnancy in mammals (Teles et al., 2013; Wienke et al., 2020). Tregs play a central 1914 

role in immunosuppression in mammals (Attias, Al-Aubodah & Piccirillo, 2019). 1915 

Differentiation of Tregs is governed by the transcription factor forkhead box P3 (FOXP3) 1916 

(Ramsdell & Rudensky, 2020). Alloantigen-dependent, uterine T cell signalling, and 1917 

immunocompetent embryonic cells and their products facilitate overall enhanced regulatory 1918 

phenotypes of immune cells (Ander et al., 2019). 1919 

 The T-cell-dependent adaptive immune system of mammals is unique. This may have 1920 

prompted their intricate balance of Treg mediators of immunotolerance at the maternal–fetal 1921 

interface (Chaouat, 2016). Birds rely more heavily on B cells. In non-avian reptiles, T helper 1922 

cells are functional, but the presence and function of other T cell subsets is unclear 1923 

(Zimmerman, 2020; Zimmerman et al., 2010). The potential role of T cells and Tregs in 1924 

viviparous squamate gestation should not be discounted. Treg-like cells have been identified 1925 

in a pufferfish, Tetraodon nigroviridis (Wen et al., 2011), suggesting that Tregs may have an 1926 

ancient evolutionary history.  1927 

 1928 

(8) Progesterone, cytokines, and maternal-fetal immune dynamics  1929 

In addition to the role of progesterone in uterine quiescence (embryonic retention) and 1930 

hepatic vitellogenesis (nutrient provisioning), it also plays a role in maternal–fetal immune 1931 

dynamics. In the uterus of pregnant mammals, progesterone concentrations are associated 1932 

with altered B cell immunoglobin secretion, inhibition of NK-cell-mediated cytotoxicity and 1933 

the shift from Th1- (pro-inflammatory) to Th2- (anti-inflammatory) dominated immune 1934 
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responses (Druckmann & Druckmann, 2005). Progesterone is also associated with 1935 

immunomodulatory effects (Ortega Brown et al., 1990). During gestation in Agkistrodon 1936 

piscivorus, a viviparous pit viper, progesterone concentrations are associated with decreased 1937 

complement performance (Graham et al., 2011), a portion of the immune system that 1938 

promotes inflammation, among other immune functions.  1939 

In humans, progesterone-induced protein (PIBF) is transported by placental extravillous 1940 

trophoblasts to maternal lymphocytes causing the induction of IL-10 production, and thereby 1941 

contributing to Th2-dominant responses (Szekeres-Bartho, Šućurović & Mulac-Jeričević, 1942 

2018). IL-10 is a potent anti-inflammatory cytokine that is produced by multiple cell types 1943 

(Zimmerman, Bowden & Vogel, 2014). It is associated with the Th2 response, and inhibits 1944 

Th1 responses. The phenotype of uterine macrophages is affected by trophoblasts when they 1945 

secrete IL-10 and macrophage colony-stimulating factor (M-CSF) (Svensson-Arvelund et al., 1946 

2021). IL-10 inhibits IFN- and increases in response to infection in chickens (Giansanti, 1947 

Giardi & Botti, 2006; Rothwell et al., 2004). In the uterus of the oviparous skink 1948 

Lampropholis guichenoti during gravidity and non-gravidity, IL-10 is expressed (Griffith et 1949 

al., 2016). 1950 

Proinflammatory cytokines may be downregulated during reproductive periods to limit 1951 

maladaptive immune responses to the foreign fetus (Zimmerman et al., 2010). In mammals, 1952 

IL-1 allows release of hormones in human trophoblasts (Petraglia et al., 1990; Masuhiro et 1953 

al., 1990; Yagel et al., 1989), facilitates implantation (Haimovici, Hill & Anderson, 1991; 1954 

Hill, 1992; Tartakovsky & Ben-Yair, 1991), and influences the initiation of labour (Romero 1955 

et al., 1989, 1992). Regulation of the proinflammatory cytokines TNF and IL-1 is of 1956 

particular importance in eutherian pregnancy (Haider & Knöfler, 2009; Paulesu et al., 2005b; 1957 

