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Abstract

1. Food chain length (FCL), roughly defined by the number of trophic links, is one important aspect of

biodiversity. However, studies on FCL are limited to simple food webs (e.g., only three or four species

in a community) or simple hypotheses (i.e., what is a determinant of FCL?)

2. In this review, we propose research directions to comprehensively understand how multiple environ-

mental factors affect FCL using food webs as complex as natural ones. To facilitate these research

directions, we first introduce basic ideas of graph theory. Graph theory clarifies the requirements of

food webs in the analysis of FCL and methods to calculate FCL.

3. We recommend using only directed acyclic graphs in studies of FCL because some definitions of FCL

cannot be used in cyclic food webs. Within more than ten models that generate food webs as complex

as in nature, a part of them generates only acyclic food webs. Such models include the (generalized)

cascade model and the preferential prey model. In contrast, the (generalized) niche model and the

nested hierarchy model can generate cyclic food webs, and they are not appropriate in the studies of

FCL.

4. We then discuss how we can study the interdependent effects of the multiple environmental factors on

FCL while using models that generate complex acyclic food webs. In addition, we propose research

questions that would enrich our understanding of FCL.
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1 Introduction1

A central question in ecology is why many interacting species coexist in nature. Historically, researchers con-2

sidered complex communities (i.e., communities with more species and/or more interactions) were more stable3

than simple ones (MacArthur, 1955). However, two theoretical studies in the 1970s show that it is not the case4

when random pairwise species interactions are assumed (Gardner and Ashby, 1970; May, 1972). Since then,5

ecologists have proposed and investigated mechanisms that allow high biodiversity in nature. Such mechanisms6

include, but are not limited to, non-random species interactions (Mougi and Kondoh, 2012), higher order (i.e.,7

more than pairwise) interactions (Bairey et al., 2016), environmental fluctuations (Letten et al., 2018), and8

spatial structures (Tilman, 1994).9

Biodiversity is a multidimensional entity characterized by horizontal and vertical axes (Wang and Brose,10

2018). “Horizontal” biodiversity focuses on the coexistence of species competing for resources. For example,11

the competitive exclusion principle refers to the idea that species occupying the identical niche cannot coexist12

(Gause, 1934; Hardin, 1960). The modern coexistence theory (Chesson, 2000) has clarifies that niche and13

fitness differences determine the coexistence of competing species (Letten et al., 2017; Godwin et al., 2020).14

In general, the number of competing species to coexist at equilibrium is restricted by the number of limiting15

factors (Levin, 1970): e.g., available resources, temperature, and predator. Meanwhile, our understanding of16

the “vertical” biodiversity lags behind the horizontal diversity in sense of the constraints. Vertical biodiversity17

comprises prey-predator interactions and considers species’ trophic levels in a food web, a network representing18

which species consume which species (Elton, 1927). Food chain length (FCL), roughly defined by the maximum19

number of trophic links from basal species to top predators (but see Section 4 for detailed definitions), is a20

summary statistics of the vertical biodiversity. Because of inefficient energy transfer from prey to predator21

(Pauly and Christensen, 1995), FCL cannot infinitely increase. Ecologists have investigated what generates22

the variations of FCL in nature. A critical problem is, however, that mathematical models and experiments in23

the studies of FCL analyzed only simpler food webs than those in nature. For example, some studies assume24

only food chains (Liao et al., 2016; Jonsson, 2017; Terui and Nishijima, 2019; Wang et al., 2021), although we25

can measure FCL in other food webs. In other studies, there are only three or four species in an experimental26

system (Diehl and Feissel, 2001; Doi and Hillebrand, 2019) or a mathematical model (Pimm and Lawton, 1977;27

Hastings, 1979; Takimoto et al., 2012; Ward and McCann, 2017). Polis (1991) investigated up to eight-species28

communities but analyzed the limited topology of food webs.29

The lack of appropriate frameworks for complex food webs seems to lead to controversial debates on what30

controls FCL in natural systems. Three factors have been proposed as determinants of FCL: resource availability31

(Oksanen et al., 1981), disturbances in a community (Pimm and Lawton, 1977), and ecosystem sizes (Post et al.,32

2000a). Researchers have investigated whether each of the three restricts FCL or not, but several studies and33

meta-analyses show contradicting results (Briand and Cohen, 1987; Jake et al., 2007; Takimoto et al., 2008;34

McHugh et al., 2010; Sabo et al., 2009, 2010; Takimoto and Post, 2013). This contradiction may come from the35

fact that the three factors interdependently affect FCL (Post, 2002). For example, Ward and McCann (2017)36
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show that ecosystem size and resource availability affect the magnitudes that the other parameter changes FCL,37

respectively. Therefore, we need to consider in what condition resource availability, disturbances, and ecosystem38

sizes have dominant effects on FCL, rather than each of which is a general determinant.39

In this review, we argue that some mathematical models (or algorithms) used in food webs studies can40

overcome the two problems in the studies on FCL. These models can generate food webs as complex as empirical41

ones, but they have not been used to investigate FCL. In section 2, we first introduce the terminology in graph42

theory. This helps us to clarify what kinds of characteristics a food web should satisfy in the analysis of FCL, and43

how to measure FCL. Section 3 reviews more than ten models that generate a variety of complex food webs,44

and we show which can be used for investigating how the three factors affect FCL. Section 4 shows various45

definitions of FCL and how to calculate them using algorithms in graph theory. In section 5, we discuss how to46

include the effects of resource availability, disturbances, and ecosystem sizes on FCL in food webs generated by47

models in Section 3. We also propose some research questions that could expand our understanding of FCL.48

2 Requirements for food web as graph49

In analyzing FCL, we first need to obtain a graph or network representing a food web. In a food web, each50

node represents species, and each edge (or arc) between a pair of species represents a prey-predator interaction.51

