Incompatibility and Interchangeability in Molecular Evolution

Daniel B. Sloan1,*, Jessica M. Warren2, Alissa M. Williams3, Shady A. Kuster4, Evan S. Forsythe1

1Department of Biology, Colorado State University. Fort Collins, CO, USA
2Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
3Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA

*Corresponding author: dan.sloan@colostate.edu
Abstract

There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes – even single nucleotide substitutions – create major epistatic incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to epistatic incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: 1) function in multisubunit enzyme complexes and protein-protein interactions, 2) sensitivity to changes in gene dosage, 3) rapid rate of sequence evolution, and 4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.

KEYWORDS

Cytonuclear, Epistasis, Horizontal Gene Transfer, Hybridization, Protein-Protein Interactions
Introduction

A casual scan of the literature could yield radically different – but equally justifiable – conclusions about the robustness of genetic systems, depending on which corners of biology a reader happens to stumble into. On one hand, mutations that alter a single nucleotide can inactivate an entire gene and even produce lethal effects (Eyre-Walker and Keightley 2007), illustrating the fragility of many genetic systems. In other cases, organisms are astonishingly tolerant of major changes, such as genome-wide modifications to the genetic code (Mukai, et al. 2017) or addition of entire genomes (Itaya, et al. 2005; Tagwerker, et al. 2012). This contrast is especially evident in molecular interactions between gene products. For example, a single nucleotide substitution in a mitochondrial tRNA gene present in natural populations of the fruit fly Drosophila simulans has been shown to produce major incompatibilities when paired with a single amino-acid substitution in an interacting aminoacyl-tRNA synthetase (aaRS) enzyme from Drosophila melanogaster (Meiklejohn, et al. 2013); and yet, aaRSs undergo widespread horizontal gene transfer (HGT) across disparate domains of life and functionally replace counterparts that are highly divergent in sequence (Figure 1) (Woese, et al. 2000). Similarly, a few amino acid substitutions in interacting subunits within the mitochondrial NADH dehydrogenase complex of swordtail fishes (Xiphophorus) appear to be responsible for a lethal incompatibility (Moran, et al. 2021); and yet, subunits within the mitochondrial ribosome, another mitonuclear (alphaproteobacterial-like) enzyme complex, have been entirely replaced by anciently divergent counterparts from plastid (cyanobacterial-like) or cytosolic (archaeal-like) ribosomes in some plant lineages (Adams, et al. 2002). Such observations lead us to ask whether there are general principles to explain why certain systems are prone to rapid evolution of epistatic incompatibilities while others remain interchangeable even after billions of years of divergence.

We specifically selected the foregoing examples from the field of mitochondrial biology because the endosymbiotic history of eukaryotes may be especially valuable for disentangling the mechanisms that preserve interchangeability or lead to incompatibilities. The repeated merging of evolutionary lineages associated with the acquisition of mitochondria, plastids, and other bacterial endosymbionts creates redundancies between genetic systems and ample supply of material for HGT (which is also known as endosymbiotic or intracellular gene transfer in this context) (Timmis, et al. 2004; Sloan, et al. 2018). Mitochondria and plastids retain their own genomes (albeit highly reduced ones) while also importing thousands of nuclear-encoded proteins. As a result, organellar functions depend on direct molecular interactions between gene products encoded in different genomes. For example, the major OXPHOS enzyme complexes responsible for cellular respiration are composed of both nuclear- and mitochondrial-encoded protein subunits (Rand, et al. 2004; Burton, et al. 2013). Even though they are found within the same cell, nuclear and cytoplasmic genomes can differ in key biological properties such as mode of inheritance, mutation rate, genome copy number, and expression level (Lynch, et al. 2006; Smith and Keeling 2015; Forsythe, et al.
2022). Such asymmetries can help test hypotheses regarding the evolutionary forces that contribute to genetic incompatibilities.

Here, we review biological examples that illustrate the broad spectrum that ranges from incompatibility to interchangeability at the molecular level, pointing to four general principles that may explain where specific genes and functional pathways are placed along this spectrum.

Epistatic incompatibilities exposed by hybridization and HGT

One of the central goals of evolutionary biology is to identify the genetic and molecular basis of reproductive barriers that lead diverging populations to eventually evolve into isolated species. Some common themes about the genomic architecture of reproductive isolation have emerged from analysis of natural and lab-generated hybrids, including the effect of inversions and other recombination suppressors (Schumer, et al. 2018; Schluter and Rieseberg 2022) and the disproportionate role of sex chromosomes (Presgraves 2008; Presgraves 2018).

Studies have also been increasingly successful in pinpointing examples of specific genes involved in postzygotic reproductive isolation in the form of so-called Bateson-Dobzhansky-Muller incompatibilities (BDMIs; Table 1) (Johnson 2010; Bozdag and Ono 2022). The growing list of these “speciation genes” is enriched for certain functional categories. We have already noted examples of mitonuclear incompatibilities associated with direct physical interactions between mitochondrial gene products and imported nuclear-encoded proteins (Meiklejohn, et al. 2013; Moran, et al. 2021). These and similar examples have suggested that mitochondrial genes are frequent contributors to reproductive isolation and speciation (Burton and Barreto 2012; Hill 2016; Sloan, et al. 2017; Postel and Touzet 2020; Bozdag and Ono 2022). Meanwhile, many of the nuclear genes that have been implicated in BDMIs are involved in various forms of genomic conflict and antagonistic coevolution, including centromere binding, transposable element activity, male sterility, testis-specific functions, and pathogen defense (Johnson 2010; Crespi and Nosil 2013; Sankararaman, et al. 2014; Serrato-Capuchina and Matute 2018; Postel and Touzet 2020; Schluter and Rieseberg 2022). These recurring functional themes suggest that certain genes are more prone than others to developing epistatic incompatibilities.

