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ABSTRACT 15 

Niche modeling for rare and range-restricted species can generate inaccurate predictions 16 

leading to an overestimation of a species geographic distribution. We used an iterative 17 

ensemble modeling approach and model-stratified field surveys to improve niche model 18 

formulation and better understand the ecological drivers of Ivesia webberi distribution. I. 19 

webberi is a U.S. federally threatened herbaceous species, narrowly distributed in the Western 20 

Great Basin Desert. Niche models for I. webberi were fitted using 10 replicates each of six 21 

modeling algorithms, while geographical projections of habitat suitability were generated 22 

using weighted ensembles of models with optimal performance. The resulting model 23 

projections were used to guide field surveys for five years, generating additional spatial data, 24 

which were added to the existing dataset for subsequent modeling. Model performance across 25 

iterations was investigated, while niche differences in the spatial dataset were explored. 26 

Model-guided field surveys resulted in the discovery of several new locations of I. webberi and 27 

an expansion of the species’ known range by 63 km. Model performance was higher in the 28 

earlier but overfitted niche models; overfitting was corrected in the final models, while 29 

predicted habitat suitability was reduced by 50%. Findings show that I. webberi niche is 30 

associated with biotic, topographic and bioclimatic variables. Further, a partial overlap was 31 

observed between environmental conditions of the initial and new locations (Schoener’s 32 

D=0.47), which can be decomposed into 93% of niche stability. This indicates that the majority 33 

of the newly discovered locations are within the environmental niche of the initial data. 34 

KEYWORDS: habitat suitability, iterative ensemble modeling, niche overlap, field validation 35 

surveys, niche stability, Ivesia webberi, Great Basin Desert  36 



3 
 

1. INTRODUCTION 37 

Limited empirical information on the geographical distributions of taxa (Wallacean 38 

shortfall; Whittaker et al. 2005) can impact the assessment of species rarity resulting in 39 

misguided conservation prioritizations (Coddington et al. 2009). Field surveys, especially those 40 

conducted using random sampling strategies, can generate additional biodiversity data to 41 

mitigate this; however, such surveys are costly, time-consuming, and ineffective for rare 42 

species, while human resources are limited (Hirzel & Guisan 2002, Guisan et al. 2006). 43 

Therefore, scientists and conservation managers have considered other cost-effective methods 44 

to stratify and prioritize field surveys, usiing, for example, expert opinion and quantitative 45 

niche modeling. Niche models can relate species’ occurrences to their environmental 46 

conditions to quantify the realized niche, that is, species’ known locations due to 47 

environmental tolerance observed in the field (Hutchinson 1957). These niche models generate 48 

geographic predictions of species habitat suitability that can be used to stratify and optimize 49 

sampling efficiency (Chiffard et al. 2020). Moreover, integrating the new spatial data from 50 

model-guided sampling can reduce spatial bias in subsequent modeling iterations, improve 51 

the predictive accuracy of niche models for rare species, and reliably identify biologically-52 

relevant environmental factors (Singh et al. 2009, Rinnhofer et al. 2012). 53 

Understanding the distribution of rare species is critical for effective conservation 54 

planning, but with few, incomplete, and biased spatial data, it can be challenging to model the 55 

niches of rare species with high predictive accuracy (Hernandez et al. 2006, Wisz et al. 2008), a 56 

condition referred to as the rare species modeling paradox (Lomba et al. 2010). This is because 57 

fewer occurrence points in spatial dataset indicates low prevalence, which weakens the 58 
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analytical power of the models and inflates bias in niche models (Vaughan & Ormerod 2003). 59 

Furthermore, correlative species distribution models include the underlying assumption that 60 

species are in equilibrium with their environment (i.e., temporal and spatial stationarity), and 61 

that all important and biologically-relevant variables have been included in the niche model 62 

(Elith & Leathwick 2009). This presents challenges to modeling rare species because the 63 

inclusion of many predictors when occurrences are few can lead to model overfitting (Wisz et 64 

al. 2008, Jarnevich et al. 2015). Moreover, limited natural history knowledge makes predictor 65 

variable selection challenging and potentially subjective for rare species (Aranda & Lobo 2011). 66 

Consequently, poorly fit models and misjudgments of model predictions can lead to over- or 67 

underestimation of the species’ niche, resulting in poorly informed management decisions 68 

(Ramesh et al. 2017, Burns et al. 2020). Despite the development of several statistical methods 69 

to reduce prediction errors in niche modeling, the most practical way is to increase spatial data 70 

for rare species, which is inevitably linked with data collection during field surveys. Therefore, 71 

predictions of species distribution modeling (SDM) for rare species should not be treated as 72 

truth, but can be used as hypotheses for further ecological or biogeographical investigations 73 

(Stockwell & Peterson 2002, Jarnevich et al. 2015, Sofaer et al. 2019). 74 

The discovery of new locations of targeted species from SDM-guided field surveys is 75 

well documented in the literature (e.g., Williams et al. 2009, de Siqueira et al. 2009, Särkinen et 76 

al. 2013, Burns et al. 2020). These novel discoveries underscore the importance of SDMs  as an 77 

important conservation tool. SDMs have been used to evaluate the degree of species rarity 78 

(Broennimann et al. 2006), and identify areas that may serve as future climatic refugia (Sousa-79 

