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ABSTRACT 24 

 25 

Climate change impacts emerging infectious disease events through multiple mechanisms, but 26 

the influence it exerts through driving host range shifts has been little explored. Not only might 27 

we expect range shifts to affect pathogen transmission by altering the connectivity of host 28 

populations, but range expanding hosts and pathogens will have different physiological 29 

responses to the suites of novel conditions they are exposed to, influencing infection outcomes. 30 

We studied the fungal pathogen Batrachochytrium dendrobatidis (Bd) on three amphibians in the 31 

Cordillera Vilcanota, Peru: Pleurodema marmoratum, Telmatobius marmoratus, and Rhinella 32 

spinulosa. There, these species have undergone a climate-driven range expansion into recently 33 
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deglaciated habitat to become both the highest elevation amphibians and the highest elevation 34 

cases of Bd infection globally. We analyzed Bd genetics, infection metrics, and apparent 35 

sublethal impacts along the colonization front (3,900—5,400 m asl) to explore how elevational 36 

range expansion affected host-pathogen dynamics. Amphibian range shifts have enabled their 37 

new connectivity across the once continuously glaciated Cordillera Vilcanota, but genetic 38 

evidence suggests that Bd disperses so frequently and extensively that this novel connectivity has 39 

not contributed significantly to overall Bd dispersal. Although amphibians have not escaped Bd 40 

infection outright through upslope expansion in the Cordillera Vilcanota, Bd growth does appear 41 

to be constrained at the highest reaches of the Vilcanota. Finally, we present evidence that Bd 42 

infection has different sublethal costs for amphibians at the new elevations they have colonized, 43 

though whether the costs are mitigated or exacerbated by extreme elevation may be moderated 44 

by amphibian microhabitat use. 45 

 46 

KEYWORDS:  47 

 48 

climate change— Cordillera Vilcanota, Peru — disease triangle —  range expansion—sublethal 49 

effects –– synergisms — transmission   50 

 51 

INTRODUCTION 52 

 53 

The rising incidence of emerging infectious diseases (EIDs) is a critical issue in both 54 

conservation and public health (Fisher et al. 2012; Jones et al. 2008). Climate change may be 55 

contributing to increased outbreaks by providing pathogens with opportunities to switch hosts, 56 
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expand geographically, or become more virulent (Harvell et al. 2002; Hoberg & Brooks 2015; 57 

Liang & Gong 2017), while climate-driven range shifts are also expected to influence the 58 

infection dynamics of several important pathogens. In Hawaii, the upslope range shifts of 59 

mosquitos are predicted to drive the continuing decline of endemic birds currently escaping 60 

avian malaria at high elevations (Zamora-Vilchis et al. 2012), and in Europe the northwards 61 

expansion of ticks is predicted to increase the spatial extent of Lyme infections (Jaenson & 62 

Lindgren 2011). However, the data we currently have on the interaction of climate-driven range 63 

shifts and EIDs tends to come from vector-borne systems, as many vectors are highly sensitive to 64 

climate (Harvell et al. 2002). Though little documented, the infection dynamics of many 65 

pathogens that rely on direct transmission will presumably be affected by the widespread 66 

climate-driven range shifts of host species (e.g. Freeman et al. 2018; Moritz et al. 2008; 67 

Parmesan et al. 1999). As hosts undergo range shifts, their exposure to novel environments may 68 

alter host-pathogen dynamics—potentially exacerbating or mitigating infections, changing 69 

transmission patterns, or exposing hosts to new pathogens.  70 

 71 

The emergence of Batrachochytrium dendrobatidis (Bd), the pathogen causing 72 

chytridiomycosis that has contributed to devastating global amphibian declines (Scheele et al. 73 

2019; Skerratt et al. 2007), has been linked to climate change through a few proposed 74 

mechanisms (Li et al. 2013). Climate change could expand the spatial extent of optimal Bd 75 

growth conditions (Bosch et al. 2007). Meanwhile, more frequent droughts compromise 76 

amphibian immunity and enhance Bd transmission when amphibians aggregate in wet or humid 77 

microhabitats (Burrowes et al. 2004; Lampo et al. 2006). Higher climatic variability may also 78 

favor rapidly-adapting pathogens over hosts, resulting in worse infections (Raffel et al. 2013; 79 
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Rohr & Raffel, 2010). Finally, as parasites generally have broader thermal tolerances than hosts, 80 

frogs are likely to be exposed to suboptimal temperatures before Bd, placing them at a 81 

disadvantage (Cohen et al. 2019; Cohen et al. 2017). The mounting evidence of climate-driven 82 

amphibian range shifts (e.g. Bustamante et al. 2005; Enriquez-Urzelai et al. 2019; Raxworthy et 83 

al. 2008) suggests this as an additional mechanism that could connecting climate change and 84 

amphibian-Bd dynamics. 85 

 86 

The Cordillera Vilcanota, in southern Peru, presents an ideal system for exploring how 87 

climate-driven range shifts impact EIDs. Field surveys of this heavily glaciated tropical 88 

mountain chain in the early 2000s documented the first known Bd infections in southern Peru 89 