Because one of the pair is a prey species and the other is a predator species, the edge should have a direction52

from the prey to the predator: the food web should be a digraph (Bang-Jensen and Gutin, 2009). We also53

argue that the analysis of FCL requires acyclic food webs because some definitions of FCL are not applicable54

to cyclic food webs (see Section 4). A graph is called acyclic when it does not have any cycles (i.e., from node55

x, we cannot go back to node x through finite edges).56

A food web for analyzing FCL should be, therefore, a directed acyclic graph (DAG). Whether a food web57

is a DAG or not is investigated by a simple and linear-time algorithm (Cormen et al., 2009a; Erickson, 2019).58

We would like to emphasize that we do not argue that all food webs are acyclic in nature. For example, one of59

213 food webs (named WEB21) in Cohen’s database (Cohen, 2010) is cyclic. Another cyclic food web can be60

found in Fig. 5 of Polis (1991). However, some definitions of FCL are used only if a food web is a DAG while61

other definitions can be used in acyclic food webs and a part of cyclic food webs. For these reasons, we focus62

on acyclic food webs in this review.63

Ecologically speaking, a food web that is a DAG does not include cannibalism, mutual predation between64

a pair of species, or a cycle of predation composed of three or more species (Figs. 1A-C). The last condition65

indicates that we ignore decomposers (or “predation” by decomposers) in the analysis of FCL (Cohen and66

Newman, 1985). In addition, graph theory indicates that every directed acyclic food web should have one or67

more species that do not eat or are not eaten by any other species, respectively (Bang-Jensen and Gutin, 2009;68

Erickson, 2019): they are called basal species and top predators in ecology. These species are keys to calculating69

FCL in a given food web.70

A topology of a food web composed of N species can be summarized in an N×N adjacency matrix A = (aij).71
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Figure 1: Examples of food web

In each panel, the top part represents a schematic food web and the bottom part shows a corresponding adjacency

matrix. In panels from A to C, the food webs are cyclic because the frog performs cannibalism (A), the human and the

alligator predate each other (B), and the decomposer fly is included (C). We do not focus on these food webs in this

review. Panel D, on the other hand, represents a food chain and thus a DAG. Created with BioRender.com.
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We use aij = 1 when species i is eaten by species j while aij = 0 indicates species j does not eat species i. An72

adjacency matrix is different from a species interaction matrix used in some theoretical studies of prey-predator73

dynamics (Lotka, 1910; Pimm and Lawton, 1977, 1978; Banerjee and Takeuchi, 2017; Mougi, 2022). A species74

interaction matrix shows how species affect the growth of others: an element of a species interaction matrix can75

be negative. In contrast, as explained above, an element of an adjacency matrix is either zero or one.76

In general, an adjacency matrix of DAG should be a strictly upper triangular matrix (aij ≥ 0 if i < j,77

otherwise aij = 0) after ordering the species indices properly. A clear example of DAG is a food chain. This78

type of food web has a unique basal species and top predator, respectively, and each of the reset species has79

single prey and predator species, respectively. Mathematically, an adjacency matrix of a food chain is given as80

follows:81

aij =

 1 if j = i+ 1 (i, j = 1, . . . , N),

0 otherwise.
. (1)

As shown by the bottom panel of Fig. 1D, an adjacency matrix of a food chain is strictly upper triangular.82

An adjacency matrix also tells us the number of prey and predator species (called the in-degree and out-83

degree in graph theory) for each species. We denote D−(i) and D+(i) as the number of prey and predator84

species of focal species i, respectively. In a directed acyclic food web,85

D−(i) ≡
i−1∑
j=1

aji, (2)

D+(i) ≡
N∑

j=i+1

aij (3)

after sorting the indexes of species so that the adjacency matrix is strictly upper-triangular. For example, basal86

species and top predators should satisfy D−(i) = 0 and D+(i) = 0, respectively.87

We assume that a N -species food web has no isolated species in this review. In other words, for i = 1, . . . , N ,88

species i should have at least one prey or predator species:89

D+(i) +D−(i) ≥ 1, (i = 1, . . . , N). (4)

As an isolated species does not have either prey or predator species, such species can be regarded as a basal90

species and a top predator at the same time. Then, an isolated species makes us underestimate FCL when we91

use a certain definition of FCL (see Section 4.3). This is why we assume no isolated species in this review. If92

such species exist in a food web, we remove them and redefine the number of species in the food web.93
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3 Models generating complex food webs94

Table 1 shows the models (or algorithms) we reviewed in this manuscript. These models were proposed to95

mimic complex natural food webs. We focus on two features of each algorithm: (i) whether an algorithm always96

generates DAG or not, and (ii) whether a food web is statically or dynamically generated. In this section, we97

classify a model as one that generates acyclic food webs even when the original model proposed in the literature98

allows cannibalism. This is because we can easily modify the algorithms so that cannibalism would not occur.99

As mentioned in the previous section, algorithms that generate DAG are appropriate in studies of FCL. In100

the static algorithms, adjacency matrices are generated by some simple rules, while the dynamic algorithms101

generate food webs through meta-community or evolutionary dynamics.102
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3.1 Static models103