Although hybridization and introgression studies have been highly informative in identifying genetic incompatibilities, they are inherently limited to recent histories of divergence because they depend on lineages that remain at least partially interfertile. The history of HGT between more anciently divergent lineages provides an alternative avenue to determine which genes preferentially build up incompatibilities and which remain highly interchangeable. Comparative studies have been valuable in identifying biological features associated with genes that are especially likely or unlikely to undergo HGT (Rivera, et al. 1998; Sorek, et al. 2007; Cohen, et al. 2011; Creevey, et al. 2011; Baltrus 2013; Nagies, et al. 2020). Although most of this HGT work has focused on the gain of novel
functions, HGT can also result in the replacement of homologous genes and existing functions (Koonin, et al. 2001; Andam and Gogarten 2011; Creevey, et al. 2011; Huang and Yue 2013; Nagies, et al. 2020). Such examples of direct functional replacement via HGT are particularly relevant to the subject of this review because they inform our understanding of interchangeability.

Laboratory experiments have complemented comparative analyses of HGT by allowing for more controlled and systematic tests of gene transferability (Table 1). In one classic study, Sorek, et al. (2007) took advantage of the fact that early genome projects involved cloning shotgun gene libraries into *E. coli*. The authors reasoned that gaps in genome assemblies that required closing by PCR could be used to identify genes that hindered *E. coli* growth and viability. More generally, heterologous expression and mutant rescue experiments in systems such as yeast and *E. coli* are commonly employed to test hypothetical gene functions that have been inferred from sequence homology (Minet, et al. 1992; Sweasy and Loeb 1993; Perkins, et al. 1999; Osborn and Miller 2007; Hamza, et al. 2015). An implicit assumption of such approaches is that gene function is largely portable and interchangeable even when donor species come from radically different parts of the tree of life. Conversely, failure of such experiments may reflect incompatibilities between a donor gene and the recipient species (Dick and Trumpower 1998; diCenzo, et al. 2017).

More targeted studies have also directly tested for genetic incompatibilities by generating chimeric enzyme complexes with subunits derived from two different species or complexes with an altered mix of paralogous subunits (Kanenvski, et al. 1999; Kim, et al. 2009; Abdel-Ghany, et al. 2022). Likewise, cytoplasmic hybrid (cybrid) experiments, in which the nuclear genome of one species must function with the cytoplasmic genomes of another species, have documented incompatibilities associated with divergence between lineages (Kenyon and Moraes 1997; Schmitz-Linnweber, et al. 2005). Overall, this array of comparative and experimental approaches has provided extensive examples of genetic incompatibility, which we will draw on in this review.

Functional interchangeability can be maintained across ancient timescales

The preceding section emphasized that genetic incompatibilities can have severe effects on molecular interactions and sometimes emerge over short timescales. However, comparisons across the tree of life have revealed contrasting examples, in which genes with core cellular functions have been exchanged across anciently divergent lineages and still retained their functions (Table 2). In addition, laboratory experiments have been able to reconstitute complex molecular machinery with components from diverse donor species (McClintock, et al. 2018). In this section, we overview some of the striking examples of interchangeability in molecular evolution.

As noted above, aaRS enzymes have undergone extensive HGT among all domains of life (Woese, et al. 2000). Such patterns of interchangeability are also observed in tRNAs themselves. Mitochondria inherited tRNA genes from their bacterial progenitor, and some eukaryotes have
retained a minimally complete set of these genes in the mitochondrial genome, but multiple lineages have lost many or all of them (Adams and Palmer 2003; Pett and Lavrov 2015; Salinas-Giegé, et al. 2015). There are no known cases in which these tRNA genes have been transferred to the nucleus and targeted back to the mitochondria. Instead, mitochondrial tRNA gene loss has been accompanied by the import of the nuclear-encoded tRNAs that normally function in the cytosol, meaning bacterial-like tRNAs were replaced by their anciently divergent eukaryotic counterparts (Salinas-Giegé, et al. 2015; Warren, et al. 2021).

In other cases, the establishment and integration of endosymbiotic bacteria and organelles into eukaryotic hosts cells has depended on gene transfer to the nucleus. Surprisingly, however, many such transfers have not come directly from the endosymbiont but instead originated from other bacterial donors, suggesting replacement of machinery originally contributed by the endosymbiont. For example, peptidoglycan is one of the defining features of the bacterial cell wall, and peptidoglycan biosynthesis in some plastids and endosymbiotic bacteria is now controlled by nuclear genes. But phylogenetic analyses have traced these peptidoglycan biosynthesis genes to disparate bacterial lineages (Husnik, et al. 2013; Sato and Takano 2017; Dowson, et al. 2022), meaning that the native enzymes originally present in the endosymbionts have been functionally replaced by homologs from entirely different phyla. Such examples support the broader argument that establishment of endosymbiotic relationships may often involve a series of multiple relationships that leave genetic footprints (Larkum, et al. 2007; Bennett and Moran 2015; Gray 2015).

The history of interchangeability in molecular evolution also extends to arguably the most fundamental processes of life – the replication and transcription of nucleic acids. For example, the DNA polymerase responsible for replication of mitochondrial DNA in animals, fungi, and other opisthokonts is not bacterial-like, contrary to what might be expected given the origins of mitochondria. Instead, the ancestral DNA polymerase has been functionally replaced by a viral-like polymerase; likewise, all eukaryotes appear to use viral-like machinery for helicase activity and transcription in their mitochondria (Shutt and Gray 2006), and the plastid genome of the cryptophyte Rhodomonas salina CCMP1319 was found to have acquired a gene encoding a putative DNA polymerase subunit from an unrelated bacterial lineage (Khan, et al. 2007).

The foregoing examples highlight the widespread history of functional replacement between homologous genes across the tree of life (Creevey, et al. 2011; Nagies, et al. 2020). However, in even more extreme cases, native machinery can be replaced by a non-homologous molecular system that plays a similar functional role (Table 2). Such replacements are possible because many enzymes that catalyze the same reaction have evolved independently (e.g., the multiple structurally distinct superoxide dismutases distributed across the tree of life) (Omelchenko, et al. 2010; Sutherland, et al. 2021).
A striking example of non-homologous replacement involves the key roles of mitochondria in production of iron-sulfur clusters, which are so essential that parasitic eukaryotes that lose the ability to generate ATP through cellular respiration still retain mitochondrion-related organelles to perform this function (Tovar, et al. 2003). The only known exception is the oxymonad Monocercomonoides, which appears to have lost mitochondria entirely. This loss was likely facilitated by HGT and the acquisition of a bacterial-like sulfur mobilization system (SUF) system as a non-homologous alternative to produce iron-sulfur clusters (Karnkowska, et al. 2016).