Silva et al. 2014). Furthermore, SDMs are also used to advance scientific knowledge of species-80 
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environment relationships (Jiménez-Valverde et al. 2011), and identify niche constraining 81 

environmental factors (Gorban et al. 2011). SDM predictions are often integrated into models 82 

of population and landscape genetics (e.g., Ikeda et al. 2016, Banerjee et al. 2019), and spatial 83 

phylogenetics (e.g., Thornhill et al. 2017). Beyond conservation uses, newly discovered 84 

occurrences may have significant ecological contributions to the understanding of the overall 85 

species’ niche. For example, additional occurrence points may be found either within the 86 

existing realized niche space or in areas with different ecological conditions, thus expanding 87 

the species environmental niche. The COUE (that is, centroid shift, overlap, unfilling, and 88 

expansion) framework can be used to quantify realized niches of species from different ranges 89 

and categorize the niche position of newly discovered occurrences (Broennimann et al. 2012). 90 

This framework has been used to investigate niche dynamics between the native and invaded 91 

ranges of invasive species (Broennimann et al. 2012, Strubbe et al. 2013), as well as niche 92 

evolution vs conservatism between sister taxa (Villegas et al. 2021). 93 

The aim of this study was to assess relative improvement of using iterative sampling 94 

approach alternating between niche modeling and model-guided field surveys relative to a 95 

presence/absence modeling approach using only data available at the onset of the study to 96 

predict the distribution of a rare plant (Ivesia webberi A. Gray). Therefore, we asked the 97 

following questions: (1) Which environmental variables determine the distribution of I. 98 

webberi, and how does the species-environment relationship change with each iteration of the 99 

SDMs given additional spatial data? (2) Do additional distribution data alter habitat suitability 100 

map projections across modeling iterations? (3) Is the environmental niche conserved 101 
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throughout the modeling iterations? (4) Do modeling iterations improve the predictive 102 

accuracy of species distribution models for Ivesia webberi? 103 

 104 

2. MATERIALS AND METHODS 105 

2.1. Study species and study area 106 

Ivesia webberi is a U.S. federally listed threatened perennial forb restricted to the eastern 107 

foothills of the Sierra Nevada and the adjacent western edge of the Great Basin Desert. I. 108 

webberi was estimated to have originated between 1.3 and 3.8 million years ago (Töpel et al. 109 

2012), and may be one of the many Great Basin Desert neoendemic and phylogenetically 110 

young taxa that have not had enough time to fully colonize their range (Kraft et al. 2010, 111 

Thornhill et al. 2017). At the outset of our study, it was known from 23 spatially-aggregated 112 

locations, occurring in or near ephemeral washes and dry forest meadow gaps in mostly 113 

gently sloped areas (Witham 2000). These presence locations were visited multiple times 114 

between 2015 and 2020, and therefore are not prone to positional error. These locations have 115 

experienced varying degrees of biological invasion pressures from Bromus tectorum, 116 

Taeniatherum caput-medusae, and Poa bulbosa, as well as disturbances from wildfires, cattle 117 

grazing and off-highway vehicle use. 118 

The study extent was defined by a 60 km buffer from marginal ranges of known 119 

populations as of 2015. The species produces achenes which are not adapted for long-range 120 

dispersal; therefore, the study area was restricted to mask out expansive adjacent unsuitable 121 

areas of playas in the central Great Basin Desert. This modeling decision was guided by 122 

natural history indicating that the species is located in sparsely vegetated low sagebrush 123 
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(Artemisia arbuscula) communities in mid-elevation areas of the western Great Basin Desert and 124 

the adjacent northern Sierra Nevada eastern foothills (US Fish and Wildlife Service [USFWS] 125 

2014). Climatic conditions in these sites are characterized by relatively mild winters and hot 126 

summers (Svejcar et al. 2017). Thus, temperatures range from an average of -5.8 °C in the 127 

winter to an average of 28 °C in the summer, while annual precipitation varies between 25 and 128 

33 cm, most of which falls as snow or rain during the winter months. 129 

2.2. Distribution data 130 

We began species distribution modeling in 2015 with 23 occurrence points and 758 131 

absence points obtained from the Nevada Natural Heritage Program (NNHP). The absence 132 

points represent areas where I. webberi was not detected during historical surveys by NNHP 133 

botanists and citizen scientists. Additional spatial points were added following iterative 134 

modeling and field validation cycles in predicted suitable habitats. In all modeling iterations, 135 

the absence points were thinned using a distance of 7.5 km in spThin R package version 0.2.0 136 

(Aiello‐Lammens et al. 2015) to reduce the effects of spatial aggregation, and mitigate low 137 

prevalence in the spatial dataset. Additionally, absence points within 5 km of an occurrence 138 

point were removed to avoid false negatives. The remaining absence points were merged with 139 

the presence points for niche modeling (Table 1). 140 

2.3. Predictor variables 141 

A total of 72 predictor variables describing edaphic, topographic, land cover, vegetative 142 

cover, and climatic factors were assembled for fitting SDMs for Ivesia webberi (see Table S1). To 143 

avoid overfitting and maintain a 1:10 ratio of predictor variables to occurrence points (Harrell 144 

et al. 1996), the full set of predictor variables was reduced to six uncorrelated predictors (Table 145 
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2) using a combination of the Kendall r correlation coefficient (r>0.6), feature selection runs in 146 