(Seimon et al. 2005), but also revealed that three frog species had expanded their elevational 90 

ranges by hundreds of vertical meters into passes that had deglaciated since the end of the Little 91 

Ice Age (~150 years ago). The Marbled four-eyed frog (Pleurodema marmoratum) had expanded 92 

upslope to 5,400 m asl, making it the highest elevation amphibian in the world; the Andean toad 93 

(Rhinella spinulosa) and Marbled water frog (Telmatobius marmoratus) had expanded to 5,244 94 

m asl (Seimon et al. 2007). Chytridiomycosis was recorded at the upper limits of these species 95 

distributions, and a die-off event was observed in T. marmoratus at 5,244 m asl (Seimon et al. 96 

2007). Today, all three species persist at lower abundances in the Vilcanota. Host-pathogen 97 

dynamics have transitioned into a more stable, enzootic state (Seimon et al. 2017), as can also be 98 

said of neighboring amphibian communities downslope (Catenazzi et al. 2017).  99 

 100 

Moving upslope in the Vilcanota, Bd and frogs are challenged by progressively more 101 

intense UV, deep frozen precipitation, and a partial oxygen pressure 50-60% of that at sea level 102 
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(Poremba et al. 2015; Seimon et al. 2017; Wang et al. 2014). At the apex of the mountain passes, 103 

soil temperature can fluctuate between –12° C at night and 25° C during the day, with a soil 104 

freezing rate exceeding that measured from any site on Earth (1.8° C/ hr; Schmidt et al. 2009). 105 

Resident frogs are exposed to an even broader operative temperature range (−3.5 to 44° C; 106 

Reider 2018). Here, we asked how range expansion into these new, challenging elevations may 107 

have influenced Bd infection dynamics. We used genetic data to inform our understanding of the 108 

local history of Bd, then examined site infection metrics and apparent sublethal infection impacts 109 

to understand how conditions at newly-colonized elevations might sway infection outcomes. We 110 

anticipate that Bd in the Vilcanota is from the global panzootic lineage (BdGPL), the lineage 111 

largely responsible for Bd epizootics in South America (James et al. 2015), though these highest 112 

elevations inhabited by Bd presumably impose strong selective pressures that could conceivably 113 

result in a limited number of locally-adapted strains proliferating. If Bd remains dispersive 114 

despite extreme high-elevation conditions, and particularly if it was introduced to the Vilcanota 115 

just before local die-offs in the 2000s, Bd will be spatially unstructured, a common finding 116 

elsewhere Bd population genetics have been studied (e.g. Alvarado-Rybak et al. 2021; Basanta et 117 

al. 2021; Byrne et al. 2019). However, if the environmental persistence of Bd is depressed by 118 

harsh, high elevation conditions, the genetic structure of Bd is more likely to reflect its gradual 119 

spread between watersheds by way of host dispersal along the corridors provided by deglaciated 120 

passes (Haddad et al. 2014). The present study is the first to examine Bd infection dynamics 121 

above 4000 m asl (3,900—5,400 m asl); though Bd infection prevalence and intensity tend to 122 

initially increase with elevation, studies sampling to 4000 m asl suggest that these metrics may 123 

begin to decline again with increasing elevations (Catenazzi et al. 2011; Muths et al. 2008). For 124 

this reason, we expect Bd infection to have lower sublethal impacts for amphibians at newly-125 



Amphibians' expansion to record elevations influences Batrachochytrium dendrobatidis 
(Batrachochytriaceae) infection dynamics 

6 
 

colonized, extreme high elevation sites. Alternatively, if the stress of high elevations and Bd 126 

infection impact amphibians synergistically, the sublethal impacts of Bd may increase with 127 

elevation. These analyses provide the first insights into how the climate-driven range shifts of 128 

hosts may influence EID events. 129 

 130 

METHODS 131 

 132 
1. Fieldwork 133 

 134 

We sampled P. marmoratum, R. spinulosa, and T. marmoratus in the Cordillera Vilcanota (13° 135 

44' 24"˚S, 71° 5' 24"˚W), an 80 km-long mountain chain in the southern Peruvian Andes, during 136 

the transition between the wet and dry seasons (March-May) in 2018 and 2019. T. marmoratus 137 

breed year-round, while P. marmoratum and R. spinulosa are in their final breeding months at 138 

this time. We sampled at 76 sites from 3,967—5,333 m asl, including transects across two 139 

deglaciated passes (Figure S 1; see Supporting Information for details). We expended equal 140 

search effort to capture 15 adults per species per site, supplementing as needed first with 141 

juveniles and then with tadpoles. We sampled 695 P. marmoratum (317 adults), 173 Rhinella 142 

spinulosa (82 adults), and 232 T. marmoratus (23 adults). All individuals were dry swabbed to 143 

assess Bd infection (MW113, Medical Wire & Equipment Co., Ltd., Corsham, UK; Hyatt et al. 144 

