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Abstract 20	

1. Machine (especially deep) learning algorithms are changing the way wildlife imagery is 21	

processed. They dramatically speed up the time to detect, count, classify	animals and their 22	

behaviours. Yet, we currently have a very few systematic literature surveys on its use in wildlife 23	

imagery. 24	

2. Through a literature survey (a ‘rapid’ review) and bibliometric mapping, we explored its use 25	

across: 1) species (vertebrates), 2) image types (e.g., camera traps, or drones), 3) study locations, 4) 26	

alternative machine learning algorithms, 5) outcomes (e.g., recognition, classification, or tracking), 27	

6) reporting quality and openness, 7) author affiliation, and 8) publication journal types.  28	

3. We found that increasing number of studies used convolutional neural networks (i.e., deep 29	

learning). Typically, studies have focused on large charismatic or iconic mammalian species . 30	

Increasing number of studies is published in ecology-specific journals indicating the uptake of deep 31	

learning to transform detection, classification and tracking of wildlife. Sharing of code was limited, 32	

with only 20% of studies providing links to analysis code.  33	

4. Much of the published research and focus on animals came from India, China, Australia, or the 34	

USA. There were relatively few collaborations across countries. Given the power of machine 35	

learning, we recommend increasing collaboration and sharing approaches to utilise increasing 36	

amounts of wildlife imagery more rapidly and transform and improve understanding of wildlife 37	

behaviour and conservation. 38	

5. Our survey augmented with bibliometric analyses provide valuable signposts for future studies to 39	

resolve and address shortcomings, gaps, and biases.  40	

KEYWORDS 41	

Conservation biology, field biology, big data, research weaving, drone imagery, systematic maps, 42	

evidence synthesis, deep learning	  43	
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1 | INTRODUCTION 44	

1.1 | Background 45	

Camera-trap, surveillance-video, and drone imagery are producing a deluge of digital data on 46	

wildlife (Koh & Wich, 2012; Meek et al., 2014; Allan et al., 2018; Weinstein, 2018; Tuia et al., 47	

2022; Besson et al. 2022). Processing these digital images typically requires a substantial outlay of 48	

resources and time. However, machine learning algorithms for computer vision are revolutionising 49	

the field. A type of machine learning, deep learning algorithms using neural networks, have 50	

contributed to the recent rise of efficient computer vision analysis pipelines (LeCun, Bengio & 51	

Hinton, 2015; Webb, 2018; Christin, Hervet & Lecomte, 2019; Lamba et al., 2019; Tuia et al., 52	

2022). For example, a well-trained deep learning model can process video recordings and camera 53	

trap data extremely efficiently, reducing ten years of manual human work to around one year by 54	

automating up to 99% of the entire (Norouzzadeh et al., 2018).  55	

This rapid and efficient processing opens possibilities for obtaining critical and detailed information 56	

on species’ ecology, demography, life history and behaviour at previously impossible temporal and 57	

spatial scales (Villa, Salazar & Vargas, 2017; Christin, Hervet & Lecomte, 2019; Lamba et al., 58	

2019; Tuia et al., 2022; Besson et al. 2022). This is increasingly useful for both in-situ and ex-situ 59	

conservation. Unsurprisingly, conservation biologists and wildlife biologists are progressively 60	

employing machine (deep) learning algorithms to process image data, often collaborating with 61	

computer scientists (e.g., Tabak et al., 2019; Willi et al., 2019). Review articles are also appearing 62	

on applications of machine (deep) learning can support ecological research and conservation (e.g., 63	

Christin, Hervet & Lecomte, 2019; Lamba et al., 2019; Nazir & Kaleem, 2021; Besson et al. 2022).  64	

Yet, there is no systematic survey of this emerging and important field (cf. Caravaggi et al., 2017; a 65	

review by Christin, Hervet & Lecomte, 2019 is mostly narrative and includes only a brief survey in 66	

one of its sections). There are two major and effective ways to map literature: systematic mapping 67	

and bibliometric mapping. Systematic mapping covers the state of knowledge, revealing the 68	
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knowledge clusters and research gaps (Haddaway et al., 2016). A bibliometric map augments this 69	

approach, providing information on the location of research (Cobo et al., 2011). This ‘research 70	

weaving’ can reveal differences between locations of wildlife research (field) and affiliation 71	

