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Abstract 10 

 11 

There is a current lack of consensus on the ancestral parity mode, oviparity (egg-laying) and 12 

viviparity (live-birth), of amniotes and squamates (snakes and lizards). How transitions between 13 

parity modes occur at the genomic level has primary importance on how science conceptualizes 14 

the origin of amniotes, and highly variable parity modes in Squamata. Within the context of 15 

interdisciplinary literature—medical, poultry science, reproductive biology, and evolutionary 16 

biology—I review the genomics and physiology of five broad processes (Main Five) expected to 17 

change during transitions between parity modes: eggshell formation, embryonic retention, 18 

placentation, calcium transport, and maternal-fetal immune dynamics. Throughout, I offer 19 

alternative perspectives and testable hypotheses regarding proximate causes of parity mode 20 

evolution in amniotes and squamates. Should viviparity have evolved early in the history of 21 

Lepidosaurs, I offer the basal cap hypothesis as a proximate explanation. The framework of this 22 

hypothesis can be extended to amniotes to infer their ancestral state. Medawar’s paradigm 23 

contextualizes embryos as analogous to allografts. However, an abundance of research across 24 

mammals, birds, and reptiles demonstrates that the maternal immune response to 25 

gestation/gravidity cannot be explained by immunosuppression, inertness, evasion, or 26 

immunological barriers. However, a rare example of a species with an apparently inert response 27 

to oviparous gravidity is Lampropholis guichenoti, an oviparous skink that differentially 28 

expresses zero genes during gravidity—making it a reasonable model for the original amniote 29 

egg. Overall, this review grounds itself in the historical literature while offering a modern 30 

perspective on a subject that has fascinated scientists for centuries—the origin of amniotes. 31 

Based on the cumulative evidence across the Main Five, I provide a mechanism through which 32 
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squamates may reverse back to oviparity; and make predictions on the directionality of 33 

transitions in three reproductively bimodal species. I encourage the scientific community to 34 

utilize this manuscript as a resource in comparative genomics studies, embrace the complexity of 35 

the system, and thoughtfully consider the framework proposed. 36 

Key Words: reproductive mode, parity modes, oviparity, squamates, eggshell deposition, 37 

embryonic retention, embryonic calcium transport, maternal-fetal interface, comparative 38 

evolutionary physiology. 39 
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I. Introduction 98 

 99 

 A reappraisal is needed for the conceptual framework used to research the evolution of 100 

oviparity (egg-laying) and viviparity (live-birth) in amniotes (birds, non-avian reptiles, and 101 

mammals). Squamates (snakes and lizards) are unique amongst amniotes because they have 102 

highly variable parity modes (Figure 1). Beginning with the first phylogenetic analyses on the 103 

subject, a warm-blooded scientific disagreement has persisted over the labile nature of 104 

evolutionary transitions between parity modes (Blackburn, 1999, 2015; de Fraipont, Clobert & 105 

Barbault, 1996; Griffith et al., 2015; Harrington & Reeder, 2017; Lee & Shine, 1998; Pyron, 106 

2015; Pyron & Burbrink, 2014; Recknagel et al., 2018, 2021b). A growing number of 107 

transcriptomic and genomic studies analyzing the molecular underpinnings of reproductive mode 108 

evolution in squamates (e. g., Brandley et al. 2012; Cornetti et al. 2018; Gao et al. 2019; Griffith et al. 109 

2016, 2017; Foster et al. 2020, 2022; Recknagel et al. 2021a; Yurchenko et al. 2020; Xie et al. 2022) and 110 

recent advances on the ancestral state of amniotes and dinosaurs contribute to this discussion (Jiang et 111 

al., 2023; Norell et al., 2020). It is prudent to acknowledge that the relative difficulty of changing 112 

phenotypes cannot be determined from morphology alone or unidentified physiological 113 

mechanisms. At least theoretically, any phenotypic change could be facilitated by simple 114 

genomic changes (e.g., a single nucleotide polymorphism) or any combination of multi-omic 115 

changes to any number of loci. As research begins to reveal the molecular networks involved 116 

with parity mode evolution, it is important to avoid bias that could be introduced by assumptions 117 

on the feasibility of transitions. Through synthesis of modern and historical research on amniote 118 

reproduction, this review aims to provide greater context for hypotheses testing on ancestral 119 

states of parity modes in amniotes and squamates.   120 
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 The earliest estimates predicted that viviparity evolved independently between 90-100 121 

times in squamates (Blackburn, 1982, 1985, 1992). These estimates assumed that oviparity was 122 

the ancestral state and, based on the theoretical grounds of Dollo’s law, that reversals back to 123 

oviparity should be exceedingly rare (Blackburn, 1992; Fitch, 1970; Neill, 1964; Tinkle & 124 

Gibbons, 1977). An intermediate phenotype of re-evolving an eggshell has been considered as 125 

physiologically unviable, preventing reversals (Blackburn, 1995; Griffith et al., 2015). This was 126 

demonstrated when experimentally induced extended egg retention in phrynosomatid lizards 127 

resulted in adverse embryonic development attributed to impeded gas exchange imposed by the 128 

eggshell (Mathies & Andrews, 1999, 2000; Parker & Andrews, 2006). However, this result may 129 

be clade-specific.  130 

 Intermediate phenotypes as fitness valleys assumes 1) eggshells inherently impede gas-131 

exchange and 2) that an eggshell must re-evolve before a reversal back to oviparity is possible 132 

(Griffith et al., 2015). Contrarily, eggshells are considered a component of the placenta in 133 

viviparous Rough Earth Snakes, Haldea striatula, and in viviparous reproductively bimodal 134 

European Common Lizards, Zootoca vivipara and Yellow-bellied Three-toed Skinks, Saiphos 135 

equalis (Stewart, 2013). Additionally, Saiphos equalis is a reproductively bimodal skink that has 136 

an oviparous population with incubation times as short as 5 days, thus embryos spend significant 137 

time in utero with an eggshell (Smith et al., 2001). Another surprising example of eggshells 138 

being compatible with full embryonic development includes a report of a captive tortoise that 139 

retained viable eggs until the hatching stage (Kuchling & Hofmeyr, 2022).  140 

 Several studies predict early origins of viviparity in squamates (Jiang et al., 2023; Pyron 141 

& Burbrink, 2014) and reversals back to oviparity (de Fraipont et al., 1996; Fenwick et al., 2011; 142 

Harrington & Reeder, 2017; Lee & Shine, 1998; Pyron & Burbrink; Recknagel et al., 2018). 143 
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Saiphos equalis proved the possibility of reversals when a viviparous individual oviposited an 144 

egg prior to birthing fully developed young within the same litter (Laird et al., 2019). The 145 

unusual absence of an egg-tooth in oviparous Arabian Sand Boas, Eryx jayakari (Lynch & 146 

Wagner, 2010; Staub & Emberton, 2002) serves as additional biological evidence of a reversal, 147 

though this has been challenged (Griffith et al., 2015). Importantly, extended embryonic 148 

retention, characteristic of oviparous squamates compared to birds, is viewed as compatible with 149 

labile transitions (Jiang et al., 2023). Current expectations are that oviparity may re-evolve more 150 

easily in squamate lineages that recently evolved viviparity and which have not lost specific 151 

avian eggshell-matrix proteins (Laird et al., 2019; Xie et al., 2022).  152 

Discoveries of viviparity in ancient amniotes are numerous, dating back to the Early 153 

Permian (Chuliver, Scanferla & Smith, 2022; Motani et al., 2014; Piñeiro et al., 2012; Jian et al., 154 

2023). A viviparous last common ancestor of amniotes may not be unreasonable. A compelling 155 

example is the report that Ikechosaurus sp., a basal archosauromorph, that reached an articulated 156 

stage of embryonic development inside of a parchment shelled egg (Jiang et al., 2023). This and 157 

the ancestral state reconstruction generated in the study bring support to the extended embryonic 158 

retention model (EER) of amniotes origins (Jiang et al., 2023; Hubrecht, 1910). The EER model 159 

postulates that amniote fetal membranes arose through pressure to support exposure to maternal-160 

fetal tissues during extended embryonic retention (see Laurin et al., 2005 for a summary of 161 

earlier ancestral reconstructions of EER). As Romer (1957) phrased it “It was the egg which 162 

came ashore first; the adult followed”. This is consistent with EER, which is compatible with 163 

both oviparity and viviparity (Laurin, 2005; Mossman 1987). Throughout this review, 164 

considering viviparity as the most extreme form of extended embryonic retention, I hope to 165 

persuade readers to consider the EER model in a new light. I lay this out through a testable 166 
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hypothesis on the ancestral eggshell of amniotes and Lepidosaurs that can be extended to 167 

amniotes (section III.3), a phylogenetic framework to infer ancestral states based on mechanisms 168 

of maternal-embryonic calcium provisioning (section V.2), and evolutionary pathways that may 169 

support transitions between parity modes (section VII.6 and VII.7). 170 

It is sensible to equate the EER with pre-adaptations of the egg to land. Without 171 

substantial amounts of water, converting yolk nutrients to somatic tissue is impossible 172 

(Thompson & Speake, 2003). Water is the primary resource provisioned by the mother of 173 

viviparous squamates and it is stored in extraembryonic membranes (Lourdais et al., 2015). For 174 

example, improper water and gas exchange are associated with poor chorioallantoic blood flow 175 

(Wootton et al., 1977). In oviparous Saiphos equalis, a species with extended embryonic 176 

retention, the chorioallantois thickens to support embryonic growth in late development (Parker 177 

et al., 2010).  If the amniote egg evolved via the EER model, it may have prompted the origin of 178 

extraembryonic membranes of amniotes to support embryonic water uptake despite the deficit of 179 

water in utero compared to an aqueous environment. This translates to an egg washed ashore that 180 

already evolved to withstand dryer environments.  181 

Although models that restrict parity mode evolution to be unidirectional (from oviparity 182 

to viviparity) are shown to be poor fits for squamates (Pyron & Burbrink; Recknagel et al., 183 

2021b), there is resistance to the proposition that viviparity originated early in Squamata (e.g. 184 

Griffith et al., 2015). The most recent ancestral state reconstruction, built from biomineralization 185 

and parity mode data across 80 extinct and extant amniotes using a single structured Markov 186 

model, inferred viviparity with extended embryonic retention in the first amniotes and in the 187 

most recent common ancestor of Lepidosaurs (squamates and sphenodontians) (Jiang et al., 188 

2023). However, maximum parsimony, and alternative maximum likelihood and Bayesian 189 
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reconstructions did not estimate viviparity in the most recent common ancestor of Lepidosaurs 190 

(Jiang et al., 2023). A testable hypothesis regarding a molecular mechanism that may have 191 

supported a transition to viviparity at the base of squamates and extended embryonic retention at 192 

the base of amniotes will help conclude these decades long debates.   193 

 194 
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Figure 1: Schematic demonstrating (A) the anticipated processes that change during transitions 195 

between oviparity and viviparity, and the organs associated with those changes. Lines from the 196 

process to different organs indicate the organs expected to be involved with the evolutionary 197 

shift between oviparous and viviparous phenotypes. (B) relationships between major amniote 198 

clades and their associated reproductive mode, and (C) the variation of reproductive modes 199 

across squamates. The squamate phylogeny is adapted from Pyron et al., (2016) and reproductive 200 

modes of squamate species from Pyron & Burbrink (2014).  201 

 202 

 The ecological drivers of parity mode evolution are beyond the scope of this review. 203 

However, it is generally proposed that viviparity increases protection from adverse 204 

environmental conditions (Ma et al., 2018; Pincheira-Donoso et al., 2017), and a general trend 205 

that supports this is the higher frequency of viviparous squamates, relative to oviparous, 206 

observed at increasing distances from the equator. The cold-climate hypothesis suggests that 207 

viviparity is an adaptation to cold climates, and this is generally accepted by the scientific 208 

community (e.g. Ma et al., 2018; Zimin et al., 2022). Consistent with the cold-climate 209 

hypothesis, a recent study that utilized 65 million years of global paleoclimate data, squamate 210 

phylogeny and parity data for over 3,000 taxa showed that persistent, stable cold climates are 211 

correlated with transitions to viviparity (Recknagel et al., 2021b). Less focus has been on the 212 

adaptive nature of oviparity. Compared to viviparity, oviparity is associated with higher 213 

fecundity and lessened maternal investment (Recknagel et al., 2019). 214 

 With a deep review of interdisciplinary literature across amniotes and associated 215 

supplementary materials, I explore genomic and physiological features of gestation and 216 

gravidity, including those that could be exploited to support labile shifts, ancestral viviparous 217 
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states in amniotes and squamates, and those that may facilitate or impede reversals. I propose the 218 

framework of the basal cap hypothesis to help elucidate the ancestral parity modes of squamates 219 

and amniotes. It details how squamates may have transitioned to viviparity (an extreme form of 220 

extended embryonic retention) early in their evolutionary history. I advocate for using squamates 221 

as a model to understand the ancestral state of the amniote egg. Future work should consider this 222 

thoughtfully and embrace the complexity of the system. I hope this manuscript serves as a 223 

foundation for further research on the evolutionary history of the amniote egg and reproductive 224 

mode evolution.  225 

 226 

(1) Terminology 227 

 I use the conventional definition of viviparity as retention of eggs until the stage when the 228 

embryo is fully developed (Blackburn & Stewart, 2021; van Dyke et al., 2014). Oviparity is 229 

defined by eggs that develop outside the mother. I use the terms gravidity and gestation to 230 

describe the period of internal retention of the embryo in oviparous and viviparous taxa, 231 

respectively. Vertebrate placentas are conventionally defined by apposition of maternal and fetal 232 

tissues. It is accepted that all viviparous squamates have a chorioallantoic placenta under this 233 

definition (Blackburn & Stewart, 2021; Stewart & Blackburn, 1988). The avian chorioallantoic 234 

membrane and mammalian chorioallantoic placenta are homologous (Metcalfe & Stock, 1993). I 235 

sometimes refer to this organ as the chorioallantoic tissue to describe it for both parity modes. 236 

Oviposition refers to the process and act of egg-laying, while parturition refers to the process and 237 

act of giving birth to live-young. Parition refers to both oviposition and parturition (Blackburn, 238 

1992; Smith, 1975).  239 

 240 
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(1) Main five physiological changes of parity mode transitions 241 

 Several physiological features are expected to change during transitions between 242 

oviparity and viviparity (Figure 1). I break this down into five physiological features (hereafter 243 

Main Five)—1) length of embryonic retention (Murphy & Thompson, 2011; Packard et al., 244 

1977)—only viviparous mothers retain the embryo for the entirety of development; 2) eggshell 245 

formation (Heulin et al., 2005; Packard et al., 1977; van Dyke et al., 2014)—viviparous embryos 246 

generally do not have an eggshell; 3) placental development for maternal-fetal exchange of 247 

required water, gas and/or nutrients (Blackburn, 1992, 2015; Thompson et al., 2000; Thompson 248 

& Speake, 2006); 4) embryonic calcium provisioning (Packard et al., 1985; Shadrix et al., 1994; 249 

Thompson & Speake, 2006)—sources of embryonic calcium and timing of uterine calcium 250 

secretions generally differs between oviparous and viviparous reproduction; 5) maternal-fetal 251 

immune dynamics (e.g., Graham et al., 2011; Hendrawan et al., 2017; Foster et al., 2020)—252 

viviparous reproduction is associated with maternal and embryonic exposure to foreign tissues, 253 

which is likely to require enhanced regulation of maternal-fetal immune systems. 254 

 255 

II. Length of Embryonic Retention 256 

 257 

Viviparous amniotes retain the embryo until it is fully developed, but oviparous amniotes 258 

retain the embryo for a fraction of that time. Rather than using precocious hatching and 259 

parturition (PH&P), like that of opossums and early viviparous mammals (Wagner et al., 2014), 260 

squamates evolve viviparity through extended egg retention (García-Collazo et al., 2012; Shine, 261 

1983). Thus, processes affecting the length of embryonic retention are expected to change to 262 

support transitions between parity modes (van Dyke et al., 2014). 263 
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 264 

(1) Parturition & oviposition 265 

The genes and hormones involved with initiating and ending gestation may provide insights 266 

into the tools squamates can co-opt to change the length of embryonic retention during parity 267 

mode transitions. Parition terminates embryonic retention. Parturition can be divided into four 268 

parts (Terzidou, 2007; Vannuccini et al., 2016)—quiescence (Phase 0), activation (Phase 1), 269 

stimulation (Phase 2) and involution (Phase 3). In eutherian mammals, several processes 270 

contribute to the initiation and termination of gestation including inflammation (Challis et al., 271 

2009; Hansen et al., 2017), maternal recognition of pregnancy (MRP), mechanical stretch of 272 

uterine tissues (Sooranna et al., 2004; Shynlova et al., 2008), and fluctuating concentrations of 273 

corticotropin-releasing hormone, progesterone, and estrogen (Challis et al., 2000; Condon et al., 274 

2004; Shaw & Renfree, 2001).  275 

 276 

(i) Quiescence & sustained progesterone production in reproductive tissues 277 

Extended embryonic retention could be achieved by triggering mechanisms that extend 278 

uterine quiescence, inactivity of the uterus. Inhibition of myometrial contractions through 279 

sustained progesterone production supports quiescence across different viviparous amniotes 280 

(Bazer, 1992; Casey & MacDonald, 1997; Fergusson & Bradshaw, 1991; Ilicic et al., 2017; 281 

Murphy & Thompson, 2011; Putnam et al., 1991; Soloff et al., 2011). The corpus luteum (or 282 

plurally called corpora lutea), a transient progesterone-producing organ, produces progesterone 283 

during gestation. Extended lifespan of the corpus luteum likely aided the evolution of viviparity 284 

in mammals (Amoroso, 1968; Callard et al., 1992; Stouffer & Hennebold, 2015). Thus, early 285 

research on squamate viviparity also explored the influence of corpus luteum lifespan. The 286 
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lifespan of corpora lutea associates with oviparous egg retention and oviposition (Diaz, Alonso-287 

Gomez & Delgado, 1994; Fox & Guillette 1987; Jones & Guillette 1982). Eggshell formation in 288 

oviparous Whiptail lizards, Cnemidophorus uniparens, is even disrupted by experimental 289 

removal of corpora lutea (Cuellar, 1979). The lifespan of corpora lutea do not consistently 290 

correlate with length of embryonic retention in viviparous squamates like it does in mammals 291 

(Albergotti & Guillette, 2011; Callard et al., 1992).   292 

Maternal recognition of pregnancy (MRP) refers to the early signaling of the embryo to 293 

prevent luteolysis (Thatcher, Meyer, & Danet-Desnoyers, 1995), degradation of the corpus 294 

luteum. Luteolysis occurs in the absence of pregnancy. MRP enables continued progesterone 295 

production by the corpus luteum to support uterine quiescence during early gestation. An 296 

independent evolution of MRP is reported for Macropodidae, a lineage of marsupial mammals 297 

(Freyer, Zeller, & Renfree, 2003), and endometrial recognition of pregnancy is recognized in the 298 

opossum (Griffith et al., 2019). MRP has not been explicitly studied in squamates. However, 299 

MRP likely happens in squamates, given that corpora lutea do not get degraded in the earliest 300 

stages of gravidity/gestation in oviparous or viviparous squamates (Callard et al., 1992; 301 

Albergotti & Guillette, 2011).  302 

Different genes are signaled by embryos for MRP across mammals. Human chorionic 303 

gonadotropin hormone (hCG) establishes MRP (Ross, 1979; Behrman et al., 1993; Duncan, 304 

McNeilly, & Illingworth, 1998; Duncan, 2000; Ticconi et al., 2007). In pigs, MRP is 305 

hypothesized to be triggered by collaborative signaling of estradiol (E2) and prostaglandins 306 

(PGs) (Geisert et al., 2023). Similarly, glycoproteins, estrodiol and prostaglandin E2 (PGE2) 307 

have been implicated in signaling MRP in horses (Klein & Troedsson, 2011; Klein, 2016). In 308 

ruminants, embryonic signaling of IFN- establishes MRP (Bazer, 2013; Bazer, Spencer & Ott, 309 
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1997; Thatcher et al., 1995). During gestation in the uterus of viviparous African Ocellated 310 

skinks, Chalcides ocellatus, four receptors for interferon alpha, beta, omega, and gamma are 311 

differentially expressed but no expression of IFN- was detected compared to non-gestational 312 

uterine tissue (Brandley et al., 2012). I was unable to find expression patterns of MRP signaling 313 

homologs in other squamate reproductive tissues. Should MRP occur in squamates, it may be 314 

signaled by genes that are clade-specific, like in mammals. This makes comparatively evaluating 315 

the influence of MRP on the evolution of viviparity an interesting avenue for future research.  316 

The evolution of viviparous extended embryonic retention may be sufficiently supported by 317 

maintenance of chorioallantoic progesterone production coupled with eggshell loss (Griffith, 318 

Brandley et al., 2017). This theory may be broadly applicable across amniotes given that the 319 

most recent common ancestor of amniotes likely had a chorioallantois with an endocrine 320 

function (Griffith, Brandley et al., 2017). Following death of the corpus luteum during gestation, 321 

placental progesterone production supports extended embryonic retention in eutherian mammals 322 

(Castracane & Goldzieher, 1986; Ellinwood et al., 1989; Nakajima et al., 1991; Rothchild, 2003; 323 

Spencer & Bazer, 2004). Viviparous Italian Three-toed Skinks, Chalcides chalcides, shift to 324 

chorioallantoic progesterone production following degradation of corpora lutea during gestation 325 

(Guarino et al., 1998). The placenta of viviparous Southern Snow Skinks, Carinascincus 326 

microlepidotus, produces minimal progesterone but has a strong capacity to convert 327 

pregnenolone to progesterone (Girling & Jones, 2003). Whereas all genes involved with a known 328 

biosynthesis pathway for progesterone production are expressed in the placenta of horses, Equus 329 

caballus, only some of these genes were detected in the chorioallantois of chickens, Gallus 330 

gallus, viviparous Southern Grass Skinks, Pseudemoia entrecasteauxii, and oviparous and 331 

viviparous Southeastern Sliders, Lerista bougainvillii (Griffith, Brandley et al., 2017). Thus, if 332 
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chorioallantoic progesterone production has supported multiple origins of viviparity in amniotes, 333 

it is not evidenced by a conserved ancestral gene expression pattern for the biosynthesis of 334 

progesterone (Griffith, Brandley et al., 2017). Nonetheless, parity trait genes in a reproductively 335 

bimodal lizard, Zootoca vivipara, are associated with progesterone-binding functions (Recknagel 336 

et al., 2021a)—highlighting the role of progesterone in squamate reproduction.  337 

Other female reproductive tissues in squamates express genes involved with progesterone 338 

biosynthesis—StAR-related lipid transfer domain protein 3 (StARD3) and hydroxy-delta-5-339 

steroid dehydrogenase (HSD3B1). STARD3 is significantly upregulated in the uterine tissue 340 

during pregnancy in viviparous African Ocellated skinks, Chalcides ocellatus, along with 341 

significant differential expression of seven paralogs (Brandley et al., 2012). While StARD3 is 342 

expressed during gestation in Zootoca vivipara, it is not significant differentially expressed 343 

compared to oviparous counterparts; HSD3B1, on the other hand, is significantly upregulated 344 

during mid-gestation (Recknagel et al., 2021a). Compared to non-gestational samples, HSD3B1 345 

is significantly upregulated in the uterus during early and late gestation in viviparous individuals 346 

of reproductively bimodal Saiphos equalis (Foster et al., 2020). Oviparous individuals from the 347 

same species did not exhibit this expression pattern (Foster et al., 2020). Activity of HSD3B1 348 

was detected in the mucosal epithelium of oviparous Eastern Garden Lizards, Calotes versicolor 349 