2007; see Supporting Information for details). We noted snout-vent length (SVL), mass, sex, and 145 

signs of disease in adults (lethargy, excessive sloughing, reddened skin). We also recorded SVL, 146 

mass, and signs of disease in juveniles; as well as SVL, mass, and Gosner developmental stage 147 
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(Gosner 1960) in tadpoles. Samples were transported to the University of California, Berkeley 148 

for -80˚C storage. 149 

 150 

Paired DS1921G Thermocron Temperature Loggers (OnSolution Pty Ltd, Sydney, 151 

Australia; hereafter, 'iButtons') were placed in aquatic and terrestrial microhabitats at 20 sites 152 

during the 2018 sampling season to measure temperature every four hours (see Supporting 153 

Information for details). Data was downloaded from recovered iButtons during the 2019 154 

sampling season. 155 

   156 

2. Bd quantification and genotyping 157 

 158 

We focused on gaining a comprehensive understanding of Bd dynamics in our most widely-159 

sampled frog, P. marmoratum. We estimated Bd zoospore equivalents (ZE) per swab using 160 

triplicate quantitative PCR reactions (Hyatt et al. 2007; see Supporting Information for details). 161 

Amplicon sequencing libraries were prepared on a Fluidigm Access Array for 96 Bd+ extracts 162 

and sequenced with Illumina Miseq (Byrne et al. 2017).  163 

 164 

3. Phylogenetic, structure, and redundancy analyses 165 

 166 

We aligned filtered ambiguity sequences for Vilcanota samples and previously published 167 

sequence data representative of global Bd diversity (Byrne et al. 2019a,b) in MUSCLE (v3.32; 168 

Edgar 2004), estimated a ML gene tree for each amplicon using RAxML (v4.0), and estimated 169 

an unrooted species tree in ASTRAL (v5.7.4; see Supporting Information for details). We 170 
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examined standing genetic variation of Vilcanota Bd with an ANGSD Site Frequency Spectrum 171 

(SFS; v0.933-106-gb0d8011). We processed BAMs separately for the subset of Vilcanota 172 

samples retained in phylogenetic analyses and the larger dataset including globally representative 173 

BdGPL samples (Byrne et al. 2019a,b). We conducted a principal component analysis with a 174 

NIPALS PCA (Korneliussen et al. 2014; see Supporting Information for details). We tested for 175 

population structure at the scale of sampling sites and watersheds using AMOVA in Poppr 176 

(Kamvar et al. 2014). We also assessed the proportion of genetic variance that could be 177 

explained by elevation in R by conducting a redundancy analysis in Vegan (v2.5-7) and an 178 

ANOVA of the resulting model in Stats (v4.1.1; see Supporting Information for details).  179 

 180 

4. Infection dynamics across elevations 181 

 182 

We analyzed the site-level effects and apparent sublethal impacts of Bd in R (v4.0.2; see 183 

Supporting Information for details). Adult counts per site did not correlate with elevation using 184 

GLMs in MASS (v7.3-54) for P. marmoratum (nsites = 63; Figure S3a) or T. marmoratus (nsites = 185 

17; Figure S3b), so though adult counts of R. spinulosa declined slightly with elevation (nsites = 186 

25, p < 0.001, Figure S3c, Table S3), we did not include this proxy of frog density in subsequent 187 

models of site-level infection metrics. To investigate whether elevation was a good predictor of 188 

site infection metrics (site prevalence, site mean infection intensity, and site maximal infection 189 

intensity), we tested the fit of linear and quadratic regression models at Bd+ sites. We did not 190 

record signs of disease like excessive sloughing with sufficient frequency to report relationships 191 

between these symptoms and elevation. 192 

 193 
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We examined whether frog body size (SVL) and condition (SMI; as per Peig & Green, 194 

2009) responded to putative site infection status (Bd+/-), elevation, and the interaction between 195 

these terms using GLMMs in lme4. We built models for the species-life stage combinations for 196 

which we had sufficient data: P. marmoratum adults, P. marmoratum tadpoles, and T. 197 

marmoratus tadpoles. We included site as a random effect in all models, and Gosner 198 

developmental stage as a partial correlate predicting tadpole SVL. We dropped sex as a variable 199 

from models of adult data as it was not a significant contributor. Published literature does not 200 

yield expectations for how body size or condition relates to elevation in these species, so we 201 

examined samples at Bd- sites to establish baseline trends. To explore how thermal regimes 202 

along the elevational gradient might relate to observed trends in infection metrics and apparent 203 

sublethal impacts, we plotted March-April temperature data from recovered iButtons relative to 204 

the temperature-dependent logistic growth rate (r) of a tropical Bd strain (Voyles et al. 2017a,b), 205 

the CTmax of adult P. marmoratum, and the mean temperature tolerated by P. marmoratum adults 206 

that recovered following freezing (Reider et al. 2020). 207 

 208 

RESULTS 209 

 210 

1. Phylogenetic placement, spatial genetic structure, and local adaptation 211 

 212 

Vilcanota Bd samples from P. marmoratum (n = 44) nest within the BdGPL-2 clade of the 213 