In the static models, a food web is generated with some stochastic processes. Because many studies of food104

webs analyze connectance C ≡
∑N

i,j aij/N
2 (Dunne et al., 2002a,b; Rall et al., 2008), these models typically105

generate many food webs given connectance and then compare some statistical properties of empirical food106

webs and simulated ones.107

3.1.1 Random model108

The random model is a null model. In this model, each element of N × N adjacency matrix is one with109

the probability of connectance C (otherwise aij=0). Obviously, this algorithm can generate cycles and is not110

appropriate for the analysis of FCL. In Cohen and Newman (1985), for example, about 82 % of webs generated111

by this algorithm were cyclic after tuning parameters from empirical data.112

3.1.2 Cascade models113

A simple way to generate acyclic food webs was proposed by Cohen and Newman (1985). This model, called the114

cascade model (Fig. 2A), assumes ranks of species: a species with a lower rank never eats higher rank species115

while species with a higher rank can predate lower rank species with a constant probability. Such ranks may be116

given by body sizes (Warren and Lawton, 1987): predators tend to be larger than their prey species. Without117

loss of generality, we assume that the species indices are sorted following such ranks. Then, the probability that118

species j predates species i (aij = 1) is given by the following equation:119

Prob (aij = 1) =

 0 (if i ≥ j)

2C
N(N−1) (otherwise)

. (5)

As the cascade model always generates a strictly upper triangular adjacency matrix, all food webs generated in120

this algorithm are DAGs and appropriate for analyzing FCL.121

However, the cascade model has been challenged because the model does not fit the empirical data and/or122

the assumption of constant predation probability seems violated in nature (Solow, 1996; Williams and Martinez,123

2000; Neubert et al., 2000). To overcome this problem, Stouffer et al. (2005) proposed the generalized cascade124

model, where species i can eat lower rank species with species-specific probability xi ∈ [0, 1] drawn from the125

beta or exponential distributions. Stouffer et al. (2005) also revealed that the generalized cascade model show126

probability distributions of numbers of preys, predators, and trophic links similar to the niche model, which127

fits these patterns of empirical data (Camacho et al., 2002a,b): see Section 3.1.4 for more details of the niche128

model.129

3.1.3 Models tuning the number of basal species130

The random and the (generalized) cascade models do not determine the number of basal species. Because basal131

species are important to measure FCL, we may want to tune the number of basal species while generating only132
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Figure 2: Schematic representations of static models’ adjacency matrices

A: The (generalized) cascade model (Cohen and Newman, 1985) fills each upper element of the adjacency matrix with a
certain probability. B: The model proposed by Kondoh and Ninomiya (2009) assumes that the basal species that do not
predate any species (filled area) and that each non-basal species predates at least one basal species (the blue rectangle).
C: The preferential prey model (Johnson et al., 2014) also assumes the basal species, but non-basal species may not
predate basal species. D: The niche model (Williams and Martinez, 2000) assumes that each predator species has no
gap in its prey’s niche value (the blue rectangle). E: The nested hierarchy model assumes the phylogenetic constraints
on the prey. As the three species predate species 1 (the blue rectangle), these species also share other prey species. F:
The minimal potential niche model allows the gaps in the prey’s niche value (the circles in the blue rectangles). A–C
always generate strictly upper-triangle adjacency matrices (i.e., acyclic food webs), while it is not the case in D–F.
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DAGs. Previous studies proposed two such models. One is proposed by Kondoh and Ninomiya (2009) but133

this model cannot generate food chains. In their model (Fig. 2B), species i = 1, . . . , B are regarded as basal134

species and they do not eat any species. The rest of the species (non-basal species, i = B+1, . . . , N) are sorted135

following the ascending trophic ranks, and each of them randomly chooses one prey species from the basal136

species. Then, the predetermined number of trophic links are added between species (except for between basal137

species) so that higher rank species eat lower ones. This model always generated an acyclic food web because138

lower-rank species never eat higher-rank ones. However, this model cannot generate a food chain because each139

of non-basal species should eat at least one basal species. When N = 3 and B = 1, for example, basal species 1140

is always eaten by both species 2 and 3: we cannot generate a food chain where species 3 predates only species141

2.142

Johnson et al. (2014) proposed a similar algorithm called the preferential prey model (Fig. 2C), and this143

model can generate food chains. In this model, species i = 1, . . . , B are first assigned as basal species. Then,144

a single non-basal species (i = B + 1, . . . , N sorted according to the ascending trophic ranks) is sequentially145

added to the food web. First, each non-basal species i is randomly awarded a single prey species from species146

i = 1, . . . , B, . . . , i − 1. Then, a certain number of prey species of species i is added. These additional prey147

species are chosen depending on the difference in the trophic levels between the candidate prey species and the148

species that is first chosen as species i’s prey. The generated food webs are acyclic because already existing149

species cannot predate newly added species. In addition, this model can generate a food chain. When N = 3150

and B = 1, for example, species 2 should always eat species 1 while species 3 can predate only species 2 with151

some probability, which cannot happen in the model of Kondoh and Ninomiya (2009).152

3.1.4 Niche models153

Williams and Martinez (2000) proposed the niche model (Fig. 2D), which shows more similar patterns to154

empirical food webs than the random and cascade models. In the niche model, each species i has a niche155

value ni, and each species predates species whose niche values are in a certain range. This means that the156

one-dimensional niche is assumed in the niche model. Species j is eaten by species i if nj ∈ [ci− ri/2, ci+ ri/2],157

where ri is the range of species i’ prey niche, and ci is the center of the range. Although the center value is158

assumed to be equal to or smaller than the focal species’ niche value (ci ≤ ni), species i can predate those who159

have larger niche values than species i. Therefore, food webs generated by the niche model can be cyclic.160

Some mathematical analyses for the niche model have been done in a large community with a small con-161

nectance (S ≫ 1 and C ≪ 1). Camacho et al. (2002a) show the probability distributions of the number of162

prey species per species exponentially decays. On the other hand, the probability distribution of the number163

of predators is constant until a certain threshold and exponentially decreases when the number of predators164

exceeds the threshold. These patterns are observed in empirical food webs as well. (Camacho et al., 2002b).165