Saito et al., 2010; Tayade et al., 2006). 1958 
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The uterine tissue of two reproductively bimodal squamates – viviparous individuals of 1959 

Chalcides chalcides and oviparous and viviparous individuals of Zootoca vivipara – express 1960 

IL-1 (Paulesu et al., 1995, 2005a; Romagnoli et al., 2003). In the uterus of the viviparous 1961 

skink Pseudemoia entrecasteauxii, regulation during gestation of TNF and IL-1 at the 1962 

transcriptional and post-translation levels, respectively, may reduce inflammation 1963 

(Hendrawan et al., 2017). The pro-inflammatory function of IL-1 in Pseudemoia 1964 

entrecasteauxii may play a role in the development of a more complex placenta (Hendrawan 1965 

et al., 2017). The placenta of Chalcides chalcides expresses pro-inflammatory cytokines, IL-1966 

1 and IL-1, at specific times during gestation (Paulesu et al., 1995). During gestation, 1967 

Chalcides ocellatus also differentially expresses 27 other interleukins and interleukin-related 1968 

products (Brandley et al., 2012).  1969 

The expression of IL-34 in a marsupial the fat-tailed dunnart Sminthopsis crassicaudata, 1970 

during pre-implantation (Whittington et al., 2018) may have an immunosuppressive function 1971 

to help tolerate potential contact of maternal and fetal tissues when the embryonic shell coat 1972 

disintegrates (Lindau et al., 2015). In chickens, IL-34 regulates Th1 and Th17 cytokine 1973 

production (Truong et al., 2018). During gestation in Pseudemoia entrecasteauxii, IL-16 and 1974 

IL-1 are expressed in addition to three receptors for Th17 family cytokines: IL-17RA, IL-1975 

17RC, and IL-17RA (Griffith et al., 2016). In the yolk sac of Pseudemoia entrecasteauxii 1976 

during pregnancy the interleukin-related genes ILDR1, IRAK1 and SIGIRR, are differentially 1977 

expressed (Griffith et al., 2016). This profile suggests the presence of tricellular tight 1978 

junctions and/or tricellulin (Higashi et al., 2013; Ikenouchi et al., 2005), and regulation of 1979 

Toll-like receptors (TLRs) and/or IL-1R signalling (Kawagoe et al., 2008; Lin, Lo & Wu, 1980 

2010; Muzio et al., 1997).  1981 

 1982 

(9) The major histocompatibility complex and maternal–fetal immune dynamics 1983 
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A substantial amount of literature on maternal–fetal immune dynamics has focused on 1984 

uNK cells. These cells have a distinct phenotype and function from peripheral NK cells. They 1985 

have several activating receptors (Manaster & Mandelboim, 2010) but do not exert cytolytic 1986 

functions on embryonic trophoblasts that they are in contact with (King, Birkby & Loke, 1987 

1989). Allorecognition of embryonic placental cells by uNK cells is a key regulator of the 1988 

maternal–fetal immune mechanisms that support placentation in mammals (Moffett & 1989 

Colucci, 2014). When cells lose their ability to express any HLAs, uNK cells kill them (Hunt 1990 

et al., 2005; Ishitani et al., 2003; King et al., 2000a).  1991 

In humans, expression of the C-MHCI molecule HLA-C, and non-classical MHC class I 1992 

(NC-MHCI) molecules HLA-E, HLA-F and HLA-G on trophoblasts inhibit uNK-cell-1993 

mediated cytotoxicity (Hunt et al., 2003; King et al., 2000b). Differing from this, antigenic 1994 

mismatches of HLA-C can lead to graft-versus-host diseases in organ transplantation (e.g. 1995 

Petersdorf et al., 2014). Selection for balanced polymorphisms in HLA-C alleles and their 1996 

killer immunoglobin receptors (KIRs) is proposed to be driven by reproductive success, 1997 

rather than immune recognition of pathogens (Trowsdale & Betz, 2006). Dimorphisms of 1998 

HLA-C emerged recently within primates (Adams & Parham, 2001). 1999 

Similar patterns in MHC profiles have been explored in other viviparous amniotes. The 2000 