Boruta R package version 4.0.0 (Kursa & Rudnicki 2010), and recursive feature elimination 147 

algorithm in caret R package version 6.0-78 (Kuhn 2008).  148 

The climatic variables (actual evapotranspiration, minimum monthly temperature and 149 

summer seasonal precipitation) were downsampled from the Parameter-elevation 150 

Relationships on Independent Slopes Model (PRISM) climatic data (1971-2000) normals (Daly 151 

et al. 2008), from 800-m to 30-m spatial resolution using the Climatic Water Deficit Toolbox 152 

(Dilts et al. 2015) and ordinary kriging. The cosine-transformed aspect, ranging from -1 (south-153 

facing slope) to +1 (north-facing slope), was derived from slope using the formula: θ × cos(α), 154 

where θ is slope (in percentage), and α is aspect (in radians), while slope was calculated from 155 

the 1 arc-second digital elevation models (DEM; United States Geological Survey [USGS] 156 

2017). Perennial herbaceous vegetative cover, a vegetation type raster layer, was obtained from 157 

the Multi-Resolution Land Characteristics (MRLC) development of the 2016 U.S. National 158 

Land Cover Database (NLCD; Xian et al. 2013). Topographic Position Index (TPI) was 159 

calculated from the DEM using the formula described by Weiss (2001). 160 

2.4. Iterative ensemble niche modeling and model-based sampling 161 

The SDMs were fitted at 30 m resolution to capture the landscape and ecological 162 

heterogeneity in the study area, particularly in the Ivesia webberi locations that occur within 163 

forest gaps. An ensemble modeling approach was used in all niche modeling iterations. The 164 

use of multi-algorithm ensemble models renders predictions less susceptible to biases, 165 

assumptions, or limitations of any individual algorithm, while broadening the types of 166 

environmental response functions that can be identified (Araújo & New 2006). SDMs have 167 
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been developed from a wide range of modeling techniques including regression, classification, 168 

and machine learning algorithms (Lauzeral et al. 2012). Because these algorithms have 169 

different predictive performances under different contingencies (Li et al. 2013), fitting of niche 170 

models using different algorithms and combining their model parameters to build a consensus 171 

or ensemble model is often recommended (Marmion et al. 2009). Ten replicates of six 172 

algorithms (Boosted Regression Trees, Random Forests, Maximum Entropy, Artificial Neural 173 

Networks, Generalized Additive Models and Generalized Linear Models) were fitted using the 174 

biomod2 R package (Thuiller et al. 2009). All statistical packages were implemented in R 175 

statistical software version 4.0.2 (R Core Team 2020). See Table S2 for modeling details.  176 

Model performance was evaluated using four metrics, including true skill statistic (TSS; 177 

Allouche et al. 2006), area under the curve (AUC) of the receiver operating characteristics 178 

(ROC) plot (Hanley & McNeil 1982), TSS-based specificity, and Boyce Index (Boyce et al. 2002). 179 

In each modeling iteration, three predictors, selected from the six uncorrelated variables, were 180 

used to fit the niche models. Models were fitted with 80% of the data with 20% used for k-fold 181 

cross-validation (Araújo et al. 2005, Thuiller et al. 2009). Model replicates with TSS ≥ 0.7 were 182 

averaged into ensemble models, which were used to produce geographic projections of habitat 183 

suitability (Marmion et al. 2009, Thuiller et al. 2009). On the habitat suitability maps, cells with 184 

≥0.5 occurrence probability were considered suitable to delineate areas with higher habitat 185 

suitability values for field validation surveys. Uncertainty in habitat suitability projections was 186 

visualized on maps of coefficients of variation from the iterative niche ensemble models 187 

(Hortal 2008).  188 
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Habitat suitability maps produced by the SDMs were used to guide field validation 189 

surveys to areas of high predicted probability of occurrence. The non-thinned absence points 190 

were overlaid on the predicted habitat map and predicted suitable and unsuitable areas that 191 

had not been previously surveyed were selected for field validation. Field validation surveys 192 

were done alone by the first author (I.T.B.), between May and June of each year when the 193 

plants were in flower, to increase chances of detection. Additional spatial data from field 194 

surveys were used in the subsequent modeling iteration and site selection for post-modeling 195 

field validation. The iterative modeling and field surveys were repeated for five years. For 196 

each newly discovered population, we calculated the distance to the nearest previously known 197 

occurrence with the FNN R package version 1.1.3 (Beygelzimer et al. 2019). 198 

The relative importance of the predictor variables in all iterative SDMs was evaluated 199 

using the jackknife test (Phillips et al. 2006), while species-environment relationships were 200 

described with partial response curves using the evaluation strip method (Elith et al. 2005) as 201 

implemented in the biomod2 R package. We assessed the trends and statistical significance of 202 

the model performance across the years of iterative niche modeling, to investigate if additional 203 

spatial data improved the overall predictive accuracy of the iterative ensemble SDMs. Mean 204 

scores of the four model performance metrics for each of the six algorithms (10 replicates each) 205 

were regressed against the years of iterative SDMs using multivariate multiple linear 206 

regression (MMLR), while the statistical significance of the MMLR models were corrected 207 

using the Tukey post-hoc test.  208 

We also assessed the reliability of these iterative SDM predictions by checking for 209 

model overfitting with a spatial cross-validation approach using block partitioning. Spatial 210 
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block partitioning is a nonrandom allocation of spatial data to reduce the effect of spatial bias 211 

and autocorrelation in ecological models (Valavi et al. 2019). The entire study area was divided 212 

into six equal latitudinal and longitudinal bins, which were then clustered into three spatial 213 

blocks. Two spatial blocks were used for model training while the third block was used for 214 

testing. Spatial block partitioning was done in the blockCV R package version 2.1.4 (Valavi et al. 215 

