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Abstract  10 

In an epoch of rapid environmental change, understanding and predicting how biodiversity 11 

will respond to a changing climate is an urgent challenge. Since we seldom have sufficient 12 

long-term biological data to use the past to anticipate the future, spatial climate-biotic 13 

relationships are often used as a proxy for predicting biotic responses to climate change 14 

over time. These ‘space-for-time substitutions’ (SFTS) have become near ubiquitous in 15 

global change biology, but with different subfields largely developing methods in isolation. 16 

We review how climate-focussed SFTS are used in four subfields of ecology and evolution, 17 

each focussed on a different type of biotic variable – population phenotypes, population 18 

genotypes, species’ distributions, and ecological communities. We then examine the 19 

similarities and differences between subfields in terms of methods, limitations and 20 

opportunities. While SFTS are used for a wide range of applications, two main approaches 21 

are applied across the four subfields: spatial in situ gradient methods and transplant 22 

experiments. We find that SFTS methods share common limitations relating to (i) the 23 

causality of identified spatial climate-biotic relationships and (ii) the transferability of these 24 

relationships, i.e. whether climate-biotic relationships observed over space are equivalent to 25 

those occurring over time. Moreover, despite widespread application of SFTS in climate 26 
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change research, key assumptions remain largely untested. We highlight opportunities to 27 

enhance the robustness of SFTS by addressing key assumptions and limitations, with a 28 

particular emphasis on where approaches could be shared between the four subfields.  29 

 30 
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I. Introduction  50 

Environmental conditions that vary over space and time can drive changes in biotic variables 51 

through processes such as plasticity, adaptation, colonisation and extinction (Parmesan, 52 
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2006).  For example, climate variables such as temperature and precipitation have impacts 53 

on biotic variables ranging from changes in population phenotypes (Bergmann, 1848; 54 

Darwin, 1859) and genotypes (Bradshaw & Holzapfel, 2001), to shifts in species’ 55 

distributions (Merriam, 1894; Grinnell, 1914) and the composition and functioning of 56 

ecological communities (Moritz et al., 2008). As we progress through the Anthropocene – an 57 

epoch defined by rapid human-induced global change (Lewis & Maslin, 2015) – the biotic 58 

impacts of climate change are becoming increasingly apparent (Walther et al., 2002; Root et 59 

al., 2003; Scheffers et al., 2016, IPCC 2022). Consequently, there is an urgent call for 60 

ecologists and evolutionary biologists to understand and predict how populations, species 61 

and ecological communities respond to changes in climate variables.  62 

 63 

Given that ecological and evolutionary processes operate over time, predicting the biotic 64 

responses (VII. Glossary) to future climate change would ideally use long-term monitoring 65 

data to directly observe temporal climate-biotic relationships (VII. Glossary) and project 66 

these into the future (time-for-time approach; Figure 1a; Roy et al., 2001; Simmonds et al., 67 

2020). However, long-term ecological data are rare (Estes et al., 2018; Lindenmayer, 2018), 68 

as highlighted by recent efforts to collate time-series data (e.g. Dornelas et al., 2018; Comte 69 

et al., 2021; Johnson et al., 2022a). The urgent need to make predictions of biotic responses 70 

to future climate change has led global change biologists to consider an alternative 71 

approach, space-for-time-substitution (SFTS; Figure 1b; VII. Glossary).  SFTS use spatial 72 

climate-biotic relationships to predict biotic responses to climate change over time, under the 73 

assumption of space-time equivalence (VII. Glossary; Table 1; Pickett, 1989). This approach 74 

can generate predictions rapidly (e.g. Blüthgen et al., 2022), often from existing data or 75 

relatively small datasets that can be produced during single grants. Given this relative 76 

feasibility of SFTS compared to time-for-time approaches, SFTS has become near 77 

ubiquitous for understanding and predicting biotic responses to climate change (Table 2).  78 

https://www.zotero.org/google-docs/?Ior5lM
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80 

Figure 1: Approaches for projecting biotic responses to future climate change at a focal site 81 

(black square). a) Time-for-time approaches, where climate-biotic relationships are observed 82 

over time and extrapolated under projected future climates. b) Space-for-time substitution 83 
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(SFTS), where climate-biotic relationships observed in geographical space are translated to 84 

time under projected future climates. Note that time-for-time and space-for-time climate-85 

biotic relationships are not necessarily equivalent. 86 

 87 

 88 

Studies employing SFTS to predict biotic responses to future climate change have been 89 

conducted across a variety of spatial climate gradients including elevation/altitudinal 90 

(Zografou et al., 2020), latitudinal (De Frenne et al., 2013) and urbanisation (heat islands; 91 

Lahr, Dunn & Frank, 2018; Diamond & Martin, 2021) gradients, with each gradient type 92 

providing different strengths and weaknesses (Verheyen, Tüzün & Stoks, 2019). While the 93 

comparative straightforwardness of collecting data for SFTS is an attraction, the method has 94 

inherent limitations (Table 3) that need to be acknowledged, explored, and minimized to 95 

maximise the robustness of predictions. Namely, for all biotic variables, SFTS relies on the 96 

fundamental, often implicit, and rarely tested assumption that climate-biotic relationships 97 

observed in space are predictive of those that occur over time (e.g. Phillimore et al., 2010; 98 

Isaac et al., 2011; Blois et al. 2013). 99 

 100 

The use of SFTS in global change research has progressed somewhat independently across 101 

subfields focussing on different biotic variables. This review aims to synthesise the use of 102 

SFTS across four broad classes of biotic variables: population phenotypes, population 103 

genotypes, species’ distributions and ecological communities (Table 2). We first describe the 104 

most widely used SFTS approaches that are applied across different biotic variables, and 105 

highlight limitations that are common to all of our focal subfields. Second, we consider each 106 

subfield in turn, focussing on the SFTS methods employed, their applications and the 107 

insights gained, and any subfield-specific limitations. For each subfield, we highlight an 108 

exemplar SFTS study in Table 2. Third, we discuss the broad challenge of SFTS validation. 109 

https://www.zotero.org/google-docs/?DOd61W
https://www.zotero.org/google-docs/?JXHlPM


Page 6 of 84 

 

 
 

 

Finally, we identify opportunities for improving the robustness of SFTS, including cross-110 

fertilisation of ideas between the different subfields. While the focus of this review is on the 111 

use of SFTS to understand and predict the effects of climate variables, many of the insights 112 

into methods, assumptions, limitations and validation apply to SFTS across other types of 113 

ecological and environmental gradients (e.g. land use intensity, Purvis et al., 2018; 114 

ecological succession, Johnson & Miyanishi, 2008). 115 

 116 

II. Commonalities of SFTS approaches 117 

There are two main method types that are employed across the four subfields to investigate 118 

biotic responses to climate variation over space: in situ gradient approaches (VII. Glossary) 119 

and transplant experiments (VII. Glossary). These are compared in Figure 2 and Table 1. In 120 

situ gradient methods involve observing the value of a biotic variable, hereafter ‘biotic states’ 121 

(VII. Glossary), at multiple sites along a spatial climate gradient to allow estimation of the 122 

spatial climate-biotic relationship (Figure 2a, Table 1a; Dunne et al., 2004). Note that in situ 123 

gradients could also refer to observed temporal gradients, but we use the term for spatial 124 

gradients only. A variant of the in situ gradient approach that was developed for studying 125 

species distributions is ecological niche models (ENMs; VII. Glossary, Section III(3)), which 126 

are variously termed environmental niche, species distribution, (bio)climatic envelope and 127 

habitat suitability models (see Peterson & Soberón, 2012; Araújo & Peterson, 2012). The in 128 

situ gradient method presents a comparatively low logistical hurdle to data collection, 129 

meaning that spatial replication (i.e. number of sampling locations) is often high (e.g. Morán-130 

Ordóñez et al., 2017). However, a correlative in situ gradient approach in isolation is typically 131 

uninformative about the processes that generate the spatial pattern of a biotic state, such as 132 

the relative contributions of short-term processes including phenotypic plasticity (VII. 133 

Glossary) versus longer-term equilibrium (VII. Glossary) processes such as local adaptation 134 

(VII. Glossary; Table 1a; Adler, White & Cortez, 2020).  135 
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 136 

The second main SFTS approach involves transplant experiments, either as (i) a common 137 

garden transplant (VII. Glossary) to a shared environment, including experimentally 138 

manipulated environments (Figure 2b; Table 1bi), or (ii) a reciprocal transplant (VII. 139 

Glossary) between pairs of sites (Figure 2c, Table 1bii). Transplant experiments can yield 140 

information on the processes (e.g., plasticity versus genetic divergence) that generate 141 

spatial climate-biotic relationships (Turesson, 1922; Nooten & Hughes, 2017; Stamp & 142 

Hadfield, 2020). However, the logistics of transplant experiments often leads to low levels of 143 

spatial replication (Johnson et al., 2022b), which makes it difficult to identify the causal 144 

driver(s) of biotic responses. There are also many taxa for which transplant experiments are 145 

challenging or unfeasible, and most transplant experiment have involved organisms that are 146 

more easily moved, such as plants (e.g., Alexander, Diez & Levine, 2015). 147 

 148 

 149 

Figure 2: The main methods used to identify spatial climate-biotic relationships for SFTS: (a) 150 

spatial in situ gradients and (b,c) transplant experiments. Across all plots, shapes represent 151 

populations that have different sites of origin. (a) in situ gradient approaches, where biotic 152 

states observed at sites across a spatial climate gradient are used to model climate-biotic 153 

relationships (black line). (b,c) transplant approaches where organisms are moved across 154 

space into different environments. Here, dashed red lines indicate an immediate biotic 155 
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response to a new environment (e.g. phenotypic plasticity). Transplant approaches are (b) 156 

common garden transplants, where organisms from different sites are moved into a shared 157 

environment and (c) reciprocal transplants, where organisms from different sites are 158 

reciprocally moved into each other’s environments. The insert in (c) shows the case when 159 

the biotic variable is fitness and each population is the fittest at its site of origin (indicating 160 

local adaptation; Kawecki & Ebert, 2004). Note that while linear climate-biotic relationships 161 

are depicted, non-linear relationships are possible. 162 

 163 

Two extensions of the SFTS approach have been developed to predict the vulnerability (VII. 164 

Glossary) of biodiversity to climate change; we term these metrics ‘biotic offsets’ and ‘biotic 165 

lags’ (Figure 3). The first, a biotic offset (VII. Glossary; Figure 3a), is defined as the 166 

difference between the observed biotic state at a site and the predicted equilibrium biotic 167 

state at that site under a future climate (Fitzpatrick & Keller, 2015; Frank et al., 2017). This 168 

type of metric has also been termed vulnerability (Bay et al., 2018), risk of nonadaptedness 169 

(Rellstab et al., 2016), and (relative) risk of maladaptation (St Clair & Howe, 2007). Here we 170 

use the term biotic offset – inspired by the ‘genetic offset’ introduced by Fitzpatrick and 171 

Keller (2015) – to apply to any biotic variable. The second metric, a biotic lag (VII. Glossary; 172 

