
1 
 

Unstratified forests dominate the tropics especially in 1 

regions with lower fertility or higher temperatures 2 

 3 

 4 

Christopher E. Doughty1, Camille Gaillard1, Patrick Burns1, Jenna Keany1, Andrew Abraham1, 5 

Yadvinder Malhi2, Jesus Aguirre-Gutierrez2, George Koch3, Patrick Jantz1, Alexander Shenkin1, 6 

Hao Tang4 7 

 8 

 9 

1School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, 10 

AZ, USA 11 

2Environmental Change Institute, School of Geography and the Environment, University of 12 

Oxford, Oxford, UK 13 

3Department of Biology, Northern Arizona University, Flagstaff, AZ, USA 14 

4 Department of Geography, National University of Singapore, Singapore 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

Keywords –GEDI, tropical forests, stratification, biomass 23 

 24 

 25 

  26 



2 
 

 27 

Abstract – The stratified nature of tropical forest structure had been noted by early explorers, 28 

but until recent use of satellite-based LiDAR (GEDI, or Global Ecosystems Dynamics 29 

Investigation LiDAR), there has been no way to quantify stratification across all tropical forests.  30 

Understanding stratification is important because by some estimates, a majority of the world’s 31 

species inhabit tropical forest canopies. Stratification can modify vertical microenvironment, and 32 

thus can affect a species’ susceptibility to global warming.  A better understanding of structure 33 

could also improve predictions of biomass across the tropics.  Here we find that, based on 34 

analyzing each GEDI 25m diameter footprint in tropical forests (after screening for human 35 

impact), most footprints (60-90%) do not have multiple layers of vegetation.  This result is 36 

highly scale dependent, but with a 25m footprint, the most common forest structure has a 37 

minimum plant area index (PAI) at ~40m followed by an increase in PAI until ~15m followed by 38 

a decline in PAI to the ground layer (described hereafter as a one peak footprint).  However, 39 

there are large geographic patterns to forest structure within the Amazon basin (ranging between 40 

60-90% one peak) and between the Amazon (79±9sd) and SE Asia or Africa (72±14 v 73±11).  41 

The number of canopy layers is significantly correlated with tree height (r2=0.12), forest biomass 42 

(r2=0.14), maximum temperature (Tmax) (r
2=0.05), vapor pressure deficit (VPD) (r2=0.03) and 43 

soil fertility proxies (e.g. total cation exchange capacity -r2=0.01). Certain boundaries, like the 44 

Pebas Formation and Ecoregions, clearly delineate continental scale structural changes.  More 45 

broadly, deviation from more ideal conditions (e.g. lower fertility or higher temperatures) leads 46 

to shorter, less stratified forests with lower biomass. 47 

  48 

  49 
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 50 

Introduction 51 

 Early Western visitors describe tropical forests as horror vacui (nature abhorring a 52 

vacuum) since vegetation was “anxious to fill every available space with stems and leaves”, 53 

which was a change from more open temperate forests (Richards, 1952).  However, a closer 54 

examination of tropical forests revealed structure or stratification with “a discernible, though 55 

complicated, arrangement in space” (Richards, 1952).  Halle et al 1980 built on this with their 56 

influential work identifying twenty-three unique tree architecture types and delving into the 57 

drivers of forest architecture (Halle, Oldeman and Tomlinson, 1980).  They recognized that 58 

because tropical forests had fewer hydraulic or cold temperature constraints, the tropics was a 59 

good place to study the potential for trees to fill vertical space.  They developed theories using 60 

detailed 20 by 30m vertical profiles of old growth canopies where “trees of the present” occupy 61 

space in the upper canopy as well as in a second layer of increased light at 15-20m where 62 

sunflecks converge.  This old growth forest architecture would result in a stratified or layered 63 

forest (artistically rendered in Figure 1) unlike younger pioneer forests with a single upper 64 

canopy strata. We define a stratified or multilayer forest as having two or more peaks (e.g. 65 

overstory and midstory in Fig 1) with a lower amount of vegetation between them.  Others have 66 

quantified stratification in different ways and found both temperate and tropical forests 67 

commonly have 2-3 tree layers (Baker and Wilson, 2000).  However, tropical forest stratification 68 

has not been addressed previously at high spatial resolutions at the global scale. 69 

 More recently, the Global Ecosystems Dynamic Investigation (GEDI) on the 70 

International Space Station (ISS)-based LiDAR instrument (Dubayah et al., 2020), allows us for 71 

the first time to peer into the structure of tropical forests in unprecedented resolution at a global 72 

scale. Prior to GEDI, there were other satellite lidar instruments (e.g. GLAS on ICESAT-1) used 73 

for measuring vegetation structure at large scale (Tang et al., 2016; Tang and Dubayah, 2017), 74 

but these were lower resolution, much more sparse, and focused on polar regions. At a more 75 

regional scale, aircraft and terrestrial lidar have shown detailed individual tropical forest tree 76 

architectures. For instance, aircraft lidar in tropical Peru found that tree architecture or shape 77 

(height of peak canopy volume (P) divided by canopy height) was highly correlated with canopy 78 

height (Asner et al., 2014) and in Panama others successfully predicted the tree size distributions 79 

with airborne lidar (Taubert et al., 2021).  At a global scale, Ehbrecht et al 2021  scaled up 80 

terrestrial laser scanning to show that forest structural complexity is a function of annual 81 

precipitation and precipitation seasonality (Ehbrecht et al., 2021).  Both simulation and 82 

sensitivity analysis suggest that high-quality GEDI data is able to provide measurements of 83 

similar accuracy in the tropics when compared to aircraft and terrestrial lidar (Marselis et al., 84 

2018, 2020).   We can now use these different lidar tools (from individual tree to global) to 85 

understand how forest stratification changes across the tropics globally. 86 

Forest stratification may be due to genetic constraints evolved over time (floristics) or 87 

trees not achieving their genetic heights (environmental or soil constraints).  The debate about 88 
what sets the upper limits of tree height largely involves either hydraulic limitation (Koch et al 89 

2004), mechanical limitation, or environmental factors such as wind speed (Jackson et al., 2021). 90 
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Forest height and structure are also driven by genetics, and evolutionary forces such as the need 91 
to overtop competitors or disperse seeds encourages height and complex structure while risks 92 

such as hydraulic failure and vulnerability to wind discourage it.  Environment alone could also 93 
directly impact tree height and structure, with hydraulic limitations, carbon deficiencies, or wind 94 

regimes causing trees to not being able to achieve their genetic height.  There is a literature 95 
describing how the environment (soils or climate) impacts the species composition in tropical 96 

forests. For instance, Amazonian species composition may follow a south-west/north-east soil 97 
fertility gradient and a north-west/south-east precipitation gradient (ter Steege et al., 2006).  Soil 98 

cation concentrations are the primary driver of floristic variation for Amazonian trees (Tuomisto 99 
et al., 2019) with climate being of secondary importance.  However, in central African forests, 100 

climate is considered to be the driving factor of floristic patterns (Réjou-Méchain et al., 2021). 101 