2019), while the niche models were conducted in biomod2 R package version 3.5.1, using 216 

similar model tuning as used for the iterative SDMs. Partitioning our relatively small spatial 217 

dataset could only meet the requirements for modeling with random forest, maximum 218 

entropy, and artificial neural networks, which were used for the spatial block-based ensemble 219 

niche modeling. Overfitting was assessed as the difference between the block (training) and 220 

test AUC values (Warren & Siefert 2011). 221 

2.5. Assessment of the change in I. webberi niche across modeling iterations 222 

We used the COUE framework to investigate the position of the new locations relative 223 

to the initial niche of I. webberi. The COUE framework, based on the principal component 224 

analysis (PCA), allows for direct comparison of species-environment relationships 225 

(Broennimann et al. 2012). A kernel density function is applied to smooth the varying 226 

sampling sizes in the two sets of occurrence points in a PCA gridded environmental space to 227 

calculate the niche metrics (Petitpierre et al. 2012, Broennimann et al. 2012). We calculated 228 

niche overlap (Schoener’s D), stability, expansion, and unfilling between the initial (2015) and 229 

a combination of all new (2018-2020) I. webberi locations, based on the environmental space of 230 

the six uncorrelated predictor variables. Schoener’s D is calculated between the environmental 231 

occupancy of the two niches, and it ranges between 0 (no overlap) and 1 (total overlap) which 232 
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represent niche divergence and similarity, respectively (Brown & Carnaval 2019). In this study, 233 

niche stability represents the proportion of the environmental space in the newly discovered 234 

locations available in the initial occurrences’ environmental space, while niche expansion 235 

represents the proportion of the environmental space in the new locations that are not 236 

available in the initial locations. A niche unfilling estimate was used to investigate whether the 237 

new occurrences only colonized a limited portion of the environmental space of the initial 238 

occurrences (Petitpierre et al. 2012, Guisan et al. 2014). The COUE framework was 239 

implemented using a niche similarity test, which assumes that the environmental niches in the 240 

new occurrences are similar to the initial occurrences, given that habitat suitability map 241 

projections of the initial occurrences were used for field validation surveys  (Liu et al. 2020, Pili 242 

et al. 2020). The niche similarity test generated random estimates for each of Schoener’s D, 243 

niche stability, expansion and unfilling, using 1000 randomizations of the niche positions of 244 

the initial and newly discovered occurrences. These randomizations were used to check if the 245 

observed niche overlap and stability were higher and if observed niche expansion and 246 

unfilling were lower than expected by chance. Furthermore, we extracted values of the initial 247 

niche density at the new locations to quantify the degree of niche stability or expansion in the 248 

new locations. Niche density values range from 0 to 1; 0 represents new locations outside the 249 

initial niche (that is, niche expansion), while 1 represents new locations in the core of the initial 250 

niche. The niche similarity test was run with the development version 3.2.1 of the ecospat R 251 

package available on github (Broennimann et al. 2016). 252 

Additionally, we quantified the number of predicted suitable raster cells (≥0.5 253 

probability of occurrence) in the habitat suitability maps. We also performed a niche overlap 254 
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analysis on the geographic projections of habitat suitability between the 2015 (initial) and 2020 255 

(final) model iterations for each iterative niche model, using the I similarity metric, which is 256 

based on Hellinger distance (Warren et al. 2008). The I similarity metric ranges from 0 to 1 257 

representing the degree of pairwise similarity in niche model projections (Warren et al. 2008). 258 

This map-based niche overlap test is a cell-by-cell comparison with a randomization test of 259 

geographical predictions of the four iterative SDMs (Warren et al. 2008); it was performed in 260 

the dismo R package (Hijmans et al. 2017). 261 

 262 

3. RESULTS 263 

3.1. Which environmental variables are associated with the ecological niche of I. webberi, 264 

and how does our understanding of these species-environment relationships change across 265 

the SDMs? 266 

Throughout the iterative SDMs from 2015 to 2020, the perennial herbaceous vegetative 267 

cover consistently contributed the most to the fitted distribution of I. webberi (Fig. 1a-d). In the 268 

2020 model iteration, I. webberi showed an asymmetric and threshold response curve for 269 

perennial vegetative cover, with suitable sites occurring in areas with moderate (>20%) to high 270 

native perennial forb cover (Fig. 2a). Topographic Position Index (TPI) was the second most 271 

important predictor across all model iterations. The response curve for TPI is bimodal and 272 

asymmetric, illustrating that I. webberi occurs on sites that are either gentle lateral valleys or 273 

ridges (Fig. 2c). AET was the third most important predictor in the 2015 niche model iteration 274 