Figure 3b), is the difference between the observed biotic state at a site and the predicted 173 

equilibrium biotic state at that site under the current climate conditions. This has been 174 

variously termed maladaptation (e.g. Hällfors et al., 2020), disequilibrium (e.g. Sandel, 2019) 175 

and climatic debt (e.g. Devictor et al., 2012). In some studies, the biotic lag is translated into 176 

a spatial distance (Devictor et al., 2012). This involves quantifying the shift in (i) a biotic state 177 

and (ii) climate over a given time period, and identifying the geographic distance over which 178 

a shift of the same magnitude can be observed (Balanyá et al., 2006). The extent to which 179 

the geographic distance for climate exceeds that of the biotic state is the ‘distance of biotic 180 

lag’ (VII. Glossary; Figure 3c; Table1aiii; Devictor et al., 2008, 2012; Ash, Givnish & Waller, 181 
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2017). For example, Devictor et al. (2012) examined temporal and spatial trends in 182 

temperature and community temperature indices (CTI – a measure of the thermal ranges of 183 

the species in a community) for birds and butterflies across Europe. They found that the 184 

increases in temperature that had been observed over 18 years corresponded to a 185 

northwards shift of 249 km, whilst the equivalent shifts in CTI for birds and butterflies was 37 186 

km and 114 km, respectively, corresponding to biotic lag distance of 212 km and 135 km.  187 

 188 

Common to most ecological and evolutionary applications of SFTS is the often implicit 189 

expectation that spatial climate-biotic relationships will arise via a combination of 190 

comparatively rapid processes and slow processes, and may potentially be at equilibrium 191 

(Dunne et al. 2004; Adler et al. 2020). For instance, phenotypic plasticity is a rapid process, 192 

whereas genetic adaptation and shifts in species distributions are slower processes that 193 

generally take place over multiple generations. Conversely, in the short-term, temporal 194 

climate-biotic relationships will often be dominated by rapid processes, and it may only be 195 

over longer time-scales that slower acting processes will come to the fore (Dunne et al. 196 

2004; Adler et al. 2020). 197 

 198 

Whilst SFTS offers substantial promise as a tractable approach for generating much needed 199 

biotic predictions (Fukami & Wardle, 2005), several general limitations exist that, in the 200 

absence of successful validation, may undermine the robustness of SFTS projections. 201 

Limitations fall into two broad categories, causality and transferability. These are discussed 202 

in detail in Table 3 (note that this is a non-exhaustive list), and so here we give only a brief 203 

overview of the issues. The first type of limitation, causality, relates to the fact that correlative 204 

methods may fail to capture the true causal effect of a climate variable on a biotic variable 205 

(Table 3a). This can arise from suboptimal selection of focal climate predictors, inadequate 206 

sampling, spatial autocorrelation, and the spatial scale of variables used (see Table 3a for 207 

https://www.zotero.org/google-docs/?nGyFTE
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details). The second type of limitation, transferability, relates to the fact that robust projection 208 

of future biotic changes relies on the assumption that climate-biotic relationships are 209 

equivalent in space and time, and that these relationships will hold under future climates 210 

(Table 3b; Blois et al., 2013; Sequeira et al., 2018; Yates et al., 2018). Limitations relating to 211 

transferability include lack of validation over time (space-time equivalence validation, see 212 

section IV), the largely untested assumption of contemporary spatial equilibrium, rates of 213 

change in climate and biotic variables, and the occurrence of novel future climates (see 214 

Table 3b for details). Alongside a discussion of the limitations, Table 3 includes 215 

recommendations and improvements to address these issues and thus improve the 216 

robustness of SFTS.  217 

 218 

III. Application of SFTS to climate-biotic relationships 219 

 220 

(1) Population phenotypes  221 

Correlations between spatial climate gradients and population phenotypes have long been 222 

observed, including a tendency for body mass to decrease with increasing temperatures 223 

(Bergmann, 1848) and spring phenology to advance with increasing temperatures (Hopkins, 224 

1919). SFTS informed by in situ gradients and transplant experiments have been used to 225 

understand and predict the effects of climate change on a broad array of traits including 226 

morphology (Jaramillo et al., 2017; Stelling-Wood, Poore & Gribben, 2021), phenology 227 

(Kramer, 1995; Ford et al., 2016), life history (Etterson, 2004; McCabe, Aslan & Cobb, 228 

2022), behaviour (Refsnider et al., 2018), physiology (Pratt & Mooney, 2013; Logan, Cox & 229 

Calsbeek, 2014) and gene expression (Swaegers, Spanier & Stoks, 2020).  230 

 231 

Where in situ gradients are used in isolation to generate a space-for-time prediction for 232 

phenotypic data, the spatial phenotypic response is sometimes implicitly assumed to be 233 
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entirely driven by phenotypic plasticity, such that the response will be immediate (Jaramillo 234 

et al., 2017), or the underlying mechanism and timescale of predictions are vague. Where 235 

phenotypic and climate data are available in time as well as space, the spatial climate-236 

phenotype relationship can be compared to that over time and this may provide insight into 237 

the processes that contribute to the spatial climate-phenotype relationship. When making 238 

such space-time comparisons (VII. Glossary), the temporal slope of a climate-phenotype 239 

relationship estimated over years to decades is assumed to arise primarily due to plasticity, 240 

whereas the spatial slope is assumed to arise from plasticity plus local adaptation (VII. 241 

Glossary; Phillimore et al. 2010). Space-time comparisons using phenology and temperature 242 

data have been used to draw inferences about (i) the contributions that climate-mediated 243 

phenotypic plasticity and local adaptation make to the spatial climate-phenotype relationship 244 

(Phillimore et al., 2010; Hodgson et al., 2011; Roy et al., 2015; Delgado et al., 2020) and (ii) 245 

biotic lags and offsets (Figure 3) (Phillimore et al., 2010). As far as we are aware, most 246 

space-time comparisons have used phenological data (but see Youngflesh et al. 2022 for an 247 

example using morphological data), reflecting the abundance of extensive spatiotemporal 248 

phenological data arising from citizen science schemes.  249 

 250 

Where the goal is to separate the contributions that phenotypic plasticity and genetic 251 

divergence (including local adaptation) make to spatial variation in phenotypes, transplant 252 

experiments have a long history (Turesson, 1922). The contribution of phenotypic plasticity 253 

can be quantified as the difference in phenotypes between environments when holding the 254 

genotype constant (Stamp & Hadfield, 2020). Whereas the contribution of genetic 255 

differentiation can be quantified as the difference between population phenotypes when 256 

holding the environment constant in a shared common garden. The ‘gold-standard’ for 257 

identifying local adaptation involves comparing fitness (a special case of a phenotype) of 258 

populations following a reciprocal transplant (Savolainen, Lascoux & Merilä, 2013). Here,  259 
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local adaptation is inferred where both (i) populations are fitter in home than away 260 

environments, and (ii) local populations are fitter than foreign populations (Kawecki & Ebert, 261 

2004; Blanquart et al., 2013). A challenge with all these approaches is to establish a causal 262 

role of climate variables, with replication across populations and/or sites often insufficient for 263 

this purpose (see Table 1b and 3a). 264 

 265 

Transplant experiments that succeed in identifying the processes underpinning spatial 266 

climate-phenotype relationships, can then inform as to the nature and timescale of the 267 

phenotypic response to climate change. For instance, where a plastic response to a climate 268 

variable is identified, phenotypic responses to climate change are expected to be immediate, 269 

as found, for example, in the reproductive phenology of grassland plants (Frei et al., 2014) 270 

and foliar traits in beech and spruce saplings (Sanginés de Cárcer et al., 2017). Conversely, 271 

where local adaptation of a trait or population to climate is detected (Leimu & Fischer, 2008; 272 

Halbritter et al., 2018; Lortie & Hierro, 2021), climate change is expected to shift the optimum 273 

phenotype and place populations under directional selection to adapt over multiple 274 

generations (Etterson, 2004). Transplant studies can also be used to infer whether 275 

phenotypic responses are lagging behind changing climate conditions (Figure 3b). For 276 

example, Wilczek et al. (2014) found that when populations of Arbaidopsis thaliana were 277 

transplanted to four regions of Europe, local populations were generally fitter than foreign 278 

populations. However, the most northerly population was less fit than a more southerly 279 

population, which the authors interpreted as evidence that adaptation of the northern 280 

population was lagging behind the optimum as the climate warmed (see table 2a for further 281 

discussion).   282 

 283 

Transplant studies can also be used to calculate the phenotypic offset (Figure 3a) of 284 

populations to future climates (often termed ‘relative risk of maladaptation’) (St Clair & Howe, 285 
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2007; Frank et al., 2017; Rellstab, Dauphin & Exposito-Alonso, 2021). The phenotypic offset 286 

approach was originally developed to identify the best seeds to plant in different spatial 287 

locations, based on the climatic differences between the planting site and the seeds’ site of 288 

origin (Campbell, 1986). This approach combines common garden estimates of phenotypic 289 

distributions within populations, phenotypic differences between populations, and in situ 290 

information on how mean phenotypes change with climate. However, to date the phenotypic 291 

offset approach has not been widely applied (Frank et al., 2017).  292 

 293 

The major limitations that are most pertinent to phenotypic SFTS are limited to those that 294 

apply broadly across biotic responses (Table 3), though the nature of these limitations can 295 

be quite different depending on whether an in situ gradient or transplant approach has been 296 

adopted. 297 

 298 
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 299 

Figure 3: Metrics of the vulnerability of biodiversity to climate change based on SFTS. Black 300 

circles represent a focal site. (a) biotic offsets, the distance between the current biotic state 301 

at a focal site and the predicted equilibrium biotic state at that site under future climate 302 

conditions. The current biotic state may either be (i) that observed in situ at the focal site or 303 

(ii) that accounting for an immediate biotic response to climate change (e.g. due to 304 
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phenotypic plasticity; red circle), which can be observed via a transplant experiment 305 

representing the expected future conditions (realised biotic offset). (b) biotic lags, the 306 

distance between the observed biotic state at a focal site and the predicted equilibrium biotic 307 

state at that site under current climatic conditions. (c) where both spatial and temporal data 308 

is available, temporal shifts in both biotic states and climate variables can be quantified in 309 

terms of an equivalent shift in spatial distance, and this can be used to find the distance of 310 

biotic lag. Linear climate-biotic relationships are depicted here for simplicity but some 311 

relationships may be non-linear. Note that where the biotic response is a species’ 312 

distribution, the focus is generally on how the biotic state (presence or abundance) covaries 313 

with climate across many populations, rather than a single population as depicted here. 314 

Where the biotic response is species’ occurrence, the biotic state can be thought of as either 315 

the probability of presence or the climate suitability.  316 

 317 

 318 

(2) Population genotypes  319 

At the genetic level, in situ gradient approaches have provided insights into the genomic 320 

basis of climate adaptation and selection over spatial gradients (Wogan & Wang, 2018). Yet 321 

in many instances, the space-for-time inference from genetic studies is implicit (Hancock et 322 

al., 2011; Waldvogel et al., 2018), with only a small proportion making explicit predictions 323 

regarding the impact of climate change on genotypes (e.g. Row et al., 2014; Jordan et al., 324 

2017; Martins et al., 2018; Exposito-Alonso et al., 2018). Transplant studies are also used to 325 

study genetic markers, with the motivation usually to identify the genetic loci underlying 326 

climate-phenotype relationships, rather than direct correlations between genotypes and 327 

climate (Fournier-Level et al., 2011; de Villemereuil et al., 2018; Housset et al., 2018). 328 

