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Abstract 

1. Machine (especially deep) learning algorithms are changing the way wildlife imagery is 

processed. They dramatically speed up the time to detect, count classify	animals and their 

behaviours. Yet, we currently lack a systematic literature survey on its use in wildlife imagery. 

2. Through a literature survey (a ‘rapid’ review) and bibliometric mapping, we explored its use 

across: 1) species (vertebrates), 2) image types (e.g., camera traps, or drones), 3) study locations, 4) 

alternative machine learning algorithms, 5) outcomes (e.g., recognition, classification, or tracking), 

6) reporting quality and openness, 7) author affiliation, and 8) publication journal types.  

3. Typically, studies have focused on single large charismatic or iconic mammalian species and 

used neural networks (i.e., deep learning). Additional taxa or alternative machine learning 

algorithms were rarely used, with limited sharing of code. There were considerable gaps, and 

therefore there is a great promise for deep learning to transform behavioural detection, 

classification, and tracking of wildlife.  

4. Much of the published research and focus on animals came from India, China, Australia, or the 

USA. There were relatively few collaborations across countries. Given the power of machine 

learning, we recommend increasing collaboration and sharing approaches to utilise increasing 

amounts of wildlife imagery more rapidly and transform and improve understanding of wildlife 

behaviour and conservation. 

5. Our survey augmented with bibliometric analyses provide valuable signposts for future studies to 

resolve and address shortcomings, gaps, and biases.  

KEYWORDS 

Conservation biology, field biology, big data, research weaving, drone imagery, systematic maps, 

evidence synthesis, deep learning	  
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1 | INTRODUCTION 

1.1 | Background 

Camera-trap, surveillance-video, and drone imagery are producing a deluge of digital data on 

wildlife (Koh & Wich, 2012; Meek et al., 2014; Allan et al., 2018; Weinstein, 2018; Tuia et al., 

2022). Processing these digital images typically requires a substantial outlay of resources and time. 

However, machine learning algorithms for computer vision are revolutionising the field. A type of 

machine learning, deep learning algorithms using neural networks, have contributed to the recent 

rise of efficient computer visions (LeCun, Bengio & Hinton, 2015; Webb, 2018; Christin, Hervet & 

Lecomte, 2019; Lamba et al., 2019; Tuia et al., 2022). For example, a well-trained deep learning 

model can process video recordings and camera trap data extremely efficiently, reducing ten years 

of manual human work to less than one week (Norouzzadeh et al., 2018).  

This rapid and efficient processing opens possibilities for obtaining critical and detailed information 

on species’ ecology, demography, life history and behaviour at previously impossible temporal and 

spatial scales (Villa, Salazar & Vargas, 2017; Christin, Hervet & Lecomte, 2019; Lamba et al., 

2019; Tuia et al., 2022). This is increasingly useful for both in-situ and ex-situ conservation. This is 

especially because the number of endangered species surges in the Anthropocene (Emer et al., 

2019; Turvey & Crees, 2019; Wyner & DeSalle, 2020). Conservation biologists and wildlife 

biologists are progressively employing machine (deep) learning algorithms to process image data, 

often collaborating with computer scientists (e.g., Tabak et al., 2019; Willi et al., 2019). Review 

articles are also appearing on how machine (deep) learning can help in species recognition, 

individual recognition, behaviour detection and classification and animal tracking (e.g., Christin, 

Hervet & Lecomte, 2019; Lamba et al., 2019; Nazir & Kaleem, 2021).  

Yet, there is no systematic survey of this emerging and important field (cf. Caravaggi et al., 2017). 

There are two major and effective ways to map literature: systematic mapping and bibliometric 

mapping. Systematic mapping covers the state of knowledge, revealing the knowledge clusters and 
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research gaps (Haddaway et al., 2016). A bibliometric map augments this approach, providing 

information on the location of research (Cobo et al., 2011). This ‘research weaving’ can reveal 

differences between locations of wildlife research (field) and affiliation (Nakagawa et al., 2019); 

highlighting discrepancies in international collaboration, inequalities in study opportunities and 

field access (cf. Trisos, Auerbach & Katti, 2021).  