(Fig. 1a). The cosine-transformed slope aspect, a proxy for exposure to sunlight, came third in 275 

the 2018 and 2019 iterations (Fig. 1 c and d), while summer seasonal precipitation was the third 276 



14 
 

most important predictor for the 2020 iteration (Fig. 1d). The response curve for summer 277 

seasonal precipitation shows a threshold response, where the probability of I. webberi 278 

occurrence was maximized at >25 mm summer precipitation, beyond which the curve 279 

flattened (Fig. 2b). 280 

3.2. Does the additional spatial data impact I. webberi niche dynamics and habitat 281 

suitability map projections across modeling iterations? 282 

The iterative ensemble SDMs and model-guided field surveys resulted in the discovery 283 

of seven new locations of I. webberi (30.4% of the initial dataset), while two additional new 284 

locations (8.7% of the initial dataset) were discovered opportunistically by local botanists. The 285 

distance from the new locations to the closest known locations ranged from 30 m to 63 km 286 

(Table 3). As a result, the northern distribution range of the species was expanded by 63 km 287 

(Table 3). However, the percentage of the suitable raster cells in the ensemble habitat 288 

projections decreased from 5.98% in 2015 to 3.34% in 2020 (Fig. 3 a-d). Despite the decrease in 289 

the percentage of suitable grid cells, niche overlap between the geographical projections of the 290 

2015 and 2020 model iterations were high (Hellinger’s I=0.89). The model projections also 291 

predicted higher probability of I. webberi occurrence in locations near the center of the study 292 

area (Fig. 3 a-d). Prediction uncertainties (coefficients of variation) were relatively low across 293 

all four projections (Fig. 4 a-d). 294 

3.3. Is I. webberi environmental niche conserved throughout the modeling iterations? 295 

The first two PCA axes explained 49% of the variation in the data, both of which 296 

represent topo-climatic gradients (Figure 5, Table S3), while the third axis, representing the 297 
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perennial vegetation cover, explained an additional 17.4% of the variance (Table S3). The PCA 298 

niche similarity test shows that the environmental niche of the new occurrences overlaps that 299 

of the initial occurrences with marginal significance (Schoener’s D=0.47; p=0.05). This finding 300 

was corroborated by the niche stability result showing that the environmental niche of the new 301 

occurrences is similar to the initial occurrences (niche stability=0.93; Fig. 5), although this high 302 

value was marginally significant (p=0.09; Fig. 6). Furthermore, the values of the new locations 303 

in the niche density of the initial occurrences ranged from 0.21 to 0.87 (Table 3), which shows 304 

that all of these new points are found within the initial niche, thus, niche stability. However, 305 

niche changes between the initial and new occurrences are due to unfilling (estimate=0.47; 306 

p=0.11) rather than expansion (estimate=0.07; p=0.09; Fig. 6). The majority of the randomized 307 

niche overlap and stability estimates were lower than the observed values (Fig. 6a & b, 308 

respectively), while the majority of the randomized expansion and unfilling estimates were 309 

higher than the observed values (Fig. 6c & d, respectively). 310 

3.4. Do modeling iterations improve the predictive accuracy and reliability of the SDMs for 311 

Ivesia webberi? 312 

Figures 7a-d shows the mean performance metrics for the iterative ensemble SDMs 313 

between 2015 and 2020. The TSS-based model performance scores significantly decreased from 314 

0.81 in 2015 to 0.78 in the 2020 model iterations (Tukey post-hoc: p=0.01). Similarly, the AUC 315 

scores significantly decreased from 0.89 to 0.82 between the 2015 and 2020 model iterations 316 

respectively (Tukey post-hoc: p=0.02). However, both Boyce Index and specificity showed 317 

nonsignificant (p>0.05) changes between 2015 and 2020 model iterations (0.44 to 0.41, and 92.04 318 

to 95.58, respectively). The predictive performance of the spatial block niche modeling for the 319 
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2015 spatial data indicates model overfitting (AUCBLOCK=0.81, AUCTEST=0.47), in contrast to 320 

the 2020 spatial data which did not exhibit overfitting (AUCBLOCK=0.47, AUCTEST=0.52). 321 

 322 

4. DISCUSSION 323 

Within a five-year period, our iterative modeling approach resulted in the discovery of 324 

nine novel locations (representing 39% of the initial known distribution) and a 63 km 325 

expansion of the predicted geographical range of a federally threatened perennial forb. The 326 

discovery of new locations from model-guided field surveys is frequently reported for rare 327 

species in the literature, and highlight the importance of SDMs and model-guided field 328 

surveys in conservation. As a result of enlarged occurrence datasets and known ranges, many 329 

threatened species have subsequently been delisted from the Endangered Species Act (Keinath 330 

et al. 2014, Sofaer et al. 2019). Moreover, with sufficient spatial data, models can reliably 331 

identify biologically relevant ecological factors that support species persistence and predict 332 

their potential distributions. In this study, the number of I. webberi occurrences increased by 333 