Above, we highlighted tRNAs and aaRSs as striking examples of homologous functional replacement. However, lysine aaRSs have also been involved in non-homologous replacement events. Lysine is the only aaRS with representatives in both of the (evolutionarily unrelated) Class I and Class II families, and these two alternative forms have undergone numerous functional replacement via HGT (Shaul, et al. 2006). The enzyme responsible for processing the 5′ ends of tRNAs (RNase P) provides another example of interchangeability in tRNA metabolism, involving machinery that is functionally analogous but non-homologous. The discovery that the catalytic activity of RNase P was conferred by an RNA and not a protein was a groundbreaking advance in the history of molecular biology, illustrating that RNAs can have enzymatic activity (ribozymes) (Guerrier-Takada, et al. 1983). As such, it came as a great surprise when it was later shown that RNase P activity in plant and animal mitochondria is mediated by a protein-only enzyme (Holzmann, et al. 2008; Gobert, et al. 2010). It has since become clear that both the ribozyme and protein-only versions of RNase P were ancestrally present in eukaryotes, and the subsequent history of differential gene retention and loss across lineages has determined which of these interchangeable versions now plays the functional role in tRNA processing (Lechner, et al. 2015).

A striking case of interchangeable but non-homologous machinery arises from the challenge of maintaining telomeres at the linear ends of chromosomes. Most eukaryotes extend their telomeres using the ribonucleoprotein telomerase complex, which relies on reverse transcription of a non-coding RNA to synthesize telomeric DNA (Podlevsky and Chen 2016). However, in several lineages, this function has been replaced by alternative mechanisms. For example, in Drosophila, telomeres are extended via a transposon-mediated system (Biessmann, et al. 1990; Levis, et al. 1993; Louis 2002) and a similar transition from telomerase-mediated to transposon-mediated telomere maintenance appears to have evolved independently multiple times in insects (Fujiwara, et al. 2005; Mason, et al. 2016). Mosquitos use yet another mechanism – one based on recombination – to extend telomeres (Roth, et al. 1997). In addition, yeast lacking functional telomerase as well as certain human cancer lines have also been shown to perform recombination-mediated telomere elongation (Lundblad 2002; van Mourik, et al. 2016; Zhang and Zou 2020), and Myotis bats also appear to use an alternative to the standard telomerase mechanism (Foley, et al. 2018). Collectively, such examples illustrate the incredible extent to which evolution has produced alternative systems to
solve the same problems and how such systems can sometimes be transferred across disparate branches in the tree of life.

Genetic principles that determine balance between incompatibility and interchangeability

How is it that some molecular systems rapidly evolve genetic incompatibilities while others remain interchangeable over deep evolutionary timescales? The answer to this question is undoubtedly complex and multifaceted, but below we point to four hypothesized genetic features that may contribute to where molecular systems fall on the incompatibility-interchangeability spectrum (Figure 2).

1. Multisubunit complexes and extent of protein-protein interactions. The “complexity hypothesis” and derivations thereof have suggested that interactions within stable multisubunit complexes as well as more transient protein interactions represent barriers to functional replacement (Jain, et al. 1999). There is extensive evidence that interacting proteins coevolve (Clark and Aquadro 2010; de Juan, et al. 2013; Forsythe, et al. 2021; Neverov, et al. 2021). Accordingly, disruption of these coevolved relationships through hybridization or HGT has the potential to produce incompatibilities (Swamy, et al. 2021). This concept has been supported by a number of systematic and genome-wide tests, most of which have identified a negative relationship between a gene’s number of protein-protein interactions and its propensity to undergo HGT (Jain, et al. 1999; Sorek, et al. 2007; Wellner, et al. 2007; Lercher and Pál 2008; Creevey, et al. 2011; Acar Kirit, et al. 2020; Burch, et al. 2022).

The ribosome is probably the most extensively documented example of a molecular system that is recalcitrant to functional replacement events. Because this massive, multisubunit enzyme complex appears to be largely (although not entirely) resistant to HGT, ribosomal gene trees are generally viewed as representative of species relationships even at deep phylogenetic scales (Adams, et al. 2002; Ciccarelli, et al. 2006; Creevey, et al. 2011; Burch, et al. 2022). In addition, the diverse range of interactions within the ribosome have facilitated more nuanced analyses. For example, ribosomal protein subunits with larger amounts of surface area in contact with ribosomal RNAs are more likely to produce incompatibilities (Sorek, et al. 2007). Therefore, the intimacy and not just the quantity of molecular interactions is likely important in restricting interchangeability.

Another set of multisubunit complexes that have long been predicted to be a source of incompatibilities even over short timescales of divergence are the OXPHOS enzymes found in mitochondria (Rand, et al. 2004; Burton and Barreto 2012; Hill 2016). This prediction arises from the following line of argument: 1) OXPHOS complexes are generally composed of both mitochondrial- and nuclear-encoded subunits, 2) mitochondrial genomes experience higher mutation rates and more rapid sequence evolution than in the nucleus in many eukaryotes, and 3) nuclear genes may
experience selection for coevolutionary responses to changes in interacting mitochondrial genes, resulting in co-adapted mitonuclear genotypes that are sensitive to disruption by hybridization. Analyses of evolutionary rates and signatures of selection have found indirect evidence of coevolution between mitochondrial- and nuclear-encoded subunits in these complexes (Osada and Akashi 2012; Havird, et al. 2015; Neverov, et al. 2021), and a number of nuclear-encoded proteins that function in other aspects of mitochondrial biology have been implicated in BDMIs (Table 1) (Sloan, et al. 2017; Bozdag and Ono 2022). However, specific examples of incompatibilities arising from interactions within OXPHOS complexes have remained somewhat limited (Burton 2022). Some of the most direct evidence with experimental support has come from examples of disrupted function in mitonuclear OXPHOS complexes in marine copepod hybrids (Ellison and Burton 2006; Harrison and Burton 2006) and the recently identified example of a lethal interaction within OXPHOS Complex I in hybrid swordtail fish (Moran, et al. 2021). As the tools to pinpoint such incompatibilities improve, it should become clear whether these examples are generalizable.