Although, where the focus of transplant studies is on fitness-associated genotypes, it is 329 

possible to estimate climate-genotype relationships (Fournier-Level et al., 2011) and make 330 
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predictions about how allele frequencies will respond to future climate change (Exposito-331 

Alonso et al., 2018, 2019). 332 

 333 

Two methods are commonly applied across in situ gradients to identify climate-genotype 334 

relationships and the putatively adaptive loci (VII. Glossary) (Schoville et al., 2012; Hoban et 335 

al., 2016; Li et al., 2017). The first is genotype-environment association analysis, which 336 

estimates climate-genotype relationships across a climate gradient (Rellstab et al., 2015). 337 

The second, differentiation outlier methods, involves identification of the loci that are most 338 

highly differentiated between different climates and therefore most likely to be involved in 339 

local adaptation (Hoban et al., 2016). These approaches are often used in combination to 340 

increase confidence in the identification of putatively adaptive loci (Jordan et al., 2017; 341 

Martins et al., 2018). The focal genotypes can be specific candidate genes, known or 342 

suspected to be associated with a particular function that may be involved in a genetic 343 

response to climate, such as the relationship between latitude (as a proxy for climate) and 344 

alcohol dehydrogenase polymorphism in Drosophila melanagoster (Umina et al., 2005). 345 

Alternatively, multiple regions of the genome can be screened to identify the molecular 346 

markers (often single nucleotide polymorphisms, SNPs) exhibiting the strongest 347 

relationships with climate variables (Hancock et al., 2011; Bay et al., 2018). This was the 348 

approach adopted in a study of yellow warblers in the US, which found that of over 100,000 349 

SNPs, approximately 200 were highly correlated with spatial variation in precipitation (Bay et 350 

al. 2018, see table 2b for further discussion).  351 

 352 

Climate-genotype relationships identified across in situ gradients can be used to make SFTS 353 

predictions of genomic changes and selection pressures under climate change (e.g. Row et 354 

al., 2014; Rellstab et al., 2016; Jordan et al., 2017). Recently, ecological niche modelling 355 

methods – first developed for studying species’ distributions (Pearson & Dawson, 2003; 356 
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Guisan & Thuiller, 2005; Elith & Leathwick, 2009) – have been applied to identify climate-357 

genotype relationships from in situ gradients (Jay et al., 2012; Fitzpatrick & Keller, 2015) or 358 

common garden transplants (Exposito-Alonso et al., 2018, 2019) and used to predict 359 

changes in the distribution of alleles or selection pressures under future climates. Analogues 360 

of ecological niche models (section III(3)) can account for the multidimensionality of spatial 361 

genomic variation by modelling alleles at multiple loci in an integrated way, as with methods 362 

that model multiple species in a community (Fitzpatrick & Keller, 2015; Section III(4)). SFTS 363 

predictions are increasingly being used to find the biotic (genomic) offset (Figure 3ai) 364 

(Fitzpatrick & Keller, 2015), the difference between current genetic compositions and those 365 

projected to be required under climate change. This represents the expected level of 366 

maladaptation of a population to its future environment, and hence the amount of genetic 367 

change (i.e. adaptation) needed for the population to track the changing climate and 368 

maintain fitness (Fitzpatrick & Keller, 2015). The genomic offset is variously termed genetic 369 

offset, genomic vulnerability, and risk of nonadaptedness (reviewed by (Capblancq et al., 370 

2020; Rellstab et al., 2021; Hoffmann, Weeks & Sgrò, 2021).  371 

 372 

There are two main types of limitations that are particular to genotypic SFTS. The first is in 373 

identifying the causal loci underlying adaptation to climate. Multi-marker screening methods 374 

for identifying adaptive loci are prone to false positives (Hoban et al., 2016); neutral alleles 375 

may appear to exhibit variation with a climate variable for several reasons including 376 

demographic history, population structure, linkage disequilibrium, spatial autocorrelation, 377 

correlated environmental variables, incomplete selective sweeps, statistical bias, failure to 378 

account for multiple testing, or genotyping errors (Rellstab et al., 2015, 2021; Hoban et al., 379 

2016; Li et al., 2017; Booker, Yeaman & Whitlock, 2021; Hoffmann et al., 2021). In addition 380 

to false-positives, multi-marker screening methods are also prone to false negatives. This 381 

can arise because local adaptation often results from small changes at many loci (i.e. it is 382 
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polygenic), and a single phenotype may be achieved through multiple different combinations 383 

of genotypes across loci (i.e. redundancy; Yeaman, 2015; Hoffmann et al., 2021). This 384 

results in low power to detect each locus’ effect (Hoban et al., 2016; Rellstab et al., 2017; De 385 

La Torre, Wilhite & Neale, 2019; Hoffmann et al., 2021). However, although high redundancy 386 

hinders prediction of the genomic response to environmental change, it is usually associated 387 

with greater adaptive potential, resulting in better predictability of phenotypic responses for 388 

polygenic traits compared to those controlled by a small number of loci (Kardos and Luikart 389 

2021). The second limitation of genotypic SFTS is that the critical assumptions required for 390 

this approach to work may often not be met because the loci involved in adaptation in space 391 

and time may differ. For example, adaptation in time may occur via the emergence of novel 392 

genotypes (Booker, Yeaman & Whitlock, 2021), whereas the presence of maladaptive gene 393 

flow or a lack of adaptive gene flow can hinder adaptation in time (Lenormand, 2002). As a 394 

result, even with perfect knowledge of the complete set of loci involved in adaptation to 395 

climate in space, we may fail to predict genotypic change over time.  396 

 397 

(3) Species distributions  398 

The most prolific use of space-for-time substitutions in climate change ecology and evolution 399 

is in using ecological niche models (ENMs; Table 1a) to predict climate risks to populations 400 

or how species’ distributions will shift as the climate changes (Elith & Leathwick, 2009; Melo-401 

Merino, Reyes-Bonilla & Lira-Noriega, 2020). In the SFTS context, ENMs estimate the 402 

spatial relationships between multiple climate variables and a species’ geographical 403 

distribution (occupancy or abundance) over in situ gradients (Pearson & Dawson, 2003; 404 

Guisan & Thuiller, 2005; Elith & Leathwick, 2009) and use this to predict species’ potential 405 

future distributions/risk (Thuiller, 2004; Thomas et al., 2004; Huntley et al., 2008) or past 406 

distributions (Nogués-Bravo, 2009; Varela, Lobo & Hortal, 2011; Maguire et al., 2015). ENMs 407 

differ from other applications of space-for-time substitutions in that they typically consider 408 
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multiple climatic drivers and non-linear spatial relationships. Given the extensive literature on 409 

the applications of ENMs (e.g. Guisan & Zimmermann, 2000; Pearson, 2010; Santini et al., 410 

2021) and that our focus is on space-for-time substitutions more generally, we only give a 411 

brief overview of how ENMs are used to project the impacts of future climate change on 412 

biodiversity. In the context of modelling climate-species relationships, transplant experiments 413 

are also used, but at a much lower frequency than in situ gradient approaches.  414 

 415 

ENMs can be used to project whether the climatically suitable area for a species will change 416 

in size and/or shift in space under future climates, which allows predictions of species’ future 417 

distributions, population trends, and extinction risks (Berry et al., 2002; Thomas et al., 2004; 418 

Thuiller et al., 2005; Huntley et al., 2008). ENMs are also used to make inferences about 419 

biotic lags, although this concept differs slightly in the context of species’ distributions 420 

because the focus is on a biotic state (local presence/absence or abundance) summarised 421 

across many populations (e.g. using distribution margins or centroids; Lenoir et al., 2020) 422 

rather than within a single population (as shown in Figure 3b). Nonetheless, a biotic lag can 423 

be inferred by projecting ENMs calibrated on past data to the present day: where distribution 424 

shifts are in the direction but not of the magnitude projected, it may suggest a contemporary 425 

biotic lag (Figure 3b; Lewthwaite et al., 2018; Soultan et al., 2022). Biotic lags can also be 426 

quantified in terms of spatial distance (distance of biotic lag; Figure 3c; Ash et al., 2017). 427 

Similarly, comparing observed geographical shifts in climate variables and species 428 

distributions can indicate the presence of a biotic lag, and can be used to reveal how much 429 

of the distributional shift is explained by the shift in climate (Lenoir et al., 2020). A recent 430 

variation of this type of approach uses a series of hindcast ENM projections to estimate the 431 

distance of past shifts in climatically suitable areas for a species, and hence the potential 432 

colonisation rate, which can then be compared to the rate required under future climate 433 

change (Brodie et al., 2021).  434 



Page 20 of 84 

 

 
 

 

 435 

In comparison with the in situ gradient approach, the application of transplant experiments to 436 

species-focussed SFTS is much less common. Transplants of individuals to sites either 437 

within or beyond a species’ current geographical range have been used to provide insights 438 

into the factors limiting species’ ranges (e.g. climate variables, dispersal limitation, biotic 439 

interactions), the presence of biotic lags, and species’ responses to future climate change 440 

(e.g. Marsico & Hellmann, 2009; Willis et al., 2009; Pelini et al., 2009; Van der Veken et al., 441 

2012). For example, Willis et al. (2009) transplanted two UK butterfly species to a site 442 

beyond their range margins and used the successful establishment of these populations to 443 

infer the presence of a biotic lag.  444 

 445 

The limitations, assumptions and uncertainties that accompany ENM projections have been 446 

reviewed extensively (e.g. Pearson & Dawson, 2003; Sinclair, White & Newell, 2010; 447 

Peterson, Cobos & Jiménez‐ García, 2018), and so we focus on the assumptions made 448 

when ENMs are used for SFTS projections of climate change impacts. In particular, there is 449 

an assumption that either (i) the realised climatic niche is conserved over time or climate is 450 

the sole determinant of species’ distributions and (ii) the species is at equilibrium with 451 

climate (Pearson & Dawson, 2003; Araújo & Guisan, 2006; Veloz et al., 2012; Beale & 452 

Lennon, 2012; Peterson et al., 2018). However, the realised niche may change over time 453 

due to (i) a shift in climate not being accompanied by shifts in the other variables that limit a 454 

species’ distribution or (ii) the emergence of new suitable climate conditions that are novel 455 

within the accessible geographic area (Pearson & Dawson, 2003; Veloz et al., 2012; Beale & 456 

Lennon, 2012; Peterson et al., 2018). Recent years have seen major efforts to address 457 

these issues by extending ENMs to incorporate eco-evolutionary processes (Thuiller et al., 458 

2013) such as intraspecific variation (i.e. local adaptation) (DeMarche, Doak & Morris, 2019; 459 

Garzón, Robson & Hampe, 2019; Aguirre-Liguori, Ramírez-Barahona & Gaut, 2021), 460 



Page 21 of 84 

 

 
 

 

demography (including dispersal and, by proxy, gene flow) (Fitzpatrick et al., 2008; Fordham 461 

et al., 2018), and other range-limiting factors such as biotic interactions (Araújo & Luoto, 462 

2007; Staniczenko et al., 2017; Abrego et al., 2021). 463 

 464 

(4) Ecological communities  465 

At the community level – which we define as considering the effects of climate on more than 466 

one species simultaneously – both in situ gradient and transplant SFTS have been widely 467 

applied to predict community responses to future climate change. These have focussed on 468 

two facets of communities. The first is community composition, which includes species 469 

composition (e.g. identity, richness; Nooten, Andrew & Hughes, 2014; Niu et al., 2019; 470 