39% (from n=23 to n=32) and I. webberi patch occupancy in many of the new locations 334 

compares well with those of the original locations. Therefore, findings from this study can 335 

guide decisions on future I. webberi management. Moreover, previous studies have also 336 

reported major revisions to conservation management and reserve designs due to the 337 

additional biodiversity data from model-guided field surveys (Platts et al. 2010), including 338 

decisions regarding translocation of species of conservation concern (Draper et al. 2019). 339 

Findings of multiple analyses show that the majority of the new locations are found within the 340 

environmental niche of the initial occurrences. We observed high niche stability (93%) and low 341 



17 
 

niche expansion (7%) between the environmental conditions in the initial and new 342 

occurrences, while both the initial niche density values of the new locations and the niche 343 

dynamics plot (Fig. 5) illustrate the position of the new locations within the realized niche 344 

space of the initial occurrences. This is not surprising considering that the field validation 345 

surveys that resulted in the discovery of these novel locations were based on initial models. 346 

The observed niche overlap and stability estimates are higher than the majority of the 347 

randomly generated niches, whereas niche unfilling and expansion are lower than most of the 348 

random niches generated in the similarity test (Fig. 6). In spite of the nonsignificant 349 

randomization results, these findings provide partial support for niche similarity between the 350 

initial and novel occurrences. The marginally significant randomizations (0.05<p<0.15) could 351 

be attributed to a limited statistical power due to the low number of occurrences and high 352 

degree of geographical similarity in both the initial and new datasets (Brown & Carnaval 353 

2019). The unfilled portion of the niche (Fig. 5) suggests that there may be more I. webberi 354 

locations yet to be discovered or suitable habitat yet to be colonized due to the species’ limited 355 

dispersal capacity.  356 

Additional spatial data can significantly impact the predictive performance of iterative 357 

niche models, due to their effect on model parameters (Guisan et al. 2006). In this study, we 358 

observed changes in model performance and geographical projections, despite the minimal 359 

changes in the three predictors used across all model iterations. Specificity is based on 360 

omission error rates, which represent the percentage of false negatives in the spatial data. 361 

Therefore, slight increases in specificity across the model iterations suggest that the additional 362 

spatial data slightly reduced presence-absence ratio in the overall spatial data and also 363 
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reduced the model omission errors (Lauzeral et al. 2012, Chiffard et al. 2020). However, the 364 

reduction of AUC, TSS, and Boyce Index in all but the final model iteration may be attributed 365 

to overfitting due to insufficient occurrences in the dataset. Additional spatial datasets from 366 

multi-year sampling may have corrected model overfitting, but they also resulted in reduced 367 

SDM performance. This is consistent with previous studies that also reported reduced niche 368 

performance when correcting overfitting in niche models (Guisan et al. 2006, Peterson et al. 369 

2007). Therefore, a fair performance assessment for iterative niche modeling should focus on 370 

model generalizability as the primary measure of performance as opposed to model fit for any 371 

given year. A rigorous approach to assessing model generalizability (or lack of over-fitting) is 372 

to use spatially independent data for model validation, as in the spatial block niche modeling 373 

approach employed in this study. Secondly, some of the additional absence points were 374 

sampled from areas that were predicted to be suitable. This can introduce noise into spatial 375 

data used for iterative niche modeling because the absence of I. webberi in these predicted 376 

suitable sites may be due to dispersal limitation (Lobo et al. 2010, Lauzeral et al. 2012). Field 377 

observations support the suitability of some of these surveyed sites because they have similar 378 

edaphic and topographic features and the occurrence of common associates like Balsamorhiza 379 

hookeri, Artemisia arbuscula, Antennaria dimorpha, and Phlox longifolia. McCune (2016) reported 380 

similar circumstances where common floristic associates of several studied plants were found 381 

in sites predicted to be suitable. Therefore, the inclusion of such absence points in iterative 382 

niche models can result in the underprediction of the potential niche and a reduction in model 383 

performance (Araújo & Peterson 2012). 384 
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The biology of a species may also affect the predictive performance of niche models 385 

(Marmion et al. 2009, Regos et al. 2019), and particularly the performance of iterative SDMs 386 

following the addition of new spatial data (Guisan et al. 2006, Lauzeral et al. 2012). Despite its 387 

relatively restricted geographical range, I. webberi is locally abundant in occurrence locations 388 

and it exhibits mixed mating system (Borokini et al. 2021). These traits suggest high 389 

colonization potential and wider niche breadth (Grant & Kalisz 2019), which fits the 390 

description of satellite-type species (Hanski 1982, Collins et al. 1993). For satellite-type species, 391 

low dispersal capacity limits the full colonization of suitable habitat and may reduce 392 

predictive performance of SDMs (Edwards et al. 2004). Araújo & Peterson (2012) cautioned 393 

that areas of commission errors should be interpreted carefully for species with fewer 394 

occurrences because they may represent suitable habitats that are yet to be colonized (that is, 395 

potential niche). This may be true for the neo-endemic I. webberi which may not yet be in 396 

equilibrium with its suitable environment (Araújo & Pearson 2005) because it has not yet fully 397 

colonized its range (Kraft et al. 2010, Thornhill et al. 2017). To reduce spatial bias in iterative 398 

SDMs, additional spatial data must be collected using stratified sampling from both sites with 399 

predicted higher and low probabilities of species occurrence (Edwards et al. 2004, Guisan et al. 400 

