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Abstract 20	

1. Machine (especially deep) learning algorithms are changing the way wildlife imagery is 21	

processed. They dramatically speed up the time to detect, count classify	animals and their 22	

behaviours. Yet, we currently lack a systematic literature survey on its use in wildlife imagery. 23	

2. Through a literature survey (a ‘rapid’ review) and bibliometric mapping, we explored its use 24	

across: 1) species (vertebrates), 2) image types (e.g., camera traps, or drones), 3) study locations, 4) 25	

alternative machine learning algorithms, 5) outcomes (e.g., recognition, classification, or tracking), 26	

6) reporting quality and openness, 7) author affiliation, and 8) publication journal types.  27	

3. Typically, studies have focused on single large charismatic or iconic mammalian species and 28	

used neural networks (i.e., deep learning). Additional taxa or alternative machine learning 29	

algorithms were rarely used, with limited sharing of code. There were considerable gaps, and 30	

therefore there is a great promise for deep learning to transform behavioural detection, 31	

classification, and tracking of wildlife.  32	

4. Much of the published research and focus on animals came from India, China, Australia, or the 33	

USA. There were relatively few collaborations across countries. Given the power of machine 34	

learning, we recommend increasing collaboration and sharing approaches to utilise increasing 35	

amounts of wildlife imagery more rapidly and transform and improve understanding of wildlife 36	

behaviour and conservation. 37	

5. Our survey augmented with bibliometric analyses provide valuable signposts for future studies to 38	

resolve and address shortcomings, gaps, and biases.  39	

KEYWORDS 40	

Conservation biology, field biology, big data, research weaving, drone imagery, systematic maps, 41	

evidence synthesis, deep learning	  42	
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1 | INTRODUCTION 43	

1.1 | Background 44	

Camera-trap, surveillance-video, and drone imagery are producing a deluge of digital data on 45	

wildlife (Koh & Wich, 2012; Meek et al., 2014; Allan et al., 2018; Weinstein, 2018; Tuia et al., 46	

2022). Processing these digital images typically requires a substantial outlay of resources and time. 47	

However, machine learning algorithms for computer vision are revolutionising the field. A type of 48	

machine learning, deep learning algorithms using neural networks, have contributed to the recent 49	

rise of efficient computer visions (LeCun, Bengio & Hinton, 2015; Webb, 2018; Christin, Hervet & 50	

Lecomte, 2019; Lamba et al., 2019; Tuia et al., 2022). For example, a well-trained deep learning 51	

model can process video recordings and camera trap data extremely efficiently, reducing ten years 52	

of manual human work to less than one week (Norouzzadeh et al., 2018).  53	

This rapid and efficient processing opens possibilities for obtaining critical and detailed information 54	

on species’ ecology, demography, life history and behaviour at previously impossible temporal and 55	

spatial scales (Villa, Salazar & Vargas, 2017; Christin, Hervet & Lecomte, 2019; Lamba et al., 56	

2019; Tuia et al., 2022). This is increasingly useful for both in-situ and ex-situ conservation. This is 57	

especially because the number of endangered species surges in the Anthropocene (Emer et al., 58	

2019; Turvey & Crees, 2019; Wyner & DeSalle, 2020). Conservation biologists and wildlife 59	

biologists are progressively employing machine (deep) learning algorithms to process image data, 60	

often collaborating with computer scientists (e.g., Tabak et al., 2019; Willi et al., 2019). Review 61	

articles are also appearing on how machine (deep) learning can help in species recognition, 62	

individual recognition, behaviour detection and classification and animal tracking (e.g., Christin, 63	

Hervet & Lecomte, 2019; Lamba et al., 2019; Nazir & Kaleem, 2021).  64	

Yet, there is no systematic survey of this emerging and important field (cf. Caravaggi et al., 2017). 65	

There are two major and effective ways to map literature: systematic mapping and bibliometric 66	

mapping. Systematic mapping covers the state of knowledge, revealing the knowledge clusters and 67	