In some cases, the coevolved interactions among subunits within enzyme complexes may be discriminating enough to preclude any opportunity for functional replacement by horizontally transferred homologs. For example, the bacterial acetyl-CoA carboxylase (ACCase) enzyme consists of multiple subunits and catalyzes the conversion of acetyl-CoA to malonyl-CoA, a key early step in fatty acid biosynthesis (Salie and Thelen 2016). Experimentally transferring genes encoding one of the ACCase subunits from divergent bacterial donors into E. coli, which encodes its own native copies of these subunits, had negligible effects on measured growth rates; however, the reason for these limited fitness consequences appeared to be that the foreign subunits were too divergent to even assemble or interact with the native subunits at all (Wellner and Gophna 2008). Thus, there does not appear to be any potential to functionally replace the native gene with one of these foreign copies.

Protein-protein interactions and multisubunit complexes are thought to represent a barrier to functional replacement because preservation of coevolved interactions in these cases would necessitate simultaneous exchange and subsequent retention of multiple genes. Even though such multi-gene replacements may occur (Waller, et al. 2006; Monier, et al. 2009; Karnkowska, et al. 2016), they are expected to be less probable than single-gene replacements (Keeling and Palmer 2008), which may explain some observed patterns of asymmetry in interchangeability. For example, plants typically have two distinct ACCase enzymes: 1) a typical eukaryotic multi-domain homomeric ACCase that is encoded by a single gene and functions in the cytosol and 2) an endosymbiotically acquired bacterial-like heteromeric ACCase that consists of four different subunits and functions in the plastids. However, in multiple independent angiosperm lineages, the homomeric ACCase has been duplicated and now functions in both the cytosol and the plastids, in some cases leading to the loss of the heteromeric complex altogether (Konishi, et al. 1996; Parker, et al. 2014; Park, et al. 2016).
2017; Williams, et al. 2022). In contrast, the subunits of the heteromeric ACCase have not been found to be duplicated and retargeted to the cytosol. Similarly, mitochondria use one of two different systems to perform heme attachment as part of cytochrome c maturation. Many eukaryotes retain the ancestral bacterial-like enzyme, which consists of subunits encoded by six or more genes; however, this heteromeric complex has been lost and replaced by a single-gene system (the holocytchrome c synthase or HCCS) many times throughout eukaryotic evolution (Babbitt, et al. 2015), a process which has likely included a history of HGT among eukaryotes (Allen, et al. 2008).

These recurring histories of replacement supports the notion that transitions from multi-gene to single-gene systems are easier than the reverse process. The history of functional replacement of mitochondrial aaRSs by their cytosolic counterparts also provides evidence for limitations imposed by multisubunit complexes in these replacement events. As described above, many lineages have lost some or all of their bacterial-like mitochondrial tRNA genes in favor of importing eukaryotic-like (nuclear) tRNAs from the cytosol (Salinas-Giegé, et al. 2015). In such cases, it is common for the corresponding mitochondrial aaRSs to also be lost and replaced by retargeted cytosolic aaRSs, preserving the ancestral aaRS-tRNA charging relationship. However, the most notable and consistent exception to this appears to be the cytosolic phenylalanine aaRS. This enzyme is the only of the cytosolic aaRSs to be expressed as two different subunits, which likely hinder retargeting and functional replacement of its mitochondrial aaRS counterpart (Pett and Lavrov 2015; Warren and Sloan 2022). Therefore, in cases of mitochondrial tRNA-Phe loss, the native mitochondrial phenylalanine aaRS is retained and presumably must adapt to charge the newly imported cytosolic tRNA.

The idea that aaRSs could readily evolve to charge a novel tRNA substrate (see above) or undergo HGT across divergent lineages that span the tree of life (Woese, et al. 2000) may seem surprising given the need for faithful aaRS-tRNA recognition in translation, but such evolutionary events may reinforce the hypothesized effects of molecular interactions in functional replacement. Accurate tRNA charging is generally achieved through the interaction between just two molecular components (the tRNA and the aaRS), and this interaction itself relies on a very small number of "identity elements" within the tRNA (Giegé, et al. 1998). As such, the limited scope of molecular interactions may make aaRSs a relatively "modular" enzyme class and, thus, explain why they seem so amenable to HGT and functional replacement. The contrasting histories of plant and animal mitochondrial tRNAs offer some support for this interpretation. Plant mitochondrial tRNA genes have shown an extensive history of interchangeability and functional replacement (Small, et al. 1999; Warren and Sloan 2020), which may indicate that the slow rate of sequence evolution in these genomes (Wolfe, et al. 1987) has led to conserved tRNA sequences and structures that retain similarities with other translation systems. In contrast, animal mitochondrial tRNAs often have highly divergent sequences and non-canonical structures (Watanabe 2010; Salinas-Giegé, et al. 2015;
Warren and Sloan 2021), which may have resulted in highly coevolved and “locked in” relationships
with their dedicated aaRSs. The very specific but limited basis of tRNA recognition may also help
resolve the apparent paradox that we highlighted in the Introduction. Whereas interchangeability
may be maintained as long as the key tRNA identity elements are present, even small changes in
sequence could lead to severe effects if they happen to disrupt this basis of recognition (Giegé, et al.

The hypothesis that functional replacement is more likely to occur for proteins with limited
molecular interactions is also supported by examples such as the extensive HGT in the
peptidoglycan biosynthesis pathway for endosymbiotic bacteria/organelles (Husnik, et al. 2013; Sato
and Takano 2017; Dowson, et al. 2022). The enzymes in this pathway catalyze individual reactions
in series and do not assemble into large multisubunit complexes (Lovering, et al. 2012). Likewise,
the enzymes that act sequentially in the glycolysis pathway of eukaryotes are of
endosymbiotic/bacterial origin and replaced the ancestral host machinery (Bártulos, et al. 2018).

More generally, the complexity hypothesis was initially conceived based on observations that
“operational genes” (i.e., those involved in metabolic and housekeeping functions) are more likely to
undergo HGT and less likely to be involved in extensive protein-protein interactions (Jain, et al.
1999). As we have described in this section, subsequent studies in the last two decades have
produced growing evidence that multisubunit complexes and protein-protein interactions can
accelerate the accumulation of genetic incompatibilities and, thus, limit interchangeability.

