Deep reticulation: the long legacy of hybridization in vascular plant evolution

1 2

6

13

- **3** Gregory W. Stull^{1,2,†}, Kasey K. Pham^{3,†}, Pamela S. Soltis⁴, Douglas E. Soltis^{3,4,*}
- 4 [†]contributed equally
- 5 *For correspondence (<u>dsoltis@ufl.edu</u>)
- ⁷ ¹Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences,
- 8 Kunming 650201, China,
- ²Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC
 20013, USA,
- ³Department of Biology, University of Florida, Gainesville, Florida 32611, USA, and
- 12 ⁴Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA

14 SUMMARY

- 15 Hybridization has long been recognized as a fundamental evolutionary process in plants, but our
- 16 understanding of its phylogenetic distribution and biological significance across deep evolutionary scales
- 17 has been largely obscure—until recently. Over the past decade, genomic and phylogenomic datasets have
- 18 revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common
- 19 throughout the evolutionary history of plants, particularly in various lineages of flowering plants.
- 20 However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient
- 21 hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here we
- 22 provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of
- ancient hybridization across plant phylogeny as well as the challenges unique to documenting ancient vs.
- recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not
- been explicitly attempted before. Further documenting the extent of deep reticulation in plants should
 remain an important research focus, especially since published examples likely represent the tip of the
- 27 iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly
- 28 explore the macroevolutionary significance of this process, in terms of its impact on evolutionary
- 29 trajectories (e.g., how does hybridization influence trait evolution or the generation of biodiversity over
- 30 long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency
- of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of
- 32 ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny.
- 33 Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history
- in many cases, but our ability to infer, visualize, and use networks for comparative analyses is highly
- 35 limited. Developing improved methods for the generation, visualization, and use of networks represents a
- 36 critical future direction for plant biology. Current classification systems also do not generally allow for
- 37 the recognition of reticulate lineages, and our classifications themselves are largely based on evidence
- 38 from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as
- 39 considering whether and how to recognize hybridization in classification systems, will represent an
- 40 important challenge for the plant systematics community.
- 41
- 42 Keywords: Ancient hybridization, angiosperms, gene flow, phylogenomics, polyploidy, reticulation,
- 43 vascular plants
- 44

45 INTRODUCTION

46 Hybridization—or crossing between individuals from different species or divergent populations (Stebbins

47 1959; Harrison 1990; Arnold 1997)—is a biological process that has fundamentally shaped the Tree of

48 Life from its tips to some of its deepest branches. The circumstances that give rise to hybridization,

- 49 control its frequency, and shape its evolutionary outcomes are complex and involve the interplay of
- 50 ecological, genomic, population genetic, and life history factors. Hybridization can counter divergence by 51 homogenizing previously isolated subpopulations. Intermittent hybridization can facilitate the sharing of
- homogenizing previously isolated subpopulations. Intermittent hybridization can facilitate the sharing of
 adaptive alleles among divergent populations or separate species. Hybridization can also lead to the
- adaptive alleles among divergent populations or separate species. Hybridization can also lead to the
 formation of new (reticulate) lineages through hybrid speciation, when an evolutionarily stable population
- 54 of hybrid individuals is established in reproductive isolation from its parental species. However, in
- addition to these "creative" aspects of hybridization (sensu Arnold 1992), hybridization can also break
- apart co-adaptive gene groups, cause Dobzhansky-Muller incompatibilities, and even erode the genetic
 integrity of rare species (Todesco et al. 2016).

58 The study of hybridization has a long history in botany (Haartman 1751; Kölreuter 1766; Roberts 59 1929), and it was solidified as a fundamental process in plant evolution during the Modern Synthesis 60 (Anderson and Hubricht 1938; Anderson 1948; Stebbins 1959). The study of hybridization, including 61 hybridization in association with polyploidy (allopolyploidy), has continued to be a central focus of plant 62 biology (e.g., Grant 1971; Soltis and Soltis 2009; Yakimowski and Rieseberg 2014; Alix et al. 2017). 63 Recent advances in genomics and phylogenomics have greatly increased our ability to detect both recent 64 and ancient hybridization and to understand its genetic and evolutionary consequences. It has been 65 estimated that ~ 25 percent of plant species in the UK flora actively hybridize with relatives (Mallet 2005), 66 and that more than 30% of living plant species are polyploids (Wood et al. 2009). It is also now clear that 67 ancient polyploidy is prevalent across plant phylogeny and that all major vascular plant lineages have 68 polyploidy in their past (Jiao et al. 2011: Amborella Genome Project 2013: Leebens-Mack et al. 2019: 69 Stull et al. 2021). It is unclear how many of these ancient polyploidy events were associated with 70 hybridization (i.e., allopolyploidy), but recent phylogenomic studies have dramatically increased the 71 number of documented cases of ancient hybridization in plants (both homoploid and polyploid). This is 72 perhaps not surprising–given the prevalence of recent hybridization and the appreciation that it can lead to 73 evolutionarily stable lineages (Ungerer et al. 1998; Soltis and Soltis 2009; Katche et al. 2021), we might 74 expect that hybridization has been an important process throughout the entirety of plant evolutionary 75 history, and also that some major lineages of plants could be of hybrid origin (via hybrid speciation) or 76 have experienced varying degrees of introgression with other lineages.