1.2 | Objectives 

We use a ‘rapid’ review approach, which abbreviates the process of systematic maps by not being 

comprehensive but being representative (Lagisz et al., 2022). Therefore, we cut down some of the 

systematic-map processes to be comprehensive by, for example, focusing on more recent articles 

and using one database. Such a rapid review (mapping) is useful especially for a rapidly moving 

fields like the topic of this article. Importantly, we also use a ‘research weaving’ approach. First, we 

map the content of recent studies (published between 2017 and 2021) utilising machine learning to 

process wildlife imagery. Using these studies, we attempt to find answers to the following 

questions:  

1. What species and how many species were studied? 

2. What was the source of wildlife images (e.g., camera traps, surveillance cameras)? 

3. Where was the location (country) from which the wildlife image originated? 

4. What machine (deep) learning algorithms were used? 

5. What was the purpose or outcome of the study (e.g., individual recognition, behaviour 

detection)?  

6. Was analysis code open and available?  

With these questions, we aim to elucidate research trends, practices, gaps, and biases in the relevant 

literature, revealing future needs in this research area.  

Then, we augment the above questions with bibliometric analyses, which ask two additional 

questions:  
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7. In which country was the study conducted? (Is it different to where images originated?) 

8. In what type of journal was the study published? (Biological sciences, computer science or 

multi-disciplinary journals?) 

These two additional questions relate to the aspects of diversity in this research area. The first 

question reveals internationality, while the second question indicates cross-disciplinary diversity. 

Overall, our research weaving of the literature aims to create some guideposts for future work.  

2 | MATERIALS AND METHODS 

We followed the ROSES (RepOrting standards for Systematic Evidence Syntheses) checklist for 

Systematic Maps (Haddaway et al., 2018) for rigorous reporting of our data collection process. 

Search string development, validation, piloted screening and data extraction process were pre-

piloted but not registered due to the rapid nature of this scoping-like review. Therefore, this is not a 

systematic map, but I can be considered more as a ‘rapid’ map or literature survey on a group of 

sample articles. This article is also intended to show how to conduct such a rapid review or survey, 

which will be especially useful for scoping a topic of interest or summarising evidence base in a 

limited time (Lagisz et al., 2022).  

2.1 | Eligibility criteria  

We included publications in the last five years (2017-2021), where all criteria within an adapted 

PICO/PECO framework were fulfilled (Guyatt et al., 2011; Morgan et al., 2018): 

P – Population: study subjects (in images) were wild or semi-wild vertebrate species (excluding 

domestic or farmed animals, invertebrates, and museum specimens). Datasets that included the 

target population but also contained images of other species (eg. domesticated species or humans) 

were also allowed, however the non-target population species were not included in the analysis. 

I – Intervention / Innovation: use of computer vision machine learning algorithms (including deep 

neural-networks ,, Support Vector Machines, Random Forests; Nacchia et al., 2021) for automated 
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or semi-automated processing of image data (e.g., from camera traps, video tracking, thermal 

imaging; Nazir & Kaleem, 2021), at a scale where individual animals are visible (including aerial 

and drone images but excluding images gathered from satellites, biologging, X-ray, MRI images or 

equivalent).  

C – Comparator / Context: images from the wild or semi-wild (including zoo enclosures, but 

excluding lab-based or agricultural / aquaculture / pet studies). 

O – Outcomes: analyses focus on individual animal / species recognition / classification or animal 

behaviour recognition / classification. 