(Kumari et al., 1992), and in the uterine glands of oviparous Keeled Indian Mabuya, Eutropis 350 

carinata (Mundkur & Sarkar, 1982). Other genes involved with the biosynthesis of progesterone 351 

(e.g., steroidogenic acute regulatory protein or cytochrome-P450-family-11-subfamily-A-352 

polypeptide-1) serve as further candidates for exploring the relationship between organ-specific 353 

patterns of progesterone production and the evolution of extended embryonic retention in 354 

viviparous squamates.  355 
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For progesterone to prevent myometrial contractions and support quiescence, there must be 356 

progesterone receptors (PGRs) in the uterus (Mesiano et al., 2011; Young et al., 2011). In 357 

humans, progesterone responsiveness is related to specific ratios of PGRs, PR-A and PR-B, in 358 

myometrial cells (Young et al., 2011). Minimal research exists on PGR expression in squamate 359 

reproductive tissues. One study found that in the uterus of the yolk-sac in viviparous Southern 360 

Grass Skinks, Pseudemoia entrecasteauxii, one progesterone receptor, PGRMC2, is upregulated 361 

compared to non-gestational uterine tissue (Griffith et al., 2016); Another progesterone receptor, 362 

PGR, is downregulated in the uterus of the chorioallantoic placenta and yolk sac placenta 363 

compared to non-gestational uterine tissue (Griffith et al., 2016). Downregulation of both PGR 364 

and PGRMC2 in the uterus during gestation was detected in viviparous Chalcides ocellatus 365 

(Brandley et al., 2012). While PGR is differentially expressed at mid-gestation in viviparous 366 

individuals compared to oviparous, PGRMC1 and PGRMC2 are not differentially expressed 367 

(Recknagel et al., 2021a). However, admixture mapping revealed three SNPs most highly 368 

associated with gestation length in Zootoca vivipara are located in close proximity to PGRMC1 369 

(Recknagel et al, 2021a).  Measuring expression of PGRs and their ratios in uteruses of 370 

oviparous and viviparous squamates will help elucidate the receptors needed to support 371 

progesterone responsiveness in squamate uteruses and their relationship to extended embryonic 372 

retention. 373 

 374 

(ii) Activation & progesterone withdrawal 375 

The activation stage of parturition is marked by the withdrawal, or functional withdrawal, of 376 

progesterone leading to an estrogen dominated response during the next state, stimulation 377 

(Bakker, Pierce, & Myers, 2017; Fergusson & Bradshaw, 1991). Progesterone may withdraw in 378 
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response to environmental stimuli in reptiles during parturition (Shine & Guillette, 1988). In 379 

mammals, activation is marked by increasing concentrations of corticotropin-releasing hormone 380 

and contraction associated proteins (CAPs) including connexin-43, prostaglandins, oxytocin 381 

receptors, prostanoid receptors and cell signaling proteins (Bakker et al., 2017; Ilicic et al., 2017; 382 

Leadon et al., 1982; Pashen & Allen, 1979; Whittle et al., 2000). Pro-inflammatory cytokines 383 

and chemokines, prostaglandin synthase-2 (COX-2, also referred to as PTGS2), and NF-κB also 384 

influence activation in mammals (Christiaens et al., 2008; Lappas et al., 2002; Lappas & Rice, 385 

2007; Lindström & Bennett, 2005; Olson, 2003; Terzidou, 2007).  386 

Some similar patterns are associated with oviposition in birds. In chickens, Gallus gallus, 387 

prostaglandin F (PGF) concentrations increase in the hours leading up to oviposition (Takahashi 388 

et al., 2004). Experimental injection of oxytocin and arginine vasotocin (AVT), similar 389 

neurohypophyseal peptides, revealed that uterine tissues of chickens, Gallus gallus, maintain 390 

responsiveness to oxytocin but are more sensitive toward arginine vasotocin (Ewy, 1970). 391 

Murphy & Thompson (2011) provide a rather exhaustive list of resources on progesterone and 392 

estrogen assays across oviparous and viviparous squamates. Future research should consider 393 

exploring parallels between mechanisms of activation in mammals and squamates. Any process 394 

that can trigger or stall activation should lead to extended embryonic retention.  395 

 396 

(iii) Stimulation & electrical gradients, inflammation, and hormonal regulation 397 

Mechanical stretch, electrical gradients, inflammatory processes, and hormonal regulation 398 

contribute to stimulation, the phase when contractions, cervical ripening and dilation occur. 399 

Stimulation involves contributions from maternal and fetal tissues. As early as 460 BC there was 400 

uncertainty over the proportional influence of mother or fetus on the initiation of parturition. 401 
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Hippocrates proposed that the fetus initiates parturition by pushing its feet on the fundus of the 402 

uterus. Although the reality is not so cartoonish, mechanical stretch of the uterus from the 403 

growing embryo plays a role in parturition (Lefebvre et al., 1995; Tamizian & Arulkumaran, 404 

2004; Wray et al., 2015).  405 

Physical stretching of the uterus causes an influx of calcium and sodium, altering the action 406 

potential and enabling contractions (Kao & McCullough, 1975). Calcium further activates 407 

voltage gated calcium channels on myometrial cell membranes, enhancing the influx of calcium 408 

ions, mediating the force and speed of myometrial contractility (Arrowsmith & Wray, 2014; 409 

Wray et al., 2015). The influence of uterine overdistention on parition in birds and non-avian 410 

reptiles has not yet been examined, to my knowledge. However, differentially expressed genes 411 

functionally enriched the GO term for “voltage-gated calcium channel activity” in uterine tissues 412 

during gravidity and gestation in Saiphos equalis (Foster et al., 2020). A uterine response to 413 

overdistention is among the many possible explanations for this. It may be important to consider 414 

the influence of uterine overdistention on squamate parity mode transitions, because should 415 

bioelectrical responses to uterine overdistention be a common feature of vertebrate parturition, 416 

lessened distention may be a hurdle to reverse back to oviparity. Uterine overdistention may 417 

influence parturition by triggering an “inflammatory pulse” that activates further myometrial 418 

contractility, which leads to preterm birth in primates (Adams Waldorf et al., 2015).  419 

During parturition, there is an influx of uterine and embryonic pro-inflammatory genes and 420 

immune cells (Adams Waldorf et al., 2015; Charpigny et al., 2003; Mesiano et al., 2002; Park et 421 

al., 2005). Uterine contractions in humans involve actions of prostaglandins (PGs), oxytocin, 422 

corticotropin-releasing hormone, cytokines, and neutrophils (Adams Waldorf et al., 2015; De 423 
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Rensis et al., 2012; Olson & Hertelendy, 1983; Park et al., 2005; Sykes et al., 2014; Terzidou, 424 

2007).  425 

The cycling concentrations of a neuropeptide, corticotropin-releasing hormone (CRH), 426 

supports parturition in humans. This has been compared to a biological clock that is initiated at 427 

early stages of gestation (Lockwood, 2004; McLean & Smith, 2001). Increased production of 428 

CRH facilitates parturition by interacting with CRH receptors, CRH-R1 and CRH-R2, which are 429 

suggested to promote myometrial relaxation or contractility, respectively (Hillhouse & 430 

Grammatopoulos, 2001). Altered regulation, phenotype or function of hormones that function as 431 

biological clocks, like CRH, may have a particularly strong influence on evolutionary changes to 432 

length of embryonic retention, a trait inherently related to time.  433 

Placental CRH production has only been identified in primates thus far (Challis et al., 2005; 434 

Emanuel et al., 1994; Florio et al., 2002; Hillhouse & Grammatopoulos, 2001; Karteris et al., 435 

1998; Mendelson, 2009; Robinson et al., 1989). Placental CRH production may, therefore, be 436 

unique to primates. However, the amino acid sequence of CRH is highly conserved in vertebrates 437 

(Noy et al., 2017), indicating there is a possibility for shared function across diverse taxa. Like 438 

CRH cycling in mammals, timely fluctuations of AVT stimulates uterine contractions, enables 439 

oviposition in birds, turtles, and lizards (Ewy, 1970; Fergusson & Bradshaw, 1991; Guillette Jr & 440 

Jones, 1980; Jones et al., 1987; Rzasa, 1978; Wu et al., 2019).  441 

Prostaglandin E2 (PGE2) and prostaglandin F2 (PGF2) influence, respectively, uterine 442 

contractions and cervical relaxation for parition across many amniotes including humans, Homo 443 

sapiens (Terzidou, 2007), domestic pigs (De Rensis et al. 2012), domestic chickens (Hertelendy 444 

et al., 1974; Olson et al., 1986), and Loggerhead Sea turtles (Guillette et al., 1991). Injections of 445 

PGF2 and PGE2 induce parturition in viviparous Yarrow's Spiny lizards, Sceloporus jarrovi, and 446 
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Raukawa geckos, Woodworthia maculatus (Cree & Guillette, 1991; Guillette et al., 1992). 447 

However, no injected dosages of PGF2 or PGE2 induced oviposition in oviparous Collard 448 

lizards, Crotaphytus collarus, Eastern Fence lizards, Sceloporus undulatus, Six-lined 449 

racerunners, Aspidoscelis sexlineatus, or Striped Plateau lizards, Sceloporus virgatus (Guillette et 450 

al., 1991). It is interesting that injections of PGF2 and PGE2 induced parturition in viviparous 451 

lizards but did not induce oviposition in oviparous lizards studied. Given this, it is plausible that 452 

regulatory or functional changes to PGF2 and/or PGE2 in squamates could facilitate changes to 453 

the length of embryonic retention to support transitions between reproductive modes. However, 454 

induction of parturition with PGF2  in viviparous Woodworthia maculatus only worked with 455 

pre-treatment of -adrenoeceptor (Cree & Guillette, 1991).  456 

PGF2 decreases progesterone concentrations during stimulation (De Rensis et al., 2012). In 457 

humans, biosynthesis of PGs is driven largely by the enzyme cyclooxygenase (COX)-2 rather 458 

than COX-1 (i.e., prostaglandin synthase-2 and -1) (Slater et al., 1995, 1999). This helps 459 

maintain the decreased progesterone/estrogen ratio of stimulation. In ovariectomize viviparous 460 

Garter snakes, Thamnophis, increased estrogen stimulated thickness of uterine epithelial cells 461 

and glandular activity, whereas administration of progesterone had little influence on uterine 462 

histology (Mead et al., 1981). Uterine pig models revealed that estrogen stimulates involuntary 463 

contraction and relaxation (peristalsis) of the uterus (Mueller et al., 2006). 464 

The softening of the cervix is important during the stimulation stage of parturition. A 465 

hormone related to insulin, relaxin, promotes myometrial softening in humans, Homo sapiens, 466 

domestic pigs, and turtles (Mercado-Simmen et al., 1982; Sorbera et al., 1988; Weiss & 467 

Goldsmith, 2001). The cervix also gets softer by actions of PGE2. PGE2 activates pro-468 

inflammatory cytokines, interleukin (IL)-8 and tumor necrosis factor (TNF)-, which activates 469 
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the collagenases and matrix metalloproteinases for cervical softening (Bakker et al., 2017). This 470 

causes a positive feedback loop between IL-8 and PGE2 synthesis (Denison et al., 1998; 471 

Denison, Calder & Kelly, 1999; Terzidou, 2007; Li et al., 2010). Upregulated of IL-8 is also 472 

promoted by the protein complex NF-kB during parturition in humans (Elliott, 2001). Similar 473 

patterns were observed during parturition in mice and baboons (Mendelson & Condon, 2005; 474 

Mendelson, 2009). 475 

A few studies focus on the role of cytokines on squamate reproduction but not explicitly 476 

during oviposition or parturition (Hendrawan et al., 2017; Paulesu et al., 1995, 2005, 2008). 477 

Some studies detected expression of cytokines during late gestation (Foster et al., 2020; Gao et 478 

al., 2019; Recknagel et al., 2021a). TNF- related activity was only detected at this time in 479 

viviparous Tussock Cool-skinks, Pseudemoia entrecasteauxii, which were found to 480 

downregulate TNF- induced proteins (TNFAIP6 and TNFAIP8L2) in the ‘uterus of the 481 

chorioallantoic placenta’ and TNFAIP6, TNFAIP1, and TNFAIP2 in the ‘uterus of the yolk-sac 482 

placenta’ compared to not gestational uterine tissues (Griffith et al., 2016). Activity of TNF- in 483 

reproductive tissues during gestation in viviparous Italian Three-toed skinks, Chalcides 484 

chalcides, and reproductively bimodal European common lizards, Zootoca vivipara, was 485 

associated with maternal-fetal immune dynamics (Paulesu et al., 1995, 2005, 2008; Hendrawan 486 

et al., 2017). 487 

Altered expression or phenotype of contractility agonists, oxytocin receptors and estrogen 488 

receptors, and contractility antagonists, progesterone receptors and -adrenergic receptors 489 

(Ravanos et al., 2015) may also change the length of embryonic retention to support transitions 490 

between parity modes. Differences in length of embryonic retention in oviparous and viviparous 491 

agamas, Phrynocephalus przewalskii and Phrynocephalus vlangalii, appears to be driven by 492 
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regulatory differences of prostaglandins, COX-2, an AVT receptor (MTR), -adrenergic receptors, 493 

and estrogen receptors. During oviposition, P. przewalskii, exhibited the following: promotion of 494 

contractions through downregulation of -adrenergic receptor (ADRB2), and upregulation of 495 

COX-2 and prostaglandin, and absent (potentially lost) expression of two estrogen receptors 496 

(ESR1 and ESR2) and the AVT receptor, MTR (Gao et al., 2019). During the stage of gestation 497 

corresponding to oviposition, viviparous sister-species, P. vlangalii, exhibited the following 498 

alternate pattern: inhibition of contractions caused by upregulation of ADRB2 and 499 

downregulation of two estrogen receptors (ESR1, ESR2), MTR, COX-2, and prostaglandin (Gao 500 

et al., 2019). Some viviparous squamates, Saiphos equalis, Chalcides ocellatus, and Pseudemoia 501 

entrecasteauxii, share some of these expression patterns (COX-2, MTR, and ADRB, respectively) 502 

thought to be involved with extended embryonic retention in viviparous P. vlangalii (Brandley et 503 

al., 2012; Foster et al., 2020; Gao et al., 2019; Griffith et al., 2016); and ADRB2 is upregulated at 504 

mid-gestation in viviparous Zootoca vivipara compared to oviparous counterpart (Recknagel et 505 

al., 2021a). Overexpressed genes in viviparous uterine tissues of Zootoca vivipara also 506 

functionally enriched pathways for beta 1 and beta 2 adrenergic receptor signaling pathways 507 

(Recknagel et al., 2021a). This study, which compared uterine expression profiles during 508 

gestation across viviparous species of squamates, rodents, canines, ungulates, and humans, 509 

concluded that shared regulatory networks are recruited to support viviparity (Reckangel et al., 510 

2021a).  511 

Recently, in humans, the only Classical Major Histocompatibility Antigen (C-MHC) 512 

expressed by trophoblasts (specialized placental cells) was associated with parturition when it 513 

was discovered that HLA-C is significantly increased during laboring term and preterm placentas 514 

compared to non-laboring placentas (Hackmon et al., 2017). The authors suggested a mechanism 515 
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where fetal HLA-C open conformers on the placenta provoke inflammation of maternal tissues, 516 

leading to parturition (Hackmon et al., 2017). Expression of MHC alloantigens, foreign antigens 517 

to the host, by fetal cells is also associated with parturition in cows and horses (Benedictusa, 518 

Koets & Ruttena, 2015; Davies et al., 2004; Joosten et al., 1991; Rapacz-Leonard et al., 2018). 519 

Around one month prior to parturition in cows, endometrial epithelium thins and eventually 520 

disappears completely, putting the antigen-presenting trophoblasts (Adams et al., 2007) in 521 

contact with maternal connective tissue of the endometrium (Podhalicz-Dzięgielewska et al., 522 

2000). Fetal MHC alloantigens are proposed to promote the loosening of maternal and fetal 523 

tissues (Benedictusa et al., 2015). MHC molecules are expressed during gestation in some 524 

squamates (Murphy, Thompson & Belov, 2009) but their role in oviposition or parturition has 525 

not yet been considered to my knowledge. Identifying the presence or absence of MHC 526 

alloantigens on embryonic tissues before and during parition across more diverse taxa may 527 

reveal how ubiquitous the influence of embryonic MHC molecules is on this. 528 

Involution (phase 3) occurs after the embryo(s) is released. In eutherian involution, the 529 

placenta detaches, and the uterus shrinks. This is supported by actions of prostaglandins 530 

(Husslein, 1984) and oxytocin (Terzidou, 2007). It seems unlikely for processes of involution to 531 

be related to evolutionary changes to the length of embryonic retention.  532 

 533 

(2) Unique qualities of oviposition & parturition in Sauropsids  534 

The physiology of avian oviposition is dependent on a circadian schedule (Williams, 2012). 535 

A general model of an “open period”, when eggs are laid are separated by “laying gaps” 536 

(Williams, 2012). Chicken ovulation and oviposition cycles leave an 8-hour open period where 537 

luteinizing hormone (LH) and progesterone surge, initiating ovulation and continuing the cycle. 538 
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At the extreme, the ancient murrelet, Synthliboramphus antiquus, oviposits a two-egg clutch on 539 

seven-day intervals (Williams, 2012). Longer laying intervals have been associated with longer 540 

intervals between initiation of yolk development (Astheimer & Grau, 1990). Differing from 541 

birds, oviparous squamates retain eggs longer than the ovarian cycle (Tinkle & Gibbons, 1977). 542 

This suggests that oviparous squamates may rely on different molecular mechanisms to support 543 

oviposition than birds.  544 

Non-avian reptiles are unique in that they are the only ectothermic amniotes. This makes 545 

them uniquely reliant on temperature for embryonic retention and associated embryonic 546 

signaling to indicate the stage of embryonic development. Additionally unique, gemales are the 547 

heterogametic sex in several squamates, leading some research to suggest chromosome linkage 548 

evolution may increase the speed of evolution in genes associated with gestation length 549 

(Recknagel et al., 2021a). Admixture mapping, made possible by the natural hybrization of 550 

oviparous and viviparous populations of Zootoca vivipara, revealed 439 candidate genes 551 

associated with embryonic retention (Recknagel et al., 2021a). Eleven of these genes were also 552 

associated with eggshell traits (Recknagel et al., 2021a)—underscoring the pleiotropic roles of 553 

some genes putatively involved in squamate parity mode evolution.  554 

 555 

(3) Pre-term birth & embryonic retention mechanisms 556 

The literature on pre-term birth may be a fruitful avenue of research to inform understanding 557 

on the evolutionary genomics of embryonic retention length. Slower increases of CRH (Ellis et 558 

al., 2002) and higher expression of Neurokinin B, for example, are associated with pre-term birth 559 

in humans (Torricelli et al., 2007). Injections of RU486, a progesterone receptor (PGR) 560 

antagonist, promoted pre-term labor in rhesus macaques but the progression of physiological 561 
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activity differed from normal parturition (Haluska et al., 1987). Examining homologs of genes 562 

involved with human pre-term birth in squamates may provide further candidates for genes that 563 

could impact the length of embryonic retention in squamates. Some evolutionary studies are 564 

taking implications of pre-term birth into account. For example, a comparative evolutionary 565 

transcriptomics study across therians, monotremes, squamates, and an amphibian recently 566 

associated HAND2 with preterm birth in Eutherian mammals (Marinić et al., 2021).  567 

In humans, pregnancy loss from infection follows distorted ratios of immune factors at the 568 

maternal-fetal interface (Arenas-Hernandez et al., 2016; Chaturvedi et al., 2015; Chattopadhyay 569 

et al., 2010). Future research on the evolution of lengthened embryonic retention to support 570 

viviparity may benefit from exploring ratios of immune cells in the uterus and embryonic tissues 571 

during term and pre-term pregnancy in squamates. I direct researchers to the literature on the 572 

reptile immune system and immune cell ratios at the maternal fetal interface during term and pre-573 

term mammalian pregnancy for further exploration (Yang et al., 2019; Zimmerman, 2010, 2020).  574 

 575 

(4) Discussion & future directions—embryonic retention and parity mode evolution 576 

The physiological processes involved with the start of gestation (maternal recognition of 577 

pregnancy) and the end of gestation (parition) in birds and mammals provide insights into the 578 

genes and hormones squamates may co-opt to alter length of embryonic retention during 579 

transitions between parity modes. Unsurprisingly, hormones like estrogen and progesterone, play 580 

important roles in parition across amniotes. Further processes to be examined in squamates 581 

include signaling of homologous genes for MRP, placental progesterone production, novel 582 

pathways for biosynthesis of progesterone, the role of beta 1 and beta 2 adrenergic receptor 583 

signaling pathways, fluctuating ratios of progesterone receptors, the lifespan of the corpus 584 
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luteum across a broader range of taxa, production and circulation of homologs for AVT and 585 

CRH or other similarly structured genes, expression of fetal alloantigens and inflammatory 586 

cytokines in utero, and the influence of uterine overdistention on contractions. Regarding 587 

squamate parity mode transitions, the role of uterine overdistention in mammalian parturition 588 

suggests a lack of uterine overdistention may be one hurdle for reversals back to oviparity. 589 

Understanding the evolutionary physiology and genomics of embryonic retention in oviparous 590 

and viviparous squamates will benefit from focused attention on reproductively bimodal species 591 

(Whittington et al., 2022) and from genomics/physiological research across more taxa that vary 592 

in reproductive modes. 593 

 594 

III. Eggshell Formation 595 

 596 

Oviparous amniotic embryos develop within an eggshell that is at least partially 597 

mineralized, whereas viviparous embryos generally do not. Primarily, the eggshell serves as 598 

physical protection and calcium reserve (Stewart & Ecay 2010; Stewart et al., 2009). The 599 

eggshell matrix contains immune properties and pores that enable gas exchange and water uptake 600 

(Packard et al., 1982). Evolutionary transitions between parity modes therefore requires changes 601 

to the process of eggshell formation. The history of research on the evolutionary morphology of 602 

the amniote egg is important for future comparative research (Blackburn & Stewart, 2021). Some 603 

have suggested that the amniote eggshell originated multiple times (Aoki, 1993). 604 

Birds have hard calcareous eggshells. Other than two lineages of geckos with hard shells, 605 

oviparous squamates have parchment-shelled eggs with a thin layer of calcium deposits on the 606 

outer surface of the shell membrane (Blackburn & Stewart, 2021; Choi et al., 2018). 607 
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Monotremata (egg-laying mammals) have an eggshell but far less has been documented about its 608 

structure compared to other amniotes (Legendre et al., 2022). The structure and physiological 609 

mechanisms involved with eggshell calcification are most well resolved in birds (Choi et al., 610 

2018; Francesch et al., 1997; Jonchère et al., 2010, 2012; Rose-Martel, Du, & Hincke, 2012). 611 