Kinard, Patrick & Carvallo, 2021) and trait (or functional type) composition (Dubuis et al., 471 

2013; de Oliveira et al., 2020). This includes metrics such as the community 472 

temperature/precipitation index (CTI/CPI), which captures the climate conditions 473 

encountered within the geographic ranges of the species within a community (Devictor et al., 474 

2012). The second is species interactions, including consumer-resource (Rasmann et al., 475 

2014; Tran et al., 2016), competitive (Alexander et al., 2015), symbiotic (Steidinger et al., 476 

2019), and parasite(-vector)-host (Pickles et al., 2013). Where the focus is on species 477 

composition and species interactions, community focused SFTS are effectively extensions of 478 

species-focussed approaches, and where the focus is on community traits they are 479 

extensions of phenotype-focussed SFTS. As a consequence, many of the same methods 480 

and limitations are relevant.   481 

 482 

In situ gradient methods, often ENMs, are widely used to make community-level SFTS 483 

projections (Meerhoff et al., 2012; Dubuis et al., 2013; Mokany et al., 2015; Newsham et al., 484 

2016; Kwon et al., 2019; de Oliveira et al., 2022). Three main approaches are used (Ferrier 485 

& Guisan, 2006; Nieto-Lugilde et al., 2018): (i) modelling the relationship between climate 486 
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and a community-level attribute, such as species grouped into vegetation classes (Hilbert & 487 

Ostendorf, 2001; Pearson et al., 2013); (ii) modelling individual species’ responses to future 488 

climate change and overlaying their potential distributions to make community-level 489 

inferences (stacked models; Thuiller et al., 2006; Gallagher, Hughes & Leishman, 2013; 490 

Davis, Champion & Coleman, 2022);  or (iii) simultaneously modelling multiple species’ 491 

distributions to allow for reciprocal interactions, often termed joint species distribution 492 

modelling (JSDM; Pollock et al., 2014; Tikhonov et al., 2017), though the focus of this 493 

approach can be on either the community or a species. Where temporal and spatial data are 494 

available, inferences can also be made about the presence of a biotic lag in the temporal 495 

community response to climate change (Figure 3b), using analogous approaches as 496 

described for phenotypes (space-time comparison; Sandel, 2019; Gaüzère et al., 2020; 497 

Section III(1)) or species distributions (comparing observations to predictions from a different 498 

time; Menéndez et al., 2006; Bertrand et al., 2011; Section III(3)). These biotic lags can also 499 

be quantified in terms of geographic distance (Distance of biotic lag, Figure 3c; Devictor et 500 

al., 2008, 2012).  501 

 502 

For community trait compositions, SFTS can provide insights into the processes that have 503 

generated spatial patterns and thus may be involved in community responses to future 504 

climate change (Lajoie & Vellend, 2018). In particular, the relative contributions of 505 

interspecific processes (species turnover) and intraspecific processes (plasticity and genetic 506 

differentiation; Section III(1)) can be separated. This involves comparing the slopes 507 

estimated between a climate variable and (i) community trait means calculated across all 508 

individuals of all species, which result from a combination of interspecific and intraspecific 509 

trait variation, and (ii) species-weighted community trait means, which represent interspecific 510 

variation alone (Lajoie & Vellend, 2018). 511 

 512 
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Community focused transplants present considerable logistical challenges, and so their 513 

application has been relatively limited. The most straightforward approach involves moving a 514 

single species into a new community, thus mimicking the novel species interactions that may 515 

occur as species’ distributions and phenologies shift under climate change (Andrew & 516 

Hughes, 2007; Heimonen et al., 2015). More challenging, is to simultaneously move multiple 517 

species into new environments to provide insights into how a community may respond to 518 

climate change, either by directly moving species (De Block et al., 2013; Nooten et al., 2014; 519 

Descombes et al., 2020) or by transplanting soil cores containing microbial communities 520 

and/or seed banks (Budge et al., 2011; Tomiolo, Bilton & Tielbörger, 2020). Alexander et al., 521 

(2015) combined both of these approaches by transplanting both individual species and a 522 

multi-species plant community to different elevations in the Alps to explore the potential 523 

impacts of novel interactions and increased temperatures (see Table 2d for details).  524 

 525 

 526 

Community-focussed SFTS are subject to similar limitations as for species (Section III(3)) 527 

and phenotypes (Section III(1)), with additional complexities that arise when considering 528 

multiple species together. For example, different species may shift their distributions and 529 

phenologies in different ways in response to climate change, resulting in complex changes in 530 

community compositions and biotic interactions (Tylianakis et al., 2008; Kharouba et al., 531 

2018; Beissinger & Riddell, 2021; Roslin et al., 2021; Antão et al., 2022) that are not 532 

captured by contemporary in situ gradients and transplant experiments. Alternatively, it is 533 

possible that community responses to climate change may be more predictable if the 534 

consideration of multiple species averages away some of the stochasticity in individual 535 

species’ responses (Srivastava et al., 2021). Additional limitations arise with multi-species 536 

transplants because they tend to involve (i) a sample of species from a community, which is 537 

often taxonomically biased due to the logistics of moving species, and (ii) a relatively small 538 
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number of individuals of each species, despite the fact that population size can impact 539 

community outcomes such as species interactions (Morton & Rafferty, 2017). Furthermore, 540 

the issue of inadequate spatial replication  is particularly pronounced for community-focused 541 

transplant experiments due to the logistical challenges of moving multiple species. In fact, it 542 

is common to see climate variation represented by just two or three sites (e.g. Alexander et 543 

al., 2015, see Table 2b), which precludes robust inference of a causal climatic variable 544 

(Table 3a). 545 

 546 

IV. Validation of SFTS 547 

 548 

Across all four subfields, the performance of climate change SFTS has been found to be 549 

mixed, with studies both supporting (e.g. Blois et al., 2013; Banet & Trexler, 2013) and 550 

contesting (e.g. La Sorte et al., 2009; Isaac et al., 2011; Wu et al., 2022) the use of SFTS. 551 

The predictive ability of SFTS appears to vary across different ecological contexts including 552 

biotic variables (e.g. Bjorkman et al., 2018), taxa (e.g. Dobrowski et al., 2011) and 553 

timescales (e.g. Roberts & Hamann, 2012). A quantitative analysis of the scenarios under 554 

which SFTS perform best is a priority for future work in this area. In the interim, we suggest 555 

that SFTS may perform better when the level of extrapolation is minimised (e.g. Fitzpatrick et 556 

al., 2018a; Sequeira et al., 2018; Qiao et al., 2019) and should be approached with caution 557 

where successful validation is lacking for a study’s specific system and context. 558 

 559 

Two types of validation are needed when a SFTS projection is made. First, we need to test 560 

whether the climate variable(s) is/are causal of the biotic variation observed through space, 561 

which we term ‘spatial validation’ (Table 3a). Opportunities for spatial validation include non-562 

independent spatial data (e.g. data splitting; Berry et al., 2002; Norberg et al., 2019), 563 

independent spatial data from a different location (i.e. replication; e.g. Randin et al., 2006; 564 
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Early & Sax, 2014) or experiments (including transplants; Hancock et al., 2011). Where there 565 

has been successful spatial validation, this increases our confidence that the identified 566 

drivers are causal, but it does not test transferability. The second validation type, which we 567 

term ’space-time equivalence validation’, involves comparing spatial climate-biotic 568 

relationships with temporal relationships or SFTS projections with temporal data. Assuming 569 

that causal relationships have been estimated in space, then the space-time equivalence 570 

validation tests the central assumption of space-time transferability (Sequeira et al., 2018; 571 

Table 3b). Different types of data can be used for space-time equivalence validation 572 

(Rellstab et al., 2021), including from historic long-term monitoring (La Sorte et al., 2009; 573 

Rapacciuolo et al., 2012), museum or herbarium collections (Guerin, Wen & Lowe, 2012), 574 

paleodata such as pollen records or fossils (Blois et al., 2013), dendrochronology (Klesse et 575 

al., 2020), genomics-based inference (Miller et al., 2021), and in silico (Qiao et al., 2019).  576 

 577 

When conducting space-time equivalence validation, the timescale is an important, yet often 578 

overlooked, consideration since SFTS predictive accuracy will often be sensitive to whether 579 

projections are for the long or short term (Table 3b; Petchey et al., 2015; Adler et al., 2020). 580 

Note that testing for biotic lags (Figure 3b) – which generally involves comparing temporal 581 

climate-biotic relationships to those expected based on the spatial relationship – is a type of 582 

space-time equivalence validation, where one can assess whether the biotic response is in 583 

the correct direction, with additional inferences made about whether the biotic state is 584 

lagging behind the equilibrium biotic state.  585 

 586 

Ideally, both successful spatial validation and successful space-time equivalence validation 587 

should  support any application of SFTS. However, a lack of long-term temporal data has 588 

meant that most validation has been conducted in space alone. Below, we consider how 589 
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validation has been conducted in each subfield and highlight where further validation is 590 

needed. 591 

 592 

Population phenotypes: Neither spatial nor space-time equivalence validation is common 593 

practice when analysing correlative climate-phenotype relationships across in situ gradients 594 

or transplant experiments. This may be attributable to the exploratory nature of many 595 

analyses, funding, time and logistical constraints, or perhaps simply oversight. An indication 596 

that spatial relationships are causal could be obtained using meta-analyses, replication 597 

across multiple gradients or gradient types, or experimental manipulation of climate 598 

variables. There are a handful of instances of space-time equivalence validation using 599 

historical data (Hodgson et al., 2011; Guerin et al., 2012; Jochner, Caffarra & Menzel, 2013) 600 

and repeated experiments (Bradshaw & Holzapfel, 2001). Additionally, space-time 601 

comparisons have also been used to assess the extent to which spatial climate-biotic 602 

relationships are transferable over time (Table 1aii; Phillimore et al., 2010, 2012; Kharouba 603 

et al., 2014; Klesse et al., 2020; Wu et al., 2022).  604 

 605 

Population genotypes: Where validation has been conducted at the genotypic level, it has 606 

typically focussed on spatial validation rather than space-time equivalence validation. Spatial 607 

validation is often assessed by using multiple approaches to identify putatively adaptive loci 608 

– both genome-environment association analyses and differentiation outlier methods, or 609 

tests for genetic signatures of past selection – to increase confidence that identified loci are 610 

involved in local adaptation (Jordan et al., 2017; Martins et al., 2018; Exposito-Alonso et al., 611 

2019). Indeed, there are cases where a locus shows parallel adaptation to climate in 612 

different regions (Umina et al., 2005; van Boheemen & Hodgins, 2020). Alternatively, direct 613 

functional validation of fitness effects can be obtained experimentally to provide a more 614 

direct link between alleles and fitness under particular conditions. This has been done using 615 
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transplants (Barrett, Rogers & Schluter, 2008; Hancock et al., 2011; Jaramillo-Correa et al., 616 