77 In light of mounting evidence for ancient hybridization, and the dramatic recent increase in 78 research on the subject, a critical review of the topic is timely to synthesize current knowledge and guide 79 future work. There are numerous extensive reviews on hybridization in plants (e.g., Mallet 2005; Soltis 80 and Soltis 2009; Abbott et al. 2013; Yakimowski and Rieseberg 2014; Suarez-Gonzalez et al. 2018, 81 Edelman and Mallet 2021), but these generally focus on the study of recent hybridization. Here we 82 provide a critical review focused in particular on *ancient* hybridization (see definition below). We survey 83 well-documented examples of ancient hybridization between major lineages of plants, ranging in 84 temporal scale from thousands of years ago to over 100 million years ago, and outline what we view as 85 compelling evidence for recognizing hybridization that occurred in deep time. We suggest that genomic 86 data should, when possible, be paired with other lines of evidence (e.g., biogeographic and niche 87 reconstructions) in order to evaluate the plausibility of historical hybridization scenarios, but that the 88 feasibility of such approaches is perhaps limited for putative hybridization events predating the Cenozoic.

- 89 While we assume that hybridization in the distant past is a fundamentally similar process to that
- 90 happening in recent time, it is clear that detecting and studying ancient hybridization involves unique 91
- challenges that deserve special attention.
- 92 The consideration of hybridization across deep time also raises macroevolutionary questions 93 worthy of discussion. For example, has the prevalence of hybridization been relatively consistent through 94 time, or have certain geologic periods witnessed, or even facilitated, increased frequencies? What is the
- 95 relationship between hybridization and diversification? Do particular traits tend to facilitate hybridization
- 96 or the persistence of hybrid populations? Is the propensity to hybridize itself an adaptive life history
- 97 strategy? Our discussions here build on previous considerations of these questions (e.g., Grant 1971;
- 98 Ellstrand et al. 1996; Whitney et al. 2010; Folk et al. 2018a; Mitchell et al. 2019; Mitchell and Whitney 99 2021). The prevalence of reticulation has also led some to question whether a bifurcating tree is the most
- 100 appropriate way to model the diversification process and conceptualize evolutionary history more
- 101 generally (e.g., Funk 1981; Linder and Rieseberg 2004; Bapteste et al. 2013). This has fundamental
- 102 implications for the field of evolutionary biology, as well as for biological nomenclature and how we
- 103 construct classifications. By reviewing current knowledge about ancient hybridization and discussing
- 104 important issues related to its detection and association with broader patterns and processes of plant 105 evolution, we hope to provide a roadmap for future research on the topic.
- 106

107 **ANCIENT HYBRIDIZATION DEFINED**

- 108 To our knowledge, there have been no *explicit* attempts to establish a definition for "ancient
- 109 hybridization" as a phenomenon distinct from "recent hybridization", despite the widespread use of the
- 110 former term in the literature. To some extent,
- 111 such a distinction is arbitrary since the same
- 112 process is at play, but given that the
- 113 population genetic and genomic
- 114 consequences of hybridization tend to unfold
- 115 in relatively discernable stages (Moran et al.
- 2021), there might be a point in the 116
- 117 evolutionary trajectory following
- 118 hybridization that we can refer to past
- 119 hybridization events as "ancient" in a
- 120 meaningful sense. We consider hybridization
- 121 events to be "ancient" if (a) gene flow
- 122 between the lineages in question has ceased,
- 123 (b) the genomes in the hybrid populations
- 124 have stabilized, and (c) the lineage of hybrid
- 125 origin has subsequently diversified or
- 126 undergone a prolonged period of anagenesis
- 127 following genome stabilization (e.g., Fig. 1).
- 128 Regarding (b), genome stabilization can
- 129 occur through the rapid purging of much of
- 130 one parent's ancestry (the minority parent) in
- 131 cases of introgression (historically called
- 132 introgressive hybridization), thus reducing

Figure 1. A chronogram of a fictional exemplar clade, with both extinct and extant taxa, in which ancient hybridization occurred between members of sister clades (highlighted in cobalt and gold) 80 million years ago; the reticulation event is marked by circles.