Eggshell deposition in tuatara and squamates differs dramatically (Choi et al., 2018). Viviparous 612 

squamates lack an eggshell, absorb the eggshell during gestation, or have a thin layer of calcium 613 

deposits. 614 

The earliest records of amniote eggshells have features characteristics of Archelosaur 615 

eggshells, including the mammillary layer (Stein et al., 2019; Legendre et al., 2022). Recent 616 

reconstructions are consistent with a thin eggshell in ancestral dinosaurs (Norell et al., 2020; 617 

Stein et al., 2019). It is important to consider that the semi-rigid shells of Lepidosaurs and 618 

testudines are not homologous (Legendre et al., 2022); the microstructure of Archelosauria 619 

(birds, crocodiles, turtles and dinosaurs) and Lepidosaur eggshells are remarkably different (Choi 620 

et al., 2018); and recent reconstructions of the composition and ultrastructure of dinosaur 621 

eggshells revealed that calcified hard eggshell of dinosaurs originated three times (Norell et al., 622 

2020). In the remainder of this section, I consider how structural, mineral, 623 

genomic/transcriptomic, and proteomic information on amniote eggshells can inform scientific 624 

understanding of the ancestral eggshell of amniotes and Lepidosaurs.  625 

The genetic drivers of eggshell formation are not resolved in squamates. Two oviparous 626 

lizards, Lerista bougainvillii and Lampropholis guichenoti, differentially express either zero or 627 

two genes, respectively, in utero in non-gravid vs gravid comparisons (Griffith et al., 2016). 628 

However, this study only measured gene expression at one developmental stage, making it 629 

difficult to infer if regulatory changes influence eggshell formation. Nonetheless, oviparous 630 
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Saiphos equalis and Phrynocephalus przewalskii have extensive differential expression during 631 

gravidity (Foster et al., 2020; Gao et al 2019). It is interesting to see drastically different uterine 632 

gene expression profiles associated with oviparity, given that shared genes are recruited to the 633 

uterus to support viviparity across diverse amniotes (Recknagel et al., 2021a). Under the 634 

assumption that conserved traits should be accompanied with more similar gene expression 635 

profiles than convergent traits, uterine gene expression profiles in themselves currently reveal 636 

more conserved regulatory networks in utero for squamate viviparity than oviparity.  637 

Some genetically determined traits are known to be evolutionarily labile in squamates, like 638 

venom and limb reduction (Camaiti et al., 2021; Sites et al., 2011). In Saiphos equalis, shell 639 

characteristics of facultatively paritioned oviparous and viviparous embryos are similar, leading 640 

authors to infer that both parity modes utilize the same machinery to produce egg coverings 641 

(Laird et al., 2019). In this species, environmental influences on gestation length, rather than 642 

genetic influences on eggshell thickness, may play a more dominant role in parity mode 643 

evolution (Laird et al., 2019). In Zootoca vivipara, Recknagel et al. (2021a) identified 38 644 

candidate genes associated with eggshell traits and concluded that the genetic architecture of 645 

eggshell traits is simpler than that of gestation length.  646 

 647 

(1) Mineral composition of eggshells 648 

The different mineral compositions of eggshells across amniotes may provide insight into the 649 

differing physiological conditions and evolutionary histories under which they are formed (Table 650 

1). Taxa use a polymorph of calcium carbonate—calcite, aragonite or vaterite—to develop the 651 

eggshell (Hincke et al., 2012). Amorphous calcium carbonate (ACC) is a transient non-652 

crystalline precursor phase of calcite and aragonite that is important for many calcification 653 
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processes in invertebrates (Hincke et al., 2012). It was recently shown to control avian eggshell 654 

mineralization (Rodríguez-Navarro et al., 2015). 655 

In birds, the organic components of uterine fluid promote the formation of calcite 656 

(Hernández-Hernández, Gomez-Morales et al., 2008; Hernández-Hernández, Rodriguez, et al., 657 

2008; Hernández-Hernández, Vidal et al., 2008). Most amniotes use this polymorph (Hernández-658 

Hernández, Gomez-Morales et al., 2008; Hernández-Hernández, Rodriguez, et al., 2008; 659 

Legendre et al., 2022). However, turtle eggshells are predominately developed with aragonite 660 

(Choi et al., 2022; Mikhailov, 1997). The eggshell of most squamates consists of an inner fibrous 661 

protein layer overlain by calcium carbonate that can be a single layer or scattered crystals (Choi 662 

et al., 2018; Packard & DeMarco, 1991; Stewart et al., 2010).  663 

There are differing accounts on the microstructure of monotreme eggshells, however 664 

conceptus coats include three layers including zona pellucida, mocoid coat and shell coat 665 

(Frankenberg & Renfree, 2018). Further studies are needed test for secondary homology. 666 

Monotreme shells are described as proteinaceous, permeable, and flexible (Hughes, 1984). 667 

Marsupials lack an eggshell but have an eggshell coat, similar to that of monotremes 668 

(Frankenberg & Renfree, 2018), that is secreted by the epithelial cells and endometrial glands 669 

early on in embryonic development prior to implantation (Roberts et al., 1994; Roberts & Breed, 670 

1996). Upon hatching of the shell coat and attachment of the embryo, a cooperative 671 

inflammatory response ensues (Stadtmauer et al., 2020a, 2020b).  672 

Table 1. Amniote Eggshell Ultrastructures  673 
Taxon Eggshell ultrastructure 

Testudoid Radial aragonite with organic core at base 

Crocodiloid Tabular, arranged in wedges of calcite with no organic core 

Squamate 

Two types:   

• rigid-shelled eggs with well-developed crystalline layer (dibamid and gekkonid lizards). 

Stem-like crystals grow downward making for a rigid shell 

• flexible-shelled eggs with parchment-like shell of fibrils overlaid with little thin crystal 

caps or no crystalline material (other squamates)  
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Ornithoid (avian) 

Calcite with a clear boundary between lower and upper parts. Mammillary layer defines the lower 

portion of the shell, with calcite crystals that radiate upwards 

Monotreme Distensible, permeable and highly proteinaceous  

Note: Adapted from Choi et al., (2018); Frankenberg & Renfree, (2018); Hallman & Griebeler, (2015); Hincke et 674 
al., (2012); Trauth & Fagerberg, (1984) 675 
 676 
 677 

(2) Uterine glands & the evolution of parity modes 678 

Eggshell formation occurs in the uterus where the uterine glands secrete precursors of the 679 

eggshell (Girling, 2002; Guillette, Fox & Palmer, 1989; Jonchère et al., 2010; Nys et al., 2004; 680 

Picariello et al., 1989; Stewart & Ecay, 2010). Uterine glands are critical for gravidity/gestation 681 

in both oviparous and viviparous amniotes (Braz et al., 2018; Burton et al., 2002; Cooke et al., 682 

2013).  For example, in humans, uterine glands provide histiotrophic nutrition to the early 683 

embryo (Burton et al., 2002). In reptiles, precursors for the proteinaceous eggshell membrane are 684 

secreted by the uterine glands (Corso, Delitala & Carcupino, 2000; Heulin et al., 2005; Palmer et 685 

al., 1993). Calcium secretion can also involve uterine epithelial cells (Herbert, Thompson & 686 

Lindsay, 2006; Thompson et al., 2007). Uterine epithelium of the soft-shelled turtle, Lissemys 687 

punctata punctata, and the eastern collard skink, Chrotaphytus collaris stain positive for calcium 688 

(Guillette et al.,1989; Sarkar et al., 1995).  689 

Viviparous squamates have an absent or reduced eggshell membrane to facilitate gas 690 

exchange (Blackburn, 1993; Braz et al., 2018). Some squamates are encased in the thin 691 

membrane through the entirety of development like the viviparous lizard, Zootoca vivipara 692 

(Heulin, 1989). Others have the membrane only in the early stages of embryonic development 693 

like in garter snakes Thamnophis radix and T. sirtalis (Blackburn & Lorenz, 2003). Calcium 694 

deposits are detected on the outer surface of the membrane throughout development in other 695 

viviparous lizards (Stewart et al., 2013).  696 
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Reduced number or size of eggshell glands leads to reduced eggshell membrane thickness in 697 

viviparous squamates. In chickens, variation in size, spacing, and neutron density of eggshell 698 

glands may also be important for eggshell structure (Guillette & Jones, 1985). In the 699 

reproductively bimodal Yellow-bellied three toed skink, Saiphos equalis, the density of eggshell 700 

glands plays a role in eggshell thickness (Stewart et al., 2010). In the reproductively bimodal 701 

lizard, Zootoca vivipara, viviparous individuals have a uterine glandular layer that is less 702 

developed during the stage of eggshell formation compared to oviparous individuals (Heulin et 703 

al., 2005). Additionally, in Lerista fragilis, which lays eggs that hatch within just hours of 704 

oviposition, the uterus contains very few mucosal glands (Guillette, 1992).  In the fence lizard, 705 

Sceloporus a. aeneus, the irregular surface of the eggshell was attributed to the irregular spacing 706 

of shell glands (Guillette & Jones, 1985). In an oviparous gecko, Hemidactylus turcicus, their 707 

eggshell glands have loosely packed secretory granules that produce a hard, calcareous shell 708 

(Girling et al., 1998). In a comparison of oviparous and viviparous water snakes from the genus 709 

Helicops, viviparous embryos have thinner shell membranes which associated with reduced size 710 

of eggshell glands (Braz et al., 2018). In an oviparous gecko, Saltuarius wyberba, their secretory 711 

granules are tightly packed, and their shell is soft and parchmentlike (Girling et al., 1998). In a 712 

viviparous relative, Hoplodactylus maculatus, there are far fewer eggshell glands, and where 713 

there are glands, the secretory granules are smaller and more electron dense (Girling, Cree & 714 

Guillette, 1997; Girling, Cree & Guillette, 1998). Smaller eggshell gland size during or after 715 

vitellogenesis is also found in other viviparous squamates compared to oviparous counterparts 716 

(Braz et al., 2018; Gao et al., 2019; Heulin et al., 2005). To my knowledge, in monotremes the 717 

relationship between eggshell thickness and shell gland size, density or compaction of secretory 718 

granules has not been explored.  719 
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In the oviparous Przewalski's toadhead agama lizard, Phrynocephalus przewalskii, 148 genes 720 

are highly expressed in the uterus during the stage of eggshell gland development (Gao et al., 721 

2019). Only three of these are highly expressed in P. vlangalii, a viviparous close relative at this 722 

time, suggesting differences in oviparous and viviparous eggshell gland development requires 723 

regulatory changes to dozens of genes (Gao et al., 2019). In the opossum, a marsupial, 724 

proliferation of uterine glands is not induced by the conceptus (Griffith et al., 2019). 725 

 726 

(3) Evolutionary implications of the physiology of eggshell formation 727 

Presumably because of the influence it has on food production, the process of eggshell 728 

formation has been studied most extensively in chickens (Hincke et al., 2012). The avian 729 

eggshell is formed in a cell-free environment, and it is the fastest calcifying process known to 730 

biology (Hincke et al., 2012; Rodríguez-Navarro et al., 2015). During eggshell formation in 731 

birds, uterine fluid containing a supersaturation of ionized calcium and bicarbonate ions 732 

surrounds the egg (Nys et al., 1991). Transport of calcium in the uterus correlates with plasma 733 

membrane Ca2+-ATPase (PMCA) activity and with concentrations of calbindin-D28K within 734 

shell gland epithelial cells (Herbert et al., 2006; Wasserman et al., 1991). This leads to the 735 

spontaneous precipitation of calcium carbonate into calcite (Hincke et al., 2012).  In the 736 

oviparous lizard, Lampropholis guichenoti, immunofluorescence microscopy revealed activity of 737 

PMCA in the uterus at the time of eggshell calcification (Thompson et al., 2007).  738 

Eggshell formation begins with the eggshell membrane. Two unciliated cell types in the 739 

uterus contribute to eggshell membrane formation in a viviparous skink, Chalcides ocellatus 740 

tiligugu (Corso et al., 2000). One secretes sulfated glycosaminoglycans to form the inner shell 741 

membrane, and the other which secretes acidic glycoproteins to form the outer layers (Corso et 742 
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al., 2000). Simple alveolar glands in the lamina propria secrete collagen fibers (Corso et al., 743 

2000). Inhibition of fiber formation or cross-linking, typically caused by aminopropionitrile or a 744 

copper deficiency, causes distorted formations of the eggshell membrane in birds (Arias et al., 745 

1997; Chowdhury & Davis, 1995; Hincke et al., 2012).  746 

In characteristic Archelosaur eggshells (Choi et al., 2018; Legendre et al., 2022), organic 747 

aggregates are deposited onto the shell membrane creating mammillary knobs, which are absent 748 

in Lepidosaur shells (Choi et al., 2018). Mammillary knobs are a distinct layer between the outer 749 

eggshell membrane and the calcified shell matrix layer (Hamilton, 1986). Part of the mammillary 750 

knobs, called basal caps, are embedded into the outer eggshell membrane fibers (Tyler, 1965). 751 

Mammillary knobs serve as regions of crystal initiation where ACC is deposited (Gautron et al., 752 

2021) and converted into calcite crystals with no intermediate phase (Rodríguez-Navarro et al., 753 

2015). Cones are formed that radiate in all upward directions, extending up to the shell matrix 754 

layer (Tyler, 1965). Despite the direct relationship between mammillary knobs and calcium 755 

carbonate crystallization (Rao et al., 2015), the protein comprising mammillary knobs remains 756 

uncharacterized. A keratan sulfate (KS)-proteoglycan, “mammillan”, has been implicated in the 757 

composition of mammillary knobs (Fernandez et al., 2001; Hincke et al., 2012). Any given 758 

proteoglycan is a product of multiple coding genes and biosynthesis of KS-proteoglycans is non-759 

trivial (Caterson & Melrose, 2018; Funderburgh, 2002; Iozzo et al., 2015). However, 760 

investigations into the keratan sulfate proteoglycan proposed as “mammillan” and identifying its 761 

Properties that Facilitate Calcium Deposition (P-FCD) has far reaching implications given that 762 

KS-proteoglycans are proving to be important players in neurological and cancer research 763 

(Leiphrakpam et al., 2019).  The role of homologs of “mammillan” in eggshell formation in 764 

squamates may reveal more about the evolutionary history of the eggshell in amniotes.  765 
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 Parsimony would suggest that all oviparous amniotes shared an ancestral process of 766 

eggshell formation. In Archelosaurs, the process of eggshell formation relies on mammillary 767 

knobs and upward growth of calcite, as described above. In Lepidosaur eggshells, which have 768 

substantially less calcite growth, calcium is deposited on the surface of the eggshell membrane 769 

and, in the case of gekkonids and the tuatara, crystal growth proceeds inward toward the center 770 

(Choi et al., 2018). The strikingly divergent structure and directionality of eggshell formation 771 

between Archelosauria and Lepidosauria suggests that the dissimilar processes of eggshell 772 

formation are a result of genetic drift (e.g. Schiffman & Ralph, 2022), selection for specific 773 

eggshell traits, or, in the case of an early origin of viviparity in Amniotes (Jiang et al., 2023) 774 

and/or Lepidosaurs (Pyron & Burbrink, 2014), eggshells are a derived convergent trait.  775 

Hypothetically, if a version of the avian eggshell was the microstructure for basal 776 

Lepidosaurs, loss of mammillary knobs and their basal caps should have prevented calcium 777 

deposition since mammillary knobs are the site at which calcium carbonate spontaneously 778 

precipitates into calcite in Archelosaurs. Given that embryonic signaling supports at least two 779 

main differences between oviparous and viviparous squamates—the timing of calcium secretions 780 

and the length of embryonic retention (Griffith et al., 2015, 2017; Stewart & Ecay, 2010)—the 781 

loss of mammillary knobs/basal caps may have supported an early origin of viviparity in 782 

squamates. It would have theoretically facilitated 1) an early loss of the eggshell, 2) enhanced 783 

contact between maternal and embryonic tissues and 3) enhanced signaling from the embryo to 784 

support both altered timing of calcium secretions and hormonal signaling for extended 785 

embryonic retention. This potential mechanism for an early origin of viviparity in squamates is 786 

proposed here, for the first time, as the basal cap hypothesis. When mammillary knobs originated 787 

is of paramount importance to the basal cap hypothesis, and inferences that can be gained from 788 
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applying it to the evolution of oviparity and viviparity in amniotes.  If a version of the avian 789 

eggshell was the ancestral microstructure of oviparous amniotes, the loss of basal caps could 790 

result in a rapid loss of the eggshell and thus a relatively fast transition to viviparity or extended 791 

embryonic retention.  792 

Extending to the ancestral state of amniotes (e.g. Jiang et al., 2023; Laurin, 2005; Romero, 793 

1957), absence of functional “mammillan” with P-FCD in squamates and mammals would be 794 

consistent with a derived state of calcified eggshells in Archelosaurs. Absence of functional 795 

“mammillan” with P-FCD exclusively in Lepidosaurs would be consistent with the basal cap 796 

hypothesis. Presence of functional “mammillan” with P-FCD across Amniota would be 797 

consistent with the conventional understanding that the amniote egg evolved to prevent 798 

desiccation and enable gas exchange following oviposition of eggs on land (Romero, 1957). 799 

Overall, identifying the evolutionary trajectories of the biosynthetic pathway of “mammillan” 800 

across amniotes is likely to create a better picture of the evolution of the amniote egg.  801 

New recommendations for estimating ancestral microstructure of amniote eggshells have 802 

recently been put forth, which abandons the traditional classification of hard/soft/semi-rigid 803 

shells (Legendre et al., 2022). Including the structure of eggshell membranes in viviparous 804 

squamates (e.g. Corso et al., 2000) would also improve phylogenetic reconstructions of the 805 

amniote eggshell. 806 

Several pieces of biological evidence lend themselves to an early origin of viviparity in 807 

Lepidosaurs and the basal cap hypothesis including—the lack of homology between the semi-808 

rigid shells of testudines and Lepidosaurs (Legendre et al., 2022), the later stage of embryonic 809 

development when eggs are commonly oviposited in squamates (Blackburn, 1995), and the more 810 

predominant reliance on yolk calcium rather than eggshell calcium in squamates compared to 811 
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Archelosaurs (Packard, 1994; Stewart & Ecay 2010). Viviparity in the most recent common 812 

ancestor of Lepidosaurs may provide clear evolutionary insights on these phenomena.  813 

Other features of eggshells are also worth consideration. In chickens, ovotransferrin is 814 

present in the eggshell membrane and basal cap layer (Gautron, Hincke, Panhéleux et al., 2001). 815 

Ovotransferrin promotes the development of elongated crystals (Gautron, Hincke, Panhéleux et 816 

al., 2001). The resulting shell matrix is made up of the crystal layer and cuticle (Hamilton, 1986). 817 

On the inner portion of the avian eggshell, it is unclear what prevents growing crystalized cones 818 

from extending into the inner membrane or the albumen. Collagen type X has been implicated 819 

(Arias et al., 1993, 1997; Hincke et al., 2012). The role of collagen type X in creating a boundary 820 

that prevents calcite from passing through the eggshell membrane could inform squamate 821 

eggshells deposition (as discussed, they deposit calcium only on the outer surface, or crystals 822 

grow inward). The only non-avian eggshell matrix protein, pelovaterin, was identified in the soft-823 

shell turtle (Lakshminarayanan et al., 2005).  824 

Over 500 proteins are found in the chicken eggshell matrix (Mann, Maček, & Olsen, 2006; 825 

Mikšík et al., 2007, 2010). Ovocleidin-116 (OC-116), ovocalyxin-36 (OCX-36 or BPIFB4), 826 

ovocalyxin-21 (OCX-21), and ovocleidin-17 (OC-17) are important for avian eggshell formation 827 

(Hernández-Hernández, Gomez-Morales et al., 2008; Jonchère et al., 2010; Tian et al., 2010). 828 

OC-116, OC-36, OCX-21, and OC-17 are some of the most differentially expressed genes during 829 

eggshell calcification in chickens (Gautron et al., 2007; Hincke et al., 1999, 2012; Jonchère et al., 830 

2010). Ovocalyxin-21 may serve as a chaperone protein along with the protein endoplasmin 831 

(ENPL) to facilitate proper folding of the avian eggshell matrix (Jonchère et al., 2010). In birds, 832 

OC-17 is concentrated in the inner mammillary cone layer, it interacts strongly with ACC, and it 833 

is implicated in early stages of biomineralization of the eggshell (Gautron et al., 2021).   834 
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Originally considered avian-specific, several homologs of avian eggshell matrix proteins 835 

have now been identified in non-avian reptiles and mammals (Le Roy et al., 2021). A recent 836 

study found a significantly reduced number of intact avian eggshell matrix proteins in viviparous 837 

squamates compared to oviparous squamates, a pattern that was especially apparent in snakes 838 

(Xie et al., 2022). This study also found that OC-17 was only absent in viviparous squamates but 839 

was always present in the oviparous species in the dataset (Xie et al., 2022). Due to this, and the 840 

central role of OC-17 in avian eggshell formation in birds, they ascribe losing intact OC17 with 841 

the prevention of reversals back to oviparity (Xie et al., 2022). However, given that OC-17 is 842 

implicated in initiation of mineralization in the mammillary cone layer, which is absent in 843 

squamates, the necessity of OC-17 for squamates eggshell formation requires further 844 

investigation. Other genes, like osteopontin (OPN or SPP1), also play a central role in 845 

biomineralization of the avian eggshell and should be investigated in squamates. 846 

OCX-36 and other bactericidal/permeability-increasing (BPI) family B proteins (also called 847 

LPLUNCs) are now thought to have a common origin in vertebrates with multiple duplication 848 

events (Gautron et al., 2007; Tian et al., 2010). Orthologs of OCX-36 are found in Archelosauria 849 

and Monotremata (Le Roy et al., 2021). In birds, OCX-36 plays a role in innate immune 850 

responses and is found in high concentrations in the inner eggshell membrane (Gautron et al., 851 

2007, 2011; Tian et al., 2010). 852 

OC-116 is homologous to mammalian MEPE, which plays a role in bone and teeth 853 

mineralization (Bardet et al., 2010a, 2010b). In birds, OC-116 influences shell thickness, elastic 854 

modulus, and egg shape (Le Roy et al., 2021). OC-116 was identified in a crocodile, Crocodylus 855 

siamensis, proteome (Le Roy et al., 2021; Mikšík et al., 2018). Synteny analysis across seven 856 

turtle species and platypus (Ornithorhynchus anatinus) revealed absence of MEPE/OC116 (Le 857 
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Roy et al., 2021). Other genes and lncRNAS are purported to be important for the quality of 858 

eggshell formation in hens—FGF14, COL25A1, GPX8, and several members of the solute 859 

carrier protein (SLC) gene family (Yang et al., 2020). Research into lncRNAs activity in 860 

squamate reproductive tissues during embryonic development represents another valuable track 861 

for research. 862 

Various evolutionary genomics studies have revealed squamate-specific candidates for shell 863 

formation (e.g. Recknagel et al., 2021a; Gao et al., 2020). Some of these candidates span the 864 

major clades of amniotes. Seven of the genes expressed during eggshell gland development in 865 

Phrynocephalus przewalskii —HYPOU1, KCNMA1, P4HB, PRDX4, PTN, RRBP1 and 866 

TRAM1—are purported to be important for eggshell calcification in chickens (Brionne et al., 867 