The niche model was expanded by Stouffer et al. (2006). The generalized niche model is a mixture of the166

niche model and the generalized cascade model to include “gaps” in an adjacency matrix (see Section 3.1.5 for a167

more detailed explanation of the gaps). In this model, the range of prey’ niche value ri is shrunk by multiplying168
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with a parameter c ∈ [0, 1]. Although this decrease the number of species i’s prey species, additional prey169

species are chosen randomly from those which have lower ranks than species i. Therefore, c = 1 corresponds to170

the niche model while c = 0 corresponds to the generalized cascade model.171

3.1.5 Nested hierarchical model172

One pitfall of the niche model is that a predator species has no gap in its predation range. Suppose we have173

four species whose indices are given by the ascending order of the niche values. If species 4 predates species 1174

and 3, species 2 is also eaten by species 4 in the niche model. As such a gap (e.g., species 4 predates species 1175

and 3, but not 2) can happen in nature, Cattin et al. (2004) proposed the nested hierarchical model (Fig. 2E).176

They compared the number of properties of empirical food webs, ones generated by the niche model, and ones177

by the nested hierarchical model. The two models show similar patterns to the empirical data except that the178

niche model cannot predict the properties related to food webs’ gaps while the nested hierarchy model can.179

The key idea of this model is that if two predator species have a common prey species, they are likely to have180

other common prey species. This idea is justified by the assumption that such two predators are phylogenetically181

close. In the nested hierarchy model, we again assume that species indices are sorted according to the ascending182

order of their ranks. The number of prey species for each species is determined by a similar method that183

Williams and Martinez (2000) determines the range ri of each species so that a species with a larger range in184

the niche model tends to have a larger number of prey species in the nested hierarchical model: read Method185

section of Cattin et al. (2004) for more details. Species i first randomly chooses a prey species j from lower186

rank ones( j ∈ [1, . . . , i− 1]). Next, additional prey for species i is chosen in either of two ways. If prey species187

j does not have any other predator species, species i again randomly chooses prey species from lower-rank ones.188

If prey species j has predators other than i (e.g., species k), additional prey for species i are randomly chosen189

from prey species of species k. This implies a phylogenetic constraint. If species i needs more prey species,190

additional prey species are randomly chosen from the species with lower ranks. If the number of prey species is191

not enough yet, prey species are added from those with higher ranks than species i, which allows us to generate192

cyclic food webs.193

The phylogenetic constraint can generate gaps in food webs. Suppose that species i first choose prey species194

j, and species j has two predator species k and l. For the sake of simplicity, let us assume that species i needs195

two additional prey species, and species k and l have two other prey species, respectively: {j − 2, j − 1, j} as196

species k’s prey, and {j − 4, j − 3j} for species l’s prey. If species i chooses one prey from species k’s prey and197

the other from species l’s prey, the composed food web has a gap.198

Stouffer et al. (2005) show some analytical results in the nested hierarchy model in a large community199

with small connectance (S ≫ 1 and C ≪ 1). First, the probability distribution of the number of prey in the200

nested hierarchy model is identical to the niche model. Second, the patterns of probability distributions of the201

number of predator species per species and the connectivity are similar to those generated by the niche model.202

Finally, the predation of species with higher rank occurs at eight percent. This implies that cyclic food webs203

are generated in eight percent or less in the nested hierarchy model in this case.204
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3.1.6 Minimal potential niche model205

Instead of comparing summary statistics of empirical food webs and ones generated by the algorithms mentioned206

above, Allesina et al. (2008) proposed two measures to compare the performance of the models: (i) the minimum207

number of irreproducible connections, the edges that the focal algorithm cannot generate while reproducing a208

target empirical food web because of the algorithm’s assumptions, and (ii) the likelihood that a focal algorithm209

generates a chosen empirical food webs. In the calculation of the minimum number of irreproducible connections,210

an adjacency matrix of an empirical food web is decomposed into two matrices: a reproducible adjacency211

matrix containing edges that the focal algorithm can reproduce, and an irreproducible adjacency matrix that212

the algorithm cannot reproduce. Then, the likelihood of the model is given by the sum of the likelihood that213

the algorithm generates the reproducible adjacency matrix and the likelihood that the random model generates214

the irreproducible adjacency matrix. Allesina et al. (2008) show that the niche model has larger log-likelihoods215

than the cascade model and the nested hierarchy models, but the number of irreproducible connections of the216

niche model is also larger.217

These results support the assumption of the niche model but suggest it is imperfect: prey species are likely218

to share some characteristics (i.e., the niche values) but the dimension of the niche would be more than one.219

Then, Allesina et al. (2008) expanded the niche model and proposed the minimal potential niche model (Fig.220

2F). In this model, each species has a one-dimensional niche value and a potential range of prey’s niche. Instead221

of predating all species whose niche values fall in this range, a fraction of species in the range is not eaten by222

the focal predator species. This fraction, called a fraction of forbidden links, represents the average fraction223

of species that fall in dimension 1 of the predator’s niche (i.e., the niche value in the model) but not in other224

dimensions which is not explicitly defined in the model. The generated food webs have gaps as in the nested225

hierarchy model, but Allesina et al. (2008) report that the likelihood of the minimal potential prey model is226

larger than the niche model and nested hierarchical model. However, the minimal potential prey model generates227

cyclic food webs because the potential range of the prey niche can exceed the predators’ niche value.228

3.2 Dynamic models229

In the dynamical model, a food web changes its topology over time. These models simulate macro-evolutionary230

or meta-community dynamics. In the macro-evolutionary models, a new species has prey and predator species231

similar, but not identical, to the ancestral species. An adjacency model in these cases is a function of species’232

traits that evolve over time. Although we can simulate how properties of food webs evolve over time, none of233

the following models compares these temporal features with empirical data over time. This would be because234

empirical food web data over a long time are unavailable. Instead, these models measure the properties of235

generated food webs after a long run and then compare them with empirical data and static models. In meta-236

community models, on the other hand, regional food webs (hereafter called metawebs) are assumed. Then,237

researchers investigate what kinds of food webs are realized in a local community. A local food web is assembled238

by stochastic colonization and extinction of each species. The realized food web in the local community is given239
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by a subset of a metaweb. This indicates that acyclic metawebs generate only acyclic local food webs.240