Structure matters because it can give us new insights into forest biomass, which is the 102 

primary goal of GEDI.  Currently the L4A product for tropical forests uses relative height (RH) 103 

RH98 and RH50 to predict a median AGBD of 300 Mg Ha-1  for tropical forests (0.66 r2 and 104 

RMSE of 10.4) (Duncanson et al., 2022). Ecological theory suggests that a stratified forest with 105 

more large emergent trees is indicative of an older forest (Halle, Oldeman and Tomlinson, 1980), 106 

which generally has higher biomass and carbon content.  Therefore, incorporating canopy layers 107 

may improve prediction of tropical forest biomass.  108 

Finally, understanding tropical forest structure matters, because prior to GEDI, detailed 109 

pan-tropical structural data did not exist and is therefore understudied, and yet it is where the 110 

bulk of the world’s species exist (Stork, 2018) including over 75 % of all vertebrates and 60 % of 111 

neotropical mammal species (Kays and Allison, 2001).  Structure is indicative of use: for 112 

example, tall canopies were a strong predictor of habitat use by Baldfaced saki monkeys 113 

(Pithecia irrorata) in the Peruvian Amazon (Palminteri and Peres, 2012) and structure data are 114 

increasingly being used in species distribution models (Burns et al., 2020).  Stratification has 115 

been hypothesized to increase rates of pollination and dispersal, optimize light use, increase 116 

inter-canopy CO2 concentrations, reduce leaf, fruit and flower predation, and increase forest 117 

structural integrity (Smith, 1973). Overall, structure also creates the habitat for all other forest 118 

dwelling species (Terborgh, 1992).  For instance, figure one shows animals both impacting and 119 

being impacted by forest structure.   120 

The structure of forests is also a principal factor in determining not just the mean 121 

environment experienced by forest-dwelling organisms, but also the diversity, extent, and 122 

variability of microenvironments.  The extent and diversity of microenvironments directly affects 123 

the niches available to organisms, and hence the diversity of forest-dwelling organisms.  For 124 

instance, Oliveira and Scheffers (2019) proposed an ‘arboreality hypothesis’ where species have 125 

increased ranges because they can take advantage of changing microclimates in different canopy 126 

layers as temperatures shift due to elevation and latitude.  They further suggested that future 127 

warming may push arboreal species towards the cooler ground layer (Oliveira and Scheffers, 128 

2019).  Another study suggested that climate change may cause arboreal species in hot sparse 129 

canopies towards greater ground use(Eppley et al., 2022).  Detailed models now exist to predict 130 

canopy microclimate with forest structure as a possible input (Maclean and Klinges, 2021).  131 
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Therefore, forest structure and related microhabitats becomes even more critical as climate 132 

change progresses. 133 

 Here we use GEDI to understand tropical forest structure and address the following 134 

hypotheses: 135 

H1 – Most tropical forests (when measured at spatial resolutions of ~25m diameter) exhibit 136 

structure or multi-layered canopies.  137 

H2 – The spatial distribution of canopy structure is controlled by soils (e.g. total cation exchange 138 

capacity) and/or environment (e.g. maximum temperature).  139 

140 
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Methods 141 

GEDI data – We used the vertical forest structure (L2A and L2B, Version 2) and biomass (L4A 142 

– see below) products from the GEDI instrument (Dubayah et al., 2020) based on the ISS 143 

between 2019.04.18 and 2021.02.17 for tropical forest regions (Amazonia, Central Africa, and 144 

SE Asia).  We principally used the Plant Area Volume Density (PAVD) profile, defined as the 145 

Plant Area Index (PAI – which incorporates both leaf and wood) separated into 5-meter vertical 146 

bins (which can reduce vertical uncertainty). We applied a number of data filters to ensure 147 

quality such as: degrade flag = 0 (e.g. not in degraded altitude), L2A and L2B quality flags = 1 148 

(simplified metric to only use highest quality data based on energy, sensitivity, amplitude, and 149 

real-time surface tracking quality), sensitivity >= 0.95, power beams during night and day and 150 

coverage beams during night only (nights are generally better to remove the negative impact of 151 

background solar illumination).  To ensure accuracy, we compared GEDI height to TanDEM-X 152 

(Krieger et al., 2007)(a satellite that employs SAR (synthetic aperture radar) to determine an 153 

object’s height above ground) and only used areas where canopy height < 100 m, and elevation 154 

difference from GEDI is between +/- 100 m.  To ensure that the footprints were in tropical forest 155 

regions, we applied four additional filters: 156 

1. Treecover % >90% in the year 2010, defined as canopy closure for all vegetation taller 157 

than 5m (Hansen et al., 2013).   158 

2. Forests with heights >10m (but vary this number in a sensitivity study 15, 20, and 25m - 159 

Fig S1) using the relative height metric 98% which was calculated as the height relative 160 

to ground elevation under which 98% percentage of waveform energy has been returned.  161 

3. The GEDI footprint was classified as Plant Functional Type (PFT) Broadleaf Evergreen 162 

Tropical based on MODIS MCD12Q1v006 Product from 2021 (Friedl et al 2019). Values 163 

follow the Land Cover Type 5 Classification scheme.  164 

4. We compared an index of forest integrity as determined by degree of anthropogenic 165 

modification https://www.forestintegrity.com/ (Grantham et al., 2020) to maps of the % 166 

one peak (see below – Fig S2). 167 

If the GEDI footprint passed these filters, we analyzed each PAVD profile in a 0.1 by 0.1 168 

degrees size gridcell.  Using the Matlab (Mathworks) function “islocalmax”, we identified local 169 

maxima (change in first derivative) in each PAVD profile.  We first classified the footprint by 170 

the number of local maxima (hereafter: peaks) (1-3).  If it had two peaks, we then classified the 171 

profile whether the first (lower to the ground) or second peak has more PAVD.  We then use the 172 

following equation to determine if the peaks are even or if one is much lower than the other: 173 

Equation 1 – PAVD_diff = abs((PAVD Peak 1 – PAVD Peak 2)/ PAVD Peak 1)*100; 174 
 175 

We classified each profile separately if PAVD_diff is >50 or <50.  We classified vertical space 176 

between peaks (>10 m between peaks or less).  For instance, for a profile, if two peaks are found, 177 

if the first peak is higher with less than 50% difference between the peaks, it is classified as red 178 