2014).  Given this overlap across species that diverged over 300 million years ago (Shen et al., 868 

2011), these are excellent candidates for further exploration.  869 

A functional genomics study harnessed hybridizations of oviparous and viviparous 870 

individuals of Zootoca vivipara to reveal 17 SNPs and 38 genes associated with eggshell traits 871 

(Recknagel et al., 2021a). These genes enriched terms related to cell communication and the 872 

immune system, while differentially expressed gene during gravidity enriched pathways for 873 

transforming growth factor (Recknagel et al., 2021a). The three loci with the strongest 874 

association with eggshell traits mapped closely to LGMN, LYPLA1, and CRTC1 (Recknagel et 875 

al., 2021a). The association of these genes with eggshell traits is particularly interesting. LGMN, 876 

for example, is involved with the cadherin pathway. Cadherins have an established role in 877 

squamate reproduction. In squamates, previous literature discusses how cadherins influence 878 

embryonic attachment in viviparous taxa (Wu et al., 2011). LGMN is also differentially 879 

expressed across many viviparous squamates and mammals (Recknagel et al., 2021a). Thus, 880 
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LGMN, appears to support both oviparous and viviparous gestation in different ways. There are a 881 

number of ways to approach exploring how LGMN may support both maternal-fetal 882 

interconnectivity (viviparous individuals) and eggshell formation (oviparous individuals). Cell-883 

to-cell communication analysis using single cell data on uteruses of a reproductively bimodal 884 

species would enable researchers to identify different interaction networks of LGMN and 885 

associated cells in oviparous vs viviparous individuals. 886 

During gravidity in Saiphos equalis two GO terms associated with calcium homeostasis are 887 

enriched by the set of upregulated genes (Foster et al., 2020). However, most of these genes are 888 

associated with regular cellular responses to calcium and even those associated with calcium 889 

transport are upregulated in both early and late stages of gravidity (Foster et al., 2020). Their role 890 

in eggshell formation in this uniquely labile species is therefore ambiguous.  891 

In oviparous individuals of another reproductively bimodal skink, Lerista bougainvillii, only 892 

two genes are significantly differentially expressed in the gravid uterine tissue compared to non-893 

gravid uterine tissue (Griffith et al., 2016). No genes are differentially expressed in the gravid 894 

uterine tissue of the oviparous garden skink, Lampropholis guichenoti, compared to non-gravid 895 

uterine tissue (Griffith et al., 2016). The genes involved in the shelling process in these species 896 

may not involve changes in expression from the non-gravid state. The dissimilarity in uterine 897 

gene expression profiles across lizards during gravidity suggests there may be multiple ways 898 

oviparous squamates shell their eggs. Given the variation already observed, the eggshell 899 

deposition in squamates should be considered in a phylogenetic context and under the different 900 

evolutionary history inferred by ancestral state reconstructions (Harrington & Reeder, 2017; 901 

Pyron & Burbrink, 2014). Supplementary table 1 compares candidate genes associated with 902 

eggshell formation and shell gland development in squamates to that of birds.  903 
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 904 

(4) Pleiotropy of genes and proteins involved with eggshell formation 905 

Substantial pleiotropy of genes involved with eggshell formation would imply that regardless 906 

of parity mode, taxa have innately conserved toolkits that can be readily exploited to form an 907 

eggshell for oviparous gestation. In addition to the candidate genes associated with both 908 

gestation length and eggshell traits in Zootoca vivipara (Reckagel et al., 2021a), several genes 909 

associated with eggshell deposition have pleiotropic effects within species or have different 910 

effects in oviparous vs. viviparous amniotes. Osteopontin (SPP1 or OPN) is found in bone and 911 

kidneys, and transports calcium to other tissues in the body (Pines et al., 1995). It plays an 912 

important role in calcium carbonate biomineralization of the avian eggshell (Gautron et al., 913 

2021). It is highly expressed in the chicken uterus during calcification (Jonchère et al., 2010) but 914 

supports pregnancy recognition and implantation in sheep (Bazer et al., 2011). Improper 915 

functioning of SPP1 in the uterus leads to cracked and abnormal shells in birds (Arazi et al., 916 

2009; Hincke et al., 2008).  917 

When expressed in the uterus, some bone morphogenic protein-coding genes (BMPs) aid 918 

eggshell calcification (Jonchère et al., 2010). BMPs are part of the TGF- superfamily and are 919 

involved with the formation of new cartilage and bone, and with biomineralization in corals and 920 

mollusks (Canalis et al., 2003; Lelong et al., 2000; Zoccola et al., 2009). Chordin (CHRD) is an 921 

antagonist of the BMP pathway. BMP-binding endothelial regulatory protein (BMPER) and 922 

CHRD are expressed in the chicken uterus during the stage of eggshell calcification (Jonchère et 923 

al. 2010). Regulation of BMPs by CHRD is essential for early embryogenesis and adult 924 

homoeostasis. 925 
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BMPER and seven BMPs are expressed during gestation in Chalcides ocellatus, a viviparous 926 

skink (Brandley et al., 2012). Most of these are upregulated (Brandley et al. 2012). BMP genes 927 

are expressed during both gravidity and non-gravidity in oviparous Lerista bougainvillii and 928 

Lampropholis guichenoti (Griffith et al., 2016). BMP2 is upregulated in oviparous late gestation 929 

compared to viviparous late gestation in the reproductively bimodal lizard, Saiphos equalis 930 

(Foster et al., 2020). 931 

Differential expression of BMPR1B is associated with differences in eggshell quality in 932 

chickens (Yang et al., 2020). Another study associated stage-specific high-expression of 933 

BMPR1B with the stage corresponding to extended embryonic retention and placentation in 934 

Phrynocephalus vlangalii (Gao et al., 2019). They identified a co-expression network of highly 935 

expressed genes, including BMPR1B, that they associated with placentation (Gao et al., 2019). 936 

BMPR1B also reaches significant levels of differential expression in uterine tissues of other 937 

gestating viviparous lizards, Chalcides ocellatus and Pseudemoia entrecasteauxii, compared to 938 

non-gestational uterine tissue (Brandley et al., 2012; Griffith et al., 2016).  Receptors for BMPs 939 

are also expressed in the uterus during gestation in other viviparous lizards, Phrynocephalus 940 

vlangalii and Pseudemoia entrecasteauxii (Gao et al., 2019; Griffith et al., 2016). Perhaps 941 

unsurprisingly, BMPR1B is also differentially expressed in the uterus of viviparous Zootoca 942 

vivipara compared to oviparous individuals during gestation.  943 

The potential role of these genes in squamate eggshell formation remains unclear. BMPs 944 

influence on dorsal-ventral axis patterning during early embryogenesis and growth of skeletal 945 

structures in post-natal tissues (Medeiros & Crump, 2012). It may be difficult to disentangle their 946 

roles in embryonic development, placental development, and eggshell deposition. Future 947 

research on them may inform scientific understanding of parity mode evolution. 948 
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SLIT genes are purported to be involved with folding the eggshell matrix in chickens 949 

(Jonchère et al., 2010). The SLIT2 gene functions across birds and mammals in diverse organs, 950 

and encodes a protein that provides a structural framework for protein-protein interactions 951 

(Jonchère et al., 2010; Marillat et al., 2002). In a functional genomics study, SLIT2 was 952 

identified as an important gene for eggshell traits in Zootoca vivipara (Recknagel et al., 2021a). 953 

SLIT2 is among the 50 most downregulated genes in the uterus during pregnancy in the 954 

viviparous African ocellated skink, Chalcides ocellatus, compared to non-pregnancy (Brandley 955 

et al., 2012). However, in the uterus of the yolk-sac placenta in the viviparous skink, Pseudemoia 956 

entrecasteauxii, SLIT2 is upregulated compared to non-reproductive uterine tissue (Griffith et al., 957 

2016). SLIT3 is differentially expressed during the stage of placentation in the viviparous agama 958 

lizard, Phrynocephalus vlangalii (Gao et al., 2019). SLIT genes also play a role in axonal 959 

pathfinding and neuronal migration in rats (Marillat et al., 2002). SLIT2 was associated with 960 

reproduction in humans (Chen, Chu et al., 2015).  961 

Podocalyxin (PODXL) is a sialoprotein associated with eggshell calcification in chickens 962 

(Jonchère et al., 2010). In the viviparous Qinghai toad-headed agama lizard, Phrynocephalus 963 

vlangalii, a weighted gene correlation network analysis associated PODXL with uterine 964 

structural changes (Gao et al., 2019). The gene may play a role in placentation in these species 965 

given that it was also differentially expressed in the uterus during the stage of placentation (Gao 966 

et al., 2019). Interestingly, PODXL is downregulated in the uterus of the yolk-sac placenta in 967 

another viviparous skink, Pseudemoia entrecasteauxii (Griffith et al., 2016). Based on its role in 968 

chickens and P. vlangalii, PODXL is a good candidate for further research on the molecular 969 

evolution of eggshell formation and placentation in squamates.  970 

 971 
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(5) Eggshell formation termination 972 

When eggshell formation is terminated, the egg is still bathed in the supersaturated 973 

calcium and bicarbonate ion fluid (Hincke et al., 2012). Some component(s) of the terminal 974 

uterine fluid may prevent precipitation of calcium carbonate (Gautron, Hincke & Nys, 1997), 975 

such as phosphate anions (Lin & Singer, 2005). The presence of phosphorous in the superficial 976 

layers of the chicken shell suggest it may be a factor preventing the deposition of calcite crystals 977 

in the terminal stage. Additionally, the high concentration of OCX-32 in the outer eggshell and 978 

cuticle, suggest that the gene may inhibit proteinaceous crystal growth in the terminal stage of 979 

eggshell calcification (Gautron, Hincke, Mann et al., 2001). It is informative to viviparous 980 

reproduction and consistent with the basal cap hypothesis that exposure to precursors of the 981 

eggshell does not necessitate eggshell deposition. The influence of phosphate anions and OCX-982 

32 on inhibition of calcium carbonate precipitation on the eggshell membrane of viviparous 983 

squamate embryos has not been examined to my knowledge.  984 

 985 

(6) Rotating the egg for eggshell formation 986 

Oviparous amniotes rotate the egg for calcium formation and viviparous mammals rotate the 987 

embryos for parturition. One hurdle to reversing back to oviparity may be re-evolving rotation of 988 

the egg for shell formation early in gravidity (Griffith et al., 2015). Given the complex 989 

musculature of the uterus across taxa, that allows for multidirectional force for parturition and 990 

eggshell formation, it is difficult to determine the degree of difficulty for re-evolving appropriate 991 

timing of egg-rotation. Cadherins and hormonal signaling support embryonic attachment (Wu et 992 

al., 2011; Biazik et al., 2012), which can prevent rotation of the egg. Oviparous taxa lack 993 

embryonic attachment, enabling the uterus to rotate the egg for eggshell formation. This rotation 994 
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does not happen until later in gestation for eutherian mammals when, for example, the embryo 995 

detaches and cadherins become less concentrated (Wu et al., 2011). Perhaps a candidate gene for 996 

studying this is, a cadherin CDH5, the only gene that is differentially expressed in all viviparous 997 

squamates studied thus far studied (Recknagel et al., 2021a). Genes that enrich the GO term for 998 

“voltage-gated calcium channel activity” are also useful candidates for investigating uterine 999 

rotation associated with eggshell formation because voltage-gated calcium channels effect the 1000 

action potential of cells and can cause muscle contractions. 1001 

 1002 

(7) Discussion & future directions—eggshell formation and parity mode evolution 1003 

The process of eggshell formation is more resolved in birds compared to non-avian reptiles 1004 

and monotremes (Choi et al., 2018; Frankenberg & Renfree 2018). I described some overlaps 1005 

gleaned from the literature which prove as curious candidates for further research 1006 

(Supplementary Table 1). Of particular interest are avian eggshell matrix proteins (Alföldi et al., 1007 

2011; Le Roy et al., 2021; Tian et al., 2010; Xie et al., 2022), genes with biomineralizations 1008 

functions, candidate genes associated with eggshell traits in Zootoca vivipara (Recknagel et al., 1009 

2021a), and the homologs for avian eggshell matrix proteins identified in the Anolis carolinensis 1010 

genome (Alföldi et al., 2011; Tian et al., 2010).Additionally, genes purported to be important for 1011 

eggshell calcification in chickens associated with eggshell gland formation in an oviparous 1012 

lizard, Phrynocephalus przewalskii, are relevant—HYPOU1, KCNMA1, P4HB, PRDX4, PTN, 1013 

RRBP1 and TRAM1 (Brionne et al., 2014; Gao et al., 2019). Overlaps between the genes 1014 

associated with gestation length and eggshell traits in Zootoca vivipara (Recknagel et al., 2021a) 1015 

hint at genes that could potentially evolve to innately effect multiple traits relevant to parity 1016 

mode transitions. The basal cap hypothesis also offers a simple evolutionary mechanism to 1017 
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investigate the evolutionary history of amniote parity mode evolution (see section III.3). 1018 

Alternatives to the basal cap hypothesis are that dissimilar eggshells and eggshell deposition 1019 

processes evolved through selective pressure, genetic drift, or both. Fortunately, the basal cap 1020 

hypothesis can be utilized to ascertain the likelihood of this.  1021 

 1022 

IV. Placentation & Transport of Embryonic Water, Gas, and Nutrients 1023 

 1024 

The evolutionary pressures on fluid allocation, gas exchange and nutrient transport should 1025 

differ between oviparous and viviparous taxa because their sources of all or some of these 1026 

resources differ (Blackburn, 1992; Bonnet et al., 2001; Bonnet, Naulleau & Shine, 2017; van 1027 

Dyke et al., 2014). In viviparity, maternal gas and water are accessed through the chorioallantois, 1028 

which is especially important in the latter half of development (van Dyke et al., 2014; Carter, 1029 

2012). Nutrients can be available from the yolk, maternal transfer, or both yolk and maternal 1030 

transfer.  1031 

While viviparity is associated with shared patterns of uterine gene expression during amniote 1032 

gestation (Recknagel et al., 2021a), the same does not occur in viviparous amniote placentas 1033 

(Foster et al., 2022). Instead, different genes that serve similar functions are recruited to the 1034 

placenta across independent origins of viviparity (Foster et al., 2022). Additionally, where other 1035 

amniotes can rely on the albumen for fluid allocation, squamates lack an albumen (Blackburn & 1036 

Stewart, 2021). The eggshells of various squamates supports uptake of water from the 1037 

environment (Blackburn & Stewart, 2021). The evolutionary implications of this have not been 1038 

documented to my knowledge.  1039 

 1040 
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(1) Anatomy & methods of water, gas & nutrient provisioning 1041 

The embryonic membranes regulate embryonic fluid transport, nutrient supply, respiration, 1042 

immunity, and waste (Brace, 1997; Burton & Tullett, 1985; Ferner & Mess, 2011; Packard & 1043 

Packard, 1980). Fluids are important for the developing embryo because they prevent desiccation 1044 

and compression (Ferner & Mess, 2011; Packard & Packard, 1980). Over-abundance or under 1045 

abundance of embryonic sac fluids leads to reproductive failure (Chamberlain et al., 1984; 1046 

Fedakâr et al., 2016; Hadi, Hodson & Strickland, 1994; Mercer et al., 1984). Water is the 1047 

predominant resource provisioned from the mother in most viviparous squamates (Lourdais et 1048 

al., 2015).  1049 

Oxygen flux in embryonic mammals is largely determined by oxygen-diffusing capacity of 1050 

the placenta, the rates of blood flow in the umbilical and uterine arteries, and the oxygen 1051 

capacities and affinities of fetal and maternal blood (Carter, 2009). Reptilian and mammalian 1052 

blood vessels differ in basic characteristics such as capillary density, capillary surface, and 1053 

oxygen diffusion gradients (Pough, 1980). Oviparous taxa regulate gas exchange through pores 1054 

in their eggshells.  1055 

Patterns of embryonic nutrient exchange can be broadly categorized into lecithotrophy, 1056 

obtaining nutrients from the yolk, and placentrophy or matrotrophy, obtaining nutrients from the 1057 

mother. Taxa belonging to Archelosauridae are lecithotrophic. The ancestral state of mammals 1058 

was most likely oviparous matrotrophy that later evolved into viviparous matrotrophy in therians 1059 

(Blackburn, 2005). The ancestral state of reptiles was likely lecithotrophy (Blackburn, 2005). 1060 

Most viviparous squamates are lecithotrophic, some are lecithotrophic and matrotrophic, and a 1061 

few have specializations for substantial matrotrophy (e.g. Blackburn, 2015a, Blackburn, 1985b; 1062 

Stewart & Thompson, 1993; Thompson, Stewart et al., 1999; van Dyke et al., 2014). Even in 1063 
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lecithotrophic viviparous squamates some degree of organic or inorganic nutrients pass through 1064 

the chorioallantoic placenta (Blackburn, 2005; Swain & Jones, 1997, 2000; Stewart & Ecay, 1065 

2010; Thompson, Stewart et al., 1999; Thompson & Speake, 2002). Reversals may be most 1066 

unlikely in lineages that have specialized placentas for substantial nutrient exchange because 1067 

they would need to re-evolve lecithotrophy. Highly matrotrophic squamates are extremely rare 1068 

(Blackburn, 2015a).  1069 

 1070 

(2) Evolutionary history of yolk-sac formation and yolk processing 1071 

Vitellogenesis is the process of yolk formation in the oocyte, providing the embryo with a 1072 

valuable source of nutrients, primarily through the accumulation of precursor proteins to yolk, 1073 

vitellogenins. Vitellogenin is produced in the liver, called hepatic vitellogenesis, and transported 1074 

to the maturing ovum (Ho, 1987). Vitellogenins were lost in all mammals except monotremes 1075 

(Brawand, Wahli & Kaessmann, 2008). They are a primary source of nutrition for other 1076 

amniotes. Functionally similar to vitellogenin, caseins have persisted in all mammalian milks 1077 

(Brawand et al., 2008). Active functioning of the yolk sac is restricted to the first trimester in 1078 

placental mammals, and it is postulated to provide nutrients to the embryo (Kuzima et al., 2023). 1079 

The detection of glycodelin in the yolk sac epithelium also supports this (Burton et al., 2002). In 1080 

the yolk-sac of bats, dogs, and non-human primates the mesoderm derived layer is absorptive 1081 

and may transfer substances from the exocoelomic cavity where the yolk sac is located (Enders 1082 

et al., 1976; Freyer & Renfree, 2009; King & Wilson, 1983; Lee et al., 1983).  1083 

The morphology of the yolk-sac and process of vitellogenesis differs between birds and non-1084 

avian reptiles. In birds, during the process of meroblastic cleavage, the zygote’s cells divide 1085 

while the yolk component does not. The yolk forms a large, fluid, non-cellularized mass 1086 
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surrounded by the extraembryonic yolk sac. The formation of the yolk-sac placenta in birds has 1087 

the following pattern—first the bilaminar omphalopleure forms and then trilaminar 1088 

omphalopleure; blood vessels move into folds of the extraembryonic endoderm, becoming 1089 

stratified epithelium; the folds carrying the blood vessels reach the peripheral regions of the yolk 1090 

only and the center of the yolk mass remains uncellularized (Starck, 2021). Intensive 1091 

development of hemopoietic tissue surrounding the blood vessels during most of embryonic 1092 

development, thus far, appears to be unique to birds (Starck, 2021). Compared to non-avian 1093 

sauropsids, the unique pattern of yolk processing in birds facilitates faster embryonic 1094 

development (Blackburn, 2021). 1095 

The yolk sac characteristic of non-avian reptilian eggs serves as a model for the transition 1096 

between the egg of anamniotes and amniotes (Blackburn, 2020). A series of recent papers, 1097 

covering species of snakes, lizards, crocodiles, and turtles, indicate that these taxa utilize similar 1098 

developmental pathways of yolk-sac formation and yolk processing that differs from birds 1099 

(Blackburn, 2020, 2021; Blackburn et al., 2019; Elinson et al., 2014; Elinson & Stewart 2014; 1100 

Stinnett et al., 2011). Across these taxa, a bilaminar/trilaminar omphalopleure overgrows the 1101 

yolk mass, and the yolk mass gets invaded by proliferating endodermal cells that phagocytose 1102 

the yolk material. These cells form clumps, progressively filling the yolk mass. Small blood 1103 

vessels derived from yolk sac vasculature invade the yolk sac cavity and the endodermal cells 1104 

arrange in monolayers around these vessels, forming “spaghetti bands” (Blackburn, 2021). The 1105 

yolk sac of Pantherophis guttatus is one suitable model for studying the transition of the yolk-1106 

sac from anamniotes to amniotes (Elinson & Stewart, 2014; Elinson et al., 2014).  1107 

A major difference between non-avian reptilian yolk-sac formation is the morphology and 1108 

extent of vascularization and cellularization in the yolk sac cavity (Starck, 2021). Birds have a 1109 
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yolk-sac with absorptive endodermal lining that digests nutrients and send them into blood 1110 

circulation (Starck, 2021) whereas snakes, lizards, turtles, and crocodilians have a yolk sac that 1111 

becomes invaded by endodermal cells that proliferate and phagocytose yolk material (Blackburn, 1112 

2021). In these taxa, yolk material becomes cellularized, digested, and transported by vitelline 1113 

vessels to the developing embryo (Blackburn, 2021). Factors involved with cellularization of the 1114 

yolk-sac are proposed to include cell cycle regulators and structural proteins (Elinson et al., 1115 

2014). Generation of these cells are suspected to be reliant on processes of angiogenesis and are 1116 

likely transcriptionally active (Elinson et al., 2014). Few transcriptomic profiles of yolk-sac 1117 

placentas in reptiles have been documented to my knowledge (Griffith et al., 2016). Significant 1118 

overlaps in the yolk-sac transcriptomes of human, mice, and chicken—including apoliproteins 1119 

and SLC transporters—however, suggest functional conservation (Cindrova-Davies et al., 2017).  1120 

As discussed in a previous section, progesterone inhibits myometrial contractility, but it also 1121 

inhibits estrogen-induced hepatic vitellogenin synthesis (Custodia-Lora, Novillo, & Callard, 1122 

2004; Callard et al., 1992). Variable progesterone concentrations in circulation throughout 1123 

gestation in viviparous squamates may reflect a trade-off to allow estrogen expression to support 1124 

hepatic vitellogenin synthesis during embryonic development, thus supporting nutrient 1125 

provisioning during the lengthened embryonic retention. Although hepatic vitellogenesis usually 1126 

ceases during gestation, vitellogenin synthesis and mother-to-embryo transfer was detected in 1127 

one viviparous fish, Xenotoca eiseni, during gestation (Iida et al., 2019). Future research should 1128 

consider the timing of vitellogenin synthesis throughout the reproductive cycle in gestating and 1129 

non-gestating viviparous squamates to investigate this further.  1130 

 1131 

(3) Evolutionary history of placentrophy in mammals & squamates 1132 
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Traditionally, it was thought that placentrophy evolved after viviparity in squamates 1133 