BdGPL lineage but do not cluster together relative to a panel of globally-derived BdGPL 214 

genotypes in a consensus gene tree or PCA (Figure 1, Figure 2a). Vilcanota Bd is geographically 215 

unstructured, with samples failing to cluster in a PCA (Figure 2b) despite containing many low-216 
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frequency variants after stringent filtering (73.4% variants have an allele frequency of ~1%). 217 

Watersheds or sites were not differentiated according to an AMOVA (p > 0.05, Table S1). 218 

Elevation was a significant predictor of genetic variance according to redundancy analysis but 219 

only explained 1.2% of genetic variance (p < 0.05, Table S2). 220 

 221 

2. Site infection metrics across elevations 222 

 223 

We detected R. spinulosa up to 4,895 m asl. We recorded adult Pleurodema marmoratum and 224 

Telmatobius marmoratus at the highest part of the mountain passes, at a maximal elevation of 225 

5,333 and 5,226 m asl respectively. We were able to sample P. marmoratus (but not the other 226 

species) at regular intervals across the entirety of both deglaciated mountain passes, suggesting 227 

that this species now has connectivity between populations north and south of the Vilcanota.  228 

 229 

Bd prevalence in P. marmoratum was 30.0% among juveniles (n = 120) and 24.0% 230 

among adults (n = 317), but not detected in tadpoles (n = 256). The best model by AIC relating 231 

elevation to prevalence was a quadratic model, where prevalence peaked at approx. 4700 m asl 232 

(Figure S5a, Table S4). The predictors in this model were significant and explained 20% of 233 

variance in prevalence (nsites = 18, p < 0.05, Table S4). Visual inspection of site infection 234 

intensity metrics against elevation suggested that these metrics declined with increasing 235 

elevation (Figure S5b-c), but the data supported neither a linear nor a quadratic relationship (nsites 236 

= 18). 237 

 238 
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3. Sublethal impacts across elevations 239 

   240 

In Telmatobius marmoratus tadpoles, a full interactive model including elevation and putative 241 

site infection status explained 11% of variance in body condition and minimized AIC (n = 77, 242 

nsites = 6, Table S5), though this model may be overfit. All predictors were significant (p < 0.05) 243 

except the slope of SMI against elevation at Bd+ sites. This model suggested that tadpoles had 244 

higher body conditions at lower elevations for Bd- sites but not Bd+ sites (Figure 3a). Similarly, 245 

T. marmoratus tadpole body size (SVL) was best predicted by a full interactive model that 246 

included elevation, putative site status, and developmental stage. All predictors were significant, 247 

with fixed effects explaining 68% of the variance (n = 77, nsites = 6, p < 0.001, Table S6). 248 

Consistent with our findings regarding SMI, this model suggested that tadpoles are longer 249 

relative to developmental stage at lower elevations but only at Bd- sites (Figure 3b). The 250 

relationships between T. marmoratus tadpole SMI or SVL and elevation cannot be attributed to 251 

differences in phenology across elevation (Figure S7d). 252 

 253 

The model with lowest AIC predicting Pleurodema marmoratum tadpole SMI from 254 

elevation and putative site status included elevation only. According to this model, body 255 

condition declined with increasing elevation, but the model predictors were not significant, and 256 

the fixed effects explained only 4% of variance in SMI (n = 128, nsites = 15, p >0.05, Table S5). 257 

Visual inspection of these data revealed that SMI appeared reduced for lower elevation tadpoles 258 

at Bd+ sites, similar to trends detected for T. marmoratus tadpoles (compare Figure 3a and 259 

Figure S6a). Indeed, a model including site status and its interaction with elevation was within a 260 

ΔAIC of only 0.02 of the elevation-only model, explained 7% of variance in SMI, and included a 261 
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significant slope and intercept at Bd- sites (Table S5). Meanwhile, P. marmoratum tadpole SVL 262 

was best predicted by elevation alone. Tadpoles were longer relative to developmental stage at 263 

higher elevations regardless of site infection status (Figure S7a). The model explained 18% of 264 

variance in SVL, but not all predictors were significant (n = 128, nsites = 15, p > 0.05, Table S6). 265 