(2p_eq_high) (Figs 2-3), if more than 50% difference it is classified as magenta (2p_eq_low).   If 179 

the second peak is higher with less than 50% difference, it is classified as green (2p_uneq_high), 180 

if more than 50% difference yellow (2p_uneq_low).  If the distance between the peaks is less 181 

https://www.forestintegrity.com/
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than 15m it is black (2p_even). To calculate the percentage of one peak PAVD profiles, we sum 182 

the number of one peak profiles divided by all profiles measured in a 0.1 by 0.1 degree pixel. 183 

In addition to classifying these vertical profiles, for each 0.1 by 0.1 degree subregion, for all tree 184 

heights (RH98) that pass our filters, we create a histogram, and the peak of the histogram is 185 

classified as median rh98 tree height.  For each 0.1 by 0.1 degree subregion, we estimate the total 186 

plant area index (PAI) as a proxy for commonly used metrics like leaf area index (LAI). We 187 

downloaded the GEDI L4B above ground biomass density (AGBD) product from DAAC 188 

(https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2017)  and averaged it for each 0.1 by 0.1 189 

degree pixel.  190 

Plot data –To ground validate our GEDI stratification results, we estimated crown area using 191 

measured individual tree height and DBH for plots in six diverse regions of the Amazon basin 192 

(Caxiuana 4 ha – 2250 trees >10cm DBH, Tambopata 2ha – 1367 trees>10cm DBH, Iquitos 2ha 193 

1165 trees>10cm DBH, Tapajos – 18ha- 1036 trees>25cm DBH, Bolivia 2ha 974 trees>10cm 194 

DBH, Tanguro 1 ha – 366 trees>10cm DBH)(Doughty et al., 2015).  Plot locations are shown as 195 

black dots in Figure 2. For each plot, we used tree height in each 5-meter tree height bin (5-35m) 196 

to estimate crown diameter following Asner et al 2002, shown below as Eq 2 where DBH is the 197 

diameter at breast height (cm) and crown diameter is in meters. 198 

Equation 2 - Crown diameter (m)  = 9.3*ln(DBH (cm)) -22.2; 199 
 200 

We estimate crown area to ground area ratio for all trees in the plots (e.g. Iquitos 2 ha = 1165 201 

trees>10 cm DBH) and on a subset of groups of 50 trees to better approximate the 25 m size of a 202 

GEDI footprint, as this is an approximate average number of trees >10cm DBH per 25m 203 

diameter circle in the tropics.   For instance, a typical one hectare tropical forest plot would 204 

contain between 500-1000 trees with DBH>10cm (Malhi et al., 2021) (~20 GEDI footprints if 205 

evenly spaced – which would not happen in practice) and each footprint, therefore, might contain 206 

25-50 trees (with DBH>10cm). We then use the same “peak” procedure (Eq 1 - described above) 207 

to estimate % one peak as a percentage for each region.  We estimate crown area to ground area 208 

for each 5-meter bin and vertically area summed.  We also show median and maximum tree 209 

height for the plots.     210 

For a broader range of plots in the GEM network (listed in Table 1) (Malhi et al., 2021), we 211 

found the PAVD profile for the footprint closest to the plot as well as all footprints within a 212 

0.03° grid around the plot coordinates. Most of these plots had in situ leaf traits measured to 213 

account for 70-80% of the basal area (of trees >10cm DBH) of 1 ha plots.  Plant leaf traits have 214 

been related to plot level architecture in the tropics and predicted with leaf spectral data 215 

(Doughty et al., 2017).  We therefore hypothesized that optically derived leaf trait predictions 216 

may predict structure at the landscape scale.  Based on the above described field campaigns, 217 

(Aguirre-Gutiérrez et al., 2021) used Sentinel-2 to create remotely sensed canopy trait maps for 218 

P=phosphorus %, WD = wood density g.cm-3, and SLA=specific leaf area m2 g −1.  We then 219 

compared the GEDI profile (% one peak) to the trait value predicted by those maps to that 220 

footprint.   221 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2017


8 
 

Other data layers – We compared % one peak to several other climate, soils, and ecoregion 222 

maps listed below for the Amazon basin.  We currently focus on the drivers of structure and 223 

validating GEDI for the Amazon region in this paper, but follow on papers may do a similar 224 

analysis for Africa and SE Asia.  Each dataset had its own resolution, which we standardized to 225 

0.1 by 0.1 degrees.   226 

Ecoregions - Ecoregions reflect the distributions of a broad range of fauna and flora across the 227 

entire planet and we use them as a proxy for plant biogeography 228 

https://www.sciencebase.gov/catalog/item/508fece8e4b0a1b43c29ca22 -  (Olson et al., 2001). 229 

Soils – We used data from soilgrids https://www.soilgrids.org/ (Batjes, Ribeiro and van Oostrum, 230 

2020).  We focused on total cation exchange capacity at pH 7 from 0-5cm in units of mmol(c)/kg 231 

as previous studies had suggested this to be an important variable to explain floristic composition 232 

(Figueiredo et al., 2018). 233 

Climate – We averaged TerraClimate (Abatzoglou et al., 2018) 234 

https://www.climatologylab.org/terraclimate.html data between 2000 and 2018 for Climatic 235 

water deficit (CWD) (the difference between monthly reference evapotranspiration calculated 236 

using the Penman Monteith approach and actual evapotranspiration), Vapor Pressure Deficit 237 

(VPD in kPa), Mean Monthly Precipitation (mm/month), potential evapotranspiration (PET) and 238 

maximum and minimum temperature (°C).  These data were originally based on CRU Ts4.0 data 239 

and modified by Abatzoglou et al 2018. 240 

Statistical analysis – For comparison of either single or multiple variables to percent one peak 241 

we used the matlab function “fitlm” to fit linear models and “fitnlm” for the non-linear models.  242 

The P values listed are for the t-statistic of the two-sided hypothesis test. 243 

  244 

https://www.sciencebase.gov/catalog/item/508fece8e4b0a1b43c29ca22
https://www.soilgrids.org/
https://www.climatologylab.org/terraclimate.html
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 245 

Results 246 

Most individual GEDI footprints in tropical forests do not have multiple layers (as in Fig 247 

1) and instead have a single peak in vegetation density at ~15m, but this ranged geographically 248 

(regionally and between continents) between 60 to 90% (Figs 2-3).  Within the Amazon basin 249 

(Figure 1), the broad geographic patterns were a large central region with low stratification, 250 

surrounded by another broad region with greater stratification bordered to the west by the Pebas 251 

formation (Higgins et al 2011), to the east by the Tapajos River, and the South at ~12°S.  252 