(Packard, Tracy, & Roth, 1977; Shine & Bull, 1979). Further research demonstrated that 1134 

placentrophy and viviparity evolved simultaneously (incipient matrotrophy) in mammals and 1135 

may have in squamates (Blackburn, 1985, 1992, 2005, 2006; Stewart & Ecay, 2010). The 1136 

incipient matrotrophy model relies on evidence that 1) uterine provisioning of nutrients predates 1137 

the origin of viviparity (Blackburn 1985, 1992, 2006), 2) uterine and embryonic tissues have a 1138 

close anatomical and physiological association in viviparous taxa and 3) some degree of 1139 

placental transfer of organic or inorganic molecules occurs in viviparous taxa (Stewart & Ecay, 1140 

2010). In squamates, the potential for both incipient matrotrophy and evolution of placentrophy 1141 

after viviparity is supported (Stewart & Ecay, 2010). Facultative placental nutrient provisioning 1142 

and incipient matrotrophy may have driven the evolution of squamates with substantial 1143 

matrotrophic nutrient provisioning (Stewart, 2020; Swain & Jones, 2000).  1144 

Placentation and implantation are not homologous in mammals compared to squamates 1145 

(Griffith, van Dyke & Thompson, 2013). Several placental specializations for gas and nutrient 1146 

exchange are unique to mammals including erosion of the uterine mucosa, extensively invasive 1147 

implantation, hemochorial contact, retention of a vascularized choriovitelline membrane, and 1148 

countercurrent patterns of blood flow (Blackburn, 2005). This enables extensive exchange of 1149 

nutrients in addition to water and gas. The vast majority of viviparous squamates have the most 1150 

superficial type of chorioallantoic placenta called epitheliochorial placenta (Blackburn, 1993). 1151 

Nutrient provisioning through placentrophy is obligate for embryonic development in only 1152 

five lineages of squamates, all of which are scincid lizards (Blackburn, 2000; Flemming & 1153 

Blackburn, 2003; Ramírez-Pinilla et al., 2011; van Dyke et al., 2014). Pseudemoia 1154 

pagenstecheri, a lizard with a highly specialized placenta, out-performs lecithotrophic oviparous 1155 
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close relatives in the relative amount of nutrients it transfers to the embryo (Stewart et al., 2009). 1156 

Pseudemoia entrecasteauxii is a moderately matrotrophic viviparous skink, with roughly half of 1157 

embryonic nutrient uptake from the yolk and half through a specialized cyto-epitheliochorial 1158 

placenta (Adams et al., 2005; Speake et al., 2004; Stewart & Thompson, 1993, 2009).   1159 

Specializations of the chorioallantoic placenta for nutrient provisioning in some squamates 1160 

include elaborate specializations for uterine secretion and absorption, including placentomes, 1161 

chorionic areolae, hypertrophied uterine mucosa, and chorionic epithelia modified for absorption 1162 

(Blackburn, 2005). In squamates, specializations for gas exchange across the chorioallantoic 1163 

placenta include decreased diffusion distance between maternal and fetal capillaries, uterine 1164 

vascularity, shell membrane deterioration, and modifications of both fetal and maternal blood 1165 

properties (Blackburn, 1998, 2005; Blackburn & Lorenz, 2003; Blackburn & Vitt, 2002). 1166 

Mammalian placenta-specific genes have deep origins in vertebrates (Rawn & Cross, 2008). 1167 

Placentation to support viviparity likely employs genes that are ancestral to the chorioallantois. 1168 

However, one study that looked at placentation and gene expression across a small sample of 1169 

divergent amniotes found only one gene with a placentrophy-specific pattern of gene expression, 1170 

DIO3 (Griffith, Brandley et al., 2017). In mammals, DIO3 is an imprinted gene and 1171 

preferentially paternally expressed. The authors suggest that the gene may increase offspring 1172 

resource uptake during pregnancy in the horse and a viviparous lizard, Pseudemoia 1173 

entrecasteauxii, where it is recruited to the placenta (Griffith, Brandley et al., 2017).  1174 

 1175 

(4) Genes involved with embryonic water, gas, and nutrient transport 1176 

Water transport in animals is regulated by a family of molecular water channels called 1177 

aquaporins (AQs or AQPs) (Borgnia et al., 1999). In humans, AQP1, AQP3, AQP4, AQP8 and 1178 
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AQP9 are found in the placenta but further research is needed to understand how these influence 1179 

water fluxes between maternal and fetal tissues (Damiano, 2011). Transcriptomic analysis on 1180 

uterine tissue of the gestating, viviparous skink, Chalcides ocellatus, reveal differential 1181 

expression of AQP1, AQP3, AQP5, AQP6, AQP8, AQP9 and AQP11 when compared to non-1182 

gestating uteruses (Brandley et al., 2012). In birds, AQP1 is expressed in the chorioallantoic 1183 

membrane, and it is suggested to influence angiogenesis throughout embryonic development 1184 

(Ribatti et al., 2002). In a viviparous lizard, Pseudemoia entrecasteauxii, AQP8 and AQP9 were 1185 

more highly expressed in the chorioallantoic placenta compared to the yolk-sac placenta (Griffith 1186 

et al., 2016). During gestation in both oviparous and viviparous populations of the reproductively 1187 

bimodal skink, Saiphos equalis, several genes involved with water homeostasis are upregulated 1188 

in the uterus including AQP1, AQP3 and AQP12B (Foster et al., 2020). In uteruses of Saiphos 1189 

equalis, AQP5 and AQP8 are upregulated during oviparous late gestation compared to viviparous 1190 

late gestation. In sheep, AQP3 is differentially expressed during gestation, where it serves a dual 1191 

role of water transport to the embryo and fetal urea export (Johnston et al., 2000). This is similar 1192 

to the function of AQP9 in humans (Damiano, 2011). Immunocytochemistry reveals that AQP1 1193 

and AQP3 are expressed in the uterus of the highly placentrophic South American scincid lizard, 1194 

Mabuya sp. (Wooding et al., 2010). In Zootoca vivipara, AQP9 is upregulated at midgestation 1195 

(Recknagel et al., 2021a).  1196 

Some molecules are implicated in the regulation of aquaporins including insulin (INS), 1197 

human chorionic gonadotropin (HcG), cyclic adenosine monophosphate (cAMP) and cystic 1198 

fibrosis transmembrane conductance regulator (CFTR) (Damiano, 2011). Genes predicted to be 1199 

involved with reproduction in Anolis carolinensis are enriched for the GO term for cAMP-1200 

mediated signaling (Alföldi, Di Palma, et al., 2011). Further comparative research should be 1201 
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done to elucidate the functional differences of aquaporins in oviparous and viviparous amniotes 1202 

and how they relate to the differing conditions under which these embryos develop.   1203 

Genes involved embryonic oxygen transport precede the origin of amniotes. Hemoproteins 1204 

arose in evolutionary history well before they were used for placental oxygen transfer (Hardison 1205 

1998). In mammals, adult (Alpha: HBA; Beta: HBB, HBD) and embryonic hemoglobins (Alpha: 1206 

HBZ, HBA; Beta: HBE, HBG, and HBH) are involved with oxygen transport (Carter, 2012). 1207 

Some of these are unique to eutherian mammals following a series of duplication events (Opazo 1208 

et al., 2008). However, fetal hemoglobins are found in turtles, lizards, and snakes (Pough, 1980). 1209 

HBA, HBB and HBM are all significantly downregulated in the uterine tissue of the viviparous 1210 

African Ocellated Skink, Chalcides ocellatus, during gestation compared to non-gestation 1211 

(Brandley et al., 2012). The oxygen demands of reptile embryos are relatively low until stage 30, 1212 

when most oviparous taxa oviposit (Shine & Thompson, 2006). In viviparous and oviparous 1213 

species with long egg retention, embryonic demand for maternal provision of oxygen and 1214 

removal of CO2 increases at this stage. 1215 

Improper water, gas and nutrient exchange can occur due to poor chorioallantoic blood flow 1216 

(Wootton et al., 1977). Thus, viviparous taxa require greater degrees of vascularization and 1217 

vasodilation to facilitate enhanced requirements for maternal resources compared to oviparous 1218 

taxa. Rather than increasing the size of the placenta, increasingly dense blood vessels can support 1219 

fetal growth without compromising space for embryonic growth as occurs in some pigs (Ford, 1220 

1997; Vonnahme et al., 2002). Embryonic vascularization and vasodilation are dependent on 1221 

signals from the endoderm (Jin et al., 2005; Vokes & Krieg, 2002; Wilt, 1965). In oviparous 1222 

individuals of Saiphos equalis, populations with extended egg retention, there is expansion of the 1223 

uterine vascular bed and thickening of the chorioallantoic tissue that supports increased 1224 
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embryonic growth in the later portion of oviparous gravidity (Parker et al., 2010).  In the 1225 

viviparous scincid lizard, Eulamprus quoyii, angiogenesis, the formation of new blood vessels, 1226 

and expansion of the vessel-dense elliptical area of the uterus is associated with supporting 1227 

increased embryonic oxygen demand (Murphy et al., 2010).  1228 

Several protein-coding genes are known to be involved with angiogenesis, vascularization, 1229 

and vasodilation in utero. One study that examined expression patterns across chickens 1230 

(oviparous), horses (viviparous), two viviparous squamates, and one oviparous squamate found 1231 

that no examined genes for angiogenesis showed a viviparity-specific expression pattern 1232 

(Griffith, Brandley et al., 2017). However, other than the chicken, the only oviparous taxa 1233 

included in this study was a reproductively bimodal skink, Lerista bougainvillii (Griffith, 1234 

Brandley et al., 2017). Alternatively, differential gene expression analyses on oviparous and 1235 

viviparous individuals of Zootoca vivipara, revealed pathways for angiogenesis enriched in 1236 

viviparous female reproductive tissues; and pathways for angiogenesis were enriched across 1237 

genes under divergent selection in oviparous and viviparous Z. vivipara individuals. 1238 

In the uterine tissue of gestating viviparous skinks and rats, several genes for angiogenesis 1239 

are upregulated—EPAS1, HIF1A and VEGFA (Brandley et al., 2012; Whittington et al., 2015, 1240 

2017). Other proteins involved in vascularization and vasodilation in utero include members of 1241 

the vascular endothelial growth factor (VEGF) gene family, VEGF receptors (VEGFRs), 1242 

placental growth factor (PGF) and nitric oxide synthase (NOS) (Blomberg et al., 2010; Chen, 1243 

Wang et al., 2015; Gilbert, 2010; Reynolds et al., 2006; Risau, 1997; Torry et al., 2003; 1244 

Vonnahme et al., 2001). In Saiphos equalis, different homologs of NOS experience different 1245 

patterns of gene expression across the oviparous and viviparous stages of gestation/gravidity 1246 

(Foster et al., 2020). One homolog of NOS is upregulated during oviparous late gestation, and 1247 
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another is upregulated during viviparous late gestation (Foster et al., 2020). Several genes 1248 

involved with angiogenesis and vascular morphogenesis are downregulated in the pre-1249 

implantation uterus of a marsupial, the Fat Tailed Dunnart, Sminthopsis crassicaudata—1250 

ADGRA2, ADGRB2, ANGPTL1, EPHB4, ISM1, PDZRN3, RHOJ, TNMD, and VEGFD 1251 

(Whittington et al., 2018). 1252 

In humans, immune factors are also responsible for increasing embryonic blood supply. 1253 

Embryonic non-classical MHC class I molecule, HLA-G, and uterine natural killer (uNK) cells 1254 

support increased embryonic blood supply (Moffett & Loke, 2006; Rajagopalan et al., 2006). A 1255 

similar pattern of utilizing immune properties to support embryonic blood supply has not been 1256 

yet identified in squamates.  1257 

Lipids are a main energy source for embryos. Lipoprotein lipase (LPL) is an important 1258 

enzyme in lipid transport. LPL is significantly expressed on the syncytiotrophoblasts, specialized 1259 

placental cells, of humans (Lindegaard et al., 2005) and the endometrium of cows (Forde et al., 1260 

2011), and pigs (Ramsay et al., 1991), where it plays a role in lipid mobilization. A viviparous 1261 

lizard, Pseudemoia entrecasteauxii, increases capacity for lipid transport toward the end of 1262 

pregnancy (Griffith, van Dyke & Thompson, 2013). The uterine tissue of the yolk-sac placenta in 1263 

this species had significantly higher expression of LPL than the uterine tissues of the 1264 

chorioallantoic placenta (Griffith, van Dyke & Thompson, 2013), leading the authors to suggest 1265 

that the yolk-sac placenta is the major site of lipid transport. LPL expression was not detected 1266 

during pregnancy in the viviparous skink, Chalcides ocellatus (Blackburn, 1992; Brandley et al., 1267 

2012). Instead, lipid transport may be facilitated by fatty acid binding proteins in this species 1268 

(Chmurzyńska, 2006; Brandley et al., 2012). These are also active on mammalian placenta 1269 

(Haggarty, 2002).  1270 
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Apolipoproteins are also suitable candidates for transport of fatty acids, cholesterol, and 1271 

phospholipids. Five of these (APOA1, APOA2, APOA4, APOE, and APOM) and APOA1BP are 1272 

significantly upregulated in the pregnant uterus of the viviparous skink, Chalcides ocellatus 1273 

(Brandley et al., 2012). APOA1BP is also upregulated in the uterus of the chorioallantoic 1274 

placenta and yolk-sac placenta compared to non-gestational uterine tissues in Pseudemoia 1275 

entrecasteauxii (Griffith et al., 2016). Additionally, upregulation of 136 genes that encode solute 1276 

carrier proteins (SLCs) in the pregnant uterus of Chalcides ocellatus are associated with 1277 

transport of inorganic ions, metals, glucose, amino acids, peptides, fatty acids, and carboxylic 1278 

acids (Brandley et al., 2012). 1279 

Supply of amino acids is required for embryonic development. SLCs have important 1280 

transport functions, including the transport of amino acids, and thus they are considered to be 1281 

important for gestation (Foster et al., 2022). However, a recent study found no overlap in the 1282 

amino acid transporting SLCs upregulated in placentas of viviparous placentrophic vertebrates 1283 

studied, which included eight representatives from Mammalia, Reptilia, and Chondrichthyes 1284 

(Foster et al., 2022). However, SLC38A3 was upregulated in all viviparous species except Rattus 1285 

norvegicus (Foster et al., 2022).  1286 

Cathepsins and phospholipases are important for uterine secretions for embryonic 1287 

development in horses, pigs, sheep, and cattle (Bazer, 1975; Satterfield et al., 2007; Song et al., 1288 

2010). Cathepsins are present in yolk sacs of humans and mice. They function to degrade 1289 

proteins to free amino acids (Cindrova-Davies et al., 2017). Two genes for cathepsin L (CTSL1 1290 

and CTSL2) are upregulated in the uterus during gestation in Chalcides ocellatus (Brandley et al., 1291 

2012). CTSL is also upregulated in the uterus during the pre-implantation phase in the Fat-Tailed 1292 

Dunnart, Sminthopsis crassicaudata (Whittington et al., 2018), and in the uterus of the 1293 
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chorioallantoic placenta and uterus of the yolk sac placenta during gestation in Pseudemoia 1294 

entrecasteauxii (Griffith et al., 2016). 1295 

In viviparous individuals of the reproductively bimodal lizard, Saiphos equalis, many genes 1296 

for cellular adhesion are upregulated during late gestation (Foster et al., 2020). The authors 1297 

postulated that this helps facilitate maternal-fetal signaling and paracellular transport (Foster et 1298 

al., 2020). Gao et al. (2019) identified a set of genes in Phrynocephalus vlangalii that were 1299 

differentially expressed in the uterus during the stage of placentation and these enriched GO 1300 

terms functionally related to the process of placentation. This included an estrogen receptor 1301 

(ESR1) and two growth factor receptors (GHR and IGF1R) (Gao et al., 2019). 1302 

Finally, the proteomes of the ovary and placenta from obligately placentrophic Mabuya 1303 

lizards can further serve as a useful resource for examining nutrient provisioning in squamates 1304 

(Hernández-Díaz et al., 2017). In the placenta they found protein expression involved with 1305 

nutrient metabolism, transport, protein synthesis, and embryonic development (Hernández-Díaz 1306 

et al., 2017).  1307 

 1308 

(5) Uterine glands: adenogenesis, placenta development and histotrophy 1309 

In addition to their role in eggshell deposition in oviparous taxa, uterine glands also secrete 1310 

growth factors and cytokines that support placental development in mammals. In humans, these 1311 

include transforming growth factor- (TGF-), epidermal growth factor (EGF), vascular 1312 

endothelial growth factor (VECG), and leukemia inhibitory factor (LIF) (Hempstock et al., 1313 

2004). In eutherians, TGF- supports placental development by regulating proliferation and 1314 

invasion rates of placental cells lines (Caniggia et al., 2000; Hempstock et al., 2004; Lafontaine 1315 

et al., 2011).  1316 
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Histotrophy (also called histiotrophy) occurs when nutrients are secreted into the uterine 1317 

lumen from vesicles of the columnar epithelial cells of the uterus and taken up by the embryo. 1318 

Histotrophic nutrient provisioning is documented across amniotes including marsupials 1319 

(Whittington et al., 2018), several ungulate taxa (Bazer et al., 2011; Han et al., 2016; Gao et al., 1320 

2009), humans (Burton et al., 2002), and appear to occur in some viviparous squamates (van 1321 

Dyke et al., 2014). In humans, histotrophic nutrient provisioning occurs during the first trimester. 1322 

The intervillous space is filled with fluid containing uterine gland secretions that get 1323 

phagocytosed by the syncytiotrophoblasts and are the initial nutrient source for the fetus (Burton 1324 

et al., 2002). Two of these glycoproteins are epithelial mucin (MUC1) and glycodelin A (GdA) 1325 

(Burton et al., 2002). Interestingly, the MUC15 gene is upregulated during gravidity/gestation in 1326 

the uterus of oviparous and viviparous Saiphos equalis individuals (Foster et al., 2020). This also 1327 

occurs in the chorioallantoic placenta of Pseudemoia entrecasteauxii during gestation (Griffith et 1328 

al., 2016). Several mucins are expressed in the uterus in non-gravid and gravid samples from 1329 

oviparous individuals of Lerista bougainvillii and Lampropholis guichenoti (Griffith et al., 1330 

2016).  1331 

A survey of viviparous squamates with modest to extensive placentrophy revealed 1332 

prevalence of histotrophic nutrient provisioning rather than hemotrophy, transfer of nutrients 1333 

between maternal and fetal blood streams (Blackburn 2015). Embryos of Chalcides chalcides 1334 

have extensive placentrophy that supports substantial maternal nutrient provisioning and 1335 

histotrophy (Blackburn, 2015a).  Histotrophy may lessen parent-offspring conflict and give the 1336 

mother the control over nutrient provisioning compared to hemotrophy (Blackburn, 2015b).  1337 

Chalcides ocellatus has less extensive placentrophy than C. chalcides but the gestating uterus 1338 

still illustrates expression of many genes associated with organic and inorganic nutrient transport 1339 
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(Blackburn, 2015a). Multiple TGF- genes are differentially expressed in the uterus during 1340 

gestation in C. ocellatus, however most these are downregulated compared to non-gestational 1341 

uterine tissue (Murphy et al., 2012). The influence of TGF- on placental development and 1342 

nutrient provisioning in Chalcides spp. remains to be explored to my knowledge. A TGF- 1343 

receptor (TGFBR1) was associated with placental development in Phrynocephalus vlangalii 1344 

(Gao et al., 2019).  1345 

Essential to histotrophy is adenogenesis, the generation of endometrial glands. Adenogenesis 1346 

allows for the secretion of histotrophs. The period of early development during which 1347 

adenogenesis occurs is highly variable among vertebrates but it is required for embryonic 1348 

survival (Gray et al., 2001, 2002; Spencer & Bazer, 2004). Some genes involved with 1349 

adenogenesis in sheep are insulin-like growth factor 1 (IGF-1), IGF-2, PAX2, LHX1 (also known 1350 

as LIM1) and EMX2, genes in the abdominal-B HOXA cluster, members of both Wnt and 1351 

Hedgehog (Hh) gene families (Fazleabas et al., 2004), prolactin (PRL), fibroblast growth factor 7 1352 

(FGF7), FGF10, FGFR2IIIb, hepatocyte growth factor (HGF), a receptor tyrosine kinase (c-1353 

Met), and cadherins (Fazleabas, 2007).  1354 

In the gestating uterus of Chalcides ocellatus, insulin-like growth factor–binding protein 5 1355 

(IGFBP5) is one of the most significantly downregulated genes compared to non-gestational 1356 

uterine tissue (Brandley et al., 2012). IGFBP5 is evolutionarily conserved and multifunctional, 1357 

with an important role in regulating IGF signaling, including that of IGF-1 and IGF-2 (Duan & 1358 

Allard, 2020). Other than adenogenesis in sheep, IGFs serve an important role in the growth of 1359 

fetal and maternal tissues in mammals (Gibson et al., 2001; Kampmann et al., 2019). 1360 

 Genes involved with histotrophic secretion in the marsupial Sminthopsis crassicaudata 1361 

include AP4S1, HYOU1, and SRPRA (Whittington et al., 2018). Nutrient transporters 1362 
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significantly upregulated at this time are APOL6 (cholesterol transport (Baardman et al., 2013)), 1363 

PLA2G10 (hydrolysis of fatty acids during pregnancy (Miele et al., 1987)) and a wealth of SLCs 1364 

(solute carrier proteins for transport of sugar, ions, anions, glucose, fatty acids, calcium and zinc 1365 

(Whittington et al., 2018)). Subsequent research has identified downregulated of HYOU1 at early 1366 

and mid-gestation; and downregulation of SRPRA at mid-gestation in viviparous Zootoca 1367 

vivipara compared to oviparous (Recknagel et al., 2021a). In a reproductively bimodal skink, 1368 

Saiphos equalis, PLA2G10 is upregulated during viviparous late gestation compared to oviparous 1369 

late gestation (Foster et al., 2020). Upregulation of SLCs also occurs in the viviparous skink 1370 

Chalcides ocellatus (Brandley et al., 2012; Van Dyke et al., 2014) and in the uterus during 1371 

pregnancy in the grey short-tailed opossum, Monodelphis domestica (Hansen, Schilkey & Miller, 1372 

2016).  1373 

Uterine glands are also important for secretions of eggshell precursors. I speculate that genes 1374 

involved with adenogenesis of uterine glands may be similarly used to support histotrophic 1375 

nutrient provisioning during transitions to viviparity, but further research is necessary. 1376 

Specialized uterine areolar glands are found in some Mabuya lizards, a genus with oviparous 1377 

species and viviparous species that utilize placentrophy and histotrophy (Corso et al., 1988, 1378 

2000; Jerez & Ramírez-Pinilla, 2001; Ramírez-Pinilla, 2006; Vieira et al., 2007; Visser, 1975). 1379 

Transcriptomic research focused on histotrophic nutrient provisioning, placental development, 1380 

and secretions of eggshell precursors in oviparous and viviparous Mabuya spp. would 1381 

complement literature on the genus.  1382 

 1383 

(6) Discussion & future directions—embryonic nutrients, gas, and water supply  1384 
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Many genes for placental functions in mammals have deep origins in vertebrates (Rawn & 1385 

Cross, 2008). In pairwise comparisons of different viviparous amniotes, there is overlap in 1386 

hormones and proteins (SLC superfamily, insulin-like growth factors, aquaporins and solute 1387 

carrier proteins, etc.) involved in uterine remodeling, placentation, and placental transport. While 1388 

shared genes are recruited to the uterus across viviparous amniotes (Recknagel et al 2021a), there 1389 

are no shared genes recruited to the placenta across viviparous reptiles, mammals, and sharks 1390 