Differences in P. marmoratum phenology across elevations could potentially contribute to 266 

relationships between elevation and body condition (Figure S7c), but this phenomenon would 267 

presumably impact Bd+ and Bd- sites alike. 268 

 269 

In P. marmoratum adults, the best model of SMI by AIC was an additive model that 270 

included elevation and putative site infection status, though these predictors were not significant 271 

and explained only 3% of variance in SMI (n = 339, nsites = 53, p > 0.05, Table S5). Based on this 272 

model, adults had lower body conditions at high than at low elevations, and at Bd+ than at Bd- 273 

sites. Visual inspection of these data reflects the trends that emerged for T. marmoratus tadpoles 274 

(compare Figure 3a and Figure S6b): SMI was depressed for lower elevation tadpoles at Bd+ 275 

sites. However, the full interactive model was not well supported by AIC-based model 276 

comparison (Table S5). 277 

 278 

In adult P. marmoratum, SVL was best predicted from a full interactive model of 279 

elevation and putative site infection status. Fixed effects in this model explained 9% of variance 280 

in SVL, but though all the predictors were significant the intercept was not (n = 339, nsites = 53, p 281 

> 0.05, Table S6). According to this model, SVL in adult P. marmoratum increases with 282 

elevation, regardless of site infection status. However, while SVL increases rapidly at Bd- sites 283 
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(6.5 mm per 1,000 m of elevation), SVL increases only gradually at Bd+ sites (1.4 mm per 1,000 284 

m; Figure S7b).   285 

 286 

Temperature data along the elevational gradient demonstrated that higher elevations were 287 

characterized by lower average daily temperatures and larger fluctuations in daily temperature 288 

(Figure 4a). Ephemeral pond habitats experienced less thermal variability than adjacent 289 

terrestrial habitats (Figure 4a). It follows that, at higher elevations, Bd is characterized by a lower 290 

average growth rate, but frogs also experience greater exposure to their physiological tolerance 291 

limits (Figure 4b).  292 

 293 

DISCUSSION 294 

 295 

Although how infection dynamics are influenced by pathogen or vector range shifts has been the 296 

subject of frequent study over the past decade (e.g. Dudney et al. 2021; Jaenson & Lindgren, 297 

2011; Romanello et al. 2021; Zamora-Vilchis et al. 2012), we still know little about how they are 298 

influenced by the climate-driven range shifts of hosts. Here, we demonstrate that climate-driven 299 

range shifts may impact the infection dynamics of direct-transmission pathogen systems, as well 300 

as vector-borne ones. We used genetic analyses and modeled the relationship among elevation, 301 

site infection metrics, and measures of individual energetic status to understand how the range 302 

expansion of three species may have impacted the course of their infection with a shared 303 

pathogen. We learned that one of the species studied is using mountain passes cleared by 304 

contemporary deglaciation as a new dispersal corridor, and that Bd is resilient to, and can 305 

disperse extensively at, the highest elevations used by amphibians. Finally, we found evidence 306 
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that some site infection metrics and apparent sublethal impacts of infection are affected by 307 

elevation, suggesting that hosts' elevational range shifts have had implications for infection 308 

outcomes.  309 

 310 

Genetic evidence suggests the recent introduction and extensive dispersal of BdGPL-2 311 

 312 

Whether global Bd epizootics were provoked by a novel or endemic pathogen remains an open 313 

question (Rosenblum et al. 2013). Bd was often present in areas long before recorded outbreaks 314 

(e.g. Basanta et al. 2021; De León et al. 2019). Indeed, the earliest known Bd was swabbed from 315 

a Titicaca water frog (Telmatobius culeus) collected 300 km southeast of the Cordillera 316 

Vilcanota in 1863 (Burrowes & De la Riva 2017). Detections of Bd that predate epizootic events 317 

are often hypothesized to represent local Bd strains, with regional Bd-associated declines instead 318 

being attributed to the introduction of a novel strain in the 1990s (Becker et al. 2016; Burrowes 319 

& De la Riva 2017)—usually the global panzootic lineage (BdGPL), the lineage most frequently 320 

associated with disease outbreaks, whose lack of genetic structure even at global scales suggests 321 

its recent expansion (James et al. 2015; O’Hanlon et al. 2018; Rosenblum et al. 2013; Schloegel 322 

et al. 2012). 323 

 324 

Bd samples sequenced in this study belong to BdGPL, consistent with previous studies 325 

genotyping South American Bd west of the Brazilian Atlantic Forest (Alvarado-Rybak et al. 326 

2021; Byrne et al. 2019; O’Hanlon et al. 2018; Russell et al. 2019). Further, Vilcanota Bd was 327 

all BdGPL-2, the more derived and globalized of two BdGPL sub-clades (James et al. 2015). 328 

However, it is worth noting that BdGPL can outcompete other strains during coinfections, so 329 
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may have displaced potentially pre-existing endemic strains in the Vilcanota (Farrer et al. 2011; 330 