C-MHCI antigen H2-K is expressed on giant trophoblast cells of mice, and this is attributed 2001 

to trophoblast-induced uterine vasculature transformation (Arcellana-Panlilio & Schultz, 2002 

1994; ChatterJee-Hasrouni & Lala, 1982; Hedley et al., 1989; King et al., 1987; Sellens, 2003 

Jenkinson & Billington, 1978). H2-D antigen is co-expressed with H2-K in virtually all their 2004 

other nucleated cells (Madeja et al., 2011). However, H2-K-expressing trophoblasts lack H2-2005 

D expression. This parallels the expression patterns of C-MHC molecules at the maternal–2006 

fetal interface in humans and may be an evolutionarily conserved pattern (Madeja et al., 2007 

2011).  2008 
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In humans, the NC-MHCI molecule HLA-G is especially tolerogenic (Carosella et al., 2009 

2015; González et al., 2012; Hviid et al., 2004; Kovats et al., 1990). HLA-G is almost 2010 

exclusively expressed by fetal trophoblasts compared to adult cells (Faulk & Temple, 1976; 2011 

King et al., 2000a; Kovats et al., 1990; Rajagopalan & Long, 2012; Rouas-Freiss et al., 2012 

1997). It supports immunotolerance at the maternal–fetal interface (Rebmann et al., 2014). 2013 

The role of HLA-G in supporting tolerogenic responses to organ transplants appears to be an 2014 

exploitation of its role in immunotolerance in utero during pregnancy (Rebmann et al., 2014). 2015 

HLA-G is upregulated by several molecules that serve essential roles during gestation 2016 

including progesterone (Yie, Xiao & Librach, 2006b; Yie et al., 2006a), IFN-, IFN-, and 2017 

IFN- (Rebmann et al., 2003; Lefebvre et al., 2001; Ugurel et al., 2001; Yang, Geraghty & 2018 

Hunt, 1995), and IL-10 and TGF- (Cadet et al., 1995; Moreau et al., 1999).  2019 

A similar NC-MHCI gene to HLA-G exists in horses (Davies et al., 2006) where it likely 2020 

functions to protect the embryo from NK-cell-mediated attack (Ott et al., 2014). Non-2021 

homologous NC-MHC molecules with similar properties to HLA-G are also found in rhesus 2022 

monkeys (Macaca mulatta) (Boyson et al., 1997) and baboons (Papio anubis) (Langat et al., 2023 

2004; Stern et al., 1987). Mice have two NC-MHCI genes that are expressed on the surface 2024 

of their placentas and on pre-implanted embryos (Sipes et al., 1996).  2025 

In the gestating uterus of the viviparous skink Pseudemoia entrecasteauxii, four putative 2026 

C-MHCI and two putative NC-MHCI molecules are expressed (Murphy et al., 2009). This 2027 

pattern resembles the C-MHCI and NC-MHCI expression profiles of mammals, suggesting 2028 

that this viviparous skink utilizes a similar physiological mechanism to ‘hide’ the embryo 2029 

(Murphy et al., 2009). One of the putative NC-MHCI genes (Psen-160Ut/Psen-78G) has a 2030 

substitution at position 150 where a tryptophan is substituted for a leucine (Murphy et al., 2031 

2009). Tryptophan is conserved at position 150 in all NC-MHCI genes of vertebrates ranging 2032 

from fish to eutherian mammals, except in Psen-160Ut/Psen-78G and HLA-G (Murphy et al., 2033 
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2009). Whether this substitution reflects an evolutionary history associated with immune 2034 

tolerance at the maternal–fetal interface in Pseudemoia entrecasteauxii requires further 2035 

investigation.  2036 

MHCI genes are also expressed in reproductive tissues of the oviparous skinks Ctenotus 2037 

taeniolatus and Lampropholis guichenoti during non-reproductive periods and during late 2038 

gravidity (Murphy et al., 2009). A similar pattern is found in the viviparous skinks 2039 