(Nakagawa et al., 2019); highlighting discrepancies in international collaboration, inequalities in 72	

study opportunities and field access (cf. Trisos, Auerbach & Katti, 2021).  73	

1.2 | Objectives 74	

We use a “Rapid Review” approach, which abbreviates the process of systematic maps by not being 75	

comprehensive, but being representative (Lagisz et al., 2022). Therefore, we accelerated some of 76	

the systematic-map processes by focusing on more recent articles and using one database. Such a 77	

accelerated review (mapping) is useful especially for a rapidly moving fields like the topic of this 78	

article. Notably, a fully comprehensive Systematic Review takes on average 2 years (Tricco et al, 79	

2015; Morah et al., 2017)and a Rapid Review can be completed in a few months (Schünemann et 80	

al., 2015; Haby et al., 2016), providing more timely, and usually unbiased, snapshot of the research 81	

knowledge (Ganann et al., 2010; Affengruber et al., 2020). In this work, we also use a ‘research 82	

weaving’ approach to incorporate bibliometric information in a systematic-like map of the empirical 83	

studies (Nakagawa et al., 2019), to provide deeper insights on the topic. First, we manually map the 84	

content of recent studies (published between 2017 and 2021) that were utilising machine learning to 85	

process wildlife imagery. For these studies, we attempt answer the following questions:  86	

1. What species and how many species were studied? 87	

2. What was the source of wildlife images (e.g., camera traps, surveillance cameras)? 88	

3. Where was the location (country) from which the wildlife image originated? 89	

4. What machine (deep) learning algorithms were used? 90	

5. What was the purpose or outcome of the study (e.g., individual recognition, behaviour 91	

detection)?  92	

6. Was source code to reproduce the analysis (i.e., analysis code) open and available?  93	
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With these questions, we aim to elucidate research trends, practices, gaps, and biases in the relevant 94	

literature, revealing future needs in this research area. 95	

Then, we augment the above questions with bibliometric analyses, which ask two additional 96	

questions:  97	

7. In which country was the study conducted? (Is it different to where images originated?) 98	

8. In what type of journal was the study published? (Biological sciences, computer science or 99	

multi-disciplinary journals?) 100	

These two additional questions relate to the aspects of diversity in this research area. The first 101	

question reveals internationality, while the second question indicates cross-disciplinary diversity. 102	

Overall, our research weaving of the literature aims to create some guideposts for future work.  103	

This article is also intended to show how to conduct such a rapid review or survey, which will be 104	

especially useful for scoping a topic of interest or summarising evidence base in a limited time 105	

(Lagisz et al., 2022). 106	

2 | MATERIALS AND METHODS 107	

We followed the ROSES (RepOrting standards for Systematic Evidence Syntheses) checklist for 108	

Systematic Maps (Haddaway et al., 2018) for rigorous reporting of our data collection process. 109	

Search string development, validation, piloted screening and data extraction process were pre-110	

piloted but not registered due to the rapid nature of this scoping-like review. Therefore, this is not a 111	

fully comprehensive systematic map, but it can be considered more as a map or literature survey on 112	

a group of representative articles revealing key trends and patterns.  113	

2.1 | Eligibility criteria  114	

We included publications in the last five years (2017-2021), where all criteria within an adapted 115	

PICO/PECO framework were fulfilled (Guyatt et al., 2011; Morgan et al., 2018): 116	
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P – Population: study subjects (in images) were wild or semi-wild vertebrate species (excluding 117	

domestic or farmed animals, invertebrates, and museum specimens). Datasets that included the 118	

target population but also contained images of other species (e.g., domesticated species or humans) 119	

were also allowed, however the non-target population species were not included in the analysis. 120	

I – Intervention / Innovation: use of computer vision machine learning algorithms (including Deep 121	