Another region of lower stratification occurred towards the southeast in the “arc of 253 

deforestation” and savanna transition zones.  River floodplains also tended towards increased 254 

stratification.  The Congo basin showed a broadly similar spatial orientation with a central area 255 

with lower stratification surrounded by regions with greater stratification.  The floodplains again 256 

were areas with greater stratification.  Southeast Asia, composed of mainly islands, showed 257 

greater stratification towards the island center.  The island of New Guinea had increasing 258 

stratification moving northward.  259 

A low PAI peak (e.g. ~15m) may also indicate forest disturbance due to selective logging 260 

or other human impact.  For instance, there was selective logging in parts of Borneo (Riutta et 261 

al., 2018) and this impacted structure by increasing the dominance of shorter pioneer one-peak 262 

forests (i.e. Bornean logged plots are 78 % one peak versus 44% for old growth forests).  263 

However, the filters we used (tree height, MODIS PFT, logging product) should remove most 264 

human impact (although there may be older legacy effects we cannot account for). We tested this 265 

by increasing the minimum tree height (between 15, 20 and 25m) and did not see a big impact on 266 

the broader results, although there were minor changes at the 25m threshold (Fig S1).  We also 267 

show comparisons of percentage of one peak to a forest disturbance product (Grantham et al., 268 

2020), which showed large regions dominated by one peak forests in areas of minimal human 269 

disturbance (Fig S2). 270 

On a subset of the Amazon (5 by 5° black box regions chosen to represent the broader 271 

region in Fig 2 and 3), we averaged the vertical profile for each footprint in each of six structural 272 

categories (see methods) and found “one peak” forests peaked in PAVD at 15m with a fairly 273 

linear decline going upwards until ~40m (Figure 2 blue line).  The next most common profile 274 

type (Figure 2 red line -2p_eq_high) in the Amazon, in the region of interest, was a “2 peak” 275 

forest (at ~5% of the results), with an initial peak in PAI at 15m and a second lesser peak in PAI 276 

at 30m and a local minimum at 20m.  Average forest height of this forest type exceeded the one 277 

peak forests with a maximum height at ~45m versus 40m.  This forest type ranged between 1 to 278 

10% of forest pixels and was more abundant in the Southeast and Northwest of the Amazon (Fig 279 

6 – similar figure for Central Africa is Fig S3 and SE Asia Fig S4).  The third most common 280 

forest structure (represented by the black line (2p_even) at 3.2%) had two close peaks at 15 and 281 

25m, with a small nadir at 20m.  This forest type had a PAI peak at 25m and was followed by a 282 

steep drop at ~40m.  This forest type ranged between 1 and 5% across the Amazon and was 283 

widely dispersed throughout the Basin.  The next most common 2-peak structure (magenta 284 

(2p_eq_low) in Fig 2) at ~3.2% of forest types with a peak at 15 m followed by a much weaker 285 
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peak with less than 50% of the PAVD at 30m.  This had a similar distribution to the “red 286 

(2p_eq_high)” line, but with an additional hotspot in the Southeast that was not present in the 287 

“red (2p_eq_high)” (Fig 6). The remaining forest types had greater PAVD in the upper canopy 288 

with peaks at ~30m. 289 

To ground truth our results, for six locations (shown as black dots in Fig 2), we used 290 

DBH, tree height, and a canopy diameter model (Asner et al 2002) to estimate that total 291 

vertically summed crown area/ground area averaged 1.8 m2.m-2 (0.96-2.3 min max). Averaging 292 

all the structure for trees >10cm DBH (>25cm for the Tapajos) in the plots (size ranging between 293 

2 ha to 18 ha) showed a single peak that averaged 20m (between 17.5-22.5m) in crown area/ 294 

ground area (thick lines in Figure 4).  This 20m height may be taller than the GEDI mean of 15m 295 

due to the absence of smaller 0-10cm DBH trees measured at the plots. We then subsampled 50 296 

trees from each plot (a better approximation for the GEDI footprint size) and more stratification 297 

resulted.  For these subsets, we calculated one peak/all data and found a low in Tambopata of 298 

56% one peak to a high of 95% one peak in the Tapajos with the other sites ranging between 73 299 

to 77% one peak, which is a good approximation of percentage one-peak across the Amazon 300 

basin (~79%) (Figure 2).  The Tapajos results must be viewed with caution because only large 301 

trees (>25cm DBH) were recorded, which led to a very high percentage one peak. According to 302 

Fig 2, Tambopata and the Tapajos are near regions divided between areas of high and low 303 

structure and most other plots are in areas of less structure (Figure 2).   304 

How representative is the structure in plot networks compared to the broader Amazon?  305 

To answer this, we compare GEDI footprints (closest footprint and all footprints averaged within 306 

0.03° radius of the plots) to a well-studied plot network (GEM - (Malhi et al., 2021) in tables 1 307 

and 2) and found the GEDI footprint nearest to the plots showed a gradient from the Western 308 

Amazon (90% one peak), Eastern Amazon (85%), Gabon (80%), to Borneo (50%).  Averaging 309 

all nearby footprints showed similar (except for Gabon), but generally lower trends: Western 310 

Amazon (84%), Eastern Amazon (79%), Gabon (54%), and Borneo (61%). In Table one, we 311 

show data for each individual plot along with remotely sensed trait data (Aguirre-Gutiérrez et al., 312 

2021) calibrated from in situ measurements at the plot network, and we found a significant 313 

relationship between structure and SLA (r2=0.12, P<0.05, %one peak=-68*SLA+1.4) but not 314 

with wood density and %P.  However, this is a global analysis, and the signal is dependent on 315 

low SLA values along an elevation gradient where GEDI is less accurate because of difficulty in 316 

discerning the ground layer. In Borneo, the GEM plot network (Riutta et al., 2018) is along a 317 

logging gradient with a clear change in structure (78 % one peak for logged plots versus 44% 318 

one peak for old growth forests).  We found a significant increase in SLA (P<0.05) with 319 

disturbance and a close to significant increase in %P with disturbance (P=0.06). 320 

We compared the average PAVD profiles from the entire Amazon to the average PAVD 321 

profiles for the entire SE Asia and Africa (average continental scale 0.1 by 0.1 degree pixels and 322 

not just the black boxes in figs 2 and 3).  On average, the Amazon had greater percent of one 323 

peak forests (79±9sd) than either SE Asia or Africa (72±14 v 73±11).  Median tree height (rh98) 324 

was lower in the Amazon at 25.6m than in Africa at 28.5m or SE Asia at 28.7m.  In the black 325 

box regions shown in Fig 3 for Africa and SE Asia, one peak forests were most abundant (~70%) 326 
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with a similar peak at 15m (Figure 5).  In both the Africa and SE Asia subplots, both red 327 