Eulamprus tympanum, Niveoscincus metallicus, and Pseudemoia entrecasteauxii and in the 2040 

reproductively bimodal skink Saiphos equalis, which all express MHCI genes during non-2041 

reproductive periods and in late pregnancy (Murphy et al., 2009). MHC gene H2-EA is also 2042 

expressed during long egg retention in oviparous Saiphos equalis.  2043 

The butyrophilin subfamily 1 member A (BTN1A1) is located in the MHCI region of the 2044 

genome in mammals (Trowsdale, 2011). BTN1A1 is differentially expressed in the uterus 2045 

during gestation in a viviparous lizard, Chalcides ocellatus (Brandley et al., 2012). BTN1A1 2046 

may have important antimicrobial properties in chicken eggshells (Mann et al., 2006). In 2047 

mammals BTN1A1 is the major protein associated with fat droplets in milk (Jeong et al., 2048 

2009).  2049 

 2050 

(10) Microchimerism and maternal–fetal immune dynamics 2051 

Billingham, Brent & Medawar (1953) first suggested the concept of actively acquired 2052 

immunologic tolerance during pregnancy 70 years ago (Ribatti, 2015). Subsequent research 2053 

over the following decades revealed that substantial transfer of proteins, parasites and even 2054 

immunologically active cells occurs between mother and embryo, at least in mammals 2055 

(Adams & Nelson, 2004; Axiak-Bechtel et al., 2013; Bakkour et al., 2014; Burlingham, 2056 

2010; Fujiki et al., 2008; Gitlin et al., 1965; Khosrotehrani et al., 2005; Owen, 1945; Turin et 2057 

al., 2007). 2058 
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Microchimerism, where there is <0.1% donor chimeras in host tissue, is relatively 2059 

pervasive among eutherians during pregnancy. It plays a role in establishing tolerance to non-2060 

inherited antigens. For example, cell populations from the mother that are transferred into 2061 

embryonic lymph nodes enable the establishment of embryonic Tregs that are tolerogenic 2062 

towards non-inherited maternal antigens (Mold et al., 2008). 2063 

Microchimeric cellular populations are transferred across all placental types in mammals 2064 

(Axiak-Bechtel et al., 2013; Bakkour et al., 2014; Fujiki et al., 2008; Khosrotehrani et al., 2065 

2005; Turin et al., 2007). Fetal and maternal cells persist for decades after birth across a 2066 

range of tissues in mother and offspring, respectively (Adams & Nelson, 2004; Bakkour et 2067 

al., 2014; Bayes-Genis et al., 2005; Bianchi et al., 1996; Evans et al., 1999; Jonsson et al., 2068 

2008; Stevens et al., 2004). There is even a call in the immunology literature to shift from the 2069 

conventional paradigm of ‘self versus other’ to instead consider the ‘self’ as inherently 2070 

chimeric (Nelson, 2012). Given that epitheliochorial placentation is sufficient to elicit 2071 

microchimeric cell populations, the occurrence of similar bidirectional cellular traffic is a 2072 

reasonable possibility in viviparous squamates. 2073 

 2074 

(11) Paternal alloantigens 2075 

Under tenets gleaned from transplant medicine, the maternal immune system should 2076 

mount a response as early as insemination when maternal tissues are exposed to and aware of 2077 

paternal alloantigens (Borziak et al., 2016; Schumacher & Zenclussen, 2015; Seavey & 2078 

Mosmann, 2006). Instead, the dynamic is more complex. In mammals, paternal alloantigens 2079 

and cytokines in seminal fluid drive immune tolerance ultimately (Schjenken & Robertson, 2080 

2014). Treg expansion, a process with major influence on maternal–fetal immunotolerance in 2081 

mammals, is proposed to be driven by several different factors found in seminal plasma 2082 

(Baratelli et al., 2005; Teles et al., 2013). Mothers may maintain fetal-specific Tregs via 2083 
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memory of the paternal alloantigens (Zenclussen et al., 2010), expediting Treg responses in 2084 

future pregnancies with the same father (Rowe et al., 2012). 2085 

Alloantigen exposure at the time of insemination is not restricted to mammals. Seminal 2086 

fluid of chickens contains two MHCI paternal alloantigens and one MHCII alloantigen 2087 

(Borziak et al., 2016). It also contains proteins involved in immunity and antimicrobial 2088 

defences (Borziak et al., 2016). In hens, evidence suggests that a protective local immunity to 2089 

pathogens is established after exposure to semen but the mechanisms for this remain unclear 2090 