/Convolutional Neural Networks Support Vector Machines, Random Forests; Nacchia et al., 2021) 122	

for automated or semi-automated processing of image data (e.g., from camera traps, video tracking, 123	

thermal imaging; Nazir & Kaleem, 2021), at a scale where individual animals are visible (including 124	

aerial and drone images but excluding images gathered from satellites, biologging, X-ray, MRI 125	

images or equivalent).  126	

C – Comparator / Context: images from the wild or semi-wild (including zoo enclosures, but 127	

excluding lab-based or agricultural / aquaculture / pet studies). 128	

O – Outcomes: analyses focus on individual animal / species recognition / classification or animal 129	

behaviour recognition / classification. We recognised six main outcome types: "species 130	

recognition/classification (object detection)", "individual recognition (re-identification)", "counting 131	

individuals (at given time)", "tracking (following through space)”, “behaviour detection (at given 132	

time)”, “behaviour classification (changes over time)”. 133	

2.2 | Searches  134	

For a representative sample of multi-disciplinary literature, we ran a literature search using Scopus 135	

search engine on 2021/10/10 with a pre-piloted search string: ( TITLE-ABS-KEY ( ( *automatic* 136	

OR “machine learning” OR “computer learning” OR “deep learning” OR “neural network*” OR 137	

“random forest*” OR “convolutional neural” OR “convolutional network*” OR “learning 138	

algorithm*” OR “Support Vector*” ) AND ( image* OR camera* OR video* OR vision ) AND 139	

( *wild* OR population* OR “species identif*” OR “species label*” OR “species richness” OR 140	

( behavio* AND within/ 10 classif* ) OR ( behavio* AND within/ 10 recogn* ) ) AND NOT 141	



7	
	

( “natural language” OR “sign language” OR accelomet* OR clinical* OR industr* OR agricult* 142	

OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR wildfire* OR 143	

“tree growth” OR forestry OR hydrolog* OR engineer* OR “oxygen species” OR molec* OR 144	

bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* 145	

OR smoking OR disease OR diabet* OR landsat* OR sentinel OR satellite* OR “land cover” OR 146	

“land use” OR “vegetation map*” OR galax* OR “Google Earth” OR scan* OR “X-ray” OR 147	

“health care” OR participant* OR emotion* OR employee* OR speech OR proceedings ) ) ) AND 148	

PUBYEAR > 2016. We conducted a search update in 2022 to capture all articles published in 2021 149	

(details in Supplementary File 1). Further, we did not use language filters to ensure we captured 150	

literature from multiple countries. We chose Scopus as their bibliometric information was easy to 151	

handle than other databases such as the Web of Science (note that bibliometric information form 152	

two databases are usually not compatible to each other).  153	

2.3 | Article screening  154	

We used Rayyan QCRI software (Ouzzani et al., 2016) to screen bibliographic records downloaded 155	

from Scopus. Three researchers (ML, JT, RF) independently performed the screening, assessing 156	

titles, abstracts, and keywords of each article. This screening resulted in articles included for full-157	

text assessment and data extraction. We excluded publications without full text available, after 158	

contacting study authors via ResearchGate and waiting for around two weeks for their responses.  159	

2.4 | Data extraction and coding 160	

For data extraction from the articles with full text, we used a two-part custom questionnaire (details 161	

in Supplementary Materials) implemented as a Google Form. We used the first part of the form to 162	

re-assess the fulfilment of the inclusion criteria and the second part of the form to extract key data 163	

on the study content. At least two assessors	extracted the first 6% of the papers independently 164	

during the piloting round. One assessor (ML) extracted the remaining, and another assessor (RF) 165	

independently cross-checked extracted data. Assessors authoring articles considered within the 166	



8	
	

review were not involved in decisions regarding inclusion, extraction, or critical appraisal of their 167	

work. Apart from the data extracted via the questionnaire, we derived additional variables such as 168	

whether the full-text publication was included or excluded from the final dataset and the main 169	

reason for exclusion, extracted geographic coordinates for field-based studies. We coded whether 170	

location information was relatively precise or unclear. We also categorised publication journals into 171	

ecological, computer science-related and multidisciplinary. Details of data extraction and coding are 172	

provided in Supplementary File 1. 173	

2.5 | Critical appraisal 174	

As an indicator of reporting quality, we coded when we could not extract or infer information on 175	

key variables, such as sources of animal images (type of hardware and settings / locations), number 176	

of animal species / classes studied, and general types of machine learning algorithms used. We also 177	

coded whether the analysis code used in the study was available for checking or reuse. 178	