(2p_eq_high) and magenta (2p_eq_low) structure types were much more common forest 328 

structures than in the Amazon, accounting for >20% of forest types vs <10% in the Amazon. The 329 

average curves changed shape with Amazon having more PAVD in the mid-canopy ~20m and 330 

Africa and SE Asia having more PAVD in the upper canopy ~30m.  The less represented green 331 

and yellow structures increased by an absolute 3-4% over the Amazon and had much more 332 

PAVD (~0.05 increased PAVD) in the upper canopy (at ~30m height).  River basins throughout 333 

the tropics had similar structural properties.   334 

To explain the spatial patterns in the distributions of % one peak forests, we compared 335 

maps of percent one peak to a variety of datasets such as tree height (rh98), ecoregions, GEDI 336 

L4A AGBD, plant area index, number of footprints, climate (CWD, VPD, MMP, Tmin), and total 337 

soils cation exchange capacity (Figure 7 – similar figure for Africa is Fig S5 and SE Asia Fig 338 

S6).  The strongest correlations were with tree height and AGBD, with biomass a slightly better 339 

predictor for one peak forests (0.12 vs 0.14 r2 respectively) (Figure 8). The AGBD L4A product 340 

is driven by tree height, so the similar strength of the correlations is not surprising, but there is a 341 

question of whether structure or tree height is a better predictor of biomass, which we discuss 342 

later. We compared meteorological data for VPD, PPT, CWD, PET, Tmax and Tmin to percent one 343 

peak and all were highly significant (P<0.001) but explained relatively little variance in the data. 344 

Tmax explained the most at 5% of the variance, followed by VPD at 2.5% and the others 345 

explaining ~0.01 of the variance. Likewise, total cation exchange capacity was highly significant 346 

but again explained only about 1% of the variation (Figure 8).  Other variables such as number of 347 

footprints was not related (r2<0.01), but PAI explained ~4% of variance, which is again, likely 348 

related to tree height. We then combined all climate and soil variables which explained ~9% of 349 

variance and the key parameters were Tmax, VPD followed by total cation exchange capacity. 350 

Ecoregions, which may be a good proxy for floristics, delineated structure well for 351 

particular ecoregions.  For instance, ecoregion 68 (Figure 7) had boundaries similar to 352 

boundaries of our structure dataset with a lower average value of percent one peak (75% vs 80%) 353 

than surrounding ecoregions.  Another ecoregion with the boundary of the Pebas formation also 354 

delineated the structure data quite well.  There were some regions that were partially delineated 355 

well but not entirely.  For instance, even ecoregion 68 (Figure 7) had a sharp boundary in 356 

structure in the south not accounted for in the ecoregion. 357 

   358 
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Discussion 359 

There are large changes in forest structure within the Amazon basin (60-90% one peak) 360 

and between the Amazon (79±9sd) than SE Asia and Africa (72±14 v 73±11 respectively). We 361 

are confident that the spatial patterns of structural changes are not mainly due to modern human 362 

influence, because we carefully screened for human influence using several independent remote 363 

sensed products (MODIS PFT (Friedl et al 2019), a Landsat based deforestation product  364 

(Hansen et al., 2013) and GEDI tree height itself from GEDI (Dubayah et al., 2020). Plot data 365 

from undisturbed regions (Doughty et al., 2015) (DBH and tree height) showed similar structural 366 

trends in old growth plots (Figure 4). Human influence, as measured through forest integrity 367 

(Grantham et al., 2020), also did not explain our geographic patterns of structure (Fig S2). The 368 

finding that the majority of GEDI footprints had a single PAI peak at ~15m was initially 369 

surprising. However, several tropical aircraft lidar campaigns showed similar shape for the 370 

lowland tropics (a single peak when averaged over ~1 ha) but a slightly higher peak in PAI at 371 

~20m (Asner and Mascaro, 2014; Asner et al., 2014).  We hypothesize that the difference in the 372 

height of peak PAI may be due the difference in "energy return" profiles or how to correct for the 373 

reduced energy reaching the understory and the difficulty of laser pulses in the lower canopy 374 

returning due to an abundance of plant material. Full waveform information from GEDI can help 375 

correct for this energy return.  In addition, prior work comparing TLS, LVIS and simulated 376 

GEDI data has found high-quality GEDI profiles on average to be accurate (Marselis et al., 2018, 377 

2020).  Finally, we are confident that the bulk of structural differences across the tropics are of 378 

natural origin because on top of the filters applied, some regions of the Amazon very far from 379 

human influence still had the dominance of one peak forests, such as the broad region north of 380 

Manaus in the Amazon (although there may be ancient legacy effects that we do not account for) 381 

(Fig S2).   382 

The classic paradigm of “old growth” tropical forest architecture (visually represented in 383 

Fig 1 and figures in Halle et al 1980) is a generally closed upper canopy with large emergent 384 

trees at ~30-35m where PAI peaks followed by a second peak at 15m with slightly lower PAI.  385 

These PAI peaks at ~15 and 30m are occupied by “trees of the present” taking advantage of 386 

increased light cells (top of canopy and a second area of increased light at ~15m where 387 

lightflecks converge) (Halle, Oldeman and Tomlinson, 1980).  This “classic paradigm” implies a 388 

stratified canopy that might be best represented by the green (2p_uneq_low) or yellow 389 

(2p_uneq_high) lines in Figs 2-5, but we find that this forest structure is relatively uncommon 390 

across the tropics making up just 3-6% of tropical forest area. In contrast, by far the most 391 

common PAVD profile across the tropics has a single peak in PAI density at 15m and this forest 392 

type likely reflects the absence of a closed upper canopy. In our color scheme (Figs 2-3), we can 393 

think of a gradually increasing proportion of vegetation percent in the upper canopy going from 394 

the highest PAI at the top with yellow (2p_uneq_high) (0.5% of total footprints), green 395 

(2p_uneq_low) (2%), red (2p_eq_high) (5%), magenta (2p_eq_low) (3%), and the lowest at blue 396 