133 heterozygosity; through recombinational hybrid speciation, where chromosomal arrangements are

- established that render the hybrids interfertile but incompatible with either parent; and/or through
 polyploidization, which results in fixed heterosis. We can call this a "genomic" definition for ancient
 hybridization, and we follow this definition here.
- 137 Another approach to defining hybridization as "ancient" vs. "recent" is in relation to human 138 history. For example, we can consider hybridization events to be "ancient" if they occurred before the Holocene (i.e., before 11,600 years ago). We call this a "historical" definition of ancient hybridization. 139 140 and this roughly follows the logic of Welch and Rieseberg (2002). We chose the Holocene as the 141 demarcation point as it has a concrete geologic definition and represents a general turning point in human 142 history, when activities such as agriculture began to significantly impact Earth's ecosystems (Larsen 143 2006); furthermore, the proliferation of agriculture both directly and indirectly promoted widespread 144 hybridization in plants (Anderson 1948, 1949). In some respects, this definition is more arbitrary and less 145 biologically meaningful than the "genomic" definition above. For example, we would expect hybrid 146 genomes to stabilize much more quickly in lineages with short vs. long generation times, so a 147 hybridization event that occurred 15,000 years ago would be, in an evolutionary/genomic sense, perhaps 148 more "ancient" in an annual herbaceous lineage than it would be in a woody lineage with much longer 149 generation times. However, this historical definition is perhaps more straightforward in its application, 150 and it also brings into focus the significance of anthropogenic activities in facilitating gene flow and the formation and persistence of hybrids over the last 11,600 years (Ottenburghs 2021), and the importance of
- 151 formation and persistence of hybrids over the last 11,600 years (Ottenburghs 2021), and the importance152 identifying "natural" hybrids that occurred prior to major phases of anthropogenic disturbance and
- 153 stewardship (Welch and Rieseberg 2002).
- 154

155 HISTORICAL VIEWS ON ANCIENT HYBRIDIZATION

156 Although the role of hybridization in plant evolution has been recognized for nearly a century,

- 157 hybridization has generally been considered on recent timescales, whether viewed via "genomic" or
- 158 "historical" perspectives. Ancient hybridization has tended to be associated with polyploidy. For
- 159 example, Stebbins (1950) identified several angiosperm families as having ancient polyploid roots, having
- arisen via allopolyploidy, i.e. the combined processes of hybridization and chromosome doubling.
- 161 (Although Stebbins did not explicitly note allopolyploidy in the origins of these ancient polyploid clades,
- 162 he considered autopolyploidy to be 'rare and maladaptive' (Stebbins 1950, 1971); thus, his inferences of
- ancient polyploidy must have involved hybridization.) The magnoliid families Magnoliaceae,
- 164 Myristicaceae, Calycanthaceae, and Lauraceae were proposed as ancient polyploids, as was the rosid
- 165 family Salicaceae (Stebbins 1950). These hypotheses have been supported by genetic and genomic data
- 166 (e.g., Soltis and Soltis 1990; Cui et al. 2006; Tuskan et al. 2006; Chaw et al. 2019; Chen et al. 2019). In
- 167 contrast to ancient polyploidy, explicit hypothesized instances of ancient homoploid hybridization are rare
- 168 in the classic botanical literature, perhaps because the effects of hybridization per se seem to be greatly
- 169 obscured through time.
- 170 The genetic expectations for a stabilized homoploid hybrid species, based on Mendelian
- principles, were described by Gallez and Gottlieb (1982). Additivity of parental alleles at a *single locus*
- would be expected in a hybrid derivative, for example, allele a from parental species A and allele b from
- parental species B. In addition, because generations of hybridization and backcrossing may lead to loss of
- 174 one parental allele or the other at some loci, rendering these loci monomorphic, additivity should be
- apparent *across loci* within a population or hybrid species, such that allele *a* from parental species A
- 176 would be detected at locus 1 and allele *b* from parental species B would be detected at locus 2, etc. These

- 178 hybridization on recent timescales. However, through time, as alleles from one parent or the other are lost
- due to drift or selection and new alleles arise via mutation and accumulate, the genetic make-up of the
- 180 hybrid derivative will deviate from these expectations, and the hybrid origins of the lineage will
- eventually be obscured. Thus, genetic comparisons, even at the level of genome sequences, may not be
- useful in identifying cases of ancient hybridization, and alternative approaches to detecting ancienthybridization are needed.
- 183 hybr 184