(Foster et al., 2022). Evolutionarily, this suggests higher conservation of the regulatory networks 1391 

associated with uterine responses to viviparity than placental responses to viviparity. The 1392 

relationship of these findings to embryonic nutrient provisioning and the evolution of the 1393 

amniotic egg requires further investigation. Supplementary Table 2 illustrates how genes 1394 

mentioned in text for water, gas, and nutrient transport are expressed in reproductive tissues of 1395 

squamates during gestation and gravidity. 1396 

If specific genes or physiological processes impact more than one of the Main Five 1397 

categories, it could have a disproportionate influence on transitions. Such an overlap has already 1398 

been identified in Zootoca vivipara, where 11 genes are associated with both eggshell traits and 1399 

gestation length (Recknagel et al., 2021a). The solute carrier (SLC) gene superfamily is involved 1400 

with both nutrient transport (Brandley et al., 2012; Whittington et al., 2018) and eggshell 1401 

deposition (Yang et al., 2020). Adenogenesis is essential for histotrophic nutrient provisioning 1402 

and secretion of eggshell precursors. Additionally, progesterone production influences both 1403 

uterine quiescence, which is an important state to maintain in lengthened embryonic retention, 1404 

and it also inhibits hepatic vitellogenesis, an important process for lecithotrophic nutrient 1405 

provisioning. Thus, examining the role of SLC gene superfamily members, processes of 1406 
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adenogenesis, and progesterone production during embryonic development in oviparous and 1407 

viviparous squamate may reveal how interconnectivity of the Main Five are.  1408 

 1409 

V. Embryonic Calcium Provisioning  1410 

 1411 

The embryonic growth stage requires the greatest demand of calcium (Ecay et al., 2017; 1412 

Packard & Packard, 1984; Stewart & Ecay, 2010). To support this, peak uterine concentrations 1413 

of calcium are highest during either eggshell deposition or during the embryonic growth stage, in 1414 

oviparous and viviparous taxa, respectively (Linville et al., 2010; Stewart et al., 2009). 1415 

Regardless of parity mode, embryonic metabolism drives calcium uptake (Packard & Packard, 1416 

1984). The calcium source(s) utilized have clade-specific implications on the genomic and/or 1417 

physiological changes required to transition between parity modes. 1418 

 1419 

(1) Phylogenetic context of embryonic calcium sources 1420 

Calcium can be acquired by the embryo in three forms: calcium carbonate in the eggshell, 1421 

calcium bound to proteins and lipids in the yolk, and/or free ionic calcium from maternal 1422 

delivery through the placenta (Stewart & Ecay, 2010). These correspond with five calcium 1423 

mobilization patterns: 1) Birds, turtles and crocodiles predominately depend on the eggshell; 2) 1424 

Most squamates, regardless of parity mode, predominately depend on the yolk; 3) Some 1425 

squamate species are reliant on both the eggshell and yolk; 4) Some viviparous squamate species 1426 

are reliant on both the yolk and placenta; and 5) therian mammals and rare viviparous squamates 1427 

predominately depend on the placenta (Blackburn, 2015a; Hoenderop, Nilius, & Bindels, 2005; 1428 

Jenkins & Simkiss, 1968; Kovacs, 2015; Packard, 1994; Packard & Seymour, 1997; Stewart et 1429 
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al., 2009, 2009; Stewart & Ecay, 2010; Thompson, Stewart et al., 1999; Thompson, Stewart, & 1430 

Speake, 2000; Ramírez-Pinilla, 2006).  1431 

From an evolutionary perspective, squamate eggs might serve as the best models of the 1432 

ancestral amniote egg. Unlike birds, oviparous squamates generally rely on yolk calcium rather 1433 

than eggshell calcium. The yolk sac of non-avian reptiles is a good model for the transition 1434 

between the egg of anamniotes and amniotes (Blackburn, 2020). Taken together and given that 1435 

hard calcified eggshells of Archelosaurs are likely derived (as discussed in section III.3)—1436 

squamate eggs may have the closest resemblance to the ancestral amniote egg. Interestingly, to 1437 

my knowledge, oviparous squamates do not sequester calcium from the eggshell into the yolk 1438 

during incubation (Packard, 1994).  1439 

 1440 

(2) Hypotheses on calcium mobilization and the evolution of parity modes 1441 

It was hypothesized that predominant reliance on eggshell calcium should constrain lineages 1442 

to oviparity because the evolution of viviparity would result in a lost calcium source (hereafter 1443 

eggshell calcium constraint hypothesis) (Stewart & Ecay, 2010; Packard et al., 1977; Packard & 1444 

Packard, 1984). This hypothesis suggested that viviparity should only evolve in lineages 1445 

predominately reliant on yolk calcium (Packard et al., 1977; Packard & Packard, 1984). 1446 

Fittingly, birds, turtles and crocodilians generally rely on eggshell calcium, and they are 1447 

constrained to oviparity (Anderson et al., 1987). The eggshell calcium constraint hypothesis 1448 

holds true for most viviparous squamates that rely heavily on yolk calcium (Stewart & Castillo, 1449 

1984; Stewart & Ecay, 2010; van Dyke et al., 2014). 1450 

Subsequent research revealed that viviparity is not constrained by a prerequisite reliance on 1451 

yolk calcium. Oviparous scincid skinks studied thus far are intermediately reliant on eggshell and 1452 
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yolk calcium (Linville et al., 2010; Shadrix et al., 1994; Stewart et al., 2009; Stewart & 1453 

Thompson, 1993; Thompson et al., 2001). Calcium placentrophy contributes substantially to 1454 

embryonic development in several viviparous squamates including Pseudemoia entrecasteauxii, 1455 

Eulamprus quoyi, Zootoca vivipara, Saiphos equalis, and a species of Mabuya lizard (Ecay et al., 1456 

2017; Linville et al., 2010; Ramírez-Pinilla, 2006; Ramírez-Pinilla et al., 2011; Stewart & 1457 

Thompson, 1993). These taxa, with the exception of Zootoca vivipara, are in the family 1458 

Scincidae (Burbrink et al., 2020), which is also the family with the most independent origins of 1459 

viviparity in squamates (Blackburn, 1982, 1999; Pyron & Burbrink, 2014).  1460 

To understand the breadth of physiological conditions from which oviparity and viviparity 1461 

evolve in squamates, future research should examine calcium transport in other lineages. Studies 1462 

focused on snakes would be particularly informative given the sparse literature on them. 1463 

Helicops angulatus, a reproductively bimodal water snake from South America, is an ideal 1464 

model for this (Braz et al., 2016). Thus far, many oviparous snakes are known to be 1465 

intermediately reliant on yolk and eggshell calcium. This has not precluded viviparity from 1466 

evolving in these lineages.  1467 

The presence of embryos during extended embryonic retention may trigger positive feedback 1468 

stimuli for continued uterine calcium secretions which may support placental calcium transport, 1469 

and thus incipient calcium matrotrophy (Stewart & Ecay, 2010). This is postulated to resemble 1470 

the hormonal and mechanical stress mechanisms implicated in avian eggshell formation and 1471 

uterine calcium secretions (Bar, 2009a; Stewart & Ecay, 2010). The influx of calcium late in 1472 

viviparous gestation may be triggered in part by embryonic growth that over distends the uterus. 1473 

This is seen in studies on myometrial stretch in mammals when uterine overdistention triggers 1474 

spikes in calcium (Kao & McCullough, 1975; and see e.g. Wray et al., 2015).  1475 
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Dramatic changes to activity in chorioallantois should not be required during parity mode 1476 

transitions because these homologous tissues (Metcalfe & Stock, 1993) transport calcium 1477 

regardless of parity mode (Ecay, Stewart & Blackburn, 2004; Tuan & Scott, 1977; Tuan & 1478 

Knowles, 1984; Tuan et al., 1978, 1986). Specialized placental structures in some viviparous 1479 

squamates enhance calcium provisioning but specialization is not required for placental calcium 1480 

transport (Stewart et al., 2009; Stewart & Ecay, 2010; Thompson et al., 2000). Loss of 1481 

chorioallantoic calcium transporting capacity would be disadvantageous to either parity mode. 1482 

Growing research reveals that, like mammals, placentrophy and viviparity can evolve 1483 

concurrently in squamates (Blackburn, 2015a; Ecay et al., 2017; Stewart & Ecay, 2010).  1484 

Placing these previously proposed models in a phylogenetic context, the calcium transport 1485 

method of oviparous ancestors likely has an influence on the method of calcium transport used 1486 

for viviparous taxa—matrotrophic calcium provisioning, lecithotrophic calcium provisioning, or 1487 

a combination of the two. Consistent with the basal cap hypothesis—when viviparity arises from 1488 

oviparous ancestors with embryos that depended predominately on eggshell calcium, this should 1489 

favor a transition to viviparity via incipient calcium matrotrophy because the chorioallantois 1490 

already plays the major role in transporting calcium from the eggshell to the embryo. Since the 1491 

reproductive mode and calcium provisioning of oviparous ancestors are essentially unknown, 1492 

researchers can use the closest oviparous relatives as proxies. Similarly, viviparous taxa that are 1493 

in close phylogenetic proximity to oviparous taxa that depend on lecithotrophic calcium 1494 

provisioning should remain reliant on yolk calcium. Together, these guidelines provide a 1495 

framework from which researchers can form hypotheses about the calcium provisioning method 1496 

of a viviparous lineage if the calcium provisioning method of oviparous close relatives are 1497 

known, or vice versa. Measurements of the proportional contribution of different calcium sources 1498 
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during development has only been done in select taxa (e.g. Packard, 1994; Stewart, 2013; 1499 

Stewart & Ecay, 2010; Stewart, Ecay & Blackburn 2004). Once validated, the framework (i.e., 1500 

the calcium provisioning method of close relatives) can help increase the speed at which science 1501 

measures and infers the evolutionary history of calcium provisioning across amniotes and 1502 

squamates. Collection of this data across the squamate phylogeny may enable assignment of 1503 

these hypotheses to specific clades. 1504 

Embryonic calcium source could have implications on the physiological changes required to 1505 

transition between parity modes. Reliance on yolk calcium should render, essentially, no 1506 

mechanistic changes for calcium transport. On the other hand, incipient calcium matrotrophy 1507 

requires regulatory changes in the uterus, like timing of calcium secretions (Griffith et al., 2015). 1508 

However, regardless of parity mode 1) the uterus secretes calcium, 2) the chorioallantois 1509 

transports calcium and 3) embryonic metabolism drives uptake of calcium. Assuming maternal 1510 

tissue remains responsive to embryonic metabolism, the joint evolution of matrotrophic calcium 1511 

provisioning with viviparity may require little to no physiological adjustments.  1512 

The diversity of embryonic calcium provisioning patterns in viviparous squamates may not 1513 

be fully explained by the eggshell calcium constraint hypothesis (Packard et al., 1977; Packard & 1514 

Packard, 1984) or incipient calcium matrotrophy (Stewart & Ecay, 2010). Both hypotheses 1515 

implicitly assume that viviparity equates to a lost eggshell. In one viviparous squamate, Haldea 1516 

striatula, and in viviparous populations of two reproductively bimodal lizards, Zootoca vivipara 1517 

and Saiphos equalis, the calcified eggshell is considered as a component of the placenta (Stewart, 1518 

2013). Some other viviparous squamates have transient calcified patches on their embryonic 1519 

membranes (Blackburn, 1998; Heulin, 1990, 2005; Qualls, 1996) suggesting that uterine calcium 1520 

secreting capabilities in early gestation may be retained in some viviparous lineages. In the case 1521 



 70 

of reversals, it remains unknown how the uterus shifts back to early calcium secretions after 1522 

ovulation (Blackburn, 2015b; Griffith et al., 2015).  1523 

 1524 

(3) Embryonic calcium provisioning mechanisms 1525 

In vertebrates, specialized tissues that recover environmental calcium and transport it into 1526 

blood circulation maintain conserved mechanisms for intracellular calcium transport (Bronner 1527 

2003; Hoenderop et al., 2005). These include the uterus, chorioallantoic tissues, and yolk 1528 

splanchnopleure (Bronner, 2003; Hoenderop et al., 2005; Stewart, 2013). Therefore, uterine and 1529 

embryonic tissues may be pre-adapted for maternal and embryonic calcium provisioning. 1530 

In birds, a sub-compartment of the mammillary layer of the eggshell is the calcium reserve 1531 

body (Chien et al., 2009), which contains microcrystals of calcite that get dissolved and 1532 

transported as calcium to the embryo (Chien et al., 2009). Calcium is eroded from the eggshell 1533 

by acid released from villus cavity cells (VCCs) in chorioallantoic membrane (Anderson, Gay, 1534 

and Schraer, 1981; Narbaitz et al., 1981; Packard & Lohmiller, 2002; Simkiss, 1980). This 1535 

increases the carbonic anhydrase activity of the cells enabling calcium to be released into the 1536 

cavity between the eggshell and the chorionic epithelium, where it is taken up by capillary 1537 

covering cells (CCCs) in chorioallantoic membrane (Coleman & Terepka, 1972). In some 1538 

species this erosion leads to a gradual weakening of the eggshell that facilitates hatching (Chien, 1539 

Hincke & McKee, 2008). In chickens, transcalcin, a calcium binding protein, is credited for the 1540 

calcium transporting capacity of the chorioallantoic membrane (Tuan & Knowles, 1984; Tuan & 1541 

Ono, 1986; Tuan & Scott, 1977; Tuan et al., 1978, 1986). The presence of VCCs and CCCs in 1542 

the chorioallantois of viviparous squamates would indicate a known route through which calcium 1543 

can be absorbed.  1544 
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Transcellular calcium transport has been modeled as a three-step process involving proteins 1545 

calbindin-D9K, calbindin-D28K, and the highly calcium-specific ion channels of the transient 1546 

receptor potential vanilloid gene family (TRPV5 and TRPV6) (Stewart & Ecay, 2010). Across 1547 

vertebrates, this machinery is shared in epithelial tissues with significant roles in calcium 1548 

transport (Hoenderop et al., 2005). Estrogen and vitamin D3 have regulatory roles in this 1549 

process.  1550 

Calbindin-D9K, calbindin-D28K, TRPV5, and TRPV6 is involved with calcium exchange in 1551 

multiple organs of birds, squamates, and mammals. Broadly, activity of calbindin-D9K and/or 1552 

calbindin-D28K is associated with patterns of calcium absorption in the mammalian kidney and 1553 

uterus (Bindels, 1993; Luu et al., 2004), murine uterus and placenta (Lafond & Simoneau, 2006; 1554 

Koo et al., 2012), and chicken duodenum and uterus (Bar, 2009b; Yang et al., 2013). In humans, 1555 

calbindin-D9K and calbindin-D28K are critical to the active transport of Ca2+ across placental 1556 

cells (Faulk & McIntyre, 1983; Belkacemi, Simoneau & Lafond, 2002; Belkacemi et al., 2004). 1557 

A study on rats suggests that calbindin-D9K increases by over 100-fold in the last 7 days of 1558 

gestation (Glazier et al., 1992), when the embryo gains the majority of calcium. TRPV6 is 1559 

involved with maternal-fetal calcium transport in mice (Suzuki et al., 2008). Increased TRPV6 1560 

and calbindin-D28K expression occurs during eggshell formation in chickens (Yang et al., 1561 

2013). Given the involvement of these genes in both eggshell deposition and embryonic calcium 1562 

transport, squamates may have exploited this pathway to support transitions. Expression of these 1563 

genes during gestation or gravidity in squamates has been detected (e.g. calbindin-d9K in 1564 

Saiphos equalis, and calbindin-d28k in Zootoca vivipara) (Foster et al., 2020; Recknagel et al., 1565 

2021a), and is expanded upon in the following paragraphs.  1566 
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In several highly matrotrophic lizards, embryonic uptake of calcium is associated with 1567 

placental expression of calbindin-D28K (Stewart et al., 2009; Stinnett et al., 2011, 2012). In both 1568 

oviparous and viviparous embryos of Zootoca vivipara, sharp increase in calcium uptake in late 1569 

development coincides with increased calbindin-D28K and PMCA by the chorioallantois 1570 

(Stewart et al., 2009, 2011). In oviparous corn snakes, Pantherophis guttatus, expression of 1571 

calbindin-D28K in the yolk-sac and chorioallantoic membrane coincides with growth of these 1572 

tissues and calcium transport activity (Ecay et al., 2004). The chorioallantois of other lizards and 1573 

snakes transport calcium to the embryo and express calbindin-D28K and PMCA (Blackburn, 1574 

2004; Ecay et al., 2004; Stewart et al., 2010; Stinnett et al., 2012).  1575 

Viviparous embryos of Zootoca vivipara, a reproductively bimodal lizard, incubated ex utero 1576 

respond to availability of calcium by increasing expression of calbindin-D28K (Ecay et al., 1577 

2017). In this species, embryonic recognition of environmental calcium stimulates a transcellular 1578 

calcium transporting mechanism and may also alter chorioallantoic membrane paracellular 1579 

permeability to calcium (Ecay et al., 2017). The authors proposed that there is a calcium sensing 1580 

receptor (CaSR) on chorionic epithelial cells to support this in both oviparous and viviparous 1581 

Zootoca vivipara embryos (Ecay et al., 2017), similar to the CaSRs expressed by vertebrate cells 1582 

involved in calcium homeostasis (Brennan et al., 2013).   1583 

As mentioned earlier, PMCA activity is associated with eggshell deposition in birds and 1584 

oviparous squamates (Bar, Rosenberg, & Hurwitz, 1984; Hincke et al., 2012; Wasserman et al., 1585 

1991). PMCA is also crucial for calcium transport in late embryonic development in rats (Glazier 1586 

et al., 1992). In viviparous scincid lizards, Niveoscincus metallicus, N. ocellatus, and 1587 

Pseudemoia spenceri, PMCA was expressed in uterine glandular and surface epithelia during 1588 

pregnancy but only P. spenceri expressed it throughout gestation (Herbert et al., 2006). When 1589 
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PMCA was not detected by immunoblotting in the yolk splanchnopleure of Haldea striatula, a 1590 

viviparous snake that relies predominately on yolk calcium (Stewart, 1989; Fregoso, Stewart, & 1591 

Ecay, 2010), NCXs were proposed as an alternative transporter of calcium (Fregoso et al., 2012). 1592 

NCXs are important for placental calcium transport in humans (Belkacemi et al., 2005). 1593 

Calciotropic hormones, those involved with calcium transport, and phosphotropic hormones, 1594 

those involved with phosphorous transport, operate via an interconnected pathway (Andrukhova 1595 

et al., 2016; Biber, Hernando & Forster, 2013; Blaine, Chonchol & Levi, 2015; Erben & 1596 

Andrukhova, 2015). Phospho- and calciotropic hormones are important regulators of fetal serum 1597 

mineral concentrations (Kovacs, 2015). Evidence from viviparous amniotes suggests that these 1598 

are suitable candidates for embryonic calcium provisioning. In mice, genes encoding parathyroid 1599 

hormone (PTH) and PTH-related peptide (PTHrP) are important regulators of placental calcium 1600 

transport (Kovacs et al., 1996; Simmonds et al., 2010). A non-exhaustive list of additional 1601 

candidates for embryonic calcium provisioning include fibroblast growth factor 23 (Bar, 2009a; 1602 

Erben & Andrukhova, 2015; Stewart & Ecay, 2010), the annexin gene family (Matschke et al., 1603 

2006), carbonic anhydrase (Narbaitz et al., 1981; Tuan & Knowles, 1984), and calcium binding 1604 

proteins (CaBPs) can be found in the referenced literature. 1605 

 1606 

(4) Discussion & future directions—calcium provisioning and parity mode evolution 1607 

Phylogenetic frameworks enable researchers to make broader testable hypotheses about the 1608 

evolutionary history of calcium provisioning in specific clades. Such a framework is proposed in 1609 

section V.2 to infer ancestral parity modes in the context of calcium provisioning in amniotes. 1610 

Implications gleaned from taxon-specific studies can be explored in distantly related analogous 1611 

groups.  1612 
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Genes involved with calcium transport in uterine and embryonic tissues have been described 1613 

across mammals, birds, and reptiles. Like other amniotes, activity of calbindin-D28K and PMCA 1614 

supports embryonic calcium provisioning across diverse oviparous and viviparous squamates. 1615 

Their involvement with both eggshell deposition and embryonic calcium provisioning makes 1616 

these particularly interesting candidates for parity mode evolution. The regulatory influence of 1617 

other molecules in calcium transport, like PTH, PTHrP and NCXs has not been evaluated 1618 

thoroughly in squamates. Additional reviews on mechanisms of embryonic calcium provisioning 1619 

in squamates can be found in the literature (Stewart, 2013; Stewart & Ecay, 2010). 1620 

Additionally, I add a speculation. Perhaps lineages with incipient calcium matrotrophy more 1621 

feasibly reverse to oviparity because of the continued role of the uterus in calcium provisioning. 1622 

However, this hypothesis only holds up if maternal provisioning of calcium is not synonymous 1623 

with maternal provisioning of all nutrients. 1624 

 1625 

VI. Maternal-Fetal Immune Dynamics 1626 

 1627 

Medawar (1953) pointed out the paradigm between the peripheral body’s normal attack 1628 

response to allografts (foreign tissue) and uterine tolerance to embryos (Medawar, 1953). This 1629 

was inspired by earlier work by Ray Owen (Owen, 1945). Stricter regulation of the maternal and 1630 

fetal immune systems is expected for viviparous reproduction because of contact between uterine 1631 

and embryonic tissues. Oviparity may pose less of an immunological challenge. Medawar 1632 

suggested barriers, inertness and/or immunosuppression enable pregnancy. This formed the 1633 

foundation of decades of medical research on immune dynamics between maternal, embryonic, 1634 

and paternal immune factors in utero.  1635 
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In recent years, there was a call for a reappraisal of Medawar’s paradigm (Chaouat, 2010, 1636 

2016; Moffett & Loke, 2004, 2006; Mor et al., 2011; Stadtmauer & Wagner, 2020b; Yoshizawa 1637 

2016). Moffett & Loke (2006) caution against conceptualizing embryos as analogs of allografts. 1638 

To my knowledge, this perspective has yet to reach the evolutionary literature on squamate 1639 

parity mode evolution (Foster et al., 2020; Graham et al., 2011; Gao et al., 2019; Murphy & 1640 

Thompson, 2011; van Dyke, Brandley, & Thompson, 2014; Murphy, Thompson, & Belov, 2009; 1641 

Recknagel et al., 2021a). Importantly, challenges to Medawar’s paradigm do not preclude 1642 

immunological responses to viviparity. They simply suggest that the immune environment of the 1643 

uterus is uniquely evolved to support exposure to foreign tissue.  1644 

The uterine immune system has a distinct evolutionary history from the periphery. It enables 1645 

cooperative dynamics with foreign tissues. It supports fertilization and early embryonic 1646 

development. This should have started evolving, distinct from the periphery, since internal 1647 

fertilization first originated. To contextualize this, I discuss the changing landscape of 1648 

immunological research at the maternal-fetal interface and what it means in the context of 1649 

amniote parity mode evolution. Overall, I hope readers consider how the uterus evolved to 1650 

support internal gestation, and which model systems may be appropriate to investigate this.  1651 