(1 peak)(86%). Overall, these results show that a “stratified” forest with higher upper canopy 397 

closure is relatively rare across tropical forests. 398 
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Our structure maps broadly matched results from plot-based methods (Fig 4).  We also 399 

found strong correlations between our structure maps and detailed maps of structure, floristics, 400 

climate and soils for a broad region of Central Africa from Fayolle et al 2014 where old growth 401 

celtis forest is associated with regions with more vertical layers (~60% 1 peak) while more 402 

degraded or young celtis forests with more pioneer species is associated with less structure (70% 403 

one peak) (Fayolle et al., 2014). A floristic map for all of central Africa also showed correlations 404 

with our structure map (Réjou-Méchain et al., 2021) with, for instance, north (more structure) to 405 

south (less structure) gradients in Central Africa (Figure 3) that match a transition in their figures 406 

from PCA 1, where floristics was controlled by a transition between cool, light-deficient forests 407 

and forests with high evapotranspiration rates, to PCA 2, where floristics were controlled more 408 

by seasonality and maximum temperature.  In S.E. Asia, we compared our structure results to a 409 

logging gradient (Riutta et al., 2018) with known structural changes and found GEDI footprints 410 

near Danum valley, where the tallest trees were found, also had some of the highest stratification 411 

(44% one peak) versus logged (78 % one peak) which gives further confidence in the results. 412 

Broadly, old growth forests in SE Asia have the highest levels of stratification and this may be 413 

partially due to the presence of Dipterocarps which are the tallest tropical trees (Shenkin et al., 414 

2019; Jackson et al., 2021).   415 

Most of our independent datasets of soils or climate (as well as our combined model) did 416 

not strongly capture the spatial patterns of forest structure in the Amazon basin (Figure 7). Tree 417 

height and AGBD did match these patterns (Figure 8), but those variables cannot be considered 418 

independent of structure.  However, patterns shown in  Figure 4c in Figueiredo et al 2018 are 419 

similar to the one we highlight in this study (Fig 1) (Figueiredo et al., 2018).  Figueiredo et al 420 

(2018) created species distribution models for 40 species across the Amazon basin using 19 421 

bioclimatic variables, 19 soil variables, and four remote sensing variables (including GLAS 422 

derived canopy height (Simard et al., 2011)). Overall, for most species, a combination of soils 423 

and climate variables explain most variance (similar to (Tuomisto et al., 2019)) but single-424 

variable models did poorly with an average of less than 8% of the variance explained. This 425 

broadly reflects our attempts to model structure with single variables. There was a tight 426 

correlation between regions with less structure (e.g. higher percentage of one peak) and areas 427 

where soils are the limiting factor to species occurrence, and regions with greater structure (i.e. 428 

lower percentage of 1peak) to areas where climate is the limiting factor to species occurrence.  429 

Perhaps deeper, more fertile soils allow for taller (either species or trees reaching their genetic 430 

height) and higher canopy closure forest types. Canopy height from the GLAS was the second 431 

most important variable for explaining species distributions, so it is possible that the Figueiredo 432 

et al (2018) map shows similar patterns to Fig 2 due to the inclusion of the height metric (a 433 

strong predictor of structure). A global study of forest structure based on upscaling terrestrial 434 

lidar with WorldClim2 datasets showed some correlations with our structure maps but also 435 

missed many of the regional changes (Ehbrecht et al., 2021).  436 

Ecoregions delineated boundaries in structural composition in a few key areas of the 437 

Amazon basin like the Pebas formation (Higgins et al., 2011) and the Tapajos region in Para, 438 

Brazil (Figure 7). Higgins et al (2011) found a strong east-west gradient with an almost complete 439 

floristic turnover and an order of magnitude change in soil cation exchange capacity associated 440 
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with the presence of the Pebas formation (Higgins et al., 2011).  This line marking the boundary 441 

of the Pebas formation also seems to strongly delineate forest structure with one peak forest 442 

more abundant east of this line with lower cation exchange capacity and two peak forests more 443 

abundant to the west with higher cation exchange capacity.  There is a further boundary 444 

delineated by the very wide (12-16 km) Tapajos River with forests to the west having a higher 445 

percentage one peak vs the eastern forests.  Interestingly, some ecoregions (like 68) matched 446 

well with boundaries of vegetation structure, except for a few key areas (like in the south of 447 

region 68 – fig 7). This may indicate that forest structure could be used in the future to improve 448 

upon current ecoregion boundaries.   449 

What causes the dominance of one peak forests in the tropics and the spatial changes in 450 

these patterns? A forest with a fully closed emergent canopy layer would have canopy layers, but 451 

most forests likely lack a fully closed upper layer, leading to the dominance of the one peak 452 

forests. Rephrasing the initial question, we can instead ask: Is the rarity of a closed upper layer 453 

canopy (or relative rareness of large emergent trees) due to the environment (soils or climate) or 454 

floristics (species composition)?  In practice it is difficult to disentangle the floristic and 455 

environmental and there is a large literature describing how the environment (soils or climate) 456 

impacts the species composition.  For instance, Amazonian species composition may follow a 457 

south-west/north-east soil fertility gradient and a north-west/south-east precipitation gradient (ter 458 

Steege et al., 2006).  Soil cation concentrations is the primary driver of floristic variation for 459 

trees (Tuomisto et al., 2019) with climate being of secondary importance at regional scales.  460 

Environment alone could also directly impact tree height and structure, with hydraulic 461 

limitations or nutrient deficiencies causing trees to not being able to achieve their genetic height.  462 

Soil depth can impact structure as shallow soils can cause stunted root growth leading to a 463 

thinner upper canopy structure (Halle, Oldeman and Tomlinson, 1980).   464 

What may explain the continental scale differences in structure between the Amazon and 465 

other tropical regions?  Previous authors have noted large continental scale differences in AGBD 466 

and tree height (Borneo>Central Africa>Amazon) that broadly match the trends we show in 467 

structure (Feldpausch et al., 2011; Lewis et al., 2013).  For instance, the Congo basin had 468 

average AGB values of 429 Mg ha-1, similar to Bornean forests (445 Mg ha-1), and much higher 469 

than the Amazon (289 Mg ha-1) (Lewis et al., 2013).  We show similar broad trends with the 470 

Amazon at 79±9sd % one peak and 25.6m height, SE Asia 72±14 and 28.7m height and Central 471 

Africa 73±11 and 28.5m. Lewis et al 2013 had hypothesized that AGBD differences between 472 

Amazon and Africa were due to different biomass residence times, the differences between 473 

Africa –Borneo differences were possibly due to NPP differences. However, tree height and 474 

biomass are structural attributes and do not explain the difference in continental structure.    475 

To fully understand structural gradients across the Amazon, it is helpful to have higher 476 

resolution aircraft lidar. Asner et al 2014 flew aircraft lidar along an elevation and nutrient 477 

gradient in Peru and found that canopy height and shape (height of peak canopy volume divided 478 

by canopy height) had a high, negative correlation with gap density (Asner et al., 2014).  479 