3.2.1 Webworld model241

Caldarelli et al. (1998) proposed the Webworld model to generate food webs over the evolutionary dynamics. In242

this model, each species has a certain number of features, and these features determine which of a pair species243

is a prey or a predator (i.e., no mutual predation is assumed). Suppose we have two species (species i and j).244

The features of the two species give us scores Sij and Sji. If Sij > 0, species i predates species j, but species i245

does not predate if Sij = 0. Because of an assumption in the calculation of Sij , Sji = 0 if Sij > 0. However, this246

does not exclude the possibility that cyclic predation whose length is three or larger is generated. Therefore,247

this model can generate cyclic food webs.248

The food web evolves because of speciation. When speciation happens, a new species mimic the features of249

its ancestral species, but randomly loses one feature and obtains a new feature. Then, the new species is likely250

to have prey species similar to those of the ancestral species, but not necessarily identical. This depends on251

how the newly obtained and lost features affect the scores of the new species against the other species. The252

new species may suddenly go extinct and/or remove other species because of resource competition. Although253

this model is simple, Caldarelli et al. (1998) could not tune the parameter values to fit the empirical food webs254

available at that time.255

3.2.2 Speciation and Matching models256

Another dynamical model generating food webs over the evolutionary time scale is the speciation model (Ross-257

berg et al., 2005). In this model, each species has an evolutionary rate. This parameter determines the focal258

species’ speciation rate, extinction rate, and body size. In Rossberg et al. (2005), a faster evolutionary rate259

indicates a smaller body size. As in the cascade model, potential predator (prey) species of a focal species260

are those which have larger (smaller) body sizes than the focal species, but the parameter loopness λ ∈ [0, 1]261

controls the violation of this constrain: larger λ means that a species is more likely to predate other species262

whose body sizes are larger. Therefore, this model can generate cyclic food webs when λ > 0.263

When a new species i joins the community, the speciation model determines the prey and predator species264

of species i as follows. First, species that are potential prey (predator) species of both species i and its ancestral265

species j are regarded as species i’s prey (predator). Next, new potential prey (predator) species of i (i.e.,266

potential prey or predator species of species i, but not those of j) are assigned as prey (predator) species267

with a certain probability. Then, each potential prey (predator) species is pooled with a certain probability268

called the recombination probability. If pooled species are already assigned as species i’s prey (predator), the269

trophic interactions are removed. Finally, the pooled prey (predator) species are (re-)assigned as species i’s270

prey (predators) with a certain probability.271

Rossberg et al. (2005) calculated the goodness of fit of the speciation model to seven empirical data The272

goodness of fit was calculated based on 12 statistics. Comparing the goodness of fit of the niche model and the273

nested hierarchy model, the speciation model is the closest to the empirical data.274
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While the speciation model does not explicitly define species traits related to trophic interactions, the275

following study (Rossberg et al., 2006) includes foraging and vulnerability traits. These traits are given by276

binary sequences and determine whether one species predates another or not. This model, called the matching277

model, also considers the speciation and species’ body sizes, The body sizes restrict prey-predator interactions.278

As in the speciation model, the matching model assumes that species cannot predate ones whose body sizes are279

larger, and this relation is violated when the loopness λ > 0. Species i predates its potential prey j if the match280

between i’ foraging traits and j’s vulnerability traits exceeds a threshold. When speciation occurs, the new281

species mimic its ancestral species foraging traits, vulnerability traits, and body size, but they slightly change.282

The matching model was also compared with the niche model and nested model. Rossberg et al. (2006)283

shows that the matching model is favored over the niche model in 12 out of 17 empirical food webs and over284

the nested hierarchy model in 16 out of them.285

3.2.3 Model incorporating interference competition286

While the above models can include exploitative competition (two or more predator species sharing prey in-287

directly interact via resource competition), the model proposed by Loeuille and Loreau (2005) can include288

interference competition (e.g., the two predator species directly interact with each other). In this model, each289

species is assigned a body size, and speciation changes only the body size. Without loss of generality, species290

indices are sorted in the ascending order of the body sizes. As in the cascade model, species i predates species291

j if and only if species i has a larger body size. However, the consumption rates depend on the difference in292

the body sizes, and an optimal body size is assumed to exist: the rationale is that energy gain should increase293

over the prey’s body size (i.e., decrease over the difference in the body sizes), but the predator’s attack is less294

likely to succeed when the prey has a body size closer to the predator. In addition, interference competition295

occurs between two species if the difference in their body sizes is enough small. Therefore, if we focus on the296

prey-predator interactions, the food webs generated in this model are always acyclic. However, if we include297

interference interactions in the food webs, the networks can be cyclic. Loeuille and Loreau (2005) also show the298

fitting of this model to some empirical food webs is better than the fitting of the niche model.299

3.2.4 Expansion of the theory of island biogeography300

In the theory of island biogeography (TIB) (MacArthur and Wilson, 1967), a local community (called an island)301

is modeled by two processes: colonization from a source of species (called mainland), and stochastic extinction302

in the local community. In the classic case, the colonization and extinction rates are not species-specific, and303

thus the species richness at equilibrium is determined by the balance of the colonization and extinction rates.304

Gravel et al. (2011) expand TIB so that trophic interactions affect colonization and extinction rates: col-305

onization and extinction rates of predator species depend on the presence and absence of prey species. The306

authors also show that this extended TIB generates communities more similar to empirical data than the classic307