2.2 | Searches  

For a representative sample of multi-disciplinary literature, we ran a literature search using Scopus 

search engine on 2021/10/10 with a pre-piloted search string: ( TITLE-ABS-KEY ( ( *automatic* 

OR “machine learning” OR “computer learning” OR “deep learning” OR “neural network*” OR 

“random forest*” OR “convolutional neural” OR “convolutional network*” OR “learning 

algorithm*” OR “Support Vector*” ) AND ( image* OR camera* OR video* OR vision ) AND 

( *wild* OR population* OR “species identif*” OR “species label*” OR “species richness” OR 

( behavio* AND within/ 10 classif* ) OR ( behavio* AND within/ 10 recogn* ) ) AND NOT 

( “natural language” OR “sign language” OR accelomet* OR clinical* OR industr* OR agricult* 

OR farm* OR leaf OR husbandry OR food* OR tissue* OR cell* OR cultur* OR wildfire* OR 

“tree growth” OR forestry OR hydrolog* OR engineer* OR “oxygen species” OR molec* OR 

bacteria* OR microb* OR chemi* OR spectrom* OR brain* OR drug* OR patient* OR cancer* 

OR smoking OR disease OR diabet* OR landsat* OR sentinel OR satellite* OR “land cover” OR 

“land use” OR “vegetation map*” OR galax* OR “Google Earth” OR scan* OR “X-ray” OR 

“health care” OR participant* OR emotion* OR employee* OR speech OR proceedings ) ) ) AND 

PUBYEAR > 2016. We did not use language filters to ensure we captured literature from multiple 

countries. We chose Scopus as their bibliometric information was easy to handle than other 



7	
	

databases such as the Web of Science (note that bibliometric information form two databases are 

usually not compatible to each other).  

2.3 | Article screening  

We used Rayyan QCRI software (Ouzzani et al., 2016) to screen bibliographic records downloaded 

from Scopus. Three researchers (ML, JT, RF) independently performed the screening, assessing 

titles, abstracts, and keywords of each article. This screening resulted in articles included for full-

text assessment and data extraction. We excluded publications without full text available, after 

contacting study authors via ResearchGate.  

2.4 | Data extraction and coding 

For data extraction from the articles with full text, we used a two-part custom questionnaire (details 

in Supplementary Materials) implemented as a Google Form. We used the first part of the form to 

re-assess the fulfilment of the inclusion criteria and the second part of the form to extract key data 

on the study content. At least two assessors	extracted the first 6% of the papers independently 

during the piloting round. One assessor (ML) extracted the remaining, and another assessor (RF) 

independently cross-checked extracted data. Assessors authoring articles considered within the 

review were not involved in decisions regarding inclusion, extraction, or critical appraisal of their 

work. Apart from the data extracted via the questionnaire, we derived additional variables such as 

whether the full-text publication was included or excluded from the final dataset and the main 

reason for exclusion, extracted geographic coordinates for field-based studies. We coded whether 

location information was relatively precise or unclear. We also categorised publication journals into 

ecological, computer science-related and multidisciplinary. Details of data extraction and coding are 

provided in Supplementary File 1. 

2.5 | Critical appraisal 

As an indicator of reporting quality, we coded when we could not extract or infer information on 

key variables, such as sources of animal images (type of hardware and settings / locations), number 
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of animal species / classes studied, and general types of machine learning algorithms used. We also 

coded whether the analysis code used in the study was available for checking or reuse. 

2.6 | Data synthesis and presentation 

We collated manually coded data in a single data table (Supplementary File 2) and supplemented it 

with bibliographic information from downloaded Scopus records. All data wrangling and 

visualisations were conducted in an R environment (R Development Team, 2022). Counts of 

articles within specific categories for each variable are presented as bar plots or stacked area plots, 

while spatial information (location of origins of animal images, first author affiliation country) is 

plotted as global distribution maps and alluvial plots using the ggplot2 (Wickham, 2016), 

rworldmap (South, 2011), and ggalluvial (Brunson, 2020), R packages. Species identities from 

single-species individual recognition studies are presented on a phylogenetic tree derived using the 

rotl package (Michonneau, Brown & Winter, 2016). Given that our data coding categories were pre-

defined, knowledge gaps and clusters were identified via visual inspection of the plots.  The 

narrative synthesis of our findings follows our key review questions. 