Perturbation, either up an elevation gradient or from high soil fertility to low, led to shorter 480 

forests with more gaps and a peak canopy volume at a lower height in the canopy. These changes 481 
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are broadly correlated with our maps of percentage of one peak, with perturbation (up elevation 482 

gradients or fertility gradients) increasing percentage of one peak forests.  We found canopy 483 

stratification decreased as Tmax increased and soil fertility decreased (Fig 8). Therefore, our 484 

results support this paradigm that a movement away from ideal conditions may result in less 485 

structural complexity. Climate change will increase Tmax, but it is unclear whether this would 486 

further reduce structural complexity of tropical forests in the future. 487 

In addition to tree height, remotely sensed leaf traits were also related to structure near 488 

some of our plots. Increased stratification (lower percentage of one peak) was significantly 489 

correlated (P<0.05) with increases in SLA, but this was almost entirely driven by low SLA 490 

values in high elevation plots and removing these plots removed the significant correlation 491 

(Malhi et al., 2021). Along a logging gradient in Borneo (Riutta et al., 2018), less stratification 492 

as logging increased was significantly correlated with an increase in SLA and foliar 493 

concentrations of phosphorus, similar to other studies (Baraloto et al., 2012) (Carreño-Rocabado 494 

et al., 2016). However, Both et al 2019, a nearby field study, found a contrary result when 495 

comparing SLA along the forest gradient (Both et al., 2019) . Furthermore, Swinfield et al 2019 496 

used high resolution aircraft hyperspectral data to predict SLA across the Bornean landscape 497 

(Swinfield et al., 2019), but unlike most early studies (Doughty et al., 2017) did not predict SLA 498 

accurately. Overall, we have reasons for caution for how well SLA can predict structure in 499 

tropical forests, but our abilities may improve in the future with hyperspectral satellites which 500 

could more accurately predict leaf traits at a global scale.   501 

The primary goal of GEDI is to improve global predictions of biomass and incorporating 502 

structure could aid this goal. GEDI L4B was correlated (r2 = 0.12 and 0.14) with both tree height 503 

(rh 98) and structure (% one peak).  The GEDI algorithm uses tree height (rh 98) as a metric to 504 

predict biomass, and since tree height is correlated with structure, the similar strength of the 505 

correlations is not surprising (Duncanson et al., 2022).  However, there is a question of whether 506 

structure in addition to tree height can be used to improve biomass predictions. The dominance 507 

of one peak forests likely indicates more open upper canopy forests and Asner and Mascaro 508 

(2014) have shown these forest types make biomass prediction more challenging (Asner and 509 

Mascaro, 2014). The plot data used to calibrate GEDI for tropical regions were not widely 510 

distributed throughout Amazonia, especially in the regions where height and structure diverge 511 

(Fig 2). Understanding why height and structure diverge in these regions may be key towards 512 

understanding whether structure can improve biomass predictions in the future.   513 

Overall, over the majority of tropical forest area the upper canopy may be more open and 514 

tropical forest stratification is simpler than previously expected and this has important 515 

implications for predicting biomass.   Furthermore, our results indicate that tropical forest 516 

canopies may be more open than previously thought which may expose animals to greater 517 

climate change related heat stress and require modifications to their behavior (Oliveira and 518 

Scheffers, 2019; Eppley et al., 2022). 519 

 520 
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Table 1 – Structure and trait data for regions surrounding plots from the GEM network (Malhi et 527 

al., 2021). The columns are global region, RAINFOR plot code, plot structure classification for 528 

the footprint closest to the plot coordinates and the height of this footprint (highest vertical bin).  529 

Next is the average % one peak for footprints within 0.03° of the coordinates surrounding the 530 

plot and the average height of area.  The last three columns are regionally averaged remotely 531 

sensed trait data (P=phosphorus=%, WD = wood density g cm-3, and SLA=specific leaf area - m2 532 

g −1)(Aguirre-Gutiérrez et al., 2021).  533 

Region Rainfor 

code 

Plot 

classificatio

n 

heigh

t 

% 1 

peak 

near 

plot 

Ave 

heigh

t 

P WD SLA 

SE Asia DAN-04 magenta 80 0.21 60.75 0.1 0.61 0.01 

SE Asia DAN-05 blue 35 0.22 60 0.1 0.61 0.01 

SE Asia LAM-01 magenta 50 0.56 44.65 0.09 0.6 0.0105 

SE Asia LAM-02 magenta 50 0.44 50.55 0.1 0.59 0.0104 

SE Asia MLA-01 magenta 55 0.78 40 NaN NaN NaN 

SE Asia SAF-01 blue 45 0.88 42.65 0.1 0.58 0.0103 

SE Asia SAF-02 blue 40 0.71 44.2 0.1 0.59 0.0101 

SE Asia SAF-03 blue 40 0.8 44.2 0.1 0.58 0.0105 

SE Asia SAF-04 3-peak 95 0.53 61.9 0.1 0.6 0.0106 

SE Asia SAF-05 Blue 35 1 38.05 0.1 0.58 0.0102 

W. Amazon ALP11 yellow 45 0.82 40.8 0.1 0.61 0.01 

W. Amazon ALP30 blue 40 0.8 40.75 0.1 0.6 0.01 

W. Amazon SPD02 blue 45 0.78 46.95 0.1 0.6 0.009 

W. Amazon SPD01 blue 60 0.8 46.25 0.1 0.6 0.0091 

W. Amazon TRU08 blue 40 0.81 46.85 0.1 0.6 0.0089 

W. Amazon TRU07 blue 50 0.79 48.75 0.1 0.6 0.0089 

W. Amazon ESP01 blue 40 0.88 38.2 0.12 0.62 0.0075 

W. Amazon WAY01 blue 45 0.87 43.15 0.12 0.62 0.0074 

W. Amazon TRU03 blue 50 0.98 38.2 0.11 0.62 0.0076 

W. Amazon ACJ01 blue 30 0.89 39.25 0.12 0.62 0.0078 

E. Amazon CAX-03 blue 40 0.82 37.75 0.09 0.61 0.0102 

E. Amazon CAX-06 black 35 0 35 NaN NaN NaN 

E. Amazon STB-08 blue 45 0.69 44.55 0.09 0.61 0.0104 

E. Amazon STD-05 blue 40 0.81 35.2 0.08 0.65 0.0108 

E. Amazon STD-10 blue 40 0.94 38.45 0.09 0.62 0.0101 

E. Amazon STD-11 blue 30 0.85 38.7 0.08 0.61 0.0102 

E. Amazon STN-02 yellow 40 0.43 42.4 0.09 0.64 0.0104 

E. Amazon STN-04 blue 25 0.9 34.15 0.09 0.64 0.0103 

E. Amazon STN-06 blue 35 0.8 36.25 0.09 0.64 0.0102 

E. Amazon STN-09 blue 40 0.95 32.55 0.09 0.63 0.01 

E. Amazon STO-03 blue 45 0.7 44.1 0.08 0.66 0.0106 

E. Amazon STO-06 blue 35 0.89 43.55 0.08 0.65 0.0106 

E. Amazon STO-07 blue 40 0.73 43.75 0.08 0.66 0.0108 
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Gabon IVI-01 blue 40 0.6 43.95 0.09 0.64 0.011 

Gabon IVI-02 blue 35 0.57 45.9 0.09 0.65 0.0109 

Gabon LPG-01 black 45 0.57 43.5 NaN NaN NaN 

Gabon LPG-02 blue 50 0.33 55.55 NaN NaN NaN 

Gabon MNG-04 blue 25 0.63 42 NaN NaN NaN 

 534 

 535 

 536 

 537 

Table 2 – Percent one peak forest of all GEDI footprints closest to the GEM plots and within a 538 

0.03° radius around the plot coordinates. Same as results from Table one, but averaged by 539 

continental region.  540 

 W. 