(Reiber & Conner, 1995; Reiber, Conner & Bilgili, 1995).  2091 

Immune properties of mammalian seminal plasma play a role in fertility. Immune factors 2092 

detected in human seminal plasma include over 50 detected cytokines (Lyons et al., 2023), 2093 

PGE2 and 19-hydroxyprostaglandin E (19-hydroxy PGE) (Denison et al., 1999b), soluble 2094 

TNF receptors (Liabakk et al., 1993), receptors for the Fc portion of γ-globulin, spermine 2095 

(Evans, Lee & Flugelman, 1995), and complement inhibitors (Kelly, 1995). In horses and 2096 

pigs, respectively, the protein cysteine rich secretory protein 3 (CRISP3) prevents 2097 

spermatozoa from binding to polymorphonuclear neutrophils (PMNs) (Doty et al., 2011, 2098 

2024), and the porcine sperm adhesions (PSP)-I/PSP-II heterodimer triggers recruitment of 2099 

PMNs to the uterus (Rodriguez-Martinez et al., 2010).  2100 

Secretion of growth factors, cytokines and chemokines from cervical and endometrial 2101 

tissues immediately following insemination generates a proinflammatory environment that 2102 

likely aids in implantation. In the utero-vaginal junction of chickens and the utero-tubal 2103 

junction of pigs, expression of several genes was shared following mating compared to non-2104 

mating and these genes were involved with immune modulation (IFIT5, IFI16, MMP27, 2105 

ADAMTS3, MMP3, MMP12) and pH regulation (SLC16A2, SLC4A9, SLC13A1, SLC35F1, 2106 

ATP8B3, ATP13A3), a process essential for implantation (Atikuzzaman et al., 2017, 2015). 2107 

Instead of mounting an attack, it appears that the uterine immune system and paternal genes 2108 
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work cooperatively to support pregnancy in mammals and gravidity in birds. Whether this 2109 

applies to reptiles, and how it may influence immune dynamics involved with squamate 2110 

parity mode evolution, deserves investigation.  2111 

 2112 

(12) Discussion and future directions – maternal–fetal immune dynamics and the 2113 

evolution of parity modes 2114 

Immune processes appear to be important for both oviparity and viviparity, as evidenced 2115 

here, in part, by overlapping expression profiles of immune genes in female reproductive 2116 

tissues of chickens and pigs, expression of paternal antigens in avian seminal fluid, and 2117 

uterine expression of maternal antigens in oviparous and viviparous skinks. This highlights 2118 

the scientific advances made since Medawar’s paradigm, when embryos were treated as 2119 

analogues to allografts. Viviparity is associated with complex immune dynamics between 2120 

maternal, fetal, and paternal tissues. But are there any species that do not exhibit an immune 2121 

response to fertilization, reminiscent of Medawar’s paradigm? Oviparous Lampropholis 2122 

guichenoti and Lerista bougainvillii differentially express remarkably few genes during 2123 

gravidity, suggesting that they lack an immune response (Foster et al., 2022; Griffith et al., 2124 

2016). While the expectations of Medawar’s paradigm are met by exceedingly few amniotes, 2125 

it may still be an appropriate framework when applied to the origin of amniotes. L. guichenoti 2126 

and L. bougainvillii may represent the most suitable models for the original amniotes (given 2127 

this, and other evidence presented throughout the review justifying squamates as, broadly, the 2128 

best model).  2129 

Overall, evolving appropriate immunological responses is one hurdle for transitions to 2130 

viviparity in squamates. This is evidenced by the unique MHC expression profiles identified 2131 

in some viviparous skinks compared to oviparous relatives (Murphy et al., 2009); and the 2132 

detection of divergent selection in immune response genes in viviparous versus oviparous 2133 
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Zootoca vivipara (Recknagel et al., 2021a). Labile parity modes in squamates may be 2134 

supported if they are more heavily reliant on the innate immune system for reproduction. 2135 

Testing this is difficult given that reptiles may not have separate innate and adaptive immune 2136 

systems (Zimmerman et al., 2010; Zimmerman, 2020). 2137 

Changes to genes that serve overlapping functions across the Main Five may have a 2138 

disproportionate influence on transitions between parity modes. I reviewed two molecules, 2139 