3 | RESULTS 

3.1 | Searches, screening, and a database 

Our initial screening of 2,259 unique bibliographic records downloaded from Scopus resulted in 

225 articles for full-text assessment and data extraction. Of these 225 articles, we obtained full text 

for 215 articles. Out of the 215 full-text articles assessed, 23 were excluded (Supplementary File 1, 

Table S2), and 192 were eligible for data extraction (Supplementary File 1, Table S3). The final 

dataset consists of 19 papers from 2017, 21 from 2018, 46 from 2019, 63 from 2020, and 43 from 

2021. 
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FIGURE 1. Diversity of the vertebrate species studied in the included machine learning studies. A 

– numbers of species / animal classes per study. B – counts of articles that studied each vertebrate 

class, C – counts of articles focused on a given species from one-species studies only (bar colours 
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are referring to vertebrate class from panel B). D - counts of articles focusing on a given species in 

one-species individual recognition (individual identification) studies only (bar colours referring to 

vertebrate classes from 1B) and a phylogenetic tree of the focus species. 

 

3.2 | Study characteristics 

3.2.1 | Study species and image types 

Most studies (58 studies, 30%) only examined one species (‘single-species’ studies) with one study 

dealing with 16,583 species (mean = 118, SD = 1,241, median = 3; Fig. 1 A). The most popular 

biological group among vertebrates was mammals (65% studies), followed by birds (27%), fish 

(17%), reptiles (8%) and amphibians (2%); Fig. 1 B; some studies studied more than one class so 

that percentages do not total 100%. Thirty-five species were used in single-species studies. Here, 

the most popular study species were tigers (Panthera tigris), pandas (Ailuropoda melanoleuca) and 

koalas (Phascolarctos cinereus). In single-species studies, images of 13 species were used for 

individual recognition (re-identification) analyses, and these studies were dominated by mammals, 

especially large carnivores, cetaceans and primates (Fig. 1 D).  

Nearly half of included studies used wildlife images from fixed cameras (52%), such as camera 

traps and surveillance cameras, while 28% of studies used images from hand (mobile) cameras, and 

16% of studies used aerial images from drones or aircraft (Fig. 2 A). Over the last five years, the 

use of images from fixed cameras and mobile cameras has markedly increased, while the use of 

aerial images remained stable (Fig. 2 B). Note that in this and similar time-trend graphs, the 

apparent decrease in the relevant papers in 2021 is an artifact, because we conducted our literature 

search in October 2021, meaning that we did not cover the entire year 2021 period.  
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FIGURE 2. Diversity of the wildlife imagery analysed in machine learning studies. A - article 

counts by image source hardware type (one study could use more than one image type), B - 

temporal trends (annual counts) across the last five years.  Year 2021 is included only up to 

October; colours are corresponding to image source hardware types shown in panel A; 

“other/unclear” category not shown.  
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FIGURE 3. Machine learning algorithm types and wildlife outcome types analysed in the included 

studies. A – article counts by algorithm type and outcome type (one study could use more than one 

type of each), B – temporal trends (annual counts) in types of algorithms used across the last five 

years; “other/unclear” category not shown (Year 2021 is included only up to October). 
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3.2.2 | Algorithms and outcomes 

Neural-network-based analyses were easily the most popular machine learning algorithms (93% of 

studies), followed by Support Vector Machines (11% of studies), K-Nearest Neighbours (5%), and 

Random Forests (5%). The use of the other algorithms was relatively low (14% of studies) and 

included Naïve Bayes, Bag of Visual Words, Histogram of Colors, Local Binary Patterns 

Histograms, Multi-class Logistic Regression, Principal Component Analysis, Linear Discriminant 

Analysis, and other statistical approaches. The primary use of machine learning was for species 

recognition / classification (99% of studies), followed by individual recognition (19% of studies) 

and counting the numbers of individuals (18% of studies), with the latter being implemented as an 

extension to species recognition / classification. Few studies attempted to conduct behaviour 

detection, classification, and tracking (10% of studies). The combination of species recognition / 

classification using neural networks was most frequent with neural networks used for all types of 

outcomes (Fig. 3 A). Fig 3 B shows the dominance of neural network algorithms and how this trend 

is increasingly apparent over time (note that 2021 literature was included only up to October of that 

year).  
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FIGURE 4. Geographic distributions and overlaps in the affiliations of first study authors and the 

locations of the wildlife imagery. A – connecting author’s countries (in alphabetical order) and 

image source geographic locations; only countries / locations with more than one study are shown. 