4	
	

research gaps (Haddaway et al., 2016). A bibliometric map augments this approach, providing 68	

information on the location of research (Cobo et al., 2011). This ‘research weaving’ can reveal 69	

differences between locations of wildlife research (field) and affiliation (Nakagawa et al., 2019); 70	

highlighting discrepancies in international collaboration, inequalities in study opportunities and 71	

field access (cf. Trisos, Auerbach & Katti, 2021).  72	

1.2 | Objectives 73	

We use a ‘rapid’ review approach, which abbreviates the process of systematic maps by not being 74	

comprehensive but being representative (Lagisz et al., 2022). Therefore, we cut down some of the 75	

systematic-map processes to be comprehensive by, for example, focusing on more recent articles 76	

and using one database. Such a rapid review (mapping) is useful especially for a rapidly moving 77	

fields like the topic of this article. Importantly, we also use a ‘research weaving’ approach. First, we 78	

map the content of recent studies (published between 2017 and 2021) utilising machine learning to 79	

process wildlife imagery. Using these studies, we attempt to find answers to the following 80	

questions:  81	

1. What species and how many species were studied? 82	

2. What was the source of wildlife images (e.g., camera traps, surveillance cameras)? 83	

3. Where was the location (country) from which the wildlife image originated? 84	

4. What machine (deep) learning algorithms were used? 85	

5. What was the purpose or outcome of the study (e.g., individual recognition, behaviour 86	

detection)?  87	

6. Was analysis code open and available?  88	

With these questions, we aim to elucidate research trends, practices, gaps, and biases in the relevant 89	

literature, revealing future needs in this research area.  90	

Then, we augment the above questions with bibliometric analyses, which ask two additional 91	

questions:  92	
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7. In which country was the study conducted? (Is it different to where images originated?) 93	

8. In what type of journal was the study published? (Biological sciences, computer science or 94	

multi-disciplinary journals?) 95	

These two additional questions relate to the aspects of diversity in this research area. The first 96	

question reveals internationality, while the second question indicates cross-disciplinary diversity. 97	

Overall, our research weaving of the literature aims to create some guideposts for future work.  98	

2 | MATERIALS AND METHODS 99	

We followed the ROSES (RepOrting standards for Systematic Evidence Syntheses) checklist for 100	

Systematic Maps (Haddaway et al., 2018) for rigorous reporting of our data collection process. 101	

Search string development, validation, piloted screening and data extraction process were pre-102	

piloted but not registered due to the rapid nature of this scoping-like review. Therefore, this is not a 103	

systematic map, but I can be considered more as a ‘rapid’ map or literature survey on a group of 104	

sample articles. This article is also intended to show how to conduct such a rapid review or survey, 105	

which will be especially useful for scoping a topic of interest or summarising evidence base in a 106	

limited time (Lagisz et al., 2022).  107	

2.1 | Eligibility criteria  108	

We included publications in the last five years (2017-2021), where all criteria within an adapted 109	

PICO/PECO framework were fulfilled (Guyatt et al., 2011; Morgan et al., 2018): 110	

P – Population: study subjects (in images) were wild or semi-wild vertebrate species (excluding 111	

domestic or farmed animals, invertebrates, and museum specimens). Datasets that included the 112	

target population but also contained images of other species (eg. domesticated species or humans) 113	

were also allowed, however the non-target population species were not included in the analysis. 114	

I – Intervention / Innovation: use of computer vision machine learning algorithms (including deep 115	

neural-networks ,, Support Vector Machines, Random Forests; Nacchia et al., 2021) for automated 116	
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or semi-automated processing of image data (e.g., from camera traps, video tracking, thermal 117	

imaging; Nazir & Kaleem, 2021), at a scale where individual animals are visible (including aerial 118	

and drone images but excluding images gathered from satellites, biologging, X-ray, MRI images or 119	

equivalent).  120	

C – Comparator / Context: images from the wild or semi-wild (including zoo enclosures, but 121	

excluding lab-based or agricultural / aquaculture / pet studies). 122	

O – Outcomes: analyses focus on individual animal / species recognition / classification or animal 123	

behaviour recognition / classification. 124	

2.2 | Searches  125	

For a representative sample of multi-disciplinary literature, we ran a literature search using Scopus 126	

search engine on 2021/10/10 with a pre-piloted search string: ( TITLE-ABS-KEY ( ( *automatic* 127	

OR “machine learning” OR “computer learning” OR “deep learning” OR “neural network*” OR 128	

“random forest*” OR “convolutional neural” OR “convolutional network*” OR “learning 129	

algorithm*” OR “Support Vector*” ) AND ( image* OR camera* OR video* OR vision ) AND 130	