2.6 | Data synthesis and presentation 179	

We collated manually coded data in a single data table (Supplementary File 2) and supplemented it 180	

with bibliographic information from downloaded Scopus records. All data wrangling and 181	

visualisations were conducted in an R environment (R Development Team, 2022). Counts of 182	

articles within specific categories for each variable are presented as bar plots or stacked area plots, 183	

while spatial information (location of origins of animal images, first author affiliation country) is 184	

plotted as global distribution maps and alluvial plots using the ggplot2 (Wickham, 2016), 185	

rworldmap (South, 2011), and ggalluvial (Brunson, 2020), R packages. Species identities from 186	

single-species individual recognition studies are presented on a phylogenetic tree derived using the 187	

rotl package (Michonneau, Brown & Winter, 2016). Given that our data coding categories were pre-188	

defined, knowledge gaps and clusters were identified via visual inspection of the plots.  The 189	

narrative synthesis of our findings follows our key review questions. 190	
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3 | RESULTS 191	

3.1 | Searches, screening, and a database 192	

Our initial screening of 2,259 unique bibliographic records downloaded from Scopus resulted in 193	

225 articles for full-text assessment and data extraction. Of these 225 articles, we obtained full text 194	

for 215 articles. Out of the 215 full-text articles assessed, 23 were excluded (Supplementary File 1, 195	

Table S2), and 192 were eligible for data extraction (Supplementary File 1, Table S3). Search 196	

update provided additional 31 articles from 2021, bringing the total number to 223. The final 197	

dataset consists of 19 papers from 2017, 21 from 2018, 48 from 2019, 63 from 2020, and 72 from 198	

2021. 199	
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 200	

FIGURE 1. Diversity of the vertebrate species studied in the included machine learning studies. A 201	

– numbers of species / animal classes per study. B – counts of articles that studied each vertebrate 202	

class, C – counts of articles focused on a given species from one-species studies only (bar colours 203	
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are referring to vertebrate class from panel B). D - counts of articles focusing on a given species in 204	

one-species individual recognition (individual identification) studies only (bar colours referring to 205	

vertebrate classes from 1B) and a phylogenetic tree of the focus species. 206	

 207	

3.2 | Study characteristics 208	

3.2.1 | Study species and image types 209	

Most studies (58 studies, 30%) only examined one species (‘single-species’ studies) with one study 210	

dealing with 16,583 species (mean = 108, SD = 1,155, median = 3; Fig. 1 A). The most popular 211	

biological group among vertebrates was mammals (66% studies), followed by birds (27%), fishes 212	

(17%), reptiles (7%) and amphibians (2%)  (Fig. 1 B; some articles studied more than one class so 213	

that percentages do not total 100%). Forty-six species were used in single-species studies. Here, the 214	

most popular study animals were tigers (Panthera tigris), pandas (Ailuropoda melanoleuca) and 215	

koalas (Phascolarctos cinereus). In single-species studies, images of 16 species were used for 216	

individual recognition (re-identification) analyses, and these studies were dominated by mammals, 217	

especially large carnivores, cetaceans and primates (Fig. 1 D).  218	
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 219	

FIGURE 2. Diversity of the wildlife imagery analysed in machine learning studies. A - article 220	

counts by image source hardware type (one study could use more than one image type), B - 221	

temporal trends (annual counts) across the last five years. Colours are corresponding to image 222	

source hardware types shown in panel A; “other/unclear” category not shown. 223	

 224	

Around half of included studies used wildlife images from fixed cameras (50%), such as camera 225	

traps and surveillance cameras, while 30% of studies used images from hand (mobile) cameras, and 226	

16% of studies used aerial images from drones or aircraft (Fig. 2 A; some studies used more than 227	

one image type). Over the last five years, the use of images from fixed cameras and mobile cameras 228	

has markedly increased in terms of total numbers, while the use of aerial images remained stable 229	