TGF- and progesterone, that exert influences on multiple Main Five categories. 2140 

Progesterone influences uterine quiescence (embryonic retention), hepatic vitellogenesis 2141 

(nutrient provisioning) and regulation of inflammatory responses in utero (maternal–fetal 2142 

immune dynamics). Genes in the TGF- family play a role in placental development and 2143 

maternal–fetal immune dynamics and are implicated in placental development in eutherians 2144 

(Hempstock et al., 2004; Caniggia et al., 2000; Lafontaine et al., 2011). A TGF- receptor 2145 

protein (TGFBR1) was associated with placental development in Phrynocephalus vlangalii 2146 

(Gao et al., 2019). In humans TGF- upregulates tolerogenic HLA-G in utero and is an 2147 

immune factor in mammalian seminal fluid. Multiple genes in the TGF- family are also 2148 

differentially expressed during gestation in the viviparous lizards Pseudemoia entrecasteauxii 2149 

and Saiphos equalis (Foster et al., 2020; Griffith et al., 2016). Examining the functions of 2150 

TGF- and progesterone across other amniotes may reveal insights into how these molecules 2151 

influence the evolution of parity modes.  2152 

In mammals, inflammation appears to be involved with two of the Main Five processes: 2153 

regulation of maternal–fetal immune dynamics and embryonic retention. It is intriguing to 2154 

consider the implications of this for the interconnectedness of the Main Five. Greater 2155 

interconnectedness would suggest that changes to a few genes involved with the Main Five 2156 

could cause cascading effects to support more labile transitions between parity modes.  2157 
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Implantation and parturition in therian mammals evolved from a shared inflammatory 2158 

attachment reaction (Hansen et al., 2017). The process of implantation has important 2159 

implications for maternal–fetal exchanges of inorganic and organic material and maternal–2160 

fetal immune dynamics. The association of inflammation with implantation and parturition 2161 

implicates it in gas, water, and nutrient (including calcium) provisioning, maternal–fetal 2162 

immune dynamics and length of embryonic retention. However, implantation in mammals 2163 

and viviparous squamates is not homologous (Griffith et al., 2013b). Therefore, it is difficult 2164 

to make inferences about how substantial the influence of inflammation is on the evolution of 2165 

parity modes in squamates. Nonetheless, the abundant literature on uterine inflammatory 2166 

processes during human pregnancy and the evolution of inflammatory processes that 2167 

supported the evolution of viviparity in mammals (Challis et al., 2009; Chavan et al., 2017; 2168 

Mor et al., 2011; Griffith et al., 2017b; Stadtmauer & Wagner, 2020a) serve as indispensable 2169 

resources for exploring the role of inflammation in squamate viviparity. I suspect that the 2170 

immune system plays a central role in dictating the degree of lability of parity modes, 2171 

however, further work is necessary. 2172 

 2173 

VII. CONCLUSIONS 2174 

(1) Through holistic consideration of the unique complexity of parity mode evolution, within 2175 

the context of genomic and transcriptomic studies across interdisciplinary fields, this review 2176 

provides a new perspective on the history of parity mode transitions in amniotes and 2177 

squamates. The overlapping activity of immune genes in utero, and of genes for calcium 2178 

transport, placentation, and hormonal regulation across mammals, birds, and reptiles hint at 2179 

discoveries to be made. There is a fascinating history to the evolutionary physiology and 2180 

genomics of reproduction in amniotes that is ripe for further research. 2181 
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(2) Changes to gene(s) or physiological processes associated with more than one of the Main 2182 

Five should disproportionately influence parity mode evolution. Possible examples include 2183 

the SLC gene superfamily, TGF-, BMPR1B, progesterone, PMCA, calbindin-D28K, SPP1, 2184 

sustained functioning of the corpora lutea and inflammation, and the genes associated with 2185 

both gestation length and eggshell traits in Zootoca vivipara (Recknagel et al., 2021a). 2186 