( *wild* OR population* OR “species identif*” OR “species label*” OR “species richness” OR 131	

( behavio* AND within/ 10 classif* ) OR ( behavio* AND within/ 10 recogn* ) ) AND NOT 132	

( “natural language” OR “sign language” OR accelomet* OR clinical* OR industr* OR agricult* 133	

OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR wildfire* OR 134	

“tree growth” OR forestry OR hydrolog* OR engineer* OR “oxygen species” OR molec* OR 135	

bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* 136	

OR smoking OR disease OR diabet* OR landsat* OR sentinel OR satellite* OR “land cover” OR 137	

“land use” OR “vegetation map*” OR galax* OR “Google Earth” OR scan* OR “X-ray” OR 138	

“health care” OR participant* OR emotion* OR employee* OR speech OR proceedings ) ) ) AND 139	

PUBYEAR > 2016. We did not use language filters to ensure we captured literature from multiple 140	

countries. We chose Scopus as their bibliometric information was easy to handle than other 141	
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databases such as the Web of Science (note that bibliometric information form two databases are 142	

usually not compatible to each other).  143	

2.3 | Article screening  144	

We used Rayyan QCRI software (Ouzzani et al., 2016) to screen bibliographic records downloaded 145	

from Scopus. Three researchers (ML, JT, RF) independently performed the screening, assessing 146	

titles, abstracts, and keywords of each article. This screening resulted in articles included for full-147	

text assessment and data extraction. We excluded publications without full text available, after 148	

contacting study authors via ResearchGate.  149	

2.4 | Data extraction and coding 150	

For data extraction from the articles with full text, we used a two-part custom questionnaire (details 151	

in Supplementary Materials) implemented as a Google Form. We used the first part of the form to 152	

re-assess the fulfilment of the inclusion criteria and the second part of the form to extract key data 153	

on the study content. At least two assessors	extracted the first 6% of the papers independently 154	

during the piloting round. One assessor (ML) extracted the remaining, and another assessor (RF) 155	

independently cross-checked extracted data. Assessors authoring articles considered within the 156	

review were not involved in decisions regarding inclusion, extraction, or critical appraisal of their 157	

work. Apart from the data extracted via the questionnaire, we derived additional variables such as 158	

whether the full-text publication was included or excluded from the final dataset and the main 159	

reason for exclusion, extracted geographic coordinates for field-based studies. We coded whether 160	

location information was relatively precise or unclear. We also categorised publication journals into 161	

ecological, computer science-related and multidisciplinary. Details of data extraction and coding are 162	

provided in Supplementary File 1. 163	

2.5 | Critical appraisal 164	

As an indicator of reporting quality, we coded when we could not extract or infer information on 165	

key variables, such as sources of animal images (type of hardware and settings / locations), number 166	
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of animal species / classes studied, and general types of machine learning algorithms used. We also 167	

coded whether the analysis code used in the study was available for checking or reuse. 168	

2.6 | Data synthesis and presentation 169	

We collated manually coded data in a single data table (Supplementary File 2) and supplemented it 170	

with bibliographic information from downloaded Scopus records. All data wrangling and 171	

visualisations were conducted in an R environment (R Development Team, 2022). Counts of 172	

articles within specific categories for each variable are presented as bar plots or stacked area plots, 173	

while spatial information (location of origins of animal images, first author affiliation country) is 174	

plotted as global distribution maps and alluvial plots using the ggplot2 (Wickham, 2016), 175	

rworldmap (South, 2011), and ggalluvial (Brunson, 2020), R packages. Species identities from 176	

single-species individual recognition studies are presented on a phylogenetic tree derived using the 177	

rotl package (Michonneau, Brown & Winter, 2016). Given that our data coding categories were pre-178	

defined, knowledge gaps and clusters were identified via visual inspection of the plots.  The 179	

narrative synthesis of our findings follows our key review questions. 180	

3 | RESULTS 181	

3.1 | Searches, screening, and a database 182	

Our initial screening of 2,259 unique bibliographic records downloaded from Scopus resulted in 183	

225 articles for full-text assessment and data extraction. Of these 225 articles, we obtained full text 184	

for 215 articles. Out of the 215 full-text articles assessed, 23 were excluded (Supplementary File 1, 185	