2006). Additionally, absence points too close to presence points in ordination space (thus 401 

sharing similar environmental conditions) should be excluded from subsequent modeling. 402 

A combination of biotic and topo-climatic variables contributes to the niche of I. webberi. 403 

Throughout modeling iterations, perennial herbaceous cover and Topographic Position Index 404 

consistently contributed the most to I. webberi distribution, while cumulative actual 405 

evapotranspiration (AET), Cosine aspect, and summer seasonal precipitation also contributed 406 
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to the species niche in model iterations. The perennial herbaceous cover may have constrained 407 

I. webberi niche to areas of suitable vegetative community, thus representing a biotic 408 

component of the species niche. Vegetative land cover is reported in literature as an important 409 

predictor of habitat suitability for rare plants (Gogol-Prokurat 2011, McCune 2016). 410 

Topographic Position Index illustrates topographic heterogeneity which impacts microclimatic 411 

conditions and influences plant distribution and diversity in high-altitude and heterogeneous 412 

landscapes (Chardon et al. 2014, Thornhill et al. 2017). The greater probability of I. webberi 413 

occurrence in areas with higher cosine aspect in the 2018 and 2019 model iterations shows that 414 

the species prefers cooler north-facing slopes which receive less sunlight. Though topographic 415 

variables are not proximal (Austin 2002), they have been used successfully as spatial 416 

delineators, and to represent missing climatic variables especially in high-altitude areas, map 417 

species habitat suitability, reduce niche model overprediction, and increase model 418 

performance (Lassueur et al. 2006, Fois et al. 2018). 419 

Summer seasonal precipitation and AET, the bioclimatic variables, represent the 420 

availability of water and energy which governs the timing of spring regeneration and seed 421 

germination in I. webberi. Summer seasonal precipitation may play an important role in I. 422 

webberi seed dispersal, as has been observed for spring-germinating plants in other cold 423 

deserts of the world (Chen et al. 2019). Field observations show that I. webberi seeds are 424 

dispersed by gravity-assisted surface run-off due to summer precipitation, resulting in the 425 

colonization of interspace microsites and decolonized roads and trails. This localized seed 426 

movement due to summer precipitation was also reported for I. tweedyi and I. lycopodioides var. 427 

scandularis (Moseley 1993, Pollak 1997). Taken together, the SDM predictions are congruent 428 
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with field observations that I. webberi suitable habitats are found on gentle slopes and ridges 429 

dominated by native perennial forbs, herbs, annual grasses, and fewer stands of native shrubs, 430 

interspersed with bare ground or gravel-covered microsites. Unfortunately, these sites are 431 

vulnerable to anthropogenic disturbances and colonization by invasive species which have 432 

altered wildfire regimes in the Great Basin Desert (Chambers et al. 2014, Morris & Rowe 2014). 433 

Species with small population size and restricted geographical distributions are more 434 

vulnerable to future environmental changes and are frequently targets of conservation priority 435 

(Lomba et al. 2010, Sousa-Silva et al. 2014). In this study, we explored the efficacy of two 436 

complementary approaches for addressing the challenges associated with SDMs for rare 437 

species: iterative ensemble modeling and model-guided field sampling. These two 438 

complementary approaches can reduce spatial bias, allow for model fine tuning that can 439 

improve model performance, and increase the chances of detecting novel locations that can 440 

either fill the realized niche space or expand the species niche breadth and hence the known 441 

geographical distribution. Improved model performance will enhance reliable assessment of 442 

species-environment relationships. Iterative SDMs are particularly important for guiding 443 

future efforts to improve species distribution datasets and allow for a tighter integration of 444 

models with data, leading ultimately to more accurate and ecologically meaningful SDMs. 445 
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TABLES 689 

Table 1. Iterative niche modeling with increasing number of presence and absence points 690 

for Ivesia webberi. 691 

Year Presence 
points 

Raw absence 
points 

Thinned 
absence 

Predictor variables used for final 
modeling 

2015 23 758 53 Perennial herbaceous cover, Topographic 
Position Index (TPI) and annual 
evapotranspiration 

2018 26 1652 90 Perennial herbaceous cover, TPI and 
cosine aspect 

2019 27 1881 75 Perennial herbaceous cover, TPI and 
cosine aspect 

2020 32 2289 102 Perennial herbaceous cover, TPI and 
summer mean precipitation 

  692 



30 
 

Table 2. Descriptions of six uncorrelated predictor variables used to fit preliminary niche 693 

models for Ivesia webberi. The three predictor variables used for the iterative niche models 694 

were selected from this pool. All predictors were resampled to 30 m resolution 695 

Predictor variable Relationship with species 

Actual 
evapotranspiration 
(AET) 

An estimate of the amount of water removed from an area by both 
evaporation and transpiration. AET, a direct predictor, is a proxy 
estimate of plant productivity 

Cosine aspect  Higher values indicate north-facing slopes, which receive less 
sunlight 

Perennial 
herbaceous 
vegetative cover 

A spatial vegetative cover delineation representing native grasses, 
perennial forbs, and cacti, which includes areas of I. webberi 
distribution. It is considered a representation of biotic interactions 
and accounting for community assemblage in sites harboring I. 
webberi  