(3) The medical and agriculture literature exemplify how interactions of immune systems at 2187 

the maternal–fetal interface is not known to occur simply through immunotolerance, evasion, 2188 

immunosuppression, or immunological barriers (Chaouat, 2016; Chavan et al., 2017; Moffett 2189 

& Loke, 2004, 2006). Instead, maternal–fetal immune dynamics have a deep evolutionary 2190 

history that enables both embryo and mother to interact cooperatively (Yoshizawa, 2016). 2191 

Even oviparous birds and squamates are known to have immunological activity in utero 2192 

during gravidity and differentially express an abundance of genes, with two exceptions to my 2193 

knowledge, Lampropholis guichenoti and Lerista bougainvillii (Foster et al., 2022; Griffith et 2194 

al., 2016). Although Medawar’s paradigm was originally created to explain viviparous 2195 

gestation, the absence of uterine immunological responses to oviparous gravidity in these 2196 

species suggests that the eggshell serves as adequate barrier to prevent the maternal immune 2197 

system from negatively reacting to the developing embryo. Therefore, the role of the eggshell 2198 

as an immunological barrier may explain why it originally evolved. L. guichenoti and L. 2199 

bougainvillii may therefore serve as good models of the first amniote egg. 2200 

(4) Compared to viviparous endothermic amniotes, ectothermy likely influences parity mode 2201 

evolution differently because it entails slower antibody responses and a greater reliance on 2202 

climatic conditions for embryonic development. This and the cold climate hypothesis may be 2203 

relevant to squamate parity mode evolution and the origin of the amniote egg.  2204 

(5) Synthesizing the EER model with the traditional paradigm, I offer the following list of 2205 

evolutionary events that may have supported the origin of the amniote egg: (a) the ancestral 2206 
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state of internal fertilization originated (Starck et al., 2021); (b) the ancestral state of delayed 2207 

egg deposition originated (Starck et al., 2021); (c) uterine secreted coats originated 2208 

(Menkhorst & Selwood, 2008) which ultimately led to the origin of the eggshell; (d) the 2209 

amnion evolved as a water resource during delayed egg deposition and thus served as a pre-2210 

adaptation to land (Ferner & Mess, 2011); (e) over evolutionary time, the chorion and 2211 

allantois originated in utero as immature organs that improved gas exchange and waste 2212 

allocation, respectively, during EER; (f) additionally, or alternatively, the chorioallantois may 2213 

have originated to support delayed egg deposition in amniotes given the endocrine function 2214 

of the chorioallantois is likely ancestral (Griffith et al., 2017a) and progesterone extends the 2215 

length of embryonic retention; (g) the egg arrived on shore; (h) the chorioallantois and 2216 

eggshell became specialized to the terrestrial environment; and (i) finally, the amniote egg 2217 

and its developmental trajectory resembled what is seen today. I anticipate continued 2218 

scientific engagement will lead to improved synthesis of the traditional paradigm and EER 2219 

model. 2220 

(6) Two new mechanisms for transitions between oviparity and viviparity, without 2221 

necessitating intermediate stages, stand out from the cumulative research on the Main Five. 2222 

These are presented below (points 7 and 8) as tools to be broadened and challenged with the 2223 

goal of advancing scientific insight.  2224 

(7) The genomics and physiology of amniote parity mode evolution does not preclude an 2225 

origin of viviparity in the most recent common ancestor (MRCA) of lepidosaurs. I propose 2226 

the following possible mechanism: a change to the phenotype or function of mammillary 2227 

knobs occurred in the MRCA of lepidosaurs, preventing calcium carbonate deposition 2228 

(nucleation site hypothesis); the resulting eggshell loss enabled uterine exposure to 2229 

chorioallantoic progesterone production (extending embryonic retention) and incipient 2230 

calcium matrotrophy (supporting embryonic development); parturition occurred via (a) 2231 
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placental progesterone withdrawal or (b) overdistension of the uterus triggering contractions. 2232 

To test this hypothesis, research could investigate whether the genes that code for the KS-2233 

proteoglycan ‘mammillan’, which makes up mammillary knobs, are absent or non-functional 2234 

across amniotes (see Section III.3). First, the genes that code for ‘mammillan’ must be 2235 

identified in avian genomes. Additionally, ancestral state reconstructions on the eggshell and 2236 

eggshell membrane should be generated across oviparous and viviparous amniotes, utilizing 2237 

current recommendations for characterizing eggshell microstructure (Legendre et al., 2022). 2238 