Jenkinson et al. 2018). Additionally, selecting the highest intensity swabs to sequence at each 331 

site could introduce bias against less-virulent strains (Byrne et al. 2017; Farrer et al. 2011).  332 

 333 

We found Vilcanota BdGPL-2 to be spatially unstructured using our genetic markers, 334 

consistent with most previous genetic studies of BdGPL, which have found it to be spatially 335 

unstructured from local to continental scales (Alvarado-Rybak et al. 2021; Basanta et al. 2021; 336 

Byrne et al. 2019; Rothstein et al. 2021; Velo-Antón et al. 2012). This lack of structure has often 337 

been interpreted as evidence for its recent introduction to the sampled area, though might simply 338 

indicate high rates of dispersal. One exception to the general lack of spatial structuring in Bd has 339 

been the Sierra Nevada of California, suggesting the western U.S.A. as a potential origin for 340 

BdGPL (Rothstein et al. 2021). Sierran Bd demonstrates that BdGPL can develop spatial 341 

structure, even despite cool, high-elevation conditions that may constrain rates of evolutionary 342 

change. 343 

 344 

Though unstructured, Vilcanota Bd has substantial low-frequency variation, 345 

representative of the global variation in BdGPL-2. Our data cannot exclude the possibility that 346 

BdGPL circulated in the Vilcanota prior to local epizootics of the early 2000s, but in the context 347 

of prior regional studies (Burrowes et al. 2020; Catenazzi et al. 2011; Lips et al. 2008) it is more 348 

likely that BdGPL-2 housed substantial standing genetic variation upon its introduction or was 349 

introduced multiple times. Our analyses place Vilcanota Bd in a large, global polytomy in 350 

BdGPL-2, so we cannot determine whether BdGPL spread from Ecuador via the Andes (Lips et 351 

al. 2008) or from Brazil via Bolivia (Burrowes et al. 2020; Catenazzi et al. 2011). However, the 352 
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timing of BdGPL-2's arrival likely coincides with the amphibian die-offs in the Vilcanota in the 353 

early 2000s (Seimon et al. 2007; Seimon et al. 2005), as this corresponds to declines in adjacent 354 

lowland and cloud forest regions (Catenazzi et al. 2011). 355 

 356 

Regardless of the provenance and timing of introduction, our data demonstrates that 357 

BdGPL-2 has undergone extensive local dispersal. Its movement across the Cordillera Vilcanota 358 

would not have been limited to transmission by frogs along the terrestrial corridors provided by 359 

deglaciated passes. Processes facilitating its dispersal might include the trade of T. marmoratus 360 

for urban consumption (Catenazzi et al. 2010), the aquaculture of nonnative fish (Martín-Torrijos 361 

et al. 2016; Ortega & Hidalgo, 2008), the movements of Andean waterbirds (Burrowes & De la 362 

Riva, 2017), or even precipitation (Kolby et al. 2015).  363 

 364 

Amphibians cannot escape Bd by range shifting upslope 365 

 366 

Early studies generally found that Bd infection prevalence or intensity increased with elevation 367 

(Brem & Lips, 2008) and epizootics impacted highland sites more severely (Berger et al. 2004; 368 

Lips et al. 2006; Lips 1999). These relationships are consistent with the preference of Bd for cool 369 

temperatures (Piotrowski et al. 2004; Woodhams et al. 2008) and the impaired function of 370 

amphibian immune systems and skin microbiomes at colder, more thermally variable high 371 

elevations (Daskin et al. 2014; Jackson & Tinsley 2002). Early field studies did not sample 372 

above 2,500 m asl, but empirical work demonstrating that suboptimal temperatures retard Bd 373 

growth led to a hypothesis that Bd pathogenicity was restricted to below 4,000 m asl (Piotrowski 374 

et al. 2004; Pounds et al. 2006; Ron 2005; Woodhams et al. 2008). Subsequent studies of Bd 375 
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dynamics up to 4,000 m asl reported declining infection prevalence or intensity with increasing 376 

elevation (Catenazzi et al. 2011; Muths et al. 2008), perhaps due as much to increasing aridity as 377 

to decreasing temperatures (De la Riva & Burrowes 2011).  378 

 379 

The idea that Bd pathogenicity had an upslope bound was later undermined by severe 380 

infections documented above 4,000 m asl in the Vilcanota and other sites (Knapp et al. 2011; 381 

Seimon et al. 2007; Seimon et al. 2005). Here, we find limited evidence that elevational 382 

extremes constrain Bd growth. Bd infection metrics appear to decline at the upper reaches of the 383 

elevational gradient colonized by Vilcanota frogs (3,967—5,333 m asl)—both for the significant 384 

and well-fit quadratic model of prevalence and for the inherently noisy infection intensity data. 385 