B – Visualisation of the relative number of articles that use images from the same country as the 

USA

TurkeySpain
South Africa
NetherlandsMalaysiaJapan
Indonesia

India

Germany
FranceFinland

Ecuador
Czech Republic

China

Canada

Australia

Western Indian Oceanunclear
Tanzania
Taiwan

Namibia

global

Costa RicaAntarctica

USA

TurkeySpain
South Africa

MalaysiaJapan
India

Germany
Finland
Ecuador

China

Canada

Australia

author images
Where first author and images come from?A

How first author and location of images overlap?

circles = congruent author and image locations (scaled by count), arrows = non−congruent locations (image −> author)

B



15	
	

first author and where other sources of wildlife images are located (arrows pointing from the source 

towards the countries of the first authorship); “global” and “unclear” image source location 

categories not shown. 

 

3.2.3 | Geographical origin, affiliations, and journal types 

We analysed the countries of affiliation of the first authors of the included studies and locations of 

wildlife images used in the studies. The authors came from 40 different countries, but only 17 

countries had more than one study (Fig. 4 A; left column), using images from 38 countries and 10 

other location types, including ‘global’ and Antarctica (Fig. 4 A; right column). Three countries, 

Australia, China, and the USA, dominated the literature in terms of author affiliations and wildlife 

images. Datasets from the Antarctic, Africa and Southeast Asia were commonly analysed by 

researchers from other geographical areas (Fig. 4 B). There was especially strong international use 

of images by the United States, compared to Australia, the two largest generators of articles (Fig. 4 

B). While all papers had more than one author, only 3 out of 173 papers with complete 

bibliographic data on affiliations had authors from more than one country (Supplementary Table 

S4). 
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FIGURE 5.  Diversity of the journals publishing machine learning studies on wildlife imagery. A – 

temporal trends (annual counts) in three main journal subject disciplines across the last five years. 

Year 2021 is included only up to October .  B – article counts for journals with at least three articles 

included in our survey data set. 
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conference proceedings, but also more traditional journals such as Lecture Notes in Computer 
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over the last few years (Fig. 5 A). Indeed, the top two destinations of the surveyed papers were 
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FIGURE 6.  Aspects of reporting quality and openness of the included machine learning studies. A 

– percentages of relevant articles providing sufficient or insufficient information to code a given 

variable. B – article counts for studies that shared or did not share their analysis programming code. 
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Section 1.2). We have profiled some clear patterns for each of these questions (Fig. 1 – 6). We 

discuss these patterns in four subsections below: i) Questions 1 & 2, ii) Questions 4 & 5, iii) 

Questions 3, 7 & 8, and iv) Question 6.  

4.1 | Study species and image types 

Studies mainly focused on large charismatic or iconic mammals such as the top three (tigers, 

pandas, and koalas), other big cats, cetaceans and primates, reflected in single-species studies and 

individual-recognition studies (Fig. 1 C, D). Birds were the second most popular taxon (Fig. 1 B), 

but only two species, snow geese, Anser caerulescens (Bowley et al., 2017; Bowley et al., 2018) 

and purple martins, Progne subis (Williams & DeLeon, 2019), were represented in single-species 

studies (Fig. 1 C). This is because multiple-species studies often focused on mammalian species, 

while occasionally also including large bird species (e.g., images from African savanna including 

ostrich; Rey et al., 2017; Loos, Weigel & Koehler, 2018). The paper with 16,583 species included 

an exceptionally wide range of species, as it tried to utilise all the species recorded in GBIF (the 

Global Biodiversity Information Facility; Mo, Frank & Vetrova, 2017). Other papers with over 100 

species often dealt with a particular taxon, such as birds (Ragib et al., 2020), fish (Sayed et al., 

2018), and snakes (Picek et al., 2021). 