Table S2), and 192 were eligible for data extraction (Supplementary File 1, Table S3). The final 186	

dataset consists of 19 papers from 2017, 21 from 2018, 46 from 2019, 63 from 2020, and 43 from 187	

2021. 188	
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 189	

FIGURE 1. Diversity of the vertebrate species studied in the included machine learning studies. A 190	

– numbers of species / animal classes per study. B – counts of articles that studied each vertebrate 191	

class, C – counts of articles focused on a given species from one-species studies only (bar colours 192	
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are referring to vertebrate class from panel B). D - counts of articles focusing on a given species in 193	

one-species individual recognition (individual identification) studies only (bar colours referring to 194	

vertebrate classes from 1B) and a phylogenetic tree of the focus species. 195	

 196	

3.2 | Study characteristics 197	

3.2.1 | Study species and image types 198	

Most studies (58 studies, 30%) only examined one species (‘single-species’ studies) with one study 199	

dealing with 16,583 species (mean = 118, SD = 1,241, median = 3; Fig. 1 A). The most popular 200	

biological group among vertebrates was mammals (65% studies), followed by birds (27%), fish 201	

(17%), reptiles (8%) and amphibians (2%); Fig. 1 B; some studies studied more than one class so 202	

that percentages do not total 100%. Thirty-five species were used in single-species studies. Here, 203	

the most popular study species were tigers (Panthera tigris), pandas (Ailuropoda melanoleuca) and 204	

koalas (Phascolarctos cinereus). In single-species studies, images of 13 species were used for 205	

individual recognition (re-identification) analyses, and these studies were dominated by mammals, 206	

especially large carnivores, cetaceans and primates (Fig. 1 D).  207	

Nearly half of included studies used wildlife images from fixed cameras (52%), such as camera 208	

traps and surveillance cameras, while 28% of studies used images from hand (mobile) cameras, and 209	

16% of studies used aerial images from drones or aircraft (Fig. 2 A). Over the last five years, the 210	

use of images from fixed cameras and mobile cameras has markedly increased, while the use of 211	

aerial images remained stable (Fig. 2 B). Note that in this and similar time-trend graphs, the 212	

apparent decrease in the relevant papers in 2021 is an artifact, because we conducted our literature 213	

search in October 2021, meaning that we did not cover the entire year 2021 period.  214	

 215	
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 216	

FIGURE 2. Diversity of the wildlife imagery analysed in machine learning studies. A - article 217	

counts by image source hardware type (one study could use more than one image type), B - 218	

temporal trends (annual counts) across the last five years.  Year 2021 is included only up to 219	

October; colours are corresponding to image source hardware types shown in panel A; 220	

“other/unclear” category not shown.  221	
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 223	

FIGURE 3. Machine learning algorithm types and wildlife outcome types analysed in the included 224	

studies. A – article counts by algorithm type and outcome type (one study could use more than one 225	

type of each), B – temporal trends (annual counts) in types of algorithms used across the last five 226	

years; “other/unclear” category not shown (Year 2021 is included only up to October). 227	
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3.2.2 | Algorithms and outcomes 228	

Neural-network-based analyses were easily the most popular machine learning algorithms (93% of 229	

studies), followed by Support Vector Machines (11% of studies), K-Nearest Neighbours (5%), and 230	

Random Forests (5%). The use of the other algorithms was relatively low (14% of studies) and 231	

included Naïve Bayes, Bag of Visual Words, Histogram of Colors, Local Binary Patterns 232	

Histograms, Multi-class Logistic Regression, Principal Component Analysis, Linear Discriminant 233	

Analysis, and other statistical approaches. The primary use of machine learning was for species 234	

recognition / classification (99% of studies), followed by individual recognition (19% of studies) 235	

and counting the numbers of individuals (18% of studies), with the latter being implemented as an 236	

extension to species recognition / classification. Few studies attempted to conduct behaviour 237	

detection, classification, and tracking (10% of studies). The combination of species recognition / 238	

classification using neural networks was most frequent with neural networks used for all types of 239	

outcomes (Fig. 3 A). Fig 3 B shows the dominance of neural network algorithms and how this trend 240	

is increasingly apparent over time (note that 2021 literature was included only up to October of that 241	

year).  242	

 243	

 244	

 245	

 246	

 247	

 248	

 249	

  250	
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 251	

FIGURE 4. Geographic distributions and overlaps in the affiliations of first study authors and the 252	

locations of the wildlife imagery. A – connecting author’s countries (in alphabetical order) and 253	

image source geographic locations; only countries / locations with more than one study are shown. 254	