(Fig. 2 B). 230	

 231	

 232	

25

36

68

112

other / unclear

aerial / drone

hand / mobile camera

fixed camera / camera trap

0 10 20 30 40 50 60 70 80 90 100 110
Article count

What types of images were studied?A

0

20

40

60

2017 2018 2019 2020 2021

Ar
tic

le
 c

ou
nt

How image source changed?B

Year



13	
	

 233	

FIGURE 3. Machine learning algorithm types and wildlife outcome types analysed in the included 234	

studies. A – article counts by algorithm type and outcome type (one study could use more than one 235	

type of each), B – temporal trends (annual counts) in types of algorithms used across the last five 236	

years; “other/unclear” category not shown. Algorithm types that were outside the main six 237	

categories or were described to vaguely to be classified were coded as “other / unclear”. 238	
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 239	

3.2.2 | Algorithms and outcomes 240	

Neural-networks were easily the most popular machine learning algorithms, appearing in 92% of 241	

included studies. This approach was often used alongside other approaches, such as Support Vector 242	

Machines (12% of studies), K-Nearest Neighbours (5%), and Random Forests (4%), or . other 243	

algorithms (13% of studies; e.g., Naïve Bayes, Bag of Visual Words, Histogram of Colors, Local 244	

Binary Patterns Histograms, Multi-class Logistic Regression, Principal Component Analysis, 245	

Linear Discriminant Analysis). Object recognition / classification, which involved object detection 246	

in the image, was the first and essential step mentioned in almost all (94%) studies. Additional steps 247	

of image processing included individual recognition (re-identification), counting individuals (at 248	

given time), tracking (following through space), behaviour detection (at given time), behaviour 249	

classification (changes over time). Individual recognition and re-identification were an objective of 250	

20% of studies. Counting the numbers of individuals was mentioned in 19% of studies). Few 251	

studies attempted to conduct behaviour detection (4%), classification (2%), or tracking (6%). Figure 252	

3 A shows frequencies of combinations of machine learning algorithms and outcome types 253	

mentioned in the included studies. Unsurprisingly,  neural networks were used in the context of all 254	

types of image processing outcomes (Fig. 3 A). Support Vector Machines were likely to be 255	

mentioned in the context of individua re-identification studies (16%). Fig. 3 B shows that the 256	

absolute usage of Support Vector Machines is stable of across the years, but the use of Neural 257	

Network algorithms is increasing over time, dominating the field. 258	

 259	

 260	

  261	
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 262	

FIGURE 4. Geographic distributions and overlaps in the affiliations of first study authors and the 263	

locations of the wildlife imagery. A – connecting author’s countries (in alphabetical order) and 264	
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image source geographic locations; only countries / locations with more than one study are shown. 265	

B – Visualisation of the relative number of articles that use images from the same country as the 266	

first author and where other sources of wildlife images are located (arrows pointing from the source 267	

towards the countries of the first authorship); “global” and “unclear” image source location 268	

categories not shown. 269	

 270	

3.2.3 | Geographical origin, affiliations, and journal types 271	

We analysed the countries of affiliation of the first authors of the included studies and locations of 272	

wildlife images used in the studies. The authors came from 44 different countries, but only 24 273	

countries had more than one study (Fig. 4 A; left column). The analysed images came from 41 274	

countries and 10 other location types, including ‘global’ and Antarctica (Fig. 4 A; right column). 275	

Three countries(Australia, China, and the USA) dominated the literature in terms of author 276	

affiliations and wildlife images. Datasets from the Antarctic, Africa and Southeast Asia were 277	

commonly analysed by researchers from other geographical areas (Fig. 4 B). There was especially 278	

strong international use of images by the United States, compared to Australia, the two largest 279	

generators of articles (Fig. 4 B). While all papers had more than one author, only 3 out of 200 280	

papers with complete bibliographic data on affiliations had authors from more than one country 281	

(Figure S9). 282	
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 283	

FIGURE 5.  Diversity of the journals publishing machine learning studies on wildlife imagery. A – 284	

temporal trends (annual counts) in three main journal subject disciplines across the last five years.B 285	