2. Sensitivity to changes in gene dosage. Genes that are sensitive to changes in dosage (i.e., gene
copy number and/or expression level) are often toxic when experimentally introduced into a host
(Sorek, et al. 2007; Acar Kirit, et al. 2020). As such, dosage sensitivity may be a natural barrier to
functional replacement because such replacements can entail a period of redundancy between
native and foreign gene copies and, thus, changes in total expression level. Even in cases where
direct homologous replacements have been engineered, expression levels can change with
detrimental effects on fitness (Lind, et al. 2010; Bershtein, et al. 2015). Dosage sensitivity is a
widespread biological phenomenon and has been linked to the concept of gene “balance” (Papp, et
al. 2003). Specifically, shifts in gene copy number or expression levels may disrupt molecular
interactions that most occur at specific stoichiometric ratios. This phenomenon is thought to explain
why whole-genome duplication (polyploidy) is often better tolerated than partial-genome duplication
(aneuploidy) in many eukaryotes because the former generally maintains the same ratio of gene
copy numbers, whereas the latter perturbs these ratios (Birchler and Veitia 2012).

One prediction arising from this dosage hypothesis is that genes that exhibit frequent
functional replacement events can also readily be found in transitional states in which both copies
are functional, implying that dosage effects of expressing two copies are not prohibitively costly. For
example, as described above, the plastid heteromeric ACCase has been replaced in some taxa by importing the homomeric cytosolic ACCase, and species with both versions functioning in the plastid simultaneously have also been identified (Konishi, et al. 1996; Parker, et al. 2014; Park, et al. 2017; Williams, et al. 2022). Similarly, functional replacement of mitochondrial tRNAs by import of their cytosolic counterparts has been a common theme in eukaryotic evolution (Salinas-Giegé, et al. 2015), and this replacement process appears to involve a phase of functional redundancy in which both types of tRNAs are simultaneously present in the mitochondria (Warren, et al. 2021). More generally, this dosage hypothesis is supported by findings from genomic comparisons that genes that are preferentially maintained as single copy tend to be more resistant to HGT (Sorek, et al. 2007).

Dosage effects may also apply to nonhomologous replacement. For example, it has been hypothesized that maintaining two distinct siderophore biosynthesis pathways (desferrioxamine or salinichelin) in Salinispora bacteria is harmful, explaining why the two pathways are never found in the same strain (Bruns, et al. 2018). It is unclear whether such a cost is mediated by dosage effects, but it at least indicates any selective advantages from higher dosage and expression of two distinct pathways are insufficient to select for retention of both pathways. In this case, however, any barriers imposed by harmful redundancy have not (fully) prevented functional replacement, because multiple independent replacement events have been observed for these siderophore pathways.

Overall, these lines of evidence indicate that dosage sensitivity is a significant contributor to incompatibilities. As such, it is not just the nature of physical interactions that limits interchangeability but also the balance associated with levels of gene expression.

3. Evolutionary rate. Genes can evolve at remarkably different rates due to variation in the strength and efficacy of selection, the balance between positive and purifying selection, and differences in the underlying mutation rate (Bromham 2009). Because sequence divergence is expected to drive the accumulation of genetic incompatibilities (Presgraves 2010), genes with faster evolutionary rates may be less interchangeable. This hypothesis is supported by observations that the level of sequence divergence between taxa is negatively correlated with frequencies of HGT (Popa, et al. 2011; Skippington and Ragan 2012; Williams, et al. 2012; Slomka, et al. 2020) and the ability of genes to functionally replace their homologs (Lind, et al. 2010; Kacar, et al. 2017). However, the overall level of sequence divergence confounds differences in divergence time with the effects of variation in evolutionary rate per se. Burch, et al. (2022) recently differentiated between these effects by comparing the transferability of orthologous genes from the same pairs of donor and recipient bacterial species. As such, divergence time is held constant so any differences in sequence divergence can be attributed to variation in evolutionary rates. This analysis found that genes with
high rates of sequence divergence were indeed less amenable to HGT and that this relationship is stronger for genes involved in large numbers of protein-protein interactions.

In eukaryotes, cytonuclear interactions have been particularly useful in testing for rate effects because there are often systematic differences in evolutionary rates between the mitochondrial (or plastid) genome and the nucleus (Wolfe, et al. 1987). For example, animal mitochondrial genomes often evolve substantially faster than the nuclear genome; thus, the accumulation of mitochondrial changes has been predicted to drive the coevolutionary process and select for compensatory responses in nuclear-encoded proteins that are targeted to the mitochondria (Rand, et al. 2004; Burton, et al. 2013). Osada and Akashi (2012) tested for this predicted asymmetry using primate sequence data for proteins in the mitochondrial cytochrome c oxidase complex, showing that substitutions in mitochondrial-encoded subunits tended to precede substitutions at nearby sites in nuclear-encoded subunits. This apparent selection for compensatory or coevolutionary changes is one explanation for the observation that proteins targeted to the mitochondria often evolve faster than other nuclear-encoded proteins (Barreto and Burton 2013). Taxa in which the rate of mitochondrial or plastid sequence evolution show large variation among closely related species have been especially useful for tests of these coevolutionary principles. Such tests have found strong correlations between evolutionary rates of cytoplasmic genomes and interacting nuclear-encoded proteins (Zhang, et al. 2015; Weng, et al. 2016; Havird, et al. 2017; Yan, et al. 2019; Forsythe, et al. 2021).