2015; Faske et al., 2021) and there is also potential to utilise genetic modifications (e.g. 617 

knock-outs, gene transfers, or gene editing; Li et al., 2017). Similarly, SNPs associated with 618 

high fitness in a common garden environment can be validated by observing whether they 619 

are more abundant in areas with climates that are more similar to the common garden’s 620 

climate (Fournier-Level et al., 2011; Exposito-Alonso et al., 2019). As well as validation of 621 

the loci involved in adaptation, transplants have also been used to validate genomic offset 622 

predictions by looking for relationships between these predictions and performance in the 623 

corresponding common garden environment (Fitzpatrick et al., 2021).  624 

 625 

There have been few tests of whether the same loci are correlated with climate variables 626 

over space and time (but see Umina et al., 2005; Balanyá et al., 2006), presumably due to a 627 

dearth of suitable long-term genetic data. Indirect space-time equivalence validation of 628 

genomic offset predictions can be made by comparison with data on population trends from 629 

surveys (Bay et al., 2018, but see Fitzpatrick et al., 2018a, Table 2b), or by measuring 630 

proxies for fitness in the wild (Borrell et al., 2020).  631 

 632 

Species distributions: Validation of species distribution-focussed SFTS typically involves 633 

spatial validation only; this sometimes involves spatially independent data (Randin et al., 634 

2006; Early & Sax, 2014), transplants (Willis et al., 2009; Dixon & Busch, 2017; Merlin, 635 

Duputié & Chuine, 2018; Greiser et al., 2020) or simulations (Beale, Lennon & Gimona, 636 

2008), but most often validation is conducted using non-independent data which can lead to 637 

severe underestimates of parameter uncertainty (Araújo et al., 2005; Bahn & McGill, 2013; 638 

Santini et al., 2021). Introductions of alien species provide an opportunity for spatial 639 

validation of the relationships estimated by an ENM. For instance, in a study of plant species 640 

that were native to Europe and invasive in North America, Early and Sax (2014) found that 641 
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ENMs calibrated on the native range had mixed performance in terms of predicting 642 

occupancy in North America, with performance improving for species with larger native 643 

geographic extents.  644 

 645 

Underlying an ENM prediction of a species’ geographic distribution is a description of its 646 

niche in terms of a climate-species relationship for each climate variable and rankings of the 647 

importance of each variable can be obtained; these estimates represent an additional, 648 

underutilised opportunity for spatial validation (Buermann et al., 2008; Convertino et al., 649 

2012; Searcy & Shaffer, 2016; Mothes et al., 2019). This involves either (i) comparing the 650 

observed and predicted occurrence probabilities for dominant climate variables (Buermann 651 

et al., 2008; Convertino et al., 2012) or (ii) comparing climate-species relationships and/or 652 

climate variable rankings to independent data on physiological tolerance (Searcy & Shaffer, 653 

2016; Mothes et al., 2019), population dynamics (Thuiller et al., 2014) or simulations (Smith 654 

& Santos, 2020) to increase confidence that identified relationships are causal. However, as 655 

far as we are aware, very few studies have used these underlying metrics to assess ENM 656 

performance in the context of climate change projections (Searcy & Shaffer, 2016). 657 

 658 

Space-time equivalence validation of ENMs has used historic data including past species 659 

distribution records (e.g. Araújo et al., 2005;; Dobrowski et al., 2011; Rapacciuolo et al., 660 

2012; Brun et al., 2016; Morán-Ordóñez et al., 2017), paleodata (e.g. Pearman et al., 2008; 661 

Veloz et al., 2012), simulations (Qiao et al., 2019; Santini et al. 2021), comparisons of 662 

predictions made using spatial data and time series data (Isaac et al., 2011) and space-time 663 

comparisons (Oedekoven et al., 2017; Bradter et al., 2022).  664 

 665 

Ecological communities: Spatial validation of community-focussed SFTS often involves 666 

non-independent data, such as with data partitioning (Norberg et al., 2019; Zurell et al., 667 
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2020), and sometimes utilises spatially independent data (Loewen, Jackson & Gilbert, 2023). 668 

Community transplants can also be used to validate in situ gradient approaches, by 669 

exploring whether species’ relative abundances in a common garden environment 670 

correspond to those expected based on the climate-phenotype relationships observed 671 

across an in situ gradient (Guittar et al., 2016). As far as we are aware, spatial validation for 672 

species interaction-focused SFTS is lacking.  673 

 674 

Space-time equivalence validation of community responses has been assessed using 675 

historical data including observations in the recent past (e.g. Lemoine, Schaefer & Böhning-676 

Gaese, 2007; Algar et al., 2009; Kharouba, Algar & Kerr, 2009; Bjorkman et al., 2018) and 677 

paleodata (Blois et al., 2013; Maguire et al., 2016). Another space-time equivalence 678 

validation approach has involved a comparison of the spatial and temporal relationships 679 

between climate and community traits (La Sorte et al., 2009; Elmendorf et al., 2015; Sandel, 680 

2019; Gaüzère et al., 2020) or community composition (Lemoine & Böhning-Gaese, 2003; 681 

White & Kerr, 2006; Adler & Levine, 2007; La Sorte et al., 2009). Similarly, warming and 682 

water addition experiments have been used to validate in situ gradient SFTS for species 683 

interactions (Kazenel et al., 2019) and trait compositions (Sandel et al., 2010).  684 

 685 

Feasibility and logistics of SFTS validation: Both spatial and space-time equivalence 686 

validation are essential for ensuring the accuracy of projections, yet validation is strikingly 687 

scarce. In some cases, such as space-time equivalence validation for species distributions, 688 

validation is logistically challenging because of the long timescales involved. However, in 689 

many cases, the lack of validation is likely due to the constraints of resources and funding 690 

rather than a lack of feasibility, since validation requires the acquisition of additional spatial 691 

data (spatial validation) or temporal data (space-time equivalence validation). Given that 692 
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successful validation is essential for generating robust predictions, a greater value should be 693 

placed on this component of SFTS.   694 

 695 

V. Opportunities for SFTS 696 

The acute challenge of predicting the biotic impacts of rapid anthropogenic climate change 697 

(IPCC 2022) means that SFTS is likely to remain a convenient and vital tool. Here, we 698 

consider some of the major ways in which robustness of predictions could be improved, with 699 

an emphasis on how approaches could be transferred among the four subfields; see Table 3 700 

for a more comprehensive overview of how the major limitations of SFTS may be addressed.  701 

 702 

The challenge of identifying causal climate-biotic relationships is common to all SFTS (Table 703 

3a), but is most acute for transplant studies. Many transplant studies consider just a single 704 

transplant site and few source populations (Johnson et al., 2022b) and are thus lacking 705 

power to detect a causal climate-biotic relationship. One remedy is to encourage greater 706 

replication across sites, climate gradients and gradient types (e.g. altitudinal and latitudinal) 707 

to a level that provides adequate statistical power. We recognise that increasing replication 708 

will incur substantial logistical and financial costs, but this is essential to establish causality 709 

before making SFTS predictions. 710 

 711 

A related issue is in giving appropriate attention to the selection of putatively causal climate 712 

variables (Table 3ai), and there are approaches used in some of the assessed subfields that 713 

could be applied more widely. For example, ENMs, which are usually applied to species or 714 

communities, are unique in the fact that they commonly consider multiple climate variables 715 

simultaneously and nonlinear climate-biotic relationships. On the other hand, some 716 

phenotype-focused studies aim to narrow down the seasonal period over which a climate 717 

variable is important (Simmonds, Cole & Sheldon, 2019) using approaches such as sliding-718 
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windows (see van de Pol et al., 2016) and penalised signal regression (see Roberts, 2008). 719 

These methods could usefully be applied by other eco-evolutionary subfields to give more 720 

focus to the specific climate variables used, the timing over which they are important for 721 

driving biotic responses, and the type of relationship with the biotic variable (e.g. quadratic) 722 

(Table 3ai).  723 

 724 

The other major challenge across SFTS relates to the temporal transferability of spatial 725 

climate-biotic relationships (Table 3b). An underutilised avenue for space-time equivalence 726 

validation lies with historical data: SFTS can be validated against the past or calibrated on 727 

past data and validated against the present (Dobrowski et al., 2011; Maguire et al., 2015). 728 

Additionally, there is clear value in the greater use of simulations to examine the accuracy 729 

and precision of projections under different hypothetical scenarios and thus the limits to 730 

inference (Zurell et al., 2010; Qiao et al., 2019). Powerful methods for simulating realistic 731 

genome evolution now make this particularly feasible for testing inference at the genomic 732 

level (Haller & Messer, 2019; Láruson et al., 2022). Furthermore, while many studies project 733 

biotic responses to climate change at distant time horizons (e.g. the end of the century), 734 

near-term forecasts provide a means of validating metrics of change (Slingsby, Moncrieff & 735 

Wilson, 2020), although this will only capture short-term biotic responses and so may 736 

overestimate long-term predictability. Finally, as well as validating SFTS predictions for a 737 

single point in time, comparison of the slopes (i.e. direction and magnitude) of spatial and 738 

temporal climate-biotic relationships (space-time comparison; Phillimore et al. 2010; Table 739 

1aii) as we describe for population and community phenotype data could be applied more 740 

widely. This represents an opportunity for space-time equivalence validation and to provide 741 

further insights into (i) how SFTS predictive accuracy and biotic offsets vary with timescale of 742 

projection and (ii) the processes that give rise to spatial climate-biotic relationships.  743 

 744 
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Many biodiversity projections are based on a static ‘snapshot’ approach, where a SFTS 745 

model is projected forwards in a single step using climatic conditions averaged over some 746 

future, often remote, time period (e.g. Thomas et al. 2004; Table 2c). As a result, an 747 

important aspect of temporal transferability of SFTS (Table 3b) relates to whether current 748 

biotic states are at equilibrium with the environment (Gaüzère et al., 2018) and to the 749 

timescale of projection (Adler et al., 2020). If current climate-biotic relationships are at 750 

equilibrium, then SFTS based snapshot projections will indicate the future biotic state(s) 751 

expected at equilibrium. In contrast, if current climate-biotic relationships are not at 752 

equilibrium and lag behind recent climate change, then future snapshot projections will 753 

underestimate the magnitude of the biotic response. However, such underestimation does 754 

not necessarily invalidate SFTS projections as they may still reliably indicate the direction 755 

and magnitude of the transient biotic response. Specifically, if the biotic lag is constant over 756 

time (i.e. the biotic state remains a consistent distance from the equilibrium biotic state), then 757 

projections would still be expected to reliably indicate the magnitude of the transient biotic 758 

response (Blonder et al. 2017). On the other hand, if the biotic lag is growing over time, due 759 

for instance to accelerating climate change, or more complex response dynamics (Blonder et 760 

al. 2017), then projections would underestimate the magnitude of the transient biotic 761 

response.  762 

 763 

An important avenue for research is to quantify biotic lags and how these may be expected 764 

to change over time. For example, ENMs typically use historical averages of climate 765 

variables (e.g. 30 year averages from WorldClim; Fick & Hijmans, 2017), but a sliding 766 

window approach (van de Pol et al., 2016) could be applied to identify the decadal period 767 

over which historical climates best predict the current biotic state, which may provide an 768 

opportunity to identify biotic lags. Similarly, when making projections of future biotic 769 

responses to climate change, fine temporal resolution climate data (e.g. daily to annual) from 770 
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climate models can be used to project how biotic offsets may accumulate dynamically over 771 

time, providing an indication of the rate, timing and abruptness of expected biotic responses 772 

that is not provided by static snapshot projections (Trisos, Merow & Pigot, 2020). 773 