Such declines would be consistent with our expectations following from our iButton temperature 386 

data, considered in light of a study profiling the thermal dependence of Bd growth (Voyles et al. 387 

2017): Bd likely grows more slowly at higher elevations in the Vilcanota (Figure 4).   388 

 389 

Upslope range shifts may mediate infection outcomes through exposure to thermal 390 

variability 391 

 392 

We investigated whether extreme elevations compounded or ameliorated the apparent sublethal 393 

impacts of Bd by comparing frog body size and condition at putatively Bd+ and Bd- sites. Body 394 

size and condition signal important information about nutritional history in amphibian larvae, 395 

juveniles, and adults; and can predict important fitness components such as fecundity, the ability 396 

to respond effectively to environmental stress, and lifespan (Brodeur et al. 2020; Hector et al. 397 

2012; Maccracken & Stebbings, 2023; Martins et al. 2013; Metcalfe & Monaghan 2001). To call 398 
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sites as Bd- we required infection intensities for at least 10 postmetamorphic frogs at that site, 399 

with individual frog infection statuses being called from triplicate qPCR reactions; therefore, 400 

though we lacked longitudinal sampling that would more definitely classify site infection status, 401 

we believe our protocol minimizes the risk of both false negatives and false positives. 402 

 403 

At Bd- sites, Telmatobius marmoratus tadpole condition and size declined with 404 

increasing elevations, which our examination of adult counts across elevations suggests we 405 

cannot attribute to increased competition. T. marmoratus tadpoles have a protracted larval 406 

development relative to P. marmoratum and R. spinulosa. During the estimated 5—19 months 407 

until metamorphosis (Lobos et al. 2018), they rely upon the resources of their natal stream 408 

(Catenazzi et al. 2013; Rubio 2019). Therefore, declines in stream primary productivity with 409 

increasing elevation (Jacobsen 2008) might explain this trend in tadpoles. An alternative 410 

explanation could be that T. marmoratus tadpoles metamorphose more quickly at higher 411 

elevations, attaining a smaller size in the process (Licht 1975).    412 

 413 

For larval T. marmoratus, circulating Bd was associated with lower body condition and 414 

size relative to developmental stage, but only at low elevations. This interaction is consistent 415 

with expectations from our temperature data. Aquatic microhabitats at extreme elevations are 416 

frequently at no- or low-growth temperatures for Bd, resulting in a depressed average growth 417 

rate, but at low elevation remain steadily at temperatures conducive to Bd growth (Figure 4, 418 

Figure S8). Studies of other amphibian species have shown that Bd infection can result in 419 

smaller, lighter tadpoles (Catenazzi et al. 2013; Parris & Cornelius 2004). Infected tadpoles may 420 

sacrifice body size and condition by diverting energy towards immune response or by 421 
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accelerating metamorphosis (Warne et al. 2011). We expect that, for slow-developing T. 422 

marmoratus, the impact of Bd on tadpole mouthparts is particularly important: Bd infects 423 

keratinized tissues, which in tadpoles limits Bd growth to their mouthparts and causes oral 424 

deformities over time (Berger et al. 1998; Vredenburg & Summers 2001), as has been 425 

demonstrated for congenerics (Rubio 2019). Damaged mouthparts can reduce tadpole feeding 426 

efficiency and retard their growth (Rachowicz & Vredenburg 2004; Rowe et al. 1996; Rubio 427 

2019). 428 

  429 

Shared mechanisms may contribute to a similar trend in larval P. marmoratum body 430 

condition. Their body condition declines with increasing elevations at Bd- sites, but Bd infections 431 

appear to take a larger energetic toll on P. marmoratum tadpoles at lower elevations. Unlike 432 

larval T. marmoratus, larval P. marmoratum increase in body size relative to developmental 433 

stage with elevation regardless of site infection status. This trend may reflect a reproductive 434 

strategy that is advantageous in harsh environments and has been documented in several frog 435 

species (e.g., Liao et al. 2014; Lüddecke 2002; Räsänen et al. 2005), that females produce fewer 436 

offspring of higher quality in harsher environments, or given the decline in abundance of R. 437 

spinulosa with increasing elevations could possibly result from decreasing competition since 438 

these species can share larval habitat.  439 

 440 

Adult P. marmoratum body size also increases with elevation, perhaps owing to reduced 441 

competition with R. spinulosa or selection for larger size at metamorphosis and/or larger females 442 

capable of greater maternal investment (Chen et al. 2013; Liao et al. 2014; Womack & Bell 443 