TIB in the sense of species richness, the number of trophic links, and the connectance in a local community.308

Saravia et al. (2022) also built a similar model while introducing the secondary extinction of non-basal species.309
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Because this model does not include local community dynamics, a local food web generated by the model may310

not be stable. However, the generated food webs were not very different from empirical food webs.311

3.2.5 Expansion of patch dynamics models312

Another framework for meta-community dynamics is patch dynamics. In its classical framework, the dynamics313

of fractions of patches occupied by species of interest are analyzed. Typically, the coexistence of competitive314

species is analyzed, and their colonization rates are determined by fractions of open patches and patches where315

inferior competitors occupy (Tilman, 1994; Yamauchi et al., 2021). A natural extinction of this framework to316

food webs is analyzed by Wang et al. (2021). In their model, the colonization rates of predator species are317

determined by a fraction of patches where the focal predator does not exist but its prey species exist. Their318

model assumes, however, that a metaweb is a food chain. Alternatively, Pillai et al. (2010) proposed the patch319

dynamics for the fractions of patches where a focal trophic interaction is realized. However, Pillai et al. (2010)320

and the following study (Pillai et al., 2011) allow only food chains in local communities by assuming competitive321

exclusion of predator species that share prey species. This may be because the authors are interested in the322

realized regional food webs (i.e., food webs generated by merging local food webs). Even though, one could323

estimate local food webs and analyze FCL from the fractions of the trophic interactions in this model.324

4 Definitions and algorithms for FCL325

In this section, we review a variety of definitions of FCL, and how to calculate FCL using algorithms in graph326

theory. In the following definitions, FCL is defined by the length of some walks or paths from basal species.327

Before moving to the review of FCL, we define a walk and a path.328

A walk from node x to node y is a set of sequential edges that starts from x, through some other nodes, and329

arrives at y. A walk may visit a node multiple times. A path from x to y is a special walk from x to y that a330

node is not visited multiple times (Bang-Jensen and Gutin, 2009). The length of a walk or a path is given by331

the number of sequential edges.332

A N -species food chain has FCL of N − 1 in any definitions except for the empirical definition (Section 4.5)333

because there is a unique path from the basal species to the top predator. However, a definition of FCL can334

change its value in a non-chain food web because there can be multiple walks or paths. For this reason, we335

cannot quantitatively compare the results of studies using different definitions of FCL, although we would be336

able to qualitatively compare how FCL changes.337

4.1 Shortest-length approaches338

In Caldarelli et al. (1998), a trophic level of each species is defined by one plus the length of the shortest path339

from a basal species. Because FCL is given by the maximum trophic level minus one (Post, 2002), FCL here340

is defined by the maximum shortest path length from a basal species in a food web. One advantage of this341

definition is that we can use this definition in cyclic food webs if we have basal species. This is because the342
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Figure 3: Examples food webs for FCL analysis

Schematic representations of food webs that are useful to understand each definition of FCL. Each circle represents
species, and values on the edges in panel B are weights wij of predation. A: When FCL is defined by the maximum
shortest path (Section 4.1), the top predator, species 4, does not determine FCL. The shortest path from species 1 (the
basal species) to species 4 is one, while the shortest path from specie 1 to species 3 is two. Therefore, FCL is
determined by non-top predator 3 if we define FCL as the maximum shortest path in a food web. B: This food web
clarifies that FCL based on the mean path length (Section 4.3) differs from that based on the prey’s mean trophic level
(Section 4.4). In this food web, we have two top predators (species 2 and 4), and we have two paths from species 1 (the
basal species) to species 4. The mean length of paths from the basal species to either of the top predators is
(1 + 1 + 2)/3 = 1.33. When we calculate the trophic levels based on the prey’s mean trophic level, species 2 is level 2
and species 4 is level 1 + (1 + 2)/2 = 2.5. Then, the FCL based on the prey’s mean trophic levels is
max{2, 2.5} − 1 = 1.5. Created with BioRender.com.

shortest paths should not include cycles by definition. The disadvantage of this definition is, on the other hand,343

that the top predators do not always determine FCL. Suppose we have a four-species food web: species 1 is a344

basal species, species 2 predates species 1, species 3 predates species 2, and species 4 predates all other species345

(Fig. 3A). In this example, species 4 is the top predator (as no species predates species 4) but its trophic level346

is two since species 4 predates the basal species. In contrast, the FCL is two because the maximum shortest347

path in this food web is given by the path from species 1 to species 3, which is not a top predator.348

In graph theory, this definition of FCL is identical to the diameter of a food web (Estrada, 2013). To calculate349

the diameter, we first need to measure the (directed) distance between two species in a focal food web: the350

distance d(x, y) is the shortest path from species x to species y. The diameter of a food web is, then, given by351

the longest distance between two species in the food web. The diameter, or FCL in this definition, of a food web352

is easily obtained. Given a food web, we first collect basal species such that D−(i) = 0 for i = 1, . . . , N . Then,353

we solve the single-source shortest path problem for each basal species, which calculates the shortest path from354

a given basal species to all other species. The single-source shortest path problem is solved by the Breadth-first355

search algorithm whose computational complexity is O(N +
∑

i,j Aij) (Cormen et al., 2009a). Finally, the FCL356
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is given by −1 plus the maximum shortest path across all basal species. Because the number of basal species is357

smaller than N , the total computational complexity for FCL in this definition is O(N2 +N
∑

i,j Aij)358

A similar, but identical, to the above definition was used in Kondoh and Ninomiya (2009). Here, the authors359

defined FCL as the shortest path from a basal species to a top predator. With this definition, the top predator,360

species 4, in Fig. 3A gives the FCL of one. We can calculate FCL in a similar way to the above algorithm:361

we calculate the shortest path from each basal species to each top predator using the Breadth-first search, and362

then we look for the minimum shortest path over pairs of basal species and top predators. We need to keep363

in mind that top predators may not be defined in a part of cyclic food webs (e.g., where “top predators” are364

predated by decomposers).365

4.2 Longest-length approach366

Alternatively, we can define FCL as the length of the longest walk from a basal species in a food web (Briand367

and Cohen, 1987; Cohen and Newman, 1991; Kondoh and Ninomiya, 2009; Calcagno et al., 2011; Sommer et al.,368