B – Visualisation of the relative number of articles that use images from the same country as the 255	
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first author and where other sources of wildlife images are located (arrows pointing from the source 256	

towards the countries of the first authorship); “global” and “unclear” image source location 257	

categories not shown. 258	

 259	

3.2.3 | Geographical origin, affiliations, and journal types 260	

We analysed the countries of affiliation of the first authors of the included studies and locations of 261	

wildlife images used in the studies. The authors came from 40 different countries, but only 17 262	

countries had more than one study (Fig. 4 A; left column), using images from 38 countries and 10 263	

other location types, including ‘global’ and Antarctica (Fig. 4 A; right column). Three countries, 264	

Australia, China, and the USA, dominated the literature in terms of author affiliations and wildlife 265	

images. Datasets from the Antarctic, Africa and Southeast Asia were commonly analysed by 266	

researchers from other geographical areas (Fig. 4 B). There was especially strong international use 267	

of images by the United States, compared to Australia, the two largest generators of articles (Fig. 4 268	

B). While all papers had more than one author, only 3 out of 173 papers with complete 269	

bibliographic data on affiliations had authors from more than one country (Supplementary Table 270	

S4). 271	



16	
	

 272	

FIGURE 5.  Diversity of the journals publishing machine learning studies on wildlife imagery. A – 273	

temporal trends (annual counts) in three main journal subject disciplines across the last five years. 274	

Year 2021 is included only up to October .  B – article counts for journals with at least three articles 275	

included in our survey data set. 276	

Although in 2017 most publications were in ‘computer science’ journals (mostly computer science 277	

conference proceedings, but also more traditional journals such as Lecture Notes in Computer 278	

Science, Remote Sensing), increasing numbers of studies were published in ‘ecological’ journals 279	

over the last few years (Fig. 5 A). Indeed, the top two destinations of the surveyed papers were 280	

ecological journals: Ecological Informatics and Methods in Ecology and Evolution (Fig. 5 B).  281	
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 282	

FIGURE 6.  Aspects of reporting quality and openness of the included machine learning studies. A 283	

– percentages of relevant articles providing sufficient or insufficient information to code a given 284	

variable. B – article counts for studies that shared or did not share their analysis programming code. 285	

 286	

3.2.4 | Reporting and open practices 287	

Reporting quality was usually sufficient for nine survey questions (> 80% of studies; Fig. 6 A) to 288	
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Section 1.2). We have profiled some clear patterns for each of these questions (Fig. 1 – 6). We 297	

discuss these patterns in four subsections below: i) Questions 1 & 2, ii) Questions 4 & 5, iii) 298	

Questions 3, 7 & 8, and iv) Question 6.  299	

4.1 | Study species and image types 300	

Studies mainly focused on large charismatic or iconic mammals such as the top three (tigers, 301	

pandas, and koalas), other big cats, cetaceans and primates, reflected in single-species studies and 302	

individual-recognition studies (Fig. 1 C, D). Birds were the second most popular taxon (Fig. 1 B), 303	

but only two species, snow geese, Anser caerulescens (Bowley et al., 2017; Bowley et al., 2018) 304	

and purple martins, Progne subis (Williams & DeLeon, 2019), were represented in single-species 305	

studies (Fig. 1 C). This is because multiple-species studies often focused on mammalian species, 306	

while occasionally also including large bird species (e.g., images from African savanna including 307	

ostrich; Rey et al., 2017; Loos, Weigel & Koehler, 2018). The paper with 16,583 species included 308	

an exceptionally wide range of species, as it tried to utilise all the species recorded in GBIF (the 309	

Global Biodiversity Information Facility; Mo, Frank & Vetrova, 2017). Other papers with over 100 310	

species often dealt with a particular taxon, such as birds (Ragib et al., 2020), fish (Sayed et al., 311	

2018), and snakes (Picek et al., 2021). 312	

Researchers’ preference for certain taxa is known as taxonomic bias (Bonnet, Shine & Lourdais, 313	