Although accelerated rates and coevolutionary signatures from comparative genomic studies are often assumed to be associated with a faster buildup of incompatibilities between divergent taxa, direct functional tests of this assumption have been rare. Nonetheless, some more targeted functional studies have engineered chimeric enzyme complexes or interaction networks by substituting in genes from donor species with varying levels of sequence divergence (Asai, et al. 1999; Lind, et al. 2010; Bershtein, et al. 2015; Kacar, et al. 2017). For example, Kanevski, et al. (1999) engineered a rubisco enzyme complex in tobacco consisting of the native nuclear-encoded small subunit and a plastid-encoded large subunit that had been transferred from sunflower. This chimeric enzyme was able to successfully maintain partial rubisco functionality. However, the same was not true for attempts using a large subunit gene from a more distant (cyanobacterial) donor, supporting the expectation that the age of divergence between donor and recipient lineages contributes to accumulation of genetic incompatibilities. More recently, experiments used flowering plants that differed dramatically in their historical rates of sequence evolution for the plastid-encoded ClpP1 protein as donors to replace the native tobacco copy in another plastid-nuclear enzyme complex (the caseinolytic protease), finding that a history of accelerated sequence divergence hindered functional replacement (Abdel-Ghany, et al. 2022). By using donors from the same genus
While cytonuclear interactions have been valuable in testing and teasing apart effects of evolutionary rate, such effects are also expected to pertain to nuclear-nuclear interactions. For example, the PRDM9 gene is the best characterized example of a locus contributing to reproductive incompatibilities in mammals, and it undergoes unusually fast rates of sequence evolution (Mihola, et al. 2009; Oliver, et al. 2009). This gene is involved in determining hotspots for meiotic recombination by recognizing specific DNA sequence motifs, and its rapid evolution may reflect perpetual selection to recognize new motifs to counterbalance the predicted depletion of existing hotspots through recombinational mechanisms (Ponting 2011; Paigen and Petkov 2018). More generally, the antagonistic coevolution that is often associated with genomic conflict can often lead to rapid rates of sequence evolution, which may explain why genes involved in such conflict are often involved in BDMIs and reproductive isolation (Johnson 2010; Crespi and Nosil 2013; Sankararaman, et al. 2014; Serrato-Capuchina and Matute 2018; Postel and Touzet 2020; Schluter and Rieseberg 2022). Therefore, differences in rates of sequence evolution appear to affect the balance between incompatibility and interchangeability in disparate evolutionary lineages.

4. Overall functional importance. Perhaps the simplest and most intuitive hypothesis to explain observed variation in interchangeability is that the molecular systems that are especially important to cell viability and sensitive to disruption may be the most resistant to functional replacement. The rationale would be that the process of functional replacement inevitably involves some degree of perturbation to molecular systems, which would create more severe “fitness valleys” when they affect highly important genes. There is clear evidence that introduction of foreign genes and other forms of functional replacement can be disruptive through changes in protein homeostasis, increased cytotoxicity, and inefficient gene expression (Park and Zhang 2012; Baltrus 2013; Bershtein, et al. 2015; Bedhomme, et al. 2019). Even though subsequent evolution can lead to “amelioration” of such effects (Lawrence and Ochman 1997), the immediate harmful consequences may present too great a barrier to overcome for long-term functional replacement to occur, especially in the most constrained molecular systems.

Multiple observations support the hypothesis that functionally constrained genes are more resistant to replacement. For example, highly expressed genes are generally more conserved and have been shown to be less likely to undergo HGT (Park and Zhang 2012). In these cases, the barriers imposed by high expression may be associated with cytotoxic effects of inefficient translation and protein misfolding (Drummond, et al. 2005; Zhang and Yang 2015).

Many of the core components of molecular biology were present in the common ancestor of all extant cellular organisms and are near-universally conserved across the tree of life. Such
systems are likely among the most important to cell function, and many of these appear to undergo
lower rates of HGT and functional replacement than the rest of the genome (Jain, et al. 1999;
Fournier and Gogarten 2010; Koonin 2016). Indeed, the genealogical histories of proteins such as
elongation factors G and Tu, RNA polymerase β chain, DNA polymerase III, signal recognition
particle protein, and many ribosomal proteins closely resemble the structure of the tree of life with
little history of reticulation (Brown, et al. 2002).

A more direct measure of a gene’s functional importance is the fitness effects associated
with mutating it or knocking it out. At the extreme, many genes are considered essential because
disrupting their function results in lethality (Glass, et al. 2006; Wang, et al. 2015). As noted above,
proteins that have extensive molecular interactions are more resistant to functional replacement.
Under what is known as the centrality-lethality rule, these genes that encode highly interacting
proteins are also more likely to be essential (Jeong, et al. 2001; Hahn and Kern 2005; Wellner, et al.
2007; Zotenko, et al. 2008). The relatively rare cases where functional replacement of these
essential molecular systems does occur may also be informative. For example, turnover of some
core biochemical and molecular genetic machinery has been documented for mitochondria, plastids,
and other bacterial endosymbionts (Hess and Börner 1999; Adams, et al. 2002; Shutt and Gray
2006; Husnik, et al. 2013; Gray 2015). In all these cases, the history of endosymbiosis has likely
resulted in extreme bottlenecks and relaxation of selection pressures (McCutcheon and Moran
2012), which may have created a more permissive environment for functional replacement events
that would have otherwise been too harmful. In the extreme, genetic degeneration in endosymbionts
may be so severe that functional replacement events are not only tolerated but actually promoted by
selection as a form of genetic “rescue” (Bennett and Moran 2015).

Overall, these lines of evidence all point to a role of functional importance in determining the
balance between interchangeability and incompatibility.

Open questions and future directions

In this concluding section, we point to five areas where there may be opportunities to build on recent
progress in our understanding of evolutionary forces that shape the process of functional
replacement.

Multifunctional proteins: the role of pleiotropy in evolution of incompatibilities. One intuitive prediction
is that genes that have multiple functions and affect multiple phenotypes (i.e., pleiotropy) will be
more prone to genetic incompatibilities. However, to our knowledge, the relationship between
pleiotropy and a gene’s amenability to functional replacement has not been directly tested. It has
long been suspected that pleiotropy could act as a constraint on evolution (Fisher 1930; Orr 2000;
Ngo, et al. 2022). There is evidence that pleiotropic genes occupy central positions in protein-protein
interaction networks (Promislow 2004). As we have discussed, such interactions are expected to
directly affect a gene’s interchangeability. In addition, genes with extensive protein-protein
interactions also exhibit slower sequence evolution (Fraser 2005; Hahn and Kern 2005; Ngo, et al.
2022) and more constrained gene expression (Lemos, et al. 2004; Papakostas, et al. 2014), which
may also affect interchangeability. Likewise, pleiotropic genes appear to have more substantial
phenotypic effects even when measured on a per-trait basis (Wang, et al. 2010). These patterns
suggest that pleiotropy will affect the rate at which genetic incompatibilities arise, and with the
establishment of genotype-phenotype maps on genome-wide scales (Wagner and Zhang 2011),
resources are increasingly available to test for such an effect.