2018). An advantage of this definition is that non-top predator species cannot have the longest path from a basal369

species because non-top predators should have species that predate the focal non-top predators. The longest370

walks or paths to the predators of the non-top predators are longer than that of the focal non-top predators.371

However, this definition cannot be used in a cyclic food web: the length of a walk in such a food web can be372

infinite as visited nodes are not necessarily distinct in a walk.373

Hereafter, we assume an acyclic food web while considering this definition of FCL. Then, a walk is identical374

to a path, and FCL is given by the length of the longest path. Although the longest-path analysis is, in general,375

NP-complete (Cormen et al., 2009b), we can easily and quickly obtain it in a directed acyclic graph. The idea376

is that we consider a graph whose topology is identical to an original graph but the weights of all edges are377

multiplied by −1 (Bang-Jensen and Gutin, 2009). The shortest path in this new graph corresponds to the378

longest path in the original graph.379

4.3 Mean-length appraoch380

Briand and Cohen (1987) and Sabo et al. (2009) also considered FCL as the mean length of a walk from a basal381

species to a top predator within a food web. Again, we assume an acyclic food web here: FCL can be infinite382

in cyclic food webs (see Section 4.2). Then, we define FCL as the mean length of paths from a basal species to383

a top predator within a food web. One advantage of this definition is that we can incorporate the information384

of all top predators and basal species in a food web. In the rest definitions of FCL, on the other hand, FCL385

is given by a certain pair of species because we consider the maximum or minimum length of paths or trophic386

levels. To our best knowledge, however, there is no algorithm that calculates this FCL efficiently.387

17



4.4 Prey’s mean trophic level approach388

Another definition of FCL is based on the trophic levels given by mean trophic levels of prey species (Diehl389

and Feissel, 2001; Post and Takimoto, 2007; Kondoh and Ninomiya, 2009; Takimoto et al., 2012). Notably, this390

definition is not identical to the mean-length approach (Fig. 3B). Once all species’ trophic levels are obtained,391

FCL is given by the maximum trophic level minus one. This definition can reflect how much each prey is eaten392

by a focal predator species while FCL based on the shortest or the longest walks or paths cannot. However, we393

cannot use this FCL in cyclic food webs because we cannot define trophic levels in cyclic food webs.394

Suppose that a fraction of species i in non-basal species j’s prey is wij :395

wij > 0 if aij = 1

wij = 0 if ai = 0,
(6)

and396

N∑
i=1

wij = 1. (7)

Then, species j’s trophic level τj is given the mean trophic level of prey species plus one:397

τj = 1 +

N∑
i=1

τiwij . (8)

We cannot define each species’ trophic level in cyclic food webs because of a circular problem. For example,398

if two species mutually predate each other, one species’ trophic level depends on the trophic level of the other399

species, whose trophic level depends on the first species’ trophic level. Therefore, we can use this definition of400

FCL only in acyclic food webs.401

Hereafter, we assume an acyclic food web, and the species indices are assigned so that the adjacency matrix402

is a strictly upper triangular matrix when we use this definition of FCL. FCL of this definition can be obtained403

as follows. First, we collect basal species from a food web. Next, we assign trophic levels of species that predate404

only basal species. Then, we recursively assign trophic levels to species that predate species whose trophic405

levels are already assigned. The computational complexity of this process is O(N2) because N ×N adjacency406

matrix tells us which species predate which. We repeat this process at most N times to assign all species’407

trophic levels because at least one new species’ trophic level is assigned in each step; the total computational408

complexity is O(N3) in this definition of FCL. After assigning all species’ trophic levels, we can calculate FCL409

as the maximum trophic level minus 1 (Post, 2002). As in the definition in Section 4.1, top predators do not410

always determine FCL; for example, species 4 in Fig. 3A can have a lower trophic level than species 3 when411

species 4 most frequently predates species 1 than other prey species.412
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4.5 Empirical approach413

A typical definition of FCL in empirical studies is given by the trophic positions of species estimated by stable414

isotope δ15N . (Post et al., 2000b; Takimoto et al., 2008; Jake et al., 2007; Sabo et al., 2010; Sullivan et al.,415

2015; Ward and McCann, 2017; Doi and Hillebrand, 2019). The assimilation of stable isotopes represents the416

mass or energy flows in a food web. Then, FCL is defined by417

FCL ≡
(
maxi δ

15Ni − δ15Nbase
)

δN
+ λbase (9)

where δ15Ni corresponds to δ15N of a top predator (we choose one whose δ15N within all top predator species),418

δ15Nbase is δ15N of baseline species, δN is the average enrichment of δ15N per trophic level (typically δN = 3.4)419