2002; Donaldson et al., 2016), well known in the research literature, including conservation, 314	

behavioural ecology and ecotoxicology (Rosenthal et al., 2017; Troudet et al., 2017; Prosser et al., 315	

2021). The distribution of study species in our literature survey supports the anthropomorphic 316	

stimuli hypothesis that we humans are more attracted to species phylogenetically closer to us 317	

(Miralles, Raymond & Lecointre, 2019). This hypothesis explains the widespread use of mammals 318	

and primates (Fig. 1 B, C). Indeed, a recent comprehensive study, including 7,521 mammalian 319	

species, showed that phylogenetic relatedness was closely related to research interest, as reflected 320	

by the number of publications and citations (Tam et al., 2021), with primates overrepresented 321	
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among the most popular species. In our survey, among the 13 species used for individual 322	

recognition, brown trout (Salmo trutta) appeared to be the ‘odd one out’, not fitting categories of 323	

iconic species or phylogenetic relatedness. However, the motivation behind the study was related to 324	

human economic values – helping aquaculture and fishing tourism by tracing fish migration and 325	

distribution, (Zhao et al., 2019).  326	

Given the affordability and accessibility of fixed cameras (i.e., camera traps and surveillance 327	

cameras), it was not surprising that fixed cameras were most used among the surveyed studies (52% 328	

studies). Indeed, many machine learning applications have focused on camera traps in ecology and 329	

environmental sciences (cf. Caravaggi et al., 2017), with the dedicated book titled “Camera traps: 330	

wildlife management and research” (Meek et al., 2014). Notably, a combined total of the usage of 331	

hand cameras (including mobile phones) and aerial (drone) wildlife images was nearly as high as 332	

that of fixed cameras (85 vs. 99 studies). However, the use of the fixed camera (especially camera 333	

traps) has been increasing rapidly, and this trend is likely to continue (Fig. 2 B; tailing off in 2021 is 334	

caused by our survey not capturing all images from that year, as literature searches were run in 335	

October 2021). This trend may be driven by increasing availability of images from fixed cameras 336	

and camera traps via freely available biodiversity collections (e.g., GBIF and iNaturalist) and 337	

computer vision programming challenge platforms (e.g., ImageNet and Kaggle). 338	

 339	

4.2 | Algorithms and outcomes 340	

Most (∼92%) algorithms applied a	neural network approach to classify or recognise animals. 341	

Neural networks or deep leaning algorithms were used for all six different tasks: 1) species 342	

recognition/classification, 2) individual recognition, 3) counting the number of individuals, 4) 343	

tracking individuals, 5) detecting behaviour at a given time and 6) classifying behaviours over time 344	

(in order of the usage; Nazir & Kaleem, 2021). On the other hand, the use of the traditional machine 345	

learning algorithms was limited, with the second most popular, Support Vector Machines, only 346	
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found in 30 studies (Fig 3 A). However, the observed dominance of the literature by deep learning 347	

was not surprising. This is due to the recent resurrection of deep neural networks, initially proposed 348	

in 1943 (Mcculloch & Pitts, 1990), associated with the increased processing power provided by 349	

GPU, the availability of big data for training (LeCun, Bengio & Hinton, 2015; Webb, 2018) and the 350	

development of more advanced algorithms in the field of computer vision.  351	

Our mapping effort elucidated future directions in the use of deep learning in wildlife imagery. The 352	

clear next step is to increase the use of deep neural networks to detect and track animals and classify 353	

their behaviour, with relevant algorithms already developed for human behaviour detection and 354	

tracking (e.g., Al-Faris et al., 2020; Bendali-Braham et al., 2021). Therefore, a challenge for 355	

ecologists and environmental scientists is to co-opt such algorithms for wildlife imagery. This 356	

challenge requires cross-disciplinary collaborations between computer and environmental scientists, 357	

which we discuss further in the next section.  358	

4.3 | Geographical origin, affiliations, and journal types 359	

In many studies, the geographical origin of wildlife images and the first author affiliation country 360	

are congruent (Fig. 4 A, B). Australia, China, India and the USA are four clear hot spots in both 361	

origins of wildlife images and authors, reflected in the top three species, tigers, koalas and pandas 362	