2020). However, adult P. marmoratum body size increases dramatically with elevation at Bd- 444 
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sites, while only gradually at Bd+ sites (6.5 mm vs. 1.4 mm per 1,000 m of elevation), suggesting 445 

that Bd may have a larger sublethal toll at higher elevations. While terrestrial frogs experience 446 

lower average Bd growth rates at extreme elevations, they are also not as thermally buffered 447 

from harsh temperature extremes as frogs inhabiting aquatic microhabitats. Indeed, we found that 448 

adult P. marmoratum are more exposed to their thermal tolerance limits at extreme high 449 

elevations (Figure 4, Figure S8), placing them at a fitness disadvantage relative to the Bd 450 

pathogen (Cohen et al. 2019, 2017). Their failure to respond phenotypically to high-elevation 451 

conditions could compromise their fecundity and survivorship, suggesting that extreme 452 

elevations may compound rather than ameliorate the stress of Bd infection for P. marmoratum 453 

adults.  454 

 455 

It is important to note that all association between Bd site status and apparent sublethal 456 

impacts to individuals are correlative in this study. We did not conduct trials and cannot know 457 

the Bd exposure history of any individual frog. One important implication is that we do not know 458 

the direction of causality: we interpret that Bd could be incurring sublethal impacts, but 459 

alternately Bd might be more likely to affect amphibian populations with lower energy reserves. 460 

If this were the case, observed interactions between body condition or size, elevation, and site Bd 461 

status require different mechanistic explanations.  462 

 463 

Conclusion 464 
 465 

Climate change will continue to drive range shifts, with many species expanding into more 466 

thermally-variable regions like the Vilcanota. It is important that we understand how the stress of 467 

novel, frequently less optimal, habitats impact host-pathogen systems, particularly in the face of 468 
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increasingly common emerging infectious disease challenges. In the case of amphibian-Bd 469 

systems, hosts cannot escape infection by range shifting upslope: Bd infects amphibians and 470 

disperses readily even at the edges of their physiological tolerances, though factors like exposure 471 

to thermal variability may mediate infection outcomes. This work can help inform and stimulate 472 

further questions around how host range shifts might in some cases exacerbate and in others 473 

mitigate emerging infectious disease events. 474 

 475 
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FIGURES 476 

 477 
Figure 1. A midpoint-rooted consensus gene tree of Vilcanota Bd sampled from Pleurodema 478 
marmoratum (yellow tips) alongside previously-published samples representative of the five 479 
major Bd lineages (CAPE, ASIA3, ASIA2/BRAZIL, ASIA1/CH, GPL) and their hybrids (Byrne 480 
et al. 2019a,b). This tree has a normalized quartet score of 0.807 and includes only nodes with a 481 
posterior probability ≥ 0.7. Assignment of BdGPL samples to BdGPL-1 or BdGPL-2 is included 482 
whenever assigned by previous studies (James et al. 2015; Rothstein et al. 2021; Schloegel et al. 483 
2012) and is shown in the concentric mosaic. This tree is included with sample names and the 484 
continent of swab origin in the supplements (Figure S2). 485 
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  486 
Figure 2. Principal component analyses (PCAs) of (a) global BdGPL samples, demonstrating 487 
how Bd sampled from Pleurodema marmoratum in the Vilcanota is nested within the BdGPL-2, 488 
and (b) Vilcanota samples, colored by watershed, showing their lack of spatial genetic structure. 489 

490 
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Figure 3. The relationship between elevation, site Bd infection status, and energetic status for T. 491 
marmoratus tadpoles. (a) Results of linear mixed model of T. marmoratus tadpole body 492 
condition (SMI) along the elevational gradient, displayed in separate panels for Bd-positive and 493 
Bd-negative sites as site infection status was a significant contributor to these models. (b) Results 494 
of linear mixed model of T. marmoratus tadpole residuals of body size (SVL) against Gosner 495 
stage, displayed in separate panels for Bd-positive and Bd-negative sites as site infection status 496 
was a significant contributor to these models. These trends do not appear to be attributable to 497 
differences in phenology across elevations (Fig S 7D). 498 
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 499 
Figure 4. Thermal regimes along the elevational gradient and across microhabitats. (a) Violin 500 
plots of raw temperature data. Mean daily temperatures measured by a given iButton are 501 
displayed as black points. The red and blue lines represent linear regression of maximal and 502 
minimal daily temperatures, respectively. The greyscale gradient represents the logistic growth 503 
rate (r) of a tropical Bd strain quantified across temperatures (from Voyles et al. 2017a,b). The 504 
upper black dotted line represents the CTmax of adult P. marmoratum (32.56˚ C), and the lower 505 
dotted line represents the mean temperature tolerated by P. marmoratum adults that recovered 506 
following freezing (Reider et al. 2020). (b) Red points represent the average growth rate of Bd 507 
according to the temperatures recorded by a given iButton, and the red line represents a linear 508 
regression of this data. Blue triangles represent the proportion of time a given iButton was 509 
exposed to temperatures outside the physiological tolerance of P. marmoratum adults. 510 
 511 
 512 

  513 

 514 

 515 

 516 
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