Researchers’ preference for certain taxa is known as taxonomic bias (Bonnet, Shine & Lourdais, 

2002; Donaldson et al., 2016), well known in the research literature, including conservation, 

behavioural ecology and ecotoxicology (Rosenthal et al., 2017; Troudet et al., 2017; Prosser et al., 

2021). The distribution of study species in our literature survey supports the anthropomorphic 

stimuli hypothesis that we humans are more attracted to species phylogenetically closer to us 

(Miralles, Raymond & Lecointre, 2019). This hypothesis explains the widespread use of mammals 

and primates (Fig. 1 B, C). Indeed, a recent comprehensive study, including 7,521 mammalian 

species, showed that phylogenetic relatedness was closely related to research interest, as reflected 

by the number of publications and citations (Tam et al., 2021), with primates overrepresented 
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among the most popular species. In our survey, among the 13 species used for individual 

recognition, brown trout (Salmo trutta) appeared to be the ‘odd one out’, not fitting categories of 

iconic species or phylogenetic relatedness. However, the motivation behind the study was related to 

human economic values – helping aquaculture and fishing tourism by tracing fish migration and 

distribution, (Zhao et al., 2019).  

Given the affordability and accessibility of fixed cameras (i.e., camera traps and surveillance 

cameras), it was not surprising that fixed cameras were most used among the surveyed studies (52% 

studies). Indeed, many machine learning applications have focused on camera traps in ecology and 

environmental sciences (cf. Caravaggi et al., 2017), with the dedicated book titled “Camera traps: 

wildlife management and research” (Meek et al., 2014). Notably, a combined total of the usage of 

hand cameras (including mobile phones) and aerial (drone) wildlife images was nearly as high as 

that of fixed cameras (85 vs. 99 studies). However, the use of the fixed camera (especially camera 

traps) has been increasing rapidly, and this trend is likely to continue (Fig. 2 B; tailing off in 2021 is 

caused by our survey not capturing all images from that year, as literature searches were run in 

October 2021). This trend may be driven by increasing availability of images from fixed cameras 

and camera traps via freely available biodiversity collections (e.g., GBIF and iNaturalist) and 

computer vision programming challenge platforms (e.g., ImageNet and Kaggle). 

 

4.2 | Algorithms and outcomes 

Most (∼92%) algorithms applied a	neural network approach to classify or recognise animals. 

Neural networks or deep leaning algorithms were used for all six different tasks: 1) species 

recognition/classification, 2) individual recognition, 3) counting the number of individuals, 4) 

tracking individuals, 5) detecting behaviour at a given time and 6) classifying behaviours over time 

(in order of the usage; Nazir & Kaleem, 2021). On the other hand, the use of the traditional machine 

learning algorithms was limited, with the second most popular, Support Vector Machines, only 
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found in 30 studies (Fig 3 A). However, the observed dominance of the literature by deep learning 

was not surprising. This is due to the recent resurrection of deep neural networks, initially proposed 

in 1943 (Mcculloch & Pitts, 1990), associated with the increased processing power provided by 

GPU, the availability of big data for training (LeCun, Bengio & Hinton, 2015; Webb, 2018) and the 

development of more advanced algorithms in the field of computer vision.  

Our mapping effort elucidated future directions in the use of deep learning in wildlife imagery. The 

clear next step is to increase the use of deep neural networks to detect and track animals and classify 

their behaviour, with relevant algorithms already developed for human behaviour detection and 

tracking (e.g., Al-Faris et al., 2020; Bendali-Braham et al., 2021). Therefore, a challenge for 

ecologists and environmental scientists is to co-opt such algorithms for wildlife imagery. This 

challenge requires cross-disciplinary collaborations between computer and environmental scientists, 

which we discuss further in the next section.  