 774 

Another priority for future work on SFTS is to establish the timescale over which future 775 

projections are made and how they should be used and interpreted. Low SFTS predictive 776 

accuracy may be due to mismatches between the timescale of projections and the timescale 777 

of the processes driving biotic responses (Adler & Levine, 2007; Elmendorf et al., 2015; 778 

Münzbergová et al., 2021). However, relatively few studies have directly explored how 779 

timescale affects SFTS performance using historical data (e.g. Roberts & Hamann, 2012; 780 

Blois et al., 2013; Morán-Ordóñez et al., 2017; Bradter et al., 2022) or in silico simulations 781 

(Adler et al., 2020). Additionally, dynamic process-based models (e.g. Buckley et al., 2010; 782 

Bush et al., 2016) offer considerable potential for projecting biotic responses to climate 783 

change over time. In such models, rather than making snapshot projections for a single time 784 

point, biotic responses are iterated forwards through time, constrained by empirically 785 

estimated parameters describing rates of key ecological or evolutionary processes (Morin, 786 

Augspurger & Chuine, 2007).   787 

 788 

Any assessment of SFTS predictive performance will be sensitive to what we are trying to 789 

predict. For example, ENMs may be able to reliably identify those populations that will be 790 

exposed to unsuitable climates under a given magnitude of warming, but predicting the biotic 791 

response to exposure (VII. Glossary) is more challenging because this is likely to depend on 792 

when in the future exposure occurs and thus the capacity for processes such as adaptation 793 

to rescue populations (Trisos, Merow & Pigot, 2021). In some cases, projections of exposure 794 

may be sufficient to provide a reliable indicator of the magnitude of climate risk across 795 

geographic space or species. If, however, the aim is to provide a reliable indication of the 796 
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biotic response to exposure, then studies would benefit from considering the temporal 797 

aspect of climate change more explicitly by using process-based models (e.g. Buckley et al., 798 

2010; Bush et al., 2016), or at least dynamic projections of climate change, rather than static 799 

snapshots. Genomic studies would also benefit from greater clarity on what we are trying to 800 

predict. Unlike ENMs, genotype-environment association analyses are only informative 801 

about the relative fitness of different genotypes in a given environment. As they do not reveal 802 

absolute fitness, this means that they cannot tell us whether the population growth rate will 803 

become negative in a given environment (Brady et al., 2019). 804 

 805 

From examination of the tools used in the four subfields, it is evident that greater 806 

communication amongst these subfields could benefit the progression of SFTS methods. In 807 

some cases, different subfields have developed equivalent inferential tools independently 808 

and this is particularly evident in the case of what we have termed biotic lags and offsets 809 

(Figure 3). However, the opportunities to readily identify these parallels may have been 810 

reduced by each subfield adopting its own terminology. We hope that that by emphasising 811 

the similarities of aims, tools, limitations and challenges across these different eco-812 

evolutionary subfields that this review will foster greater communication and exchange of 813 

ideas. 814 

 815 

One additional opportunity that applies across all subfields is to broaden spatial and 816 

taxonomic representation. Most SFTS studies to date have focused on biotic systems in 817 

Europe, North America and Australia, with ENM being the only approach that is widely 818 

applied across all continents. Taxonomically, most studies employing transplant methods 819 

have involved plants and invertebrates for logistical reasons. Any studies that find ways to 820 

broaden the taxonomic scope promise to be highly informative (e.g. Refsnider et al., 2018; 821 

Lane et al., 2019). Finally, most in situ gradient studies focus on well-studied taxa, 822 
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particularly plants and vertebrates, and as global datasets improve there should be excellent 823 

opportunities to broaden the taxonomic scope.  824 

 825 

VI. Conclusions 826 

1. SFTS is currently very widely used across subfields of ecology and evolution as a 827 

practical tool for generating urgent predictions of biotic responses to future climate 828 

change. Across the four subfields that we assess (population phenotypes, population 829 

genotypes, species distributions and ecological communities) there are many 830 

similarities in the approaches used, their strengths and their weaknesses.  831 

2. Across the assessed subfields, the shared limitations that can undermine the 832 

robustness of SFTS inference relate to (i) correctly detecting causal climate-biotic 833 

relationships and (ii) the transferability of spatial climate-biotic relationships over 834 

time. We identify opportunities and best practice to address these limitations and 835 

improve the robustness of SFTS. 836 

3. We identify several instances where equivalent approaches go under different names 837 

in different subfields, highlighting the value of increased cross-talk between the four 838 

subfields and recognition of parallels in SFTS methods, limitations and innovations.   839 

4. We anticipate that SFTS will remain one of the major approaches to projecting future 840 

biotic responses to global change. Therefore, we strongly encourage engagement 841 

with development of new methods and protocols that can address the limitations we 842 

identify and increase the robustness of projections.  843 

 844 

 845 

VII. Glossary  846 

Biotic lag: the biotic distance (e.g. Euclidian distance between phenotypic trait values) 847 

between the observed (or predicted) biotic state (e.g., phenotype, genotype or probability of 848 
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species presence) under specific climate conditions and the predicted equilibrium biotic state 849 

for those conditions (Figure 3b). Also termed maladaptation, mismatch, disequilibrium, and 850 

climate debt. 851 

Biotic offset: the biotic distance between the current biotic state (e.g., phenotype, genotype 852 

or probability of species presence) at a focal site and the predicted equilibrium biotic state at 853 

this site under future climatic conditions (Figure 3a; Fitzpatrick & Keller, 2015; Frank et al., 854 

2017). Where there is an immediate biotic response to climate change (e.g., via phenotypic 855 

plasticity), this results in a realised biotic offset. Our use of the term biotic offset is inspired 856 

by ‘genetic offset’ introduced by Fitzpatrick and Keller (2015), extended to generalise across 857 

biotic variables. Also termed vulnerability, risk of nonadaptedness, and (relative) risk of 858 

maladaptation.  859 

Biotic response: a change in a biotic state, which can be driven by a change in climate. In 860 

this paper the main biotic variables we discuss relate to population phenotypes, population 861 

genotypes, species’ distributions and ecological communities. We use the terms phenotypic 862 

response, genetic response, species’ response and community response to refer to the 863 

specific biotic responses discussed. 864 

Biotic state: a value of a biotic variable.  865 

Climate-biotic relationship: the correlation between climate variable(s) and a biotic 866 

variable in space or time. We use ‘climate-phenotype’, ‘climate-genotype’, ‘climate-species’ 867 

and ‘climate-community’ relationships to refer more specifically to the biotic responses 868 

discussed. 869 

Common garden transplants: organisms (i.e. individuals or communities) are moved into a 870 

shared ‘common garden’ environment (Figure 2b, Table 1bi). This includes when organisms 871 



Page 37 of 84 

 

 
 

 

are subjected to experimentally manipulated environments, with each treatment level being a 872 

common garden.  873 

Distance of biotic lag: a biotic lag quantified in terms of spatial distance (Figure 3c, Table 874 

1aiii). Where spatial and temporal data are both available, changes in climate and biotic 875 

responses over time can each be quantified in terms of a shift in spatial distance, and the 876 

difference between these shifts is the distance of biotic lag (Devictor et al., 2008, 2012). Also 877 

referred to as a spatial lag. 878 

Ecological niche model (ENM): a group of in situ gradient methods aiming to correlate the 879 

distribution of a biotic variable (usually a species’ presence/absence) with one or more 880 

environmental variables (usually including climate) in order to predict environmental 881 

suitability for the biotic states across a landscape and under altered conditions. There are 882 

various other terms for ENMs including environmental niche models, species distribution 883 

models, (bio)climate envelope models, and habitat suitability models (Peterson & Soberón, 884 

2012; Araújo & Peterson, 2012). 885 

Equilibrium: a biotic state that is stationary in relation to its environment, where the effects 886 

of countervailing processes are in balance (Coulson, 2021). There may be multiple stable 887 

equilibria for a single biotic state (Chase, 2003).  888 

Exposure: the nature, magnitude and rate of climate change experienced by a biotic system 889 

(Foden et al. 2019). 890 

in situ gradient approach: spatial climate gradients are used to identify climate-biotic 891 

relationships (Figure 2a, Table 1a). This includes ecological niche models. Note that an in 892 

situ gradient could also refer to a gradient in time, but we use the term for spatial gradients 893 

alone.  894 
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Local adaptation: where spatially variable environments impose selection that maintains 895 

genotypic differences between locations, such that the fitness of local individuals tends to be 896 

greater than foreign individuals in their home conditions. 897 

Phenotypic plasticity: where a genotype gives rise to different phenotypes under different 898 

environmental conditions. 899 

Putatively adaptive loci: loci identified as potentially being involved in adaptation. These 900 

loci exhibit relationships with climate, but correlative methods do not prove that they are 901 

causally involved in adaptation. 902 

Reciprocal transplant: organisms (i.e. individuals or communities) from different sites are 903 

moved into each other’s environments so that the performance and/or traits (e.g., 904 

phenotype) of organisms experiencing local versus foreign and/or home versus away can be 905 

compared (Figure 2c, Table 1bii).  906 

Space-for-time substitution (SFTS): spatial climate-biotic relationships are used as a 907 

substitute for temporal relationships to make inferences about biotic responses to climate 908 

change over time (Pickett, 1989). Note that here our focus is on climate-biotic relationships 909 

but SFTS are also applied to other drivers and responses. 910 

Space-time comparison: climate-biotic relationships are estimated separately over space 911 

and over time. Comparison of these relationships can provide insights into the processes 912 

generating these spatial and temporal patterns (Table 1aii). Note that this has an implicit 913 

SFTS since the spatial climate-biotic relationship is assumed to capture the equilibrium 914 

relationship.   915 

Space-time equivalence: an observation, inference or assumption that climate-biotic 916 

relationships in space and time are equivalent. This is a key assumption underlying SFTS 917 



Page 39 of 84 

 

 
 

 

and relates to the limitation of transferring of spatial climate-biotic relationships over time 918 

(Table 3b). 919 

Transplant experiments: organisms (i.e. species or communities) are moved from a home 920 

site into different environments over space (away sites) (Table 1b). Transplants may be 921 

common gardens transplants or reciprocal transplants. 922 

Vulnerability: the extent to which biotic systems are susceptible to the adverse effects of 923 

climate change (Foden et al. 2019). 924 
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Table 1: Main space-for-time substitution (SFTS) approaches used in climate change ecology and evolution.  1793 

Method Purpose and Inference Limits to inferences  

(a) In situ 

gradients 

approaches 

including 

ecological niche 

models (ENMs) 

 

Use of spatial 

climate gradients 

(e.g. latitudinal, 

altitudinal) to 

identify climate-

biotic 

relationships 

(i) SFTS with a single 

or multiple predictor 

variable(s)  

 

Estimate the climate-

biotic relationship 

between one or more 

climate variable(s) and 

a biotic variable over 

space to make 

projections over time.  

1. Climate-biotic relationships are assumed to 

capture causal effects, under the assumption 

that there are no unmeasured causal variables. 

Estimate can then be used to project biotic 

responses to a change in the focal climate 

variable(s) over time. 

 

2. Where multiple climate variables are 

considered, it is possible to infer the relative 

importance of different variables as predictors of 

a biotic response. 

1. Does not prove a causal effect of 

climate variables in driving the biotic 

response and the relationship is sensitive 

to unmeasured variables.  