Amazon 

E. 

Amazon 

Gabon SE Asia 

Nearest to 

plot 

90% 85% 80% 50% 

Close to 

plot 

84% 79% 54% 61% 

 541 

  542 
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 543 

Figures 544 

 545 

Figure 1 – Artistic rendition of a “typical” stratified tropical forest with the forest on left within 546 

a 25m diameter GEDI pulse and the expected layered return of the profile on the right.  Animals 547 

in figure show how animals both impact and are impacted by canopy structure.  548 
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 549 

Figure 2 – (left) Each pixel represents the number of one peak footprints divided by total 550 

number of GEDI footprints in a 0.1 by 0.1 degree region for Amazonia.  Black lines are 551 

ecoregions for the Amazon region. Red lines are rivers and black dots are field plots used in 552 

Figure 4. (right) Average waveforms for the region in the black box. We give the total number of 553 

individual footprints analyzed and the percentage for each type.  PAVD is plant area volume 554 

density.  Cyan is the average waveform for all data (100%) in the black box. 555 

 556 
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 558 

 559 

Figure 3 – (left) Each pixel represents the number of one peak footprints divided by total GEDI 560 

footprints in a 0.1 by 0.1 degree region for SE Asia (top) and Central Africa (bottom). Red lines 561 

are major rivers. (right) Average vertical footprints for the region in the black box. For each type 562 

we give the percentage and the total number of individual footprints analyzed.  Averages 563 

representing <1% were removed.  PAVD is plant area volume density.  Cyan is the average 564 

waveform for all data (100%) in the black box. 565 
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 569 

 570 

 571 

Figure 4 – Tree height versus crown area/ground area as estimated with plot level tree DBH and 572 

tree height for six regions as shown in Figure one (Tapajos – 18ha, Caxiuana 4 ha, Tambopata 2 573 

ha, Iquitos 2 ha, Bolivia 2 ha, Tanguro 1 ha).  Thin lines are groups of 50 trees and the bold line 574 

is the plot average.  For each 5-meter tree height bin we estimate crown diameter following 575 

Asner et al 2002.  We then use the same “peak” procedure as with GEDI data to estimate one vs 576 

two peak forests and show this as a percentage.  We also show median (tr-me) and maximum 577 

tree height (tr-max) for the plots.  Results from the Tapajos are for trees >25cm DBH only.  578 

  579 
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 580 

 581 

Figure 5 – The change in the average forest structure between the Amazon and Africa (top) and 582 

the Amazon and SE Asia (bottom) for the regions highlighted in black in Fig 2-3.  The numbers 583 

are the listed differences in the percentage abundance.  584 

 585 

  586 
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 587 

 588 

 589 

Figure 6 – Spatial distributions for the Amazon basin for different types of the “2 peak” forests.  590 

The color labels are associated with the colors of the lines in Figs 2-3. The colorbar scales are 591 

different between panels. 592 

 593 

  594 
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 595 

 596 

 597 

  598 

Figure 7 – Different data layers that were used for comparison with the percent one peak dataset.  599 

(A) Spatial distribution of the percentage of one peak forests (same as figure 1) with the 600 

ecoregions of the Amazon basin overlaid (Olsen et al 2001).  (B) A map of the ecoregions alone 601 

shown above for clarity with percent one peak for each ecoregion. (C) Max temperature - Tmax 602 

(°C), (D) total cation exchange capacity (mmol(c)/kg, (E) median tree height from rh98 GEDI 603 

with ecoregions, and (F) plant area index from GEDI.   604 
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 605 

 606 

Figure 8 –(A) Tree height (rh98%), (B) AGBD from GEDI L4B, (C) cation exchange capacity 607 

(mmol(c)/kg and (D) Tmax (°C) vs percent one peak forests for the Amazon basin.  For each we 608 

show r2 and RMSE. 609 

  610 
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Supplementary Figures 745 

 746 

Figure S1 – (top) A map of % one peak forests in a 5 by 5 degree region of the Amazon where 747 

we modified our relative height metric 98% with a lower threshold of 15, 20, and 25m. (bottom) 748 

The different PAVD profiles for each threshold similar to fig 2. 749 
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 752 

Figure S2 – A comparison of one peak forest types for (B) Amazonia, (D) Central Africa, and 753 

(F) SE Asia to an index of forest integrity as determined by degree of anthropogenic 754 

modification from https://www.forestintegrity.com/ (Grantham et al., 2020) for (A) Amazonia, 755 

(C) Central Africa, and (E) SE Asia where the darkest greens are areas with the least human 756 

disturbance. 757 
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 760 

Figure S3 - Spatial distributions for different types of Central African “two peak” forests.  The 761 

color labels are associated with the colors of the lines in Figs 2-3.  762 

 763 
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 766 

Figure S4 - Spatial distributions for different types of SE Asian “two peak” forests.  The color 767 

labels are associated with the colors of the lines in Figs 2-3.  768 
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 771 

 772 

Figure S5 - Different data layers for Central Africa.  (A) Spatial distribution of the percentage of 773 

1 peak forests (same as figure 3) with ecoregions overlaid.  (B) MODIS PFT classification with 774 

the light blue representing broadleaf tropical evergreen PFT.  (C) Plant area index from GEDI 775 

and (D) # of GEDI shots per 0.1 by 0.1 pixel.   776 
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 779 

Figure S6 - Different data layers for SE Asia.  (A) MODIS PFT classification with the light blue 780 

representing broadleaf tropical evergreen PFT.  (B) Spatial distribution of the percentage of 1 781 

peak forests (same as figure 3).  (C) Plant area index from GEDI and (D) # of GEDI shots per 0.1 782 

by 0.1 pixel.   783 
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