4.3 | Geographical origin, affiliations, and journal types 

In many studies, the geographical origin of wildlife images and the first author affiliation country 

are congruent (Fig. 4 A, B). Australia, China, India and the USA are four clear hot spots in both 

origins of wildlife images and authors, reflected in the top three species, tigers, koalas and pandas 

(Fig. 1 C). However, many wildlife images from Africa were usually analysed elsewhere (apart 

from South Africa; e.g., Butgereit & Martinus, 2018). Such incongruence could be related to 

scientific colonialism, initiating discussions on the ways to decolonise science (Baker, Eichhorn & 

Griffiths, 2019; Trisos, Auerbach & Katti, 2021). Building capacity and involving local 

collaborators including indigenous peoples could be a first step towards resolving this 

incongruence, increasing representation of underrepresented nations and their wildlife imagery. 

There is also considerable scope for more international collaborations, given only three studies had 

authors from multiple countries. 
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This field was entirely dominated by computer scientists five years ago (in 2017), reflected in 

almost all articles published in computer science journals or conference proceedings. Later, 

numbers shifted dramatically towards more ecological / environmental journals (Fig. 5 A). As a 

result, the top two highest-ranked journals most recently represent these disciplines (the third-

ranked was a ‘computer science’ journal, Fig. 5 B). Disciplinary diversity is increasing, along with 

the accessibility of deep learning for non-computer scientists (Christin, Hervet & Lecomte, 2019; 

Lamba et al., 2019) and interdisciplinary collaborations between ecologists and computer scientists 

are also on the rise (e.g., Tabak et al., 2019; Willi et al., 2019).  

4.4 | Reporting and open practices 

Although we could identify basic study information for our survey, about 10 – 20% of the papers 

lacked critical information, required for replication, such as study species (not just taxa), and details 

of image sources or locations (Fig. 6 A). This may still be underestimated, with generally poor 

reporting, exemplified by much of the coded survey information based on example images provided 

in figures and dataset descriptions from other publications or the Internet (e.g., when the study only 

mentioned the use of publicly available datasets, often not even naming which dataset). With an 

increasing number of studies applying machine learning to wildlife images, creating formal 

reporting guidelines may be useful. Reporting guidelines are common in (bio)medical research 

(e.g., du Sert et al., 2020; Page et al., 2021) and can improve reporting quality (Sun et al., 2018). In 

our literature survey, we were particularly surprised that research (analysis) code was not published 

in approximately 80% of the studies, given the importance of computational reproducibility and 

code sharing within computer sciences (Cadwallader et al., 2021). Where code was shared, 

researchers often used GitHub repositories (e.g., classification accuracy; Akcay et al., 2020; Allken 

et al., 2021). We recommend that the code and relevant data be made available according to the 

FAIR principles (findable, accessible, interoperable & reusable; Wilkinson et al., 2019). 
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4.5 | Limitations and future opportunities 

Our work had three notable limitations. First, we focused on vertebrate species, although we were 

aware that machine learning has been used to process images of invertebrates in the wild (e.g., 

Hoye et al., 2021). Detecting small animals, such as many invertebrates, is more difficult with 

camera traps, especially with variations in light conditions. Future deep learning algorithms may 

resolve this by techniques such as small object detection (Liu, Yang, et al., 2021) and low-light 

detection (Chen and Shah, 2021). Second, we excluded satellite imagery since we focused on 

wildlife images where individual-level recognition was possible. For some large wildlife species, 

such as whales and elephants, individuals could be detected and followed using satellite images 

(Guirado et al., 2019; Duporge et al., 2021). As the quality of images increases, satellite imagery 

will become an increasingly important tool for wildlife conservation (Tuia et al., 2022). Finally, we 

acknowledge that the relevant literature is rapidly increasing and changing: our map will inevitably 

be obsolete in a few years. However, this study provides some current insights, providing new 

perspectives.  

4.6 | Conclusions 

In this study, we revealed the recent trends, knowledge clusters and gaps in the use of machine 

learning in processing wildlife imagery. Future applications could aim to mitigate the current 

taxonomic bias, the limited use of deep learning in behaviour detection and tracking, and 

collaborate internationally to tackle incongruency between image origins and author affiliations. We 

hope our knowledge maps will guide future studies to fill the gaps, resolve biases, and increase 

diversity in research in as many ways as possible.  
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