 

2. Silent on the mechanisms of the biotic 

response to climate variables in space 

and whether the biotic response manifests 

over short or long timescales. 

 

3. Assumes that current spatial patterns 

reflect the equilibrium (or in special cases 

optimum) relationship between the focal 

climate variables and the biotic variable. 
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(Figure 2a). This 

can then be used 

in a SFTS to 

make predictions 

about biotic 

responses over 

time. 

(ii) Space-time 

comparison  

 

Estimate the climate-

biotic relationship 

separately over space 

and over time and 

compare the direction 

and magnitude of the 

slopes. The spatial 

climate-biotic 

relationship is often 

assumed to capture 

the equilibrium (or in 

special cases the 

optimum) relationship.  

1. Where the slope of the climate-biotic 

relationship is in the same direction over space 

and time and similar in magnitude, this is 

consistent with climate having a causal effect 

and implies that spatial estimates are 

transferable to a temporal context (i.e. it is a 

form of space-time equivalence validation – see 

section IV). 

 

2. Where the estimated slopes of the spatial and 

temporal climate-biotic relationships differ in 

direction or magnitude, this may suggest that 

different processes are operating over space 

and time. Where slopes differ in direction or one 

of the relationships is non-significant, this 

1. Particularly sensitive to unmeasured 

variables, as both the spatial and temporal 

climate-biotic responses may be affected 

(Tansey et al., 2017), necessitating 

caution when drawing inferences.  

 

2. Assumes that current spatial patterns 

reflect the equilibrium (or in special cases 

optimum) relationship between the biotic 

variable and the focal climate variables. 
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 reduces confidence that the climate variable is 

causal. 

 

3. Spatial climate-biotic relationships are often 

assumed to capture the equilibrium (and in 

special cases the optimum) relationship. 

Therefore, where spatial and temporal climate-

biotic relationships have slopes that are in the 

same direction but steeper over space than over 

time, this can reveal the presence of a 

contemporary biotic lag or a biotic offset under a 

future climate. 
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(iii) Quantifying 

temporal change as 

distance 

Estimating the change 

in a climate or biotic 

variable over a spatial 

gradient and over time 

allows a temporal 

change to be 

translated into the 

spatial distance over 

which the equivalent 

change in the variable 

state is observed.  

1. When applied to climate data alone this 

approach can be used to quantify local climate 

velocity (Loarie et al., 2009), which is a vector of 

the distance in space that provides an equivalent 

shift in climate to the change observed over 

time. 

 

2. A temporal biotic lag can be quantified in 

terms of spatial distance by finding the difference 

between the spatial shift in climate and the 

spatial shift in a biotic variable in a focal time 

period (Figure 3c). This ‘distance of biotic lag’ 

metric has the benefit of units (e.g. km) being 

easily interpretable and allowing multiple biotic 

variables to be compared on the same axis. 

As above 
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(b) Transplants 

 

Moving organisms 

into different 

environments 

over space to 

provide insights 

into biotic 

responses to 

climate. Can be 

used to make 

predictions of 

biotic responses 

that may occur 

over time.  

 

(i) Common garden 

transplants 

 

Organisms from two or 

more different sites 

are moved into a 

shared environment (a 

common garden; 

Figure 2b). This can 

be replicated along an 

environmental 

gradient and/or in an 

experimentally 

manipulated 

environment.  

 

1. Comparing the biotic state at a home site to 

that at away (transplant) sites can reveal an 

immediate biotic response to environmental 

change (e.g. plasticity; Stamp & Hadfield, 2020). 

The immediate biotic responses to a specific 

climate driver can be estimated where (i) the 

climate variable(s) is/are manipulated across 

experimental replicates or (ii) replication of 

source sites permits correlation-based analysis 

of causal effects of climate variables.  

 

2. Comparing the biotic states of organisms from 

different sites of origin within a common 

environment can inform about persistent 

differences between sites (e.g. genetic 

differentiation).  

1. Where replication is insufficient (i.e. a 

limited number of sites are considered) 

and climatic conditions are not 

manipulated experimentally, common 

garden transplants do not inform of the 

effects of specific climate drivers on biotic 

variables. 

    

2. Differences among organisms in a 

common garden environment are not 

sufficient on their own to evidence spatial 

differences in equilibrium biotic state (e.g., 

local adaptation).  

 

3. For some taxa, transplant experiments 

are impractical or even impossible. 



Page 67 of 84 

 

 
 

 

 

3. Where a transplant climate is representative 

of historical conditions, this can inform regarding 

biotic lags: if performance (e.g. fitness) is higher 

in climates resembling those occupied in the 

past, it may suggest that the biotic state is 

lagging behind the changing environment.  

 

4. When the conditions within a common garden 

(away) site are representative of the future 

conditions expected at the home site, predictions 

can be made about the expected biotic 

responses to future climate change, assuming 

that climate is causal. This includes estimating 

biotic offsets (Figure 3a). 

Therefore, the use of transplants is largely 

limited to taxa such as plants (e.g. 

Alexander et al., 2015).   
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(ii) Reciprocal 

transplants 

(sometimes called 

reciprocal common 

garden transplants)  

 

Organisms from 

different sites are 

moved into each 

other’s environments 

allowing the 

performance (and 

biotic state) of local 

and foreign organisms 

at a site to be 

compared (Figure 2c).   

1. Comparing biotic states in home sites to those 

at away (transplant) sites or under manipulated 

conditions can reveal an immediate biotic 

response to environmental change (e.g. 

plasticity; Stamp & Hadfield, 2020).  

 

2. Comparing the biotic states of organisms from 

different sites of origin within a common 

environment allows quantification of persistent 

differences between sites (e.g. genetic 

differentiation) with respect to the environment. 

Since reciprocal transplants involve maintaining 

organisms in both local and foreign sites – such 

that native and foreign performance can be 

compared – they allow these persistent 

differences in performance (but not other 

1. Where the focal environmental driver is 

not directly manipulated and replication is 

insufficient (i.e. a limited number of sites 

are considered), reciprocal transplants 

cannot reveal which environmental 

variables (including climate) drive biotic 

responses. 

 

2. For some taxa, transplant experiments 

are impractical or even impossible. 

Therefore, the use of transplants is largely 

limited to taxa such as plants (e.g. 

Alexander et al., 2015).   
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aspects, e.g., phenotypes) to be attributed to 

spatial differences in the equilibrium biotic state 

(e.g., local adaptation; Kawecki & Ebert, 2004)).  

 

3. Where a transplant climate is representative 

of historical conditions, this can inform regarding 

biotic lags: if performance (e.g. fitness) is higher 

in climates resembling those occupied in the 

past, it may suggest that the biotic response is 

lagging behind the changing environment. 

 

4. Where replication (i.e. the number of sites) is 

sufficient, reciprocal transplants allow (1) and (2) 

to be estimated with respect to a specific climate 

driver. 
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5. When the conditions within an away 

(transplant) site are representative of the future 

conditions expected for a focal home site, 

predictions can be made about the expected 

biotic responses to future climate change, 

assuming that climate is causal. This includes 

estimating biotic offsets (Figure 3a). 

 1794 

  1795 
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Table 2: Example of studies that employ space-for-time substitutions for each of the four eco-evolutionary subfields covered in this paper 1796 

(population phenotypes, population genotypes, species’ distributions, ecological communities). Papers were selected to showcase the breadth 1797 

of SFTS methods, inferences and limitations.  1798 

Subfield and ex-

ample paper 

Method Inference Key assumptions 

(a) Population 

phenotypes 

Wilczek et al. 

2014 PNAS 

 

Wilczek et al. transplanted seed banked 

accessions of Arabidopsis thaliana col-

lected across Europe into each of four 

common garden sites across the species’ 

European range (Spain, the UK, Germany 

and Finland). They estimated the fitness 

(based on fecundity) of different geno-

types at the four sites. 

At three of the four common garden 

sites, genotypes with origins that 

were local had higher relative fitness 

than those from other regions (for-

eign), suggesting the presence of lo-

cal adaptation. However, for the most 

northerly common garden site (Fin-

land), accessions originating from a 

historically warmer location had 

higher fitness than the home acces-

sions. The authors suggest that this is 

The conclusion that adaptation is lagging 

behind climate warming relies on the as-

sumption that temperature is driving the 

among population variation in fitness (Ta-

ble 3ai). However, other environmental 

variables may also exhibit similar pat-

terns of variation across sites and so the 

causal variable is not robustly estab-

lished. 
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indicative of the historically collected 

accessions exhibiting a biotic lag to 

temperature. 

(b) Population 

genotypes 

Bay et al. 2018 

Science 

Bay et al. characterised more than 

100,000 SNPS from breeding populations 

of yellow warbler, Setophaga petechial, 

sampled across 21 locations in North 

America. They examined the spatial geno-

type-environment association for each 

SNP across a range of climate and envi-

ronmental variables (temperature, precipi-

tation, vegetation indices, tree cover, ele-

vation and surface moisture). These con-

temporary associations were then used to 

predict genomic variation for a particular 

The authors found that geographic re-

gions with higher genomic vulnerabil-

ity had experienced the largest popu-

lation declines, and conclude that 

these populations are already being 

negatively affect by climate change. 

The correlative approach to identifying 

climate-genotype relationships is prone 

to false positives (Table 1ai; Table 3a; 

Section III(2)). See Fitzpatrick, Keller & 

Lotterhos (2018b) for a discussion of 

specific limitations of this study. A subse-

quent simulation study has further shown 

that the observation of greater genomic 

vulnerability to future climates (biotic off-

set) in smaller populations is expected 

under genetic drift alone, and should 

therefore not be interpreted as evidence 
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climate model for 2050. Geographic varia-

tion in predicted genomic vulnerability (i.e. 

biotic offset) was calculated as the Euclid-

ean distance between contemporary and 

predicted genomic states.  

that such populations are already mala-

dapted to present climate (Láruson et al. 

2022). 

(c) Species distri-

butions 

Thomas et al. 

2004 Nature  

Thomas et al. fitted separate ENMs for 

1,103 terrestrial animal and plant species, 

based on the climate conditions they cur-

rently occupy. They used these contem-

porary associations to project species’ 

distributions under projected climate 

change for 2050.  

Based on the predicted change in cli-

matically suitable areas, the authors 

estimated the proportion of species 

expected to go extinct under different 

climate-warming scenarios. They esti-

mated that between 9% and 52% of 

species would be ‘committed to ex-

tinction’, depending on climate and 

dispersal scenarios, and highlight the 

importance of minimising climate 

change. 

This study relies on a number of key as-

sumptions, as demonstrated by the high 

variability in the number of species ‘com-

mitted to extinction’ (9-52%). In particu-

lar, there is a lack of validation of both 

causality and transferability of models 

(Table 3), with the authors instead citing 

generic validation of ENMs, despite con-

siderable variability in the transferability 

of ENMs across space, time, taxa and 
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modelling methods (Jarnevich et al., 

2015).  

(d) Ecological 

communities 

Alexander et al. 

2015 Nature  

Alexander et al. transplanted both (i) four 

focal plant species and (ii) intact alpine 

plant communities to two sites on an ele-

vational gradient in the Swiss Alps. Trans-

plants simulated different migration sce-

narios that may occur under climate 

change, such that each focal species ex-

perienced different combinations of (i) cur-

rent or warmer temperatures and (ii) cur-

rent or novel communities.  