Most literature on maternal-fetal immune dynamics limits itself to mammals. Squamates may 1652 

serve as a better comparative model for understanding the evolution of the uterine immune 1653 

system. Active research on the peripheral reptilian immune system (Zimmerman et al., 2010, 1654 

2020) and uterine immune activity in squamates (Graham et al., 2011; Hendrawan et al., 2017; 1655 

Murphy et al., 2009; Paulesu et al. 1995, 2008, 2005) will support future insights on this.  1656 

 1657 

(1) Comparing amniote immune systems 1658 
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Cellular components of the innate immune system are conserved across jawed vertebrates 1659 

(Uribe et al., 2011; Zimmerman et al., 2010). The general machinery of the adaptive immune 1660 

system is ancient despite divergences and convergences across all domains of life (Ghosh et al., 1661 

2011; Morales et al., 2017; Müller et al., 2018; Rimer et al., 2014). Diversification of antigen 1662 

receptor genes likely occurred independently in a lineage-specific fashion (Boehm et al., 2018). 1663 

Compared to mammals, the avian immune system requires less antigen (Larsson et al., 1998). 1664 

Birds also have faster but shorter antibody responses, potentially due to their higher body 1665 

temperatures (Zimmerman, 2010).  1666 

Reptiles have the same general components of the mammalian immune system (Zimmerman, 1667 

2020). However, the reptilian immune system may not fit neatly into the two arms of mammalian 1668 

immune systems—innate and adaptive (Zimmerman, 2010; 2020). Expanding upon this is 1669 

beyond the scope of this review, but it is worth considering in future evolutionary research. 1670 

Squamates may serve as a better comparative model for understanding the evolution of the 1671 

uterine immune system. Active research on the peripheral reptilian immune system (Zimmerman 1672 

et al., 2010, 2020) and uterine immune activity in squamates (Graham et al., 2011; Hendrawan et 1673 

al., 2017; Murphy et al., 2009; Paulesu et al. 1995, 2008, 2005) will support future insights. I 1674 

refer readers to articles by Zimmerman et al. (2010, 2020) and Ghorai et al. (2018), and the book 1675 

by Williams (2012) for more information on the avian immune system.  1676 

 1677 

(2) Medawar’s paradigm 1678 

Tolerance toward the foreign fetus was postulated to occur through immunological inertness, 1679 

immunosuppression or immunotolerance mechanisms (Medawar, 1953). Theoretically, 1680 

immunotolerance could be established if there are relatively small quantities of alloantigens 1681 
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present, resulting in regulatory responses rather than activating responses (Pradeu, 2011). 1682 

Contradicting this, the larger the alloantigen difference between the mother and embryo the 1683 

bigger and healthier the placentae is in rats (Chaouat et al., 2010). In humans, divergent HLA 1684 

profiles between mother and embryo do not lead to detrimental immune responses (Tilburgs, 1685 

Scherjon, & Claas, 2010). Instead, cooperative inflammatory responses between maternal and 1686 

fetal tissues support reproduction (Stadtmauer et al., 2020a). In humans, microchimeric cell 1687 

populations, presence of cells from one individual in another genetically distinct individual, are 1688 

now considered a normal expectation of pregnancy (Nelson, 2012). 1689 

In his 1991 Nobel Lecture, Medawar acknowledged that maternal and embryonic tissues 1690 

have regular exposure to alloantigens (Medawar, 1991). It has become clear that the maternal 1691 

immune system actively responds to fetal alloantigen rather than responding solely with 1692 

ignorance or anergy (Arck & Hecher, 2013). Neither maternal immunosuppression/privilege nor 1693 

embryonic inertness/immaturity fully explain immune dynamics during gestation in mammals, 1694 

including those with the simple epitheliochorial placentation (Chaouat et al., 2010; Chavan, 1695 

Griffith & Wagner, 2017; Moffett & Loke, 2004, 2006; Stadtmauer & Wagner, 2020a).  1696 

 1697 

(3) Perspectives on the evolution of the uterine immune system 1698 

Viviparous reproduction existed eons before the origin of mammals and, to my knowledge, 1699 

no evidence suggests there was immune conflict within these taxa (Chaouat, 2016). Placentrophy 1700 

existed as far back as the invertebrate clade Bryozoa (Ostrovsky, 2013; Schwaha et al., 2019), 1701 

suggesting an ancient history for supportive maternal-fetal immune dynamics. Differing from 1702 

Medawar’s paradigm, Polly Matzinger, who proposed the ‘danger model’ for the immune system 1703 
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(Matzinger, 2007), wrote “Reproduction cannot be a danger. It does not make evolutionary 1704 

sense” (Chaouat, 2016). 1705 

In mammals, immunological cells at the maternal-fetal interface may not function through 1706 

self-non-self-discrimination, as they are understood to function in the rest of the body (Chaouat, 1707 

2016; Moffett & Loke 2004, 2006). The ‘maternal-fetal interface’ may be better conceptualized 1708 

as ‘maternal-fetal intra-action’ given the dynamics between maternal and fetal immune systems 1709 

in mammals (Yoshizawa, 2016). It is unclear if these insights apply to other viviparous amniotes.  1710 

In mammals, immune factors in the uterus and placenta appear to be specifically evolved to 1711 

support maternal-fetal immune dynamics. Several cell types have unique functions and/or 1712 

phenotypes in utero—uterine NK (uNK) cells, uterine macrophages, uterine T regulatory cells 1713 

(Faas & de Vos, 2017; Mold et al., 2008, 2010; Mold & McCune, 2011). An immunosuppressive 1714 

antigen, HLA-G, is almost exclusively expressed by trophoblasts (Faulk & Temple, 1976; 1715 

Kovats et al., 1990; Rajagopalan & Long, 2012; Rouas-Freiss et al., 1997). Taken from an 1716 

evolutionary perspective, this suggests that the uterine immune system in viviparous mammals 1717 

evolved unique responses to allogenic tissues that differ from the periphery. Whether the 1718 

evolution of this system predates mammals remains to be explored, to my knowledge.  1719 

It is suggested that viviparous reproduction is immunologically compatible in species with 1720 

less active adaptive immune system, like sharks (Chaouat, 2016). In these clades, innate immune 1721 

cells, like uNK cells, may be sufficient to regulate immune responses during pregnancy (Moffett 1722 

& Loke, 2004; Chaouat, 2016). Given that there is an unclear distinction between the innate and 1723 

adaptive immune system in reptiles (Zimmerman, 2020), determining immunological difficulty 1724 

of evolving viviparity in squamates requires further investigation.  1725 
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In uterine tissue of oviparous and viviparous skinks maternal antigens are expressed prior to 1726 

and during gestation and gravidity (Murphy et al., 2009), but the viviparous species in the study 1727 

have a unique expression profile of MHC antigens which may ‘hide’ the embryo from the 1728 

maternal immune system (Murphy et al., 2009). Similarly, in a reproductively bimodal skink, 1729 

Saiphos equalis, both oviparous and viviparous gestation is associated with expression of MHC 1730 

genes (Foster et al., 2020). Regardless of parity mode, S. equalis expresses genes associated with 1731 

immunocompetence, including MHC genes including H2-EA (Foster et al., 2020). The similar 1732 

profile between the oviparous and viviparous state is attributed to the use of very long egg 1733 

retention utilized by oviparous S. equalis (Foster et al., 2020). This highlights that extended 1734 

embryonic retention is accompanied with immunological responses in utero, which is relevant to 1735 

the EER model on amniote origins.  1736 

Some of these genes expressed by S. equalis are also expressed in viviparous Chalcides 1737 

ocellatus during gestation including complement component genes (C3, C9) and MHC genes 1738 

(Brandley et al., 2012; Foster et al., 2020). The majority of immune genes expressed during 1739 

gestation/gravidity in S. equalis have immunoglobulin receptor binding functions (Foster et al., 1740 

2020), an important feature of eutherian pregnancy that prevents rejection of the fetus through 1741 

actions of the maternal innate immune system (Alijotas-Reig, Llurba, Gris, 2014)). In another 1742 

reproductively bimodal skink, Zootoca vivipara, immune system response genes are enriched in 1743 

the set of genes under divergent selection in oviparous and viviparous genomes (Recknagel et al., 1744 

2021a).  1745 

 1746 

(4) Implications of the reptilian immune system and morphology on parity mode evolution 1747 
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Ectothermic reptiles may inherently have a more tolerogenic uterine environment compared 1748 

to mammals due to their slower antibody response. It can take up to six weeks to reach peak 1749 

concentrations (Ingram & Molyneux, 1983; Grey, 1963; Marchalonis et al., 1969; Pye et al., 1750 

2001; Origgi et al., 2001; Work et al., 2000). A slower metabolism also makes several reptiles 1751 

more tolerogenic to pathogens (Ghorai & Priyam, 2018).  1752 

During pregnancy in the viviparous skink, Chalcides ocellatus, there is a reduced response to 1753 

in vitro exposure to mitogens concanavalin A (Con A), phytohemagglutinin (PHA), and 1754 

Escherichia coli lipopolysaccharide (LPS) (Saad & El Deeb, 1990). Oviparous lizards exhibit 1755 

immune activation tradeoffs during reproductive cycles (Cox, Peaden, & Cox, 2015; Durso & 1756 

French, 2018; French, Johnston, & Moore, 2007; Uller, Isaksson, & Olsson, 2006).   1757 

In the majority of viviparous squamates, the eggshell membrane is absorbed during 1758 

pregnancy (Blackburn, 1993). In mammals, epitheliochorial placentation (the most superficial 1759 

and non-invasive placenta type) is sufficient to cause immunorecognition from the mother. 1760 

Specialized placental cells, trophoblasts, may be more common in other viviparous vertebrates 1761 

than previously recognized (Blackburn, 2015a). For example, a gene with fusogenic properties 1762 

characteristics of trophoblast syncytins was recently identified in the Mabuya lizard placenta 1763 

(Cornelis et al, 2017). In mammals, trophoblasts are antigen presenting and actively participate 1764 

in maternal-fetal immune dynamics.  1765 

A few viviparous squamates have placentas with characteristics similar to placentas found in 1766 

eutherian mammals—syncytialized cells layers, specialized zones such as areolae and 1767 

placentomes, or cellular invasion of maternal tissues by the fetus (Blackburn & Flemming, 2012; 1768 

Jerez & Ramírez-Pinilla, 2001; Vieira et al., 2007). The increased contact here may require more 1769 
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tightly regulated immune dynamics at the maternal-fetal interface compared to other viviparous 1770 

squamates.  1771 

 1772 

(5) The inflammation paradox 1773 

In mammals, implantation evolved from an ancestral inflammatory attachment reaction 1774 

(Griffith, Chavan et al., 2017). Inflammation is the most crucial system to support implantation, 1775 

but it is also the greatest threat to the continuation of pregnancy (Chavan et al., 2017). This 1776 

phenomenon is called the inflammation paradox. In humans, immune cells including uterine 1777 

macrophages, T cells of multiple subtypes, uterine natural killer (uNK) cells, dendritic cells, and 1778 

natural killer T (NKT) cells increase until implantation and remain abundant in the uterus 1779 

throughout first trimester (Bulmer et al., 1991; Bulmer, Williams & Lash, 2010). Early 1780 

implantation in humans is characterized by high pro-inflammatory T helper (Th)-1 cells and 1781 

cytokines (IL-6, IL-8, and TNFα) (Yoshinaga, 2008). The exploitation of inflammatory 1782 

mechanisms for eutherian implantation and the shift toward non-inflammatory activity to 1783 

maintain pregnancy may have been key in enabling extended embryonic retention of eutherians 1784 

(Griffith, Chavan et al., 2017).  1785 

How the inflammation paradox applies to viviparous squamates is unclear, given that 1786 

placentation in squamates and mammals in not homologous (Griffith, Van Dyke, & Thompson, 1787 

2013). In extrauterine pregnancies of mammals with non-invasive placentas, the embryo will 1788 

invade extrauterine tissue because it is not inhibited by uterine secretions (Vogel, 2005; Samuel 1789 

& Perry, 1972). However, in Pseudemoia entrecasteauxii, a viviparous skink that also has a non-1790 

invasive placenta, extrauterine pregnancy does not result in invasive implantation of extrauterine 1791 

tissues (Griffith, Van Dyke, & Thompson, 2013). The inherent invasive nature of mammalian 1792 
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embryos outside of the uterus, compared to the non-invasive nature of viviparous squamate 1793 

embryos studied thus far, suggests that the parent-offspring conflict and the inflammation 1794 

paradox may be less pronounced in viviparous squamates compared to viviparous mammals.  1795 

 1796 

(6) Inertness and barriers at the maternal-fetal interface 1797 

The uterine environment is not inert or sterile (Agostinis et al., 2019; Erlebacher, 2013; 1798 

Moffett & Loke, 2006; Munoz-Suano, Hamilton, & Betz, 2011; Murphy, Thompson, & Belov, 1799 

2009; Yoshimura, Okamoto, & Tamura, 1997). In humans, the decidual layer of the uterus 1800 

during pregnancy is comprised of ~40% leukocytes (Ander, Diamond, & Coyne, 2019; Manaster 1801 

& Mandelboim, 2010). This cellular subpopulation has 70% uNK cells, 10-20% antigen 1802 

presenting cells (APCs) including macrophages and dendritic cells, and 3-10% T cells of several 1803 

subtypes (Abrahams et al., 2004; Hanna et al., 2006; Kämmerer et al., 2006; Le Bouteiller & 1804 

Piccinni, 2008; Liu et al., 2017; Manaster & Mandelboim, 2010; Moffett-King, 2002; Moffett & 1805 

Loke, 2006; Roussev et al., 2008). There is an abundance of decidual large granular lymphocytes 1806 

(LGLs), CD3-NK cells and CD3+ activated cytotoxic T cells, in the human uterus, that have 1807 

cytotoxic properties and produce cytokines, and these are affected by fetal MHC molecules 1808 

(Rieger, 2002).  1809 

Birds also have immunocompetent cells in their oviducts. T and B cells are present in 1810 

chicken ovary where they are stimulated by estrogen (Barua & Yoshimura, 1999; Withanage et 1811 

al., 2003; Zettergren & Cutlan, 1992). Other immunocompetent cells in the chicken oviduct 1812 

include IgG+, IgA+ and CD3+ (Yoshimura, Okamoto, & Tamura, 1997). Immune competent 1813 

cells located throughout the mucosal tissue of avian oviductal segments including macrophages, 1814 
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antigen presenting cells (APCs) expressing MHC class II antigens, helper T cells and cytotoxic T 1815 

cells, and premature B cells (Das, Isobe, & Yoshimura, 2008). 1816 

Inert barriers between maternal and fetal tissues may ‘hide’ the embryo. In oviparous taxa, 1817 

the eggshell may serve as a barrier. However, the antimicrobial properties of the eggshell matrix 1818 

in birds demonstrate that even the eggshell is not inert. The FAS ligand, also called APO-1 or 1819 

CD95, in humans and rodent embryonic tissue was proposed to serve as a barrier because it 1820 

causes apoptosis of surrounding maternal immune cells (Kayisli et al., 2003; Makrigiannakis et 1821 

al., 2008). 1822 

Medawar suggested that an impermeable placenta strictly regulates molecular exchanges, 1823 

preventing rejection of the embryo (Medawar, 1991). Synctiotrophoblasts lack cellular junctions 1824 

and thus it was postulated to serve as this barrier (Ander et al., 2019). However, the growing data 1825 

on bidirectional cellular traffic of APCs, even in mammals with noninvasive placentas, rejected 1826 

this hypothesis (Bakkour et al., 2014; Burlingham & Bracamonte-Baran, 2015; Fujiki et al., 1827 

2008; Turin et al., 2007). 1828 

 1829 

(7) T cell populations and mammalian viviparity 1830 

 In mammals, immune-dynamics at the maternal-fetal interface are established through 1831 

innate and adaptive immune responses. There is a delicate balance between ratios of Th1, Th2, 1832 

Th17, Tregs and memory T cells at the maternal-fetal interface in eutherian mammals during 1833 

gestation (Chaouat et al., 1997; Kieffer et al., 2019; Peck & Mellins, 2010; Saito et al., 2010; Wu 1834 

et al., 2014). A shift in utero from T helper type 1 (Th1) cells to T helper type 2 (Th2) cells 1835 

during gestation in mammals equates to a shift from pro-inflammation to anti-inflammation. The 1836 

galectin proteins, GAL-13 and GAL-14, expressed by syncytiotrophoblasts, bind to T cells 1837 
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where they inhibit activation, induce apoptosis, and enhance interleukin-8 (IL-8) production 1838 

(Balogh et al., 2019).  1839 

 Growing research is revealing the central role of Tregs at the maternal-fetal interface 1840 

during pregnancy in mammals (Teles et al., 2013; Wienke et al., 2019). Tregs play a central role 1841 

in immunosuppression in mammals (Attias, Al-Aubodah, & Piccirillo, 2019). Differentiation of 1842 

Tregs is governed by the transcription factor, FOXP3 (Ramsdell & Rudensky, 2020). 1843 

Alloantigen-dependent, uterine T cell signaling, and immunocompetent embryonic cells and their 1844 

products facilitate enhanced regulatory phenotypes of immune cells overall (Ander et al., 2019). 1845 

 The T-cell dependent adaptive immune system of mammals is unique. This may have 1846 

prompted their intricate balance of Treg mediators of immunotolerance at the maternal-fetal 1847 

interface (Chaouat, 2016). Birds rely more heavily on B cells. In non-avian reptiles, T helper 1848 

cells are functional, but the presence and function of other T cell subsets is unclear (Zimmerman, 1849 

2020; Zimmerman, Vogel, & Bowden, 2010). The potential role of T cells and Tregs in 1850 

viviparous squamate gestation should not be discounted. Treg-like cells have been identified in a 1851 

pufferfish, Tetraodon nigroviridis (Wen et al., 2011), suggesting that Tregs may have an ancient 1852 

evolutionary history.   1853 

 1854 

(8) Progesterone, cytokines, and maternal-fetal immune dynamics  1855 

In addition to the role of progesterone in uterine quiescence (embryonic retention) and 1856 

hepatic vitellogenesis (nutrient provisioning), it also plays a role in maternal-fetal immune 1857 

dynamics. In the uterus of pregnant mammals, progesterone concentrations are associated with 1858 

altered B cell immunoglobin secretion, inhibition of NK-cell mediated cytotoxicity and the shift 1859 

from Th1 (pro-inflammatory) to Th2 (anti-inflammatory) dominated immune responses 1860 
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(Druckmann & Druckmann, 2005). Progesterone is also associated with immunomodulatory 1861 

effects (Ortega Brown et al., 1990). During gestation in Agkistrodon piscivorus, a viviparous pit 1862 

viper, progesterone concentrations are associated with decreased complement performance 1863 

(Graham et al., 2011), a portion of the immune system that promotes inflammation, among other 1864 

immune functions.  1865 

In humans, progesterone induced protein (PIBF) is transported by placental extravillous 1866 

trophoblasts to maternal lymphocytes causing the induction of interleukin-10 (IL-10) production, 1867 

contributing to the Th2 dominant responses (Szekeres-Bartho, Šućurović, & Mulac-Jeričević, 1868 

2018). IL-10 is a potent anti-inflammatory cytokine that is produced by multiple cell types 1869 

(Zimmerman, Bowden, & Vogel, 2014). It is associated with Th2 response, and it inhibits Th1 1870 

responses. The phenotype of uterine macrophages is affected by trophoblasts when they secrete 1871 

IL-10 and macrophage colony-stimulating factor (M-CSF) (Svensson-Arvelund et al., 2021). IL-1872 

10 inhibits IFN-  and increases in response to infection in chickens (Giansanti, Giardi, & Botti, 1873 

2006; Rothwell et al. 2004). In the uterus of the oviparous skink, Lampropholis guichenoti, 1874 

during gravidity and non-gravidity, IL-10 is expressed (Griffith et al., 2016). 1875 

Proinflammatory cytokines may be downregulated during reproductive periods to limit 1876 

maladaptive immune responses to the foreign fetus (Zimmerman, Vogel, & Bowden, 2010). In 1877 

mammals, IL-1 allows release of hormones in human trophoblasts (Petraglia et al., 1990; 1878 

Masuhiro et al., 1990; Yagel et al., 1989), facilitates implantation (Haimovici, Hill, & Anderson, 1879 

1991; Hill, 1992; Tartakovsky & Ben-Yair, 1991), and influences the initiation of labor (Romero 1880 

et al., 1989, 1992). Regulation of the proinflammatory cytokines tumor necrosis factor (TNF) 1881 

and interleukin 1B (IL-1) is of particular importance in eutherian pregnancy (Haider & Knöfler, 1882 

2009; Paulesu, Romagnoli, & Bigliardi, 2005; Saito et al., 2010; Tayade et al., 2006). 1883 
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The uterine tissue of two reproductively bimodal squamates—viviparous individuals of 1884 

Chalcides chalcides, and oviparous and viviparous individuals of Zootoca vivipara—express IL-1885 

1 (Paulesu et al., 1995, 2005; Romagnoli et al., 2003). In the uterus of the viviparous skink, 1886 

Pseudemoia entrecasteauxii, during gestation regulation of TNF and IL-1 at the transcriptional 1887 

and post-translation levels, respectively, may reduce inflammation (Hendrawan et al., 2017). The 1888 

pro-inflammatory function of IL-1 in Pseudemoia entrecasteauxii may play a role developing a 1889 

more complex placenta (Hendrawan et al., 2017). The placenta of Chalcides chalcides expresses 1890 

pro-inflammatory cytokines, IL-1 and IL-1, at specific times during gestation (Paulesu et al., 1891 

1995). During gestation, Chalcides ocellatus also differentially expresses 27 other interleukins 1892 

and interleukin related products (Brandley et al., 2012).  1893 

The expression of IL-34 in a marsupial, the fat-tailed dunnart, during pre-implantation 1894 

(Whittington et al., 2018) may have an immunosuppressive function to help tolerate potential 1895 

contact of maternal and fetal tissues when the embryonic shell coat disintegrates (Lindau et al., 1896 

2015). In chickens, IL-34 regulates Th1 and Th17 cytokine production (Truong et al., 2018). 1897 

During gestation in Pseudemoia entrecasteauxii, IL-16 and IL-1 are expressed in addition to 1898 

three receptors for Th17 family cytokines—IL-17RA, IL-17RC, and IL-17RA (Griffith, 1899 

Brandley, et al., 2016, 2017). In the yolk sac of Pseudemoia entrecasteauxii during pregnancy 1900 

interleukin related molecules, ILDR1, IRAK1, and SIGIRR, are differentially expressed (Griffith 1901 

et al., 2016). This profile suggests the presence of tricellular tight junctions and/or tricellulin 1902 

(Higashi et al., 2013; Ikenouchi et al., 2005), and regulation of toll-like receptors (TLRs) and/or 1903 

IL-1R signaling (Kawagoe et al., 2008; Lin, Lo, & Wu, 2010; Muzio et al., 1997).  1904 

 1905 

(9) The major histocompatibility complex and maternal-fetal immune dynamics 1906 
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A substantial amount of literature on maternal-fetal immune dynamics was focuses on uNK 1907 

cells. Uterine NK cells have a distinct phenotype and function from peripheral NK cells. They 1908 

have several activating receptors (Manaster & Mandelboim, 2010) but do not exert cytolytic 1909 

functions on embryonic trophoblasts that they are in contact with (King, Birkby, & Loke, 1989). 1910 