– article counts for journals with at least three articles included in our survey data set. 286	
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Although in 2017 most publications were in ‘computer science’ journals (usually computer science 288	

conference proceedings, but also more traditional journals such as “Lecture Notes in Computer 289	

Science”, “Remote Sensing”), increasing numbers of studies were published in ‘ecological’ journals 290	

over the last few years (Fig. 5 A). Indeed, the top two destinations of the surveyed papers were 291	

ecological journals: “Ecological Informatics” and “Methods in Ecology and Evolution” (Fig. 5 B).  292	
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 293	

FIGURE 6.  Aspects of reporting quality and openness of the included machine learning studies. A 294	

– percentages of relevant articles providing sufficient or insufficient information to code a given 295	

variable. B – article counts for studies that shared or did not share their analysis programming code. 296	
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“IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)” stood out as a 310	

positive example (75%; 3/4), followed by “Remote Sensing” (33%; 1/3). In contrast, only one study 311	

in “Lecture Notes in Computer Science” shared link to code (10%, 1/10) and none in 312	

“Communications in Computer and Information Science” (0%; 0/4) or “Advances in Intelligent 313	

Systems and Computing” (0%; 0/3). 314	

4 | DISCUSSION 315	

We characterised recent use of machine learning to process wildlife imagery, using systematic and 316	

bibliometric mapping techniques. We had eight questions regarding: 1) study species, 2) image 317	

types (e.g., the use of fixed camera / camera trap, hand / mobile camera, or aerial / drone), 3) study 318	

location, 4) machine learning algorithms, 5) study outcomes (e.g., species / individual recognition 319	

or counting), 6) reporting quality and openness, 7) author affiliation, and 8) journal types (see 320	

Section 1.2). We have profiled some clear patterns for each of these questions (Fig. 1 – 6). We 321	

discuss these patterns in four subsections below: i) Questions 1 & 2, ii) Questions 4 & 5, iii) 322	

Questions 3, 7 & 8, and iv) Question 6.  323	

4.1 | Study species and image types 324	

Studies mainly focused on large charismatic or iconic mammals such as the top three (tigers, 325	

pandas, and koalas), other big cats, cetaceans and primates, reflected in single-species studies and 326	

individual-recognition studies (Fig. 1 C, D). Birds were the second most popular taxon (Fig. 1 B), 327	

but only three species, Euarsian coot (Fulica atra), snow goose, Anser caerulescens (Bowley et al., 328	

2017; Bowley et al., 2018) and purple martin, Progne subis (Williams & DeLeon, 2019), were 329	

represented in single-species studies (Fig. 1 C). This is because multiple-species studies often 330	

focused on mammalian species, while occasionally also including large bird species (e.g., images 331	

from African savanna including ostrich; Rey et al., 2017; Loos, Weigel & Koehler, 2018). The 332	

paper with 16,583 species included an exceptionally wide range of species, because it tapped into 333	
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1.2 million images available on GBIF (the Global Biodiversity Information Facility; Mo, Frank & 334	

Vetrova, 2017). Other papers with over 100 species often dealt with a species recognition in a 335	

particular high-level taxon, such as birds (Ragib et al., 2020), fish (Sayed et al., 2018), and snakes 336	

(Picek et al., 2021). 337	

Researchers’ preference for certain taxa is known as taxonomic bias (Bonnet, Shine & Lourdais, 338	

2002; Donaldson et al., 2016), well known in the research literature, including conservation, 339	

behavioural ecology and ecotoxicology (Rosenthal et al., 2017; Troudet et al., 2017; Prosser et al., 340	

2021). The distribution of study species in our literature survey is in line with the anthropomorphic 341	

stimuli hypothesis that we humans are more attracted to species phylogenetically closer to us 342	