Novel competitors were found to have 

reduce the performance of focal plant 

species under increased tempera-

tures (i.e. under the scenario where a 

species fails to migrate to track cli-

mate change) but had little effect un-

der current temperatures (i.e. under 

the scenario where a species mi-

grates to track the changing climate). 

This study relies on the key assumption 

of causality: with only three common gar-

den sites, it is impossible to demonstrate 

a causal effect of temperature on com-

munity composition (Table 3ai). 

  1799 
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Table 3: General limitations of SFTS that apply across all four subfields (population phenotypes, population genotypes, species’ distributions, 1800 

ecological communities) and potential mitigations  1801 

Type of 

limitation 

Specific limitation  Improvements and Recommendations 

a) Causality 

 

Issues identifying 

causal climate-

biotic 

relationships (i.e. 

where climate is 

driving the biotic 

response).  

i) Identification of causal climate predictors  

Both the omission of causal variables and the inclusion of too 

many or non-causal predictor variables (i.e. overfitting) can 

bias SFTS estimates (Synes & Osborne, 2011; Beale & 

Lennon, 2012; Fourcade, Besnard & Secondi, 2018).  

 

Unmeasured causal variables could be other abiotic or biotic 

variables and their non-inclusion reduces our ability to 

accurately predict biotic responses in time. It may also lead to 

correlated but non-causal variables being identified as 

important predictors, though with a weaker effect than the 

true causal variable would have (Dormann et al., 2013). 

1) Using biological knowledge to select climate variables 

that are likely to be causal (Elith & Leathwick, 2009), e.g., 

forcing temperature as a predictor of plant phenology.  

 

2) Where the estimated slope of the climate-biotic 

relationship is similar across multiple gradients or types of 

gradients (e.g. altitudinal, latitudinal, urbanisation), this can 

increase or decrease confidence relationships have a 

causal basis (Loewen, et al. 2023). 

 

3) Estimating the relationships between multiple abiotic 

(including climate) and biotic variables in space versus time 
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Omitted causal variables are especially problematic for SFTS 

where correlations between the causal and non-causal 

variable differ in space and time (Tansey, Hadfield & 

Phillimore, 2017).  

 

Causal inference can also be problematic in transplant 

experiments, where ‘excludability’ (where the treatment has 

other unintended consequences) and ‘noncompliance’ (where 

the treatment climate that a transplant experiences cannot be 

fully controlled) may be particular challenges (Kimmel et al., 

2021). 

 

Problems with inferring causality are likely to be most 

pronounced where replication is insufficient. 

would provide us with an insight into how often and where 

differing correlations are likely to pose a challenge to 

predictions (Dormann et al., 2013). 

 

4) There are approaches for choosing drivers that could be 

shared between the four subfields. For example, phenotypic 

studies often focus on the seasonal timing over which a 

climate variable is important (Roberts, 2008; van de Pol et 

al., 2016), whereas ENMs generally consider multiple 

climate variables and nonlinear climate-biotic relationships. 

 

 

ii) Appropriate sampling  1) Selective sampling of environments, such as stratified 

sampling or matching methods (Andam et al., 2008), could 



Page 77 of 84 

 

 
 

 

A spatial sample may not capture the true relationship 

between variables, such as due to sampling biases or 

incomplete sampling. Additionally, if there is variation in the 

frequency of different climate conditions over space, this may 

result in unequal climate representation in the sample. 

 

be used to generate a sample that is representative of the 

available climate conditions.  

 

2) A greater emphasis should be placed on statistical power 

in study design, including selection of sampling locations 

that minimise the autocorrelation between predictor 

variables.  

iii) Spatial autocorrelation  

Spatial autocorrelation is ubiquitous in biotic and climatic 

data, with sites that are closer together being more similar. 

This means that spatial samples will often not be independent 

and this leads to inflated confidence in model estimates 

(Dormann, 2007). 

1) Modelling methods that address spatial autocorrelation in 

the residuals do now exist and are getting faster and more 

able to deal with large and complex datasets, e.g., INLA 

(Rue, Martino & Chopin, 2009).  

 

2) For genomic data, where spatial proximity may lead to 

greater genetic similarity via isolation by distance, methods 

have been developed to try to capture and control for 
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relatedness between populations (Reviewed by Rellstab et 

al., 2015).  

 

iv) Spatial scale 

Generally, in situ climate-biotic relationships are modelled 

using relatively coarse grain predictors (e.g., estimates for 

100, 10 or 1km2; Fick & Hijmans, 2017), which may not be 

representative of the local conditions that drive a biotic 

response (Potter, Arthur Woods & Pincebourde, 2013). This 

can introduce measurement error variance into our climate 

predictors, which will bias climate-biotic slope estimates 

toward zero.  

 

It is also possible for estimates of climate-biotic relationships 

to be biased away from zero when, as one moves toward 

more extreme climates, there is a greater tendency for 

1) Where interpolated climate data are used we recommend 

using the finest scale available, depending on suitability to 

the biotic response (Suggitt et al., 2017).  

 

2) Where the biology of the system suggests that 

microclimates are likely to be important for predicting 

impacts on biotic states, we recommend that microclimatic 

modelling (Kearney et al., 2020; Maclean, 2020) is used to 

generate climate predictors (Stark & Fridley, 2022).  

 

3) If microclimates are changing in the same way as 

coarser climate variables over space and over time, this 

may not affect space-for-time predictions. Therefore, we 
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organisms to use microclimates that are less extreme than 

coarser scale climate conditions. For example, microclimates 

can provide suitable climatic refugia for organisms, even 

when coarser scale climate conditions would render a site 

unsuitable (Lawson et al., 2014; Suggitt et al., 2018). For 

instance, such an effect might arise in butterfly phenology if 

individuals experiencing a colder environment seek out 

warmer microclimates, whilst those in a warmer environment 

seek out cooler microclimates (Roy et al., 2015).  

 

recommend examining relationships between microclimates 

and coarser climate variables in both space and time to 

determine when this will be an issue. See also, 

recommendation a.i.3.  

b) Transferability 

 

Issues relating to 

the transferability 

of spatial climate-

biotic 

i) Lack of temporal validation  

Models are often projected over time, under future (or past) 

climates, but their ability to accurately predict biotic changes 

over time is rarely assessed, due to a lack of testing data.  

1) Where opportunities to test the accuracy and precision of 

equilibrium predictions on appropriate timescales can be 

identified they should be prioritised. 

 

2) In some instances, greater use could be made of existing 

historic data that have been underutilised for hindcasting, 
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relationships over 

time (Sequeira et 

al., 2018; Yates et 

al., 2018). 

 

e.g., museum and herbarium specimens (Guerin et al., 

2012), dendrochronology (Klesse et al., 2020), genomic 

data (Miller et al., 2021), paleodata (Blois et al., 2013). 

 

3) Where the time to reach equilibrium precludes 

quantitative analysis, there may be potential to make 

qualitative predictions over shorter timescales amenable to 

validation tests.  

 

4) Where suitable testing data are not available, there is still 

great value of using simulations to detect limits to inference 

(e.g. Zurell et al., 2010; Qiao et al., 2019; Adler et al., 

2020).  

 



Page 81 of 84 

 

 
 

 

5) Space-time comparison provides an opportunity to test 

whether climate-biotic relationships are of similar magnitude 

in space and time (Phillimore et al. 2010; Table 1aii).  

 

 

ii) Assumption of contemporary spatial equilibrium  

A common assumption is that current spatial patterns reflect 

the equilibrium outcome of eco-evolutionary responses to 

spatial variation in the long-term average climate. However, 

there may be a biotic lag between the contemporary biotic 

state and the equilibrium biotic state for those climate 

conditions (Figure 3b); whether current spatial patterns are at 

equilibrium with the climate is unclear, variable across 

systems (Gaüzère et al., 2018), and largely untested.  

 

1) Rather than using a single historical average for each 

climate variable at a site we suggest analysis of a sliding 

window of historical climate to identify the time period over 

which climate best predicts the system (van de Pol et al., 

2016). The situation where current biotic states are better 

predicted by historic rather than current climate may 

indicate that the system exhibits biotic lag behind the 

equilibrium.  

 

2) We are not aware of an approach to test whether in situ 

biotic systems are at equilibrium with climate in the absence 
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Recent anthropogenic shifts in climate may have perturbed 

many systems from their long-term equilibrium. There is 

potential for the climate-biotic relationship to be out of 

equilibrium in its intercept and/or slope. The consequences of 

either for SFTS predictions are unknown (Coulson, 2021).  

 

If a system is in a transient biotic state, and not at equilibrium, 

this need not invalidate future projections, as these may also 

be interpreted as indicating the expected transient, rather 

than equilibrium, biotic response. Equilibrium also does not 

necessarily imply the system is at its optimum, e.g., 

phenotypes may be perturbed from their local optima by 

migration load (introduction of alleles from other populations), 

and instead be at selection-migration equilibrium (Hadfield, 

2016). 

 

of temporal data. Therefore, we suggest that theory 

represents the most promising avenue for exploring the 

problems that non-equilibrium in the intercept and/or slope 

of the climate-biotic relationship presents to SFTS methods. 

 

3) If current spatial patterns are not at equilibrium, future 

projections will indicate transient rather than equilibrium 

biotic responses. Moving beyond static snapshot 

projections to understand how the transient biotic response 

is expected to change dynamically over fine temporal 

resolutions (i.e. annual) would provide an indication of (i) 

the sensitivity of the projected biotic responses to the 

choice of future time horizon (Petchey et al., 2015) and (ii) 

the rate, timing and abruptness of the expected biotic 

response, not just the magnitude.  
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iii) Rate of change and biotic response  

Relationships observed over space are likely to be the result 

of both long-term and short-term processes, but the 

immediate temporal biotic responses that are more relevant 

to climate change predictions (i.e. over decades) will be 

mostly driven by short-term processes (Dunne et al. 2004; 

Adler et al., 2020; Münzbergová et al., 2021). Therefore, 

there may be a biotic lag in the temporal biotic response, with 

equilibrium not reached in the short-term or potentially not 

reached at all (Chevin, Lande & Mace, 2010). This biotic lag 

may be exacerbated by future climate change occurring at a 

faster rate than that in the past, with biotic responses unable 

to occur rapidly enough to reach equilibrium. Consequently, 

the timescale over which space-for-time predictions are valid 

is uncertain. 

A method for quantifying the projected timescale for a biotic 

lag to be closed and equilibrium reached would be 

invaluable for predicting consequences. We are not aware 

of such tools, but suggest that simulation would provide a 

potential avenue. 
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iv) No-analogue climates   

In the future, organisms may be exposed to climatic 

conditions not experienced today, but models do not contain 

any information about biotic responses to these novel 

conditions and so rely on extrapolation (Williams & Jackson, 

2007; Fitzpatrick & Hargrove, 2009). This includes both new 

values of individual variables but also novel combinations of 

variable values. This will be a particular issue where linear 

models are used for non-linear climate-biotic relationships. 

Tipping points may be reached.  

1) Where possible, experiments can provide insights into 

biotic responses to novel conditions.  

 

2) Similarity between current and future climates can be 

quantified to assess the level of uncertainty in extrapolation 

(Qiao et al., 2019). 

 

3) Whilst linear assumptions in modelling are convenient, 

we encourage wider testing of their adequacy (Iler et al., 

2013). 

 1802 