Decoupling confounded variables: separating correlated genetic features and the phylogenetic
distribution of donor genes. Many of the genetic features we have discussed are not independent of
each other, resulting in confounding effects that are difficult to disentangle. For example, as noted
above, the functional importance of genes is associated with their degree of integration into protein-
cases, contributing factors are negatively correlated (e.g., functional importance and evolutionary
rate) and may mask each other’s effects. Although some attempts have been made to distinguish
the contributions of correlated variables (Cohen, et al. 2011; Burch, et al. 2022), separating such
effects remains a pressing challenge. For example, we hypothesize that genes that are widespread
across the tree of life would have a higher chance of functional replacement given the ample supply
of potential donors. However, at face value, the available data do not appear to support this
hypothesis, as the most anciently conserved and widely distributed genes exhibit less HGT (Jain, et
al. 1999; Brown, et al. 2002; Fournier and Gogarten 2010; Koonin 2016). However, this clearly
remains an open question, as it is possible that donor availability positively contributes to the
probability of replacement once the confounded effects of functional importance are controlled for.
More generally, addressing the challenge of correlated features may require experimental
manipulations to complement existing comparative and statistical approaches. For example, altering
environmental conditions or modifying gene regulatory systems could be means to control gene
expression levels during environmental transfers.

Beyond E. coli: expanding the taxonomic scope of experimental interchangeability studies.
Functional wet-lab analyses have provided a key complement to comparative-genomic and
phylogenetic approaches in understanding the mechanisms of molecular incompatibility and
interchangeability. Most of these groundbreaking studies have relied on the power of E. coli as a
model system for high-throughput transgenic analyses to systematically screen the effects of gene
transfer and functional replacement (Asai, et al. 1999; Sorek, et al. 2007; Bershtein, et al. 2015; Kacar, et al. 2017; Acar Kirit, et al. 2020). However, there are many reasons to expect that the principles dictating the outcome of functional replacement may depend on the recipient genome and cellular environment. With the growing resources available for engineering the genomes of yeast and multicellular eukaryotes, there are exciting prospects to expand this field of functional studies beyond E. coli.

Retracing the steps: use of ancestral protein reconstructions in functional assays. A rapidly growing approach in the field of molecular evolution involves the use of phylogenetics to infer the sequence of ancestral protein-coding genes, which can then be synthesized and expressed (Hochberg and Thornton 2017). Such reconstructed ancestral proteins can then be used for functional assays both in vitro and in vivo (Smith, et al. 2013; Kacar, et al. 2017; Hochberg, et al. 2020). This approach addresses a fundamental limitation of conventional molecular incompatibility/interchangeability studies, which are typically restricted to analysis of extant proteins. Instead, inclusion of ancestral proteins presents the exciting opportunity to recreate the order and timing of the step-wise evolutionary process by which incompatibilities emerge and to determine how this evolutionary process plays out on complex epistatic fitness landscapes.

Experimental evolution: capturing the functional replacement process on laboratory timescales. An exciting recent development is the increasing use of experimentally evolved bacterial populations and whole-genome sequencing to track the effects of HGT across generations in the lab (Chu, et al. 2018; Slomka, et al. 2020; Woods, et al. 2020; Power, et al. 2021; Nguyen, et al. 2022). These studies grow bacterial populations in the presence of various sources of donor DNA in the media or allow bacteria to evolve with other strains and potentially exchange DNA. As such, the outcomes of genetic exchange and functional replacements can be directly assessed under more realistic conditions of population growth and competition. Such approaches should create the opportunity to strategically manipulate donor and recipient genomes to further develop and test hypotheses about genetic features that affect the balance between incompatibility and interchangeability in molecular evolution.

ACKNOWLEDGEMENTS
We thank Charleston Ducote for contributions to the design of Figure 2A. Our work on molecular coevolution and mutation is supported by the National Science Foundation (NSF; IOS-2114641 and MCB-2048407) and the National Institutes of Health (NIH; R01 GM118046). SAK is supported by a predoctoral training fellowships from NIH (T32 GM132057) and the NSF Graduate Research
Fellowship Program. JMW is supported by a postdoctoral fellowship from the Howard Hughes Medical Institute Hanna H. Gray Fellows Program.
Figure 1. The paradox of interchangeability and incompatibility illustrated with aaRS genes: A) An example of interchangeability between anciently divergent copies of phenylalanine aaRS via HGT from archaea to the bacterial lineage that includes spirochaetes, represented here by *Borrelia burgdorferi* (Bb) (Woese, et al. 2000). Amino-acid sequences for phenylalanine aaRS orthologs were recovered with SHOOT (Emms and Kelly 2022) using *B. burgdorferi* (ADQ30774) as a query sequence, aligned with MAFFT (Katoh and Standley 2013), and used for maximum-likelihood phylogenetic inference with IQ-TREE (Minh, et al. 2020). Bipartitions with greater than 90% support from ultrafast bootstrap pseudoreplicates are indicated. Aligned sequences with full taxon names are provided as supplemental material (File S1). B) A contrasting example of aaRS-tRNA incompatibility based on only a single nucleotide substitution in the tRNA and a single amino-acid substitution in the aaRS. The structural model represents a tyrosine aaRS dimer (green) complexed with two tRNA- Tyr molecules (orange). The highlighted residues and base pairs indicate the positions that are homologous to sites where substitutions occurred in *Drosophila*, leading to an incompatibility (Meiklejohn, et al. 2013). The structural model is based on Protein Data Bank accession 1H3E (Yaremchuk, et al. 2002) and was visualized with Mol* (Sehnal, et al. 2021).
Figure 2. The origins of epistatic incompatibilities: A) Stylized representation of the coevolutionary process leading to incompatibilities between isolated evolutionary lineages. Interacting subunits (blue and orange) undergo evolutionary changes and coevolutionary responses, preserving functional interactions within a lineage but leading to incompatibilities between subunits when brought back together through hybridization or HGT. B) Summary of genetic principles that may determine the balance between interchangeability and incompatibility in specific molecular systems.