(Miralles, Raymond & Lecointre, 2019). This hypothesis explains the widespread use of mammals 343	

and primates (Fig. 1 B, C). Indeed, a recent comprehensive study, including 7,521 mammalian 344	

species, showed that phylogenetic relatedness was closely related to research interest, as reflected 345	

by the number of publications and citations (Tam et al., 2021), with primates overrepresented 346	

among the most popular species. In our survey, among the 16 species used for individual 347	

recognition, brown trout (Salmo trutta) and Eurasian coot (Fulica atra) did not fit in categories of 348	

iconic species or phylogenetic relatedness (all the other species were large mammals). However, the 349	

motivation behind the salmon study was related to human economic values – helping aquaculture 350	

and fishing tourism by tracing fish migration and distribution, (Zhao et al., 2019). In contrast, the 351	

study on Eurasian coot was a study exporing evolution of egg recognition in birds (Gómez et al., 352	

2021).  353	

Given the affordability and accessibility of fixed cameras (i.e., camera traps and surveillance 354	

cameras), it was not surprising that fixed cameras were most used among the surveyed studies (52% 355	

studies). Indeed, many machine learning applications have focused on camera traps in ecology and 356	

environmental sciences (cf. Caravaggi et al., 2017), with the dedicated book titled “Camera traps: 357	

wildlife management and research” (Meek et al., 2014). Notably, a combined total of the usage of 358	
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hand cameras (including mobile phones) and aerial (drone) wildlife images was nearly as high as 359	

that of fixed cameras (104 vs. 112 studies). However, the use of the fixed camera (especially 360	

camera traps) has been increasing rapidly, and this trend is likely to continue (Fig. 2 B). This trend 361	

may be driven by increasing availability of images from fixed cameras and camera traps via freely 362	

available biodiversity collections (e.g., GBIF and iNaturalist) and computer vision programming 363	

challenge platforms (e.g., ImageNet and Kaggle). 364	

 365	

4.2 | Algorithms and outcomes 366	

Most (∼94%) algorithms applied a	neural network approach to recognise and / or classify animals. 367	

Neural Networks or other machine leaning algorithms were used for all six different tasks: 1) 368	

species recognition/classification, 2) individual recognition, 3) counting the number of individuals, 369	

4) tracking individuals, 5) detecting behaviour at a given time and 6) classifying behaviours over 370	

time (in order of the usage; Nazir & Kaleem, 2021). the second most popular machine learning 371	

algorithm, Support Vector Machines, was only found in 26 studies. However, the observed 372	

dominance of the literature by Neural Networks is not surprising. This is due to the recent 373	

resurrection of Deep Neural Networks, initially proposed in 1943 (Mcculloch & Pitts, 1990), 374	

associated with the increased processing power provided by GPU, the availability of big data for 375	

training (LeCun, Bengio & Hinton, 2015; Webb, 2018) and the development of more advanced 376	

algorithms in the field of computer vision, e.g. Convolutional Neural Networks.  377	

Our mapping effort elucidated future directions in the use of machine learning in wildlife imagery. 378	

The clear next step is to increase the use of Neural Networks to detect and track animals and 379	

classify their behaviour, with relevant algorithms already developed for human behaviour detection 380	

and tracking (e.g., Al-Faris et al., 2020; Bendali-Braham et al., 2021). Therefore, a challenge for 381	

ecologists and environmental scientists is to co-opt such algorithms for wildlife imagery. This 382	



22	
	

challenge requires cross-disciplinary collaborations between computer and environmental scientists, 383	

which we discuss further in the next section.  384	

4.3 | Geographical origin, affiliations, and journal types 385	

In many studies, the geographical origin of wildlife images and the first author affiliation country 386	

are congruent (Fig. 4 A, B). Australia, China, India and the USA are four clear hot spots in both 387	

origins of wildlife images and authors, reflected in the top three species, tigers, koalas and pandas 388	

(Fig. 1 C). However, many wildlife images from Africa were usually analysed elsewhere (apart 389	

from South Africa; e.g., Butgereit & Martinus, 2018). Such incongruence could be related to 390	

scientific colonialism, initiating discussions on the ways to decolonise science (Baker, Eichhorn & 391	

Griffiths, 2019; Trisos, Auerbach & Katti, 2021). Building capacity and involving local 392	

collaborators including indigenous peoples could be a first step towards resolving this 393	

incongruence, increasing representation of underrepresented nations and their wildlife imagery. 394	