Allorecognition of embryonic placental cells by uNK cells is a key regulator of the maternal-fetal 1911 

immune mechanisms that support placentation in mammals (Moffett & Colucci, 2014). When 1912 

cells lose their ability to express any HLAs, uNK cells are shown to kill them (Hunt et al., 2005; 1913 

Ishitani et al., 2003; King, Allen et al., 2000).  1914 

In humans, expression of the classical MHC class I (C-MHCI) molecule HLA-C, and 1915 

nonclassical MHC class I (NC-MHCI) molecules HLA-E, HLA-F and HLA-G on trophoblasts 1916 

inhibit uNK cell-mediated cytotoxicity (Hunt et al., 2003; King, Burrows et al., 2000). Differing 1917 

from this, mismatched HLA-C profiles trigger rejection of the transplanted organs (Petersdorf et 1918 

al., 2014). Selection for balanced polymorphisms in HLA-C alleles and their killer 1919 

immunoglobin receptors (KIRs) is proposed to be driven by reproductive success, rather than 1920 

immune recognition of pathogens (Trowsdale & Betz, 2006). Dimorphisms of HLA-C emerged 1921 

recently within primates (Adams & Parham, 2001). 1922 

Similar patterns in MHC profiles have been explored in other viviparous amniotes. C-MHCI 1923 

antigen, H2-K, is expressed on giant trophoblast cells of mice and this is attributed to 1924 

trophoblast-induced uterine vasculature transformation (Arcellana-Panlilio & Schultz, 1994; 1925 

ChatterJee-Hasrouni & Lala, 1982; Hedley et al., 1989; King et al., 1987; Sellens, Jenkinson, & 1926 

Billington, 1978). H2-D antigen is co-expressed with H2-K in virtually all their other nucleated 1927 

cells (Madeja et al., 2011). However, H2-K expressing trophoblasts lack H2-D expression. This 1928 
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parallels the expression patterns of C-MHC molecules at the maternal-fetal interface in humans 1929 

and may be an evolutionarily conserved pattern (Madeja et al., 2011).  1930 

In humans, NC-MHCI molecule, HLA-G, is especially tolerogenic (Carosella et al., 2015; 1931 

González et al., 2012; Hviid et al., 2004; Kovats et al., 1990). In adults, HLA-G is almost 1932 

exclusively expressed by fetal trophoblasts compared to adult cells (Faulk & Temple, 1976; 1933 

King, Burrows et al., 2000; Kovats et al., 1990; Rajagopalan & Long, 2012; Rouas-Freiss et al., 1934 

1997). It supports immunotolerance at the maternal-fetal interface (Rebmann et al., 2014). The 1935 

role of HLA-G in supporting tolerogenic responses to organ transplants appears to be an 1936 

exploitation of its role in immunotolerance in the utero during pregnancy (Rebmann et al., 2014). 1937 

HLA-G is upregulated by several molecules that serve essential roles during gestation including 1938 

progesterone (Yie, Xiao, & Librach, 2006; Yie et al., 2006), IFN-, IFN-, and IFN- (Rebmann 1939 

et al. 2003; Lefebvre et al., 2001; Ugurel et al., 2001; Yang, Geraghty, & Hunt, 1995), and IL-10 1940 

and TGF- (Cadet et al., 1995; Moreau et al., 1999).  1941 

A similar NC-MHCI gene to HLA-G exists in horses (Davies et al., 2006) where it likely 1942 

functions to protect the embryo from NK-cell mediated attack (Ott et al., 2014). NC-MHC 1943 

molecules with similar structure to HLA-G are also found in Rhesus monkeys (Boyson et al., 1944 

1997) and baboons (Stern et al. 1987). Mice have two NC-MHCI genes that are expressed on the 1945 

surface of their placentas and on pre-implanted embryos (Sipes et al., 1996).  1946 

In the gestating uterus of the viviparous skink, Pseudemoia entrecasteauxii, four putative C-1947 

MHCI and two putative NC-MHCI molecules are expressed (Murphy, Thompson, & Belov, 1948 

2009). This pattern resembles the C-MHCI and NC-MHCI expression profiles of mammals, 1949 

suggesting that this viviparous skink utilizes a similar physiological mechanism to ‘hide’ the 1950 

embryo (Murphy, Thompson, & Belov, 2009). One of the putative NC-MHCI genes (Psen-1951 
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160Ut/Psen-78G) has a substitution at position 150 where a tryptophan is substituted for a 1952 

leucine (Murphy, Thompson, & Belov, 2009). When Psen-160Ut/Psen-78G was aligned to NC-1953 

MHCI genes of vertebrates ranging from fish to eutherian mammals, tryptophan was conserved 1954 

at position 150 except in Psen-160Ut/Psen-78G and HLA-G (Murphy, Thompson, & Belov, 1955 

2009). Whether this reflects an evolutionary history associated with immune tolerance at the 1956 

maternal-fetal interface in Pseudemoia entrecasteauxii requires further investigation.  1957 

MHCI genes are also expressed in reproductive tissues of oviparous skinks (Ctenotus 1958 

taeniolatus and Lampropholis guichenoti) during non-reproductive periods and during late 1959 

gravidity (Murphy, Thompson, & Belov, 2009). A similar pattern is found in viviparous skinks 1960 

Eulamprus tympanum, Niveoscincus metallicus, Pseudemoia entrecasteauxii and the 1961 

reproductively bimodal skink Saiphos equalis which all express MHCI genes at non-1962 

reproductive periods and during late pregnancy/gravidity (Murphy, Thompson, & Belov, 2009). 1963 

MHC gene H2-EA is also expressed during gestation with long egg retention in Saiphos equalis.  1964 

The butyrophilin subfamily 1 member A (BTN1A1) is located in the MHCI region of the 1965 

genome in mammals (Trowsdale, 2011). BTN1A1 is differentially expressed in the uterus during 1966 

gestation in a viviparous lizard, Chalcides ocellatus (Brandley et al., 2012). BTN1A1 may have 1967 

important antimicrobial properties in chicken eggshells (Mann, Maček, & Olsen, 2006). In 1968 

mammals BTN1A1 is the major protein associated with fat droplets in milk (Jeong et al., 2009).   1969 

 1970 

(10) Microchimerism and maternal-fetal immune dynamics 1971 

Billingham, Brent and Medawar suggested the concept of actively acquired immunologic 1972 

tolerance during pregnancy 70 years ago (Billingham, Brent, & Medawar, 1953; Ribatti, 2015). 1973 

Subsequent research over the following decades revealed that substantial transfer of proteins, 1974 
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parasites and even immunologically active cells occurs between mother and embryo (Adams & 1975 

Nelson, 2004; Axiak-Bechtel et al., 2013; Bakkour et al., 2014; Burlingham, 2010; Fujiki et al., 1976 

2008; Gitlin et al., 1965; Khosrotehrani et al., 2005; Owen, 1945; Turin et al., 2007). 1977 

Microchimerism, where there is <0.1% donor chimeras in host tissue, is relatively pervasive 1978 

among eutherians during pregnancy. It plays a role in establishing tolerance to non-inherited 1979 

antigens. For example, cell populations from the mother that are transferred into embryonic 1980 

lymph nodes enable the establishment of embryonic Tregs that are tolerogenic toward non-1981 

inherited maternal antigens (Mold et al., 2008). 1982 

Microchimeric cellular populations are transferred across all placental types (Axiak-Bechtel 1983 

et al., 2013; Bakkour et al., 2014; Fujiki et al., 2008; Khosrotehrani et al., 2005; Turin et al., 1984 

2007). Fetal and maternal cells persist for decades after birth across a range of tissues in mother 1985 

and offspring, respectively (Adams & Nelson, 2004; Bakkour et al., 2014; Bayes-Genis et al., 1986 

2005; Bianchi et al., 1996; Evans et al., 1999; Jonsson et al., 2008; Stevens et al., 2004). There is 1987 

even a call in the immunology literature to shift from the conventional paradigm of “self vs 1988 

other” to instead consider the “self” as inherently chimeric (Nelson, 2012). Given that 1989 

epitheliochorial placentation is sufficient to illicit microchimeric cell populations, the occurrence 1990 

of similar bidirectional cellular traffic is a reasonable possibility in viviparous squamates. 1991 

 1992 

(11) Paternal alloantigens 1993 

Under tenants gleaned from transplant medicine, the maternal immune system would illicit 1994 

an attack response as early as insemination when maternal tissues are exposed to paternal 1995 

alloantigens (Borziak et al., 2016; Schumacher & Zenclussen, 2015; Seavey & Mosmann, 2006). 1996 

Instead, maternal cells immunologically recognize them at this time without attack (Schumacher 1997 
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& Zenclussen, 2015; Seavey & Mosmann, 2006; Zenclussen et al., 2010). Treg expansion, a 1998 

process with major influence on maternal-fetal immunotolerance in mammals, is proposed to be 1999 

driven by several different factors found in seminal plasma (Baratelli et al., 2005; Teles et al., 2000 

2013). Mothers may maintain fetal-specific Tregs with memory of the paternal alloantigens 2001 

(Zenclussen et al., 2010), expediting Treg response in future pregnancies with the same father 2002 

(Rowe et al., 2012). 2003 

Alloantigen exposure at the time of insemination is not restricted to mammals. Seminal fluid 2004 

of chickens contains two MHC I paternal alloantigens and one MHC II alloantigen (Borziak et 2005 

al., 2016). It also contains proteins involved in immunity and antimicrobial defenses (Borziak et 2006 

al., 2016). In hens, evidence suggests that a protective local immunity to pathogens is established 2007 

after exposure to semen but the mechanisms for this remain unclear (Reiber & Conner, 1995; 2008 

Reiber, Conner, & Bilgili, 1995).  2009 

In mammals, paternal alloantigens and cytokines in seminal fluid drive immune tolerance 2010 

(Schjenken & Robertson, 2014). Mammalian seminal plasma contains immune-factors (Kelly, 2011 

1995; Schjenken & Robertson, 2014)—TGF- (Breuss et al., 1993; Chu & Kawinski, 1998; 2012 

Slater & Murphy, 1999), IL-8 (Gutsche et al., 2003), and soluble IL-2 receptor (Srivastava, 2013 

Lippes, & Srivastava, 1996), prostaglandin E2 (PGE2) and 19-hydroxyprostaglandin E (19-2014 

hydroxy PGE) (Denison et al., 1999), soluble tumor necrosis factor (TNF) receptors (Liabakk et 2015 

al., 1993), receptors for the Fc portion of γ-globulin, spermine (Evans, Lee, & Flugelman, 1995), 2016 

and complement inhibitors (Kelly, 1995).  In horses and pigs, respectively, the proteins CRISP3 2017 

(Doty et al., 2011), PSP-I and PSP-II (Rodriguez-Martinez et al., 2010), act as signaling agents 2018 

in seminal fluid.  2019 
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Secretions of growth factors, cytokines and chemokines from cervical and endometrial 2020 

tissues immediately following insemination generates a proinflammatory environment that likely 2021 

aids in implantation. In the utero-vaginal junction of chickens and the utero-tubal junction of 2022 

pigs, expression of several genes were shared following mating compared to non-mating and 2023 

these genes were involved with immune-modulation (IFIT5, IFI16, MMP27, ADAMTS3, MMP3, 2024 

MMP12) and pH-regulation (SLC16A2, SLC4A9, SLC13A1, SLC35F1, ATP8B3, ATP13A3), a 2025 

process essential for implantation (Atikuzzaman et al., 2017, 2015). Instead of mounting an 2026 

attack, it appears that the uterine immune system and paternal genes work cooperatively to 2027 

support pregnancy in mammals and gravidity in birds. Whether this applies to reptiles, and how 2028 

it may influence immune dynamics involved with squamate parity mode evolution, deserves 2029 

investigation.  2030 

 2031 

(12) Discussion and future directions—maternal-fetal immune dynamics & the 2032 

evolution of parity modes 2033 

Immune processes appear to be important for both oviparity and viviparity—as evidenced 2034 

here, in part, by overlapping expression profiles of immune genes in female reproductive tissues 2035 

of chickens and pigs, expression of paternal antigens in avian seminal fluid, and uterine 2036 

expression of maternal antigens in oviparous and viviparous skinks. This highlights the scientific 2037 

advances made since Medawar’s paradigm, when embryos were treated as analogs to allografts. 2038 

Nonetheless, viviparity is associated with complex immune dynamics between maternal, fetal, 2039 

and paternal tissues.  2040 

Overall, evolving appropriate immunological responses is one hurdle of transitions to 2041 

viviparity in squamates. This is evidenced by the unique MHC expression profiles identified in 2042 
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some viviparous skinks compared to oviparous relatives (Murphy et al., 2009); and the detection 2043 

of divergent selection in immune response genes in viviparous and oviparous Zootoca vivipara 2044 

(Recknagel et al., 2021a). Labile parity modes in squamates may be supported if they are more 2045 

heavily reliant on the innate immune system for reproduction. However, reptiles may not have 2046 

distinguished innate and adaptive immune systems (Zimmerman et al., 2020). 2047 

Changes to genes that serve overlapping functions across the Main Five may have a 2048 

disproportionate influence on transitions between parity modes. In this section I reviewed two 2049 

molecules, TGF- and progesterone, that exert influence on multiple Main Five categories. 2050 

Progesterone influences uterine quiescence (embryonic retention), hepatic vitellogenesis 2051 

(nutrient provisioning) and regulation of inflammatory responses in utero (maternal-fetal 2052 

immune dynamics). Genes in the TGF- family play a role in placental development and 2053 

maternal-fetal immune dynamics. TGF- family is implicated in placental development in 2054 

eutherians (Hempstock et al., 2004; Caniggia et al., 2000; Lafontaine et al., 2011). A TGF- 2055 

receptor protein (TGFBR1) was associated with placental development in Phrynocephalus 2056 

vlangalii (Gao et al., 2019). In humans TGF- upregulates tolerogenic HLA-G in utero and is an 2057 

immune factor in mammalian seminal fluid. Multiple genes in the TGF- family are also 2058 

differentially expressed during gestation in other viviparous lizards, Pseudemoia entrecasteauxii 2059 

and Saiphos equalis (Foster et al., 2020; Griffith et al., 2016). Examining the functions of TGF-  2060 

and progesterone across other amniotes may reveal insights into how these molecules influence 2061 

the evolution of parity modes.   2062 

In mammals, inflammation appears to be involved with two of the Main Five processes—2063 

regulation of maternal-fetal immune dynamics and embryonic retention. It is intriguing to 2064 

consider the implications this has for the interconnectedness of the Main Five. Greater 2065 
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interconnectedness would suggest that changes to few genes involved with the Main Five could 2066 

cause a cascading effect to support more labile transitions between parity modes.  2067 

Implantation and parturition in therian mammals evolved from a shared inflammatory 2068 

attachment reaction (Hansen et al., 2017). The process of implantation has important 2069 

implications for maternal-fetal exchanges of inorganic and organic material and maternal-fetal 2070 

immune dynamics. Given that inflammation is associated with implantation and parturition 2071 

implicates it in gas, water, and nutrient provisioning (including calcium here), maternal-fetal 2072 

immune dynamics and length of embryonic retention. However, implantation in mammals and 2073 

viviparous squamates is not homologous (Griffith, Van Dyke, & Thompson, 2013). Therefore, it 2074 

is difficult to make inferences about how substantial the influence of inflammation is on the 2075 

evolution of parity modes in squamates. Nonetheless, the abundant literature on uterine 2076 

inflammatory processes during human pregnancy and the evolution of inflammatory processes 2077 

that supported the evolution of viviparity in mammals (Challis et al., 2009; Chavan, Griffith, & 2078 

Wagner, 2017; Mor et al., 2011; Griffith, Chavan et al., 2017; Stadtmauer & Wagner, 2020a) 2079 

serve as indispensable resources for exploring the role of inflammation in squamate viviparity. I 2080 

resist expanding on this further. I suspect that the immune system plays a central role in dictating 2081 

the plasticity of parity modes. However, further work is necessary to validate this.  2082 

 2083 

 2084 

VII. Conclusions 2085 

    2086 

(1) Through holistic consideration of the unique complexity of parity mode evolution, within 2087 

the context of genomic and transcriptomic studies across interdisciplinary fields, this 2088 
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review provided a new perspective on the history of parity mode transitions in amniotes 2089 

and squamates. The overlapping activity of immune genes in utero, genes for calcium 2090 

transport, placentation, and hormonal regulation across mammals, birds, and reptiles hint 2091 

at discoveries to be made. There is a fascinating history to the evolutionary physiology 2092 

and genomics of reproduction in amniotes that is ripe for downstream research. 2093 

(2) Changes to gene(s) or physiological processes associated with more than one of the Main 2094 

Five should disproportionately influence parity mode evolution—SLC gene superfamily, 2095 

TGF-, BMPR1B, progesterone, PMCA, calbindin-D28K, SPP1, sustained functioning of 2096 

the corpora lutea and inflammation, and the genes associated with both gestation length 2097 

and eggshell traits in Zootoca vivipara (Recknagel et al., 2021a). 2098 

(3) Growing evidence in the medical literature suggests that immune system interactions at 2099 

the maternal-fetal interface in mammals did not evolve simply through immunotolerance, 2100 

evasion, immunosuppression, or immunological barriers (Chaouat, 2016; Chavan, 2101 

Griffith, & Wagner, 2017; Moffett & Loke, 2004, 2006). Instead, maternal-fetal immune 2102 

dynamics have a deep evolutionary history that enables both embryo and mother to 2103 

interact cooperatively (Yoshizawa, 2016). Viviparity and extended embryonic retention 2104 

are assuredly associated with immunological responses across amniotes, including 2105 

squamates (e.g. Foster et al., 2020). Oviparous birds and squamates are also known to 2106 

differentially express genes during gravidity, with one exception to my knowledge, 2107 

Lampropholis guichenoti (Griffith et al., 2016).  2108 

(4) Compared to viviparous endothermic amniotes, ectothermy likely influences parity mode 2109 

evolution differently because it entails slower antibody responses and a greater reliance 2110 

on climatic conditions for embryonic development. This and the Cold Climate 2111 
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Hypothesis are likely relevant to the origin of the amniotic egg and squamate parity mode 2112 

evolution. Climatic shifts during the origin of amniotes should be explored for their 2113 

consistency with the EER model. 2114 

(5) Two new mechanisms for transitions between oviparity and viviparity, without 2115 

necessitating intermediate stages, stand out from the cumulative research on the Main 2116 

Five. These are presented here (Conclusions 6 and 7) as tools to be broadened and 2117 

challenged with the goal of advancing scientific insight on the subject.  2118 

(6) The genomics and physiology of amniote parity mode evolution does not preclude an 2119 

origin of viviparity in the MRCA of Lepidosaurs. I propose the following mechanism—a 2120 

change to the phenotype or function of mammillary knobs occurred in the MRCA of 2121 

Lepidosaurs, instantaneously preventing calcium carbonate deposition (basal cap 2122 

hypothesis); the eggshell loss enabled uterine exposure to chorioallantoic progesterone 2123 

production (extending embryonic retention) and incipient calcium matrotrophy 2124 

(supporting embryonic development); parturition occurred via 1) placental progesterone 2125 

withdrawal or 2) overdistension of the uterus triggers contractions. This is one way to 2126 

imagine viviparity evolving in the MRCA of Lepidosaurs.  2127 

a. Hypothesis testing: If the genes that code for the KS-proteoglycan, “mammillan”, 2128 

that makes up mammillary knobs are absent or non-functional across squamates 2129 

and tuatara, then this would support the basal cap hypothesis. To test this 2130 

hypothesis, the genes must be identified in Archelosaur genomes and proteomes. 2131 

Additionally, ancestral state reconstructions on the eggshell and eggshell 2132 

membrane should be generated across oviparous and viviparous Archelosaurs, 2133 

utilizing current recommendations for characterizing eggshell microstructure 2134 



 97 

(Legendre et al., 2022). This will require also developing a system to accurately 2135 

characterize eggshell membranes.  2136 

(7) The calcium secreting capacity of the uterus is maintained in oviparous and viviparous 2137 

squamates. Therefore, a reversal back to oviparity may evolve through the following 2138 

sequence of events—calcium secretions in utero stick to the eggshell membrane instead 2139 

of being absorbed by the chorioallantois; oviposition can then occur early in embryonic 2140 

development in one of two ways 1) the death of corpora lutea or 2) the calcified eggshell 2141 

blocks a threshold of chorioallantoic progesterone production from reaching uterine 2142 

tissue; the calcified eggshell then provides embryonic calcium that is transported upon 2143 

embryonic metabolic demand.  2144 

a. Hypothesis testing: Recent reversals should have physiological or genomic 2145 

remnants of a viviparous past.  Given that viviparous squamates generally have 2146 

more active uterine immune systems to support gestation, oviparous reversals 2147 

should 1) have more immune genes expressed in utero than ancestrally oviparous 2148 

squamates, and 2) these immune genes should have stronger signatures of relaxed 2149 

selection than immune genes expressed in a close relative during viviparous 2150 

gestation.  2151 

(8) Throughout this review, I highlighted the immunological problem of pregnancy by 2152 

examining evidence for Medawar’s Paradigm across birds, reptiles, and mammals. In 2153 

doing so, I identified only one species that does not differentially express any genes while 2154 

the egg is in utero, Lampropholis guichenoti (Griffith et al., 2016). Given that an 2155 

immunological response to gravidity is evidenced in birds and multiple oviparous 2156 
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squamates, we can understand that L. guichenoti either achieves gestation through tenants 2157 

of Medawar’s Paradigm or that gravidity is not an immunological problem in this species.  2158 

(9) I also demonstrated how Medawar’s Paradigm is not a good explanation for viviparous or 2159 

oviparous gestation/gravidity in amniotes. Some work also suggests that viviparity in 2160 

anamniotes causes no immunological problems (Chaouat, 2016). Therefore, I 2161 

conceptualize amniotes as originating in an immunological environment that tolerated 2162 

exposure to the egg without an immunological issue. I suggest researchers utilize 2163 

Lampropholis guichenoti as a model for the origin of the amniote egg. If supported by 2164 

future research, then oviparous populations of Saiphos equalis and Zootoca vivipara may 2165 

represent reversals because they have substantial differential gene expression during 2166 

gravidity (Foster et al., 2020; Recknagel et al., 2021) and the oviparous population of 2167 

Lerista bougainvillii, which has only two differentially expressed genes during gravidity, 2168 

may represent an ancestrally oviparous state (Griffith et al., 2016). Future work can test 2169 

this by applying point 7.A in this conclusion and should measure differentially expressed 2170 

genes across stages of gravidity in L. bougainvillii.  2171 

(10) Given that the mammillary layer is described as unique to Archelosaurs, the original 2172 

oviparous amniote eggshell may have lacked a mammillary layer. Instead, it makes 2173 

logical sense that the original oviparous amniote egg became ensheathed in an eggshell 2174 

membrane, followed by calcium deposition that looks comparable to what we see in 2175 

squamates. We can test this by using the framework of the basal cap hypothesis, 2176 

described briefly in point 6 of this conclusion and at length in section III.3.  2177 

 2178 
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