Minimum monthly 
temperature 

A direct predictor that potentially influences plant distribution 
(Araújo & Rozenfeld, 2014). Vegetative and seed regeneration of I. 
webberi are dependent on cold stratification that characterizes late 
winter and early spring seasons 

Summer seasonal 
precipitation 

A direct predictor that potentially influences plant distribution. 
Summer precipitation causes surface runoffs which facilitate 
localized gravity-enhanced seed dispersal and colonization of 
empty niches. Precipitation and temperature in winter and spring 
seasons influence the phenology of I. webberi 

Topographic 
position index (TPI) 

A scale-dependent variable describing the elevation of a cell in 
relation to the mean elevation of the neighboring cells. At the scale 
of 333 m, TPI distinguishes between mountains and valleys in the 
study area. The study area is characterized by topographic 
heterogeneity which can limit dispersal and distribution, and also 
act as proxy for microclimatic conditions 

696 
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Table 3. Niche density, predicted habitat suitability, and distance of new locations to the nearest neighbor in the 697 

initial points 698 

Location name Finding Year Niche 

density 

Predicted 

habitat 

suitability 

Distance from 

known location 

(km) 

Wildcat Hill Opportunistic: discovered by Bureau of Land 

Management (BLM) staff during land surveys 

2018 0.27 0.73 8.07 

Unit 6 extension Model: predicted suitable sites near known 

location 

2018 0.87 0.59 0.38 

Smoke Creek Road Opportunistic: discovered during California 

Native Plant Society vegetative surveys  

2019 0.86 0.37 62.98 

Unit 4 extension Model: high predicted suitability 2020 0.38 0.62 0.03 

South end of HJWA Model: high predicted suitability 2020 0.58 0.64 2.99 

HJWA south end #2 Model: suitable sites near known location 2020 0.71 0.30 2.26 

Private land discovery #1 Model: suitable sites near known location 2020 0.21 0.21 1.39 

Private land discovery #2 Model: suitable sites near known location 2020 0.36 0.28 2.23 

New Smoke Creek Road Model: suitable sites near known location 2020 0.83 0.15 1.22 

699 
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FIGURES 700 

 701 

 702 

 703 
Figure 1. Variable contributions to the iterative niche modeling for Ivesia webberi from (a) 2015 704 

to (d) 2020. The three predictors used for each year of iterative modeling were selected from 705 

the preliminary modeling. Herb represents the perennial herbaceous vegetative cover, TPI 706 

stands for Topographic Position Index at 333 m, AET stands for cumulative actual 707 

evapotranspiration, aspect represents cosine-transformed aspect, while precip stands for 708 

summer mean precipitation 709 
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 710 

711 
Figure 2. Partial response plots showing the predicted probability of Ivesia webberi occurrence in a) Perennial herbaceous 712 

vegetative cover, b) summer mean precipitation, and c) Topographic Position Index. The partial response plots were 713 

generated using the Boosted Regression Trees, while the histogram represent the predicted values from 10,000 randomly 714 

sampled background points from the three variables used for the niche modeling. The partial response plots for each of 715 

the 10 model replicates of the six SDM algorithms are included in Figure S1 Supplemental Information. 716 

  717 
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 718 
Figure 3. Maps of the predicted geographical distribution of Ivesia webberi in the western Great Basin Desert, with both the 719 

original and new occurrence points overlay. Red colored pixels represent areas of predicted high probability of I. webberi 720 

occurrence, orange pixels represent intermediate probability of species occurrence, while blue pixels are predicted areas 721 

of zero to low probability of occurrence. The occurrence points in green are the original I. webberi occurrence points used 722 

for niche modeling, while yellow colored occurrence points represent the novel populations  723 
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 724 

 725 
Figure 4. Maps of the coefficients of variation within the ensemble predictions of Ivesia webberi in the western Great Basin 726 

Desert, with both the original and new occurrence points overlay. Red colored pixels represent areas of low prediction 727 

uncertainty, orange pixels represent intermediate prediction uncertainty, while blue pixels are predicted areas of high 728 

uncertainty in model predictions. 729 
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 730 

Figure 5. PCA biplot of the environmental predictors that influence Ivesia webberi niche in the western Great Basin Desert. 731 

These absence and presence data are combinations of initial (black) and new locations (red). The green area on the plot 732 

represents the environmental niche occupied only by the initial occurrences (unfilling), while the blue area represents a 733 

subset of the initial niche occupied by both initial and novel occurrences (stability) and pink colored areas represent a 734 

portion of the niche occupied only by the new locations (expansion). 735 

 736 



37 
 

  737 

Figure 6. Histogram plots of the randomized values for (a) niche overlap, measured as the Schoener’s D, (b) niche 738 

stability, (c) niche expansion, and (d) niche unfilling between the initial and novel occurrence locations for Ivesia webberi. 739 

The red bar on each plot represents the actual niche metric. For each niche estimate, 1000 randomizations were done 740 

using a niche similarity test that randomly shifts the centroids of the initial and novel realized niches. 741 
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  743 

Figure 7. Boxplots of the mean values (n=10 replicates each for six algorithms) of model performance in (a) area under 744 

curve (AUC) of the receiver operating characteristic (ROC) plot, (b) Boyce index (BI), (c) specificity, and (d) true skill 745 

statistic (TSS) across the years of iterative niche modeling (shown in x axes). 746 
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