(Fig. 1 C). However, many wildlife images from Africa were usually analysed elsewhere (apart 363	

from South Africa; e.g., Butgereit & Martinus, 2018). Such incongruence could be related to 364	

scientific colonialism, initiating discussions on the ways to decolonise science (Baker, Eichhorn & 365	

Griffiths, 2019; Trisos, Auerbach & Katti, 2021). Building capacity and involving local 366	

collaborators including indigenous peoples could be a first step towards resolving this 367	

incongruence, increasing representation of underrepresented nations and their wildlife imagery. 368	

There is also considerable scope for more international collaborations, given only three studies had 369	

authors from multiple countries. 370	



21	
	

This field was entirely dominated by computer scientists five years ago (in 2017), reflected in 371	

almost all articles published in computer science journals or conference proceedings. Later, 372	

numbers shifted dramatically towards more ecological / environmental journals (Fig. 5 A). As a 373	

result, the top two highest-ranked journals most recently represent these disciplines (the third-374	

ranked was a ‘computer science’ journal, Fig. 5 B). Disciplinary diversity is increasing, along with 375	

the accessibility of deep learning for non-computer scientists (Christin, Hervet & Lecomte, 2019; 376	

Lamba et al., 2019) and interdisciplinary collaborations between ecologists and computer scientists 377	

are also on the rise (e.g., Tabak et al., 2019; Willi et al., 2019).  378	

4.4 | Reporting and open practices 379	

Although we could identify basic study information for our survey, about 10 – 20% of the papers 380	

lacked critical information, required for replication, such as study species (not just taxa), and details 381	

of image sources or locations (Fig. 6 A). This may still be underestimated, with generally poor 382	

reporting, exemplified by much of the coded survey information based on example images provided 383	

in figures and dataset descriptions from other publications or the Internet (e.g., when the study only 384	

mentioned the use of publicly available datasets, often not even naming which dataset). With an 385	

increasing number of studies applying machine learning to wildlife images, creating formal 386	

reporting guidelines may be useful. Reporting guidelines are common in (bio)medical research 387	

(e.g., du Sert et al., 2020; Page et al., 2021) and can improve reporting quality (Sun et al., 2018). In 388	

our literature survey, we were particularly surprised that research (analysis) code was not published 389	

in approximately 80% of the studies, given the importance of computational reproducibility and 390	

code sharing within computer sciences (Cadwallader et al., 2021). Where code was shared, 391	

researchers often used GitHub repositories (e.g., classification accuracy; Akcay et al., 2020; Allken 392	

et al., 2021). We recommend that the code and relevant data be made available according to the 393	

FAIR principles (findable, accessible, interoperable & reusable; Wilkinson et al., 2019). 394	
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4.5 | Limitations and future opportunities 395	

Our work had three notable limitations. First, we focused on vertebrate species, although we were 396	

aware that machine learning has been used to process images of invertebrates in the wild (e.g., 397	

Hoye et al., 2021). Detecting small animals, such as many invertebrates, is more difficult with 398	

camera traps, especially with variations in light conditions. Future deep learning algorithms may 399	

resolve this by techniques such as small object detection (Liu, Yang, et al., 2021) and low-light 400	

detection (Chen and Shah, 2021). Second, we excluded satellite imagery since we focused on 401	

wildlife images where individual-level recognition was possible. For some large wildlife species, 402	

such as whales and elephants, individuals could be detected and followed using satellite images 403	

(Guirado et al., 2019; Duporge et al., 2021). As the quality of images increases, satellite imagery 404	

will become an increasingly important tool for wildlife conservation (Tuia et al., 2022). Finally, we 405	

acknowledge that the relevant literature is rapidly increasing and changing: our map will inevitably 406	

be obsolete in a few years. However, this study provides some current insights, providing new 407	

perspectives.  408	

4.6 | Conclusions 409	

In this study, we revealed the recent trends, knowledge clusters and gaps in the use of machine 410	

learning in processing wildlife imagery. Future applications could aim to mitigate the current 411	

taxonomic bias, the limited use of deep learning in behaviour detection and tracking, and 412	

collaborate internationally to tackle incongruency between image origins and author affiliations. We 413	

hope our knowledge maps will guide future studies to fill the gaps, resolve biases, and increase 414	

diversity in research in as many ways as possible.  415	
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