There is also considerable scope for more international collaborations, given only three studies had 395	

authors from multiple countries. 396	

This field was entirely dominated by computer scientists five years ago (in 2017), reflected in 397	

almost all articles being published in computer science journals or conference proceedings. Later, 398	

numbers shifted dramatically towards more ecological / environmental journals (Fig. 5 A). As a 399	

result, the top two highest-ranked journals most recently represent these disciplines (the third-400	

ranked was a ‘computer science’ journal, Fig. 5 B). Disciplinary diversity is increasing, along with 401	

the accessibility of machine learning for non-computer scientists (Christin, Hervet & Lecomte, 402	

2019; Lamba et al., 2019) and interdisciplinary collaborations between ecologists and computer 403	

scientists are also on the rise (e.g., Tabak et al., 2019; Willi et al., 2019).  404	

4.4 | Reporting and open practices 405	

Although we could identify basic study information for our survey, about 10 – 20% of the papers 406	

lacked critical information, required for replication, such as study species (not just taxa), and details 407	
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of image sources or locations (Fig. 6 A). This may still be underestimated, with generally poor 408	

reporting, exemplified by much of the coded survey information based on example images provided 409	

in figures and dataset descriptions from other publications or the Internet (e.g., when the study only 410	

mentioned the use of publicly available datasets, often not even naming which dataset). With an 411	

increasing number of studies applying machine learning to wildlife images, creating formal 412	

reporting guidelines may be useful. Reporting guidelines are common in (bio)medical research 413	

(e.g., du Sert et al., 2020; Page et al., 2021) and can improve reporting quality (Sun et al., 2018). In 414	

our literature survey, we were particularly surprised that research (analysis) code was not published 415	

in approximately 80% of the studies, given the importance of computational reproducibility and 416	

code sharing within computer sciences (Cadwallader et al., 2021). Where code was shared, 417	

researchers often used GitHub repositories (e.g., classification accuracy; Akcay et al., 2020; Allken 418	

et al., 2021). Surprisingly, articles published ecological journals tended to have better reporting 419	

practices than papers published in computer science / technology-related journals. Overall, there is a 420	

slow improvement in reporting practices in the recent years, potentially driven by the journals 421	

increasingly mandating code and data sharing. We recommend that the code and relevant data be 422	

made available according to the FAIR principles (findable, accessible, interoperable & reusable; 423	

Wilkinson et al., 2019). 424	

4.5 | Limitations and future opportunities 425	

Our work had three notable limitations. First, we focused on vertebrate species, although we were 426	

aware that machine learning has been used to process images of invertebrates in the wild (e.g., 427	

Hoye et al., 2021). Detecting small animals, such as many invertebrates, is more difficult with 428	

camera traps, especially with variations in light conditions. Future deep learning algorithms may 429	

resolve this by techniques such as small object detection (Liu, Yang, et al., 2021) and low-light 430	

detection (Chen and Shah, 2021). Second, we excluded satellite imagery since we focused on 431	

wildlife images where individual-level recognition was possible. For some large wildlife species, 432	

such as whales and elephants, individuals could be detected and followed using satellite images 433	
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(Guirado et al., 2019; Duporge et al., 2021). As the quality of images increases, satellite imagery 434	

will become an increasingly important tool for wildlife conservation (Tuia et al., 2022). Finally, we 435	

acknowledge that the relevant literature is rapidly increasing and changing: our map will inevitably 436	

be obsolete in a few years. However, this study provides some current insights, providing new 437	

perspectives, revealing gaps and clusters of current work and areas for improvement, especially in 438	

terms of reporting practices.  439	

4.6 | Conclusions 440	

In this study, we revealed the recent trends, knowledge clusters and gaps in the use of machine 441	

learning in processing wildlife imagery. Future applications could aim to mitigate the current 442	

taxonomic bias, the limited use of deep learning in behaviour detection and tracking, and 443	

collaborate internationally to tackle incongruency between image origins and author affiliations. We 444	

hope our knowledge maps will guide future studies to fill the gaps, resolve biases, and increase 445	

diversity in research in as many ways as possible.  446	
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