<table>
<thead>
<tr>
<th></th>
<th>Interchangeability</th>
<th>Incompatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomer or homomeric complex</td>
<td>Inensitive to changes in dosage/stoichiometry</td>
<td>Sensitive to changes in dosage/stoichiometry</td>
</tr>
<tr>
<td>Heteromeric mult-subunit complex</td>
<td>Evolves slowly</td>
<td>Evolves rapidly</td>
</tr>
<tr>
<td></td>
<td>Weak functional constraint</td>
<td>Intense functional constraint</td>
</tr>
</tbody>
</table>
Table 1. Examples of molecular genetic incompatibilities revealed by hybridization between recently
diverged lineage or by gene transfer (either natural or experimental) between more distantly related
taxa.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Incompatibilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drosophila</td>
<td>tRNA-aaRS mitonuclear interaction</td>
<td>(Meiklejohn, et al. 2013)</td>
</tr>
<tr>
<td>Drosophila</td>
<td>Lhr/Hmr heterochromatin interactions</td>
<td>(Brideau, et al. 2006)</td>
</tr>
<tr>
<td>Xiphophorus</td>
<td>OXPHOS Complex I mitonuclear interaction</td>
<td>(Moran, et al. 2021)</td>
</tr>
<tr>
<td>Mus</td>
<td>PRDM9 and recombination hotspots</td>
<td>(Mihola, et al. 2009)</td>
</tr>
<tr>
<td>Homo</td>
<td>Testis-specific genes</td>
<td>(Sankararaman, et al. 2014)</td>
</tr>
<tr>
<td>Saccharomyces</td>
<td>AEP2/OL11 mitonuclear interaction</td>
<td>(Lee, et al. 2008)</td>
</tr>
<tr>
<td>Oryza</td>
<td>S5 Proteases</td>
<td>(Chen, et al. 2008)</td>
</tr>
<tr>
<td>Arabidopsis</td>
<td>NLR immune receptor genes</td>
<td>(Chae, et al. 2014)</td>
</tr>
<tr>
<td>Transfer Incompatibilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree of Life</td>
<td>Ribosomal proteins</td>
<td>(Ciccarelli, et al. 2006; Sorek, et al. 2007)</td>
</tr>
<tr>
<td>Angiosperms</td>
<td>Plastid Clp protease</td>
<td>(Abdel-Ghany, et al. 2022)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>ACCase</td>
<td>(Wellner and Gophna 2008)</td>
</tr>
<tr>
<td>Sinorhizobium</td>
<td>BacA and plant nodulation coevolution</td>
<td>(diCenzo, et al. 2017)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>DNA replication machinery</td>
<td>(Jain, et al. 1999; Sorek, et al. 2007)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Elongation Factor Tu</td>
<td>(Kacar, et al. 2017)</td>
</tr>
<tr>
<td>Plants/Bacteria</td>
<td>Rubisco</td>
<td>(Kanevski, et al. 1999)</td>
</tr>
<tr>
<td>Bacteria</td>
<td>Dihydrofolate reductase</td>
<td>(Bershtein, et al. 2015)</td>
</tr>
</tbody>
</table>
Table 2. Examples of interchangeability in molecular interactions including both homologous and non-homologous replacement events.

<table>
<thead>
<tr>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homologous Replacement</td>
<td></td>
</tr>
<tr>
<td>Endosymbiont peptidoglycan biosynthesis (bacteria)</td>
<td>(Husnik, et al. 2013)</td>
</tr>
<tr>
<td>Plastid GAPDH (cellular tree of life)</td>
<td>(Keeling 2009)</td>
</tr>
<tr>
<td>Heteromeric and homomeric ACCase (cellular tree of life)</td>
<td>(Konishi, et al. 1996)</td>
</tr>
<tr>
<td>Mitochondrial DNA polymerase (cellular-viral tree of life)</td>
<td>(Shutt and Gray 2006)</td>
</tr>
<tr>
<td>Non-homologous Replacement</td>
<td></td>
</tr>
<tr>
<td>SUF sulfur mobilization system</td>
<td>(Karnkowska, et al. 2016)</td>
</tr>
<tr>
<td>Telomerase functions</td>
<td>Multiple (see text)</td>
</tr>
<tr>
<td>Cytochrome c maturation</td>
<td>(Babbitt, et al. 2015)</td>
</tr>
<tr>
<td>Siderophore biosynthesis</td>
<td>(Bruns, et al. 2018)</td>
</tr>
<tr>
<td>Class I and II LysRS</td>
<td>(Shaul, et al. 2006)</td>
</tr>
<tr>
<td>Ribozyme and Protein-Only Rnase P</td>
<td>(Lechner, et al. 2015)</td>
</tr>
<tr>
<td>Fructose-6-phosphate aldolase (FBA)</td>
<td>(Patron, et al. 2004)</td>
</tr>
<tr>
<td>Superoxide dismutase</td>
<td>(Sutherland, et al. 2021)</td>
</tr>
</tbody>
</table>

Konishi T, Shinohara K, Yamada K, Sasaki Y. 1996. Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant and Cell Physiology 37:117-122.

deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alpha-subunit
mRNA. Plant Cell 17:1815-1828.

P, Rosenthal GG. 2018. Natural selection interacts with recombination to shape the evolution of hybrid

Sehnal D, Bittrich S, Deshpande M, Svobodová R, Berka K, Bazgier V, Velankar S, Burley SK, Koča J,
Rose AS. 2021. Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular

with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same
organisms. BMC Evolutionary Biology 6:22.

Shutt TE, Gray MW. 2006. Bacteriophage origins of mitochondrial replication and transcription proteins.

Skippington E, Ragan MA. 2012. Phylogeny rather than ecology or lifestyle biases the construction of

Sloan DB, Havird JC, Sharbrough J. 2017. The on-again, off-again relationship between mitochondrial
genomes and species boundaries. Molecular ecology 26:2212-2236.

evolution of Bacillus subtilis reveals the evolutionary dynamics of horizontal gene transfer and suggests
adaptive and neutral effects. Genetics 216:543-558.

Small I, Akashi K, Chapron A, Dietrich A, Duchene AM, Lancelin D, Maréchal-Drouard L, Menand B,
Mireau H, Moudden Y. 1999. The strange evolutionary history of plant mitochondrial tRNAs and their
aminocla-y-ltRNA synthetases. JOURNAL OF HEREDITY 90:333-337.

Smith DR, Keeling PJ. 2015. Mitochondrial and plastid genome architecture: Reoccurring themes, but
significant differences at the extremes. Proceedings of the National Academy of Sciences 112:10177-
10184.