This will require the development of a system to characterize eggshell membranes accurately.  2239 

(8) The calcium-secreting capacity of the uterus is maintained in oviparous and viviparous 2240 

squamates. Therefore, a reversal back to oviparity may evolve through the following 2241 

sequence of events: calcium secretions in utero adhere to the eggshell membrane instead of 2242 

being absorbed by the chorioallantois; oviposition can then occur early in embryonic 2243 

development in one of two ways (a) the death of corpora lutea or (b) the calcified eggshell 2244 

blocks a threshold of chorioallantoic progesterone production from reaching uterine tissue; 2245 

the calcified eggshell then provides embryonic calcium that is transported upon embryonic 2246 

metabolic demand. To test this hypothesis, consider that recent reversals should have 2247 

physiological or genomic remnants of a viviparous past. Given that viviparous squamates 2248 

have more active uterine immune systems to support gestation, oviparous reversals should (a) 2249 

have more immune genes expressed in utero than ancestrally oviparous squamates, and (b) 2250 

these immune genes should have stronger signatures of relaxed selection than immune genes 2251 

expressed in a close relative during viviparous gestation.  2252 

(9) Given the above, the substantial number of genes that are differentially expressed during 2253 

gravidity in oviparous populations of Saiphos equalis and Zootoca vivipara (Foster et al., 2254 

2020; Recknagel et al., 2021a) is consistent with reversals back to oviparity. The absence of 2255 

substantial differential gene expression in oviparous Lerista bougainvillii (a reproductively 2256 
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bimodal species) and oviparous Lampropholis guichenoti  (Foster et al., 2022; Griffith et al., 2257 

2016) is consistent with ancestral oviparity.  2258 

(10) While I am agnostic about whether the first amniote was oviparous or viviparous, it 2259 

makes logical sense that the early embryo was first ensheathed in an eggshell membrane and 2260 

later accumulated calcium deposits like those observed in squamates today. I hope this 2261 

review is evidence that interdisciplinary work has the power to influence deep questions in 2262 

evolutionary biology. Sometimes looking at the same thing from a different perspective can 2263 

shape scientific understanding in profound ways.  2264 
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X. SUPPORTING INFORMATION 4121 

Additional supporting information may be found online in the Supporting Information section 4122 

at the end of the article. 4123 

Table S1. Genes associated with eggshell deposition. 4124 

Table S2. Differential expression of genes associated with water, gas, and nutrient transport 4125 

during gravidity and gestation in squamates. 4126 
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Table 1. Amniote eggshell ultrastructures.  4128 

Taxon Eggshell ultrastructure 

Testudoid Radial aragonite with organic core at base 

Crocodiloid Tabular, arranged in wedges of calcite with no organic core 

Squamate 

Two types:  

• rigid-shelled eggs with well-developed crystalline layer in dibamid and 

gekkonid lizards; stem-like crystals grow downwards making a rigid shell 

• flexible-shelled eggs with parchment-like shell of fibrils overlaid with thin 

crystal caps or no crystalline material (other squamates)  

Ornithoid (avian) 
Calcite with a clear boundary between lower and upper parts; mammillary layer 

defines the lower portion of the shell, with calcite crystals that radiate upwards 

Monotreme Distensible, permeable and highly proteinaceous  

Adapted from Choi et al. (2018); Frankenberg & Renfree (2018); Hallmann & Griebeler (2015); Hincke et al. 4129 
(2012); Trauth & Fagerberg (1984). 4130 
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 4132 

Fig. 1. (A) Schematic demonstrating the anticipated processes that change during transitions 4133 

between oviparity and viviparity, and the organs associated with those changes. Lines from 4134 

the process to features of the egg indicate those putatively involved with evolutionary shifts 4135 

between parity modes. (B) Relationships between major amniote clades and their associated 4136 

reproductive mode. (C) Variation in reproductive modes across squamates. The squamate 4137 

phylogeny and reproductive modes is adapted from Pyron & Burbrink (2014).  4138 