(Post et al., 2000b), and λbase is a constant value depending on the trophic position of the baseline species. In420

empirical studies, researchers tend to use the trophic position of baseline species (e.g., λbase = 2 for primary421

consumers). However, if we convert the maximum trophic position into FCL following (Post, 2002), λbase422

should be the baseline species’ trophic level minus 1.423

One advantage of this definition is that we do not need an entire food web. We need only a top predator424

and a baseline species, which is not necessarily a basal species (e.g., we can use primary consumers as baseline425

species). In addition, this definition allows cyclic food webs.426

5 Discussion427

FCL is an important summary statistics of biodiversity in nature, and ecologists have investigated what deter-428

mines FCL. However, the studies on FCL have been very simple in two points. First, theoretical models and429

laboratory experiments analyzed only food webs simpler than natural food webs. Second, many studies have430

tested simple hypotheses: whether each of resource availability, disturbances, and ecosystem sizes affect FCL431

or not. Since FCL in natural communities is likely to be determined by these three factors in a complex way,432

we need a comprehensive theory that integrates the three hypothetical controls of FCL. To address this point,433

we propose using some models in Table 1 that generate a variety of food webs as complex as natural ones.434

One important feature of the models is whether they generate only acyclic food webs or not. As reviewed in435

Section 4, all definitions of FCL are applicable to acyclic food webs. In contrast, FCL defined in Sections 4.2,436

4.3, and 4.4 cannot be applied in cyclic food webs, while the rest definitions can be applicable in cyclic food437

webs only if basal species or top predators exist. For this reason, it would be reasonable to use models that438

generate only acyclic food webs in the studies of FCL. Such models are the (generalized) cascade model, the one439

proposed by Kondoh and Ninomiya (2009), the preferential prey model, and the dynamical models (except for440

the WebWorld model) under certain conditions (Table 1). In contrast, the (generalized) niche model, the nested441

hierarchy model, the minimal potential niche model, and Webworld can generate cyclic food webs. Unless we442

use FCL that allows cycles (Section 4.1), these models are not appropriate in the studies of FCL.443

Another important feature of the models is how a food web is generated: whether statically or dynamically.444
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The static models have small computational costs because an adjacency matrix is generated by some simple rules:445

we can generate many food webs in a short time. However, these models do not provide dynamical properties of446

generated food webs. This makes it difficult to analyze how disturbances affect FCL. One way to overcome this447

problem would be to simulate ecological dynamics (e.g., using the generalized Lotta-Volterra model or others in448

the dynamical models) given a food web generated by the statical models. The dynamic models, on the other449

hand, take a longer time to generate a food web because each food web is generated through meta-community450

or evolutionary dynamics. However, the dynamic models provide dynamical properties of FCL: the effect of451

disturbances on FCL can be implemented in a straightforward way. Another advantage of the dynamical models452

is that they addressed research questions that have not been widely investigated. One can ask, for example, how453

a network topology of local communities (Sullivan et al., 2015; Pomeranz et al., 2022) affects the distribution of454

FCL across space, or in which case FCL evolves the longest. These questions could also be empirically addressed455

using microcosms.456

Once we choose the model to generate food webs, we need to consider how resource availability, disturbances,457

and ecosystem sizes affect food webs. Effects of resource availability can be implemented either as the number458

of basal species (see Kondoh and Ninomiya (2009) and Johnson et al. (2014)) or as maximum colonization rates459

of basal species. The disturbances can be seen as the random removal of species from a food web (Bellingeri460

et al., 2013) or extinction rates in patch dynamics (Gravel et al., 2011; Saravia et al., 2022). The ecosystem461

size would affect the number of patches in a system (with spatial structures), or the number of species in a food462

web (Cohen and Newman, 1991) (without spatial structures). We would see how FCL in a food web changes463

over these three parameters, rather than each of which is a dominant determinant.464

We also reviewed the variation in the definitions of FCL. The difference in the definition determines whether465

we can calculate FCL in a cyclic food web or not (see above), and whether we need a whole food web or not.466

Indeed, only the empirical FCL (Section 4.5) allows us to calculate FCL in an imperfect food web. This could467

affect the quantitative comparison of FCL in theory and in empirical data. Within the rest definitions of FCL,468

we do not recommend FCL based on the mean path length (Section 4.3). As there is no algorithm to efficiently469

calculate this FCL, the computational cost in a complex food web can be huge. Of course, the advantage of this470

definition is that we can include information on all basal species and top predators, while the rest definitions471

use only the maximum shortest or longest path or the maximum top predator’s trophic level. In Section 4.1, we472

show that the maximum shortest path approach has a problem: FCL can be determined by a non-top predator.473

To avoid this problem, we may define FCL as the maximum shortest path from a basal species to a top predator.474

However, another problem arises: an omnivore can strongly decrease FCL. For example, FCL in Fig. 3B is one475

when we define FCL by the maximum shortest path between the basal species (species 1) and either of two top476

predators (species 2 and 4). This indicates that the predation of species 3 by species 4 is not considered in this477

definition. A similar problem of omnivores occurs when FCL is defined by the longest path (Section 4.2): FCL478

can be overestimated by omnivores. FCL in Fig. 3A, for example, is three even when species 4 predates species479

1 or 2 more frequently than species 3. These problems related to omnivores can be solved when FCL is given by480

the definition in Section 4.4. With this definition, we can balance the effect of omnivore using the weight wij .481

20



However, we need to keep in mind that the distribution of wij affects FCL. We may need to consider whether482

resource availability, disturbances, and ecosystem sizes affect the distribution of wij or not. For example, an483

omnivore species may change its predation intensity on basal species depending on the resource availability484

because it would affect the abundances of the basal species.485

6 Conclusion486

Toward a comprehensive understanding of the determinants of FCL, we need to go beyond the simple systems487

and the simple hypotheses. We believe that this review provides a potential way to this research direction.488

First, graph theory is a useful tool to clarify characteristics that food webs in the analysis of FCL should satisfy,489

and how we can measure FCL. Second, we should use models that generate acyclic food webs as complex as490

empirical ones. Such models include the (generalized) cascade model and the preferential prey model. Using491

these models, we need to address how resource availability, disturbances, and ecosystem sizes interdependently492

affect FCL, rather than which is a dominant constraint on FCL.493
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