185 HYBRIDIZATION DETECTION

- Hybridization is often detected via gene tree discordance, wherein the evolutionary histories of different
 genes conflict (e.g., Rieseberg et al. 1990; Wendel and Doyle 1998; Sang and Zhong 2000). In plants, this
- genes conflict (e.g., Rieseberg et al. 1990; Wendel and Doyle 1998; Sang and Zhong 2000). In plants, this
 often manifests as cytonuclear discordance, where genes from the chloroplast genome show relationships
- distinct from those of the nuclear genome due to "chloroplast capture," a phenomenon in which the
- 190 chloroplast genome of one lineage becomes fixed in another following hybridization and backcrossing
- (Rieseberg and Soltis 1991; Soltis and Kuzoff 1995). This occurs because chloroplast genomes typically
- experience uniparental inheritance, lack recombination, and have small effective population sizes (Palmer
- 193 1985; Rieseberg and Soltis 1991), which prevents the sharing of genetic material between parental
- 194 plastomes and can lead to rapid fixation of one parental genome in hybrid populations. Given that
- 195 chloroplast genomes are typically maternally inherited (with some important exceptions such as paternal
- 196 inheritance in gymnosperms and biparental inheritance in some angiosperms), chloroplast capture can be
- helpful for identifying maternal (or seed) contributions to gene flow (Asmussen and Schnabel 1991;
- 198 McCauley 1994). Discordance among nuclear loci across the genome can also stem from hybridization
- and introgression, though these signals are generally more complicated to interpret than comparisons
- between summary nuclear and chloroplast topologies due to biparental inheritance and
- 201 recombination/segregation in nuclear genomes. For either case, a topology that differs from the overall
- inferred species tree indicates that the gene in question has a different evolutionary history that may be
- 203 explained by hybridization and introgression from a different species. However, there are other
- evolutionary processes that produce patterns of discordance similar to those resulting from gene flow,
- 205 necessitating tests to differentiate between them.

206 207 208

209

210

211 212

Figure 2. A) Diagram illustrating the process of incomplete lineage sorting, depicting an ancestral population where three genes have two alleles maintained. In subsequent speciation events, the two alleles are maintained in lineages and then randomly fixed, creating gene trees with topologies inconsistent with the species tree. B) Diagram illustrating expectations for the ABBA-BABA test under incomplete lineage sorting and introgression. Because incomplete lineage sorting occurs randomly across all genes, both alternative topologies are expected to occur in equal frequency. Because introgression occurs for specific taxa at specific loci, one alternative topology is expected to dominate in frequency.

213 The most common confounding factor for detecting hybridization is incomplete lineage sorting 214 (ILS; Fig. 2), a process by which loci that are polymorphic at the time of species divergence randomly fix afterwards in a pattern that does not reflect the evolutionary history of the lineage, causing gene tree 215 216 discordance (Nei 1986; Doyle 1992; Maddison 1997). When comparing chloroplast topologies to nuclear 217 topologies, coalescent simulations can help identify when discordance is likely to arise under just ILS 218 (Joly et al. 2009a; Folk et al. 2017). When comparing topologies of multiple loci across the nuclear 219 genome, ILS can be distinguished from hybridization by comparing the ratio of sites or genes supporting 220 topologies discordant with the inferred species tree for the whole genome or a subsection of the genome (ABBA-BABA test, Green et al. 2010; Patterson's D, Durand et al. 2011; f_d , Martin et al. 2015). Under 221 ILS, an even ratio of all discordant topologies is typically expected, as ILS acts randomly across the 222 223 whole genome. In cases of introgression, a bias towards a particular discordant topology is expected, as 224 introgression typically only results in specific genomic regions displaying discordance. This framework 225 has been extended to allow inference of not only the presence, but also the directionality, of gene flow in 226 more complex phylogenetic scenarios (DFOIL; Pease and Hahn 2015). ILS and hybridization can also be

- distinguished by examining the distribution of branch lengths for discordant genes (QuIBL, Edelman et
- al. 2019), with an exponential distribution expected under ILS and an exponential distribution with
- additional modes expected under hybridization.

230 Hybridization can also be detected against a background signal of ILS using phylogenetic 231 network inference-specifically, programs that infer phylogenetic networks using multilocus data and the 232 multispecies coalescent. One such program, PhyloNet (Wen et al. 2018), can use maximum parsimony or 233 maximum likelihood methods on a set of gene trees to estimate a phylogenetic network or use a Bayesian 234 framework directly on a multiple sequence alignment. However, the calculations to infer an entire 235 network can be computationally costly, especially as the number of taxa and hybridization events 236 increases, so the authors suggest subsetting to taxa and putative hybridization events of interest when 237 applying this program (Wen et al. 2018). The other popular program for this type of analysis, SNaQ 238 (Solis-Lemus et al. 2017), takes a different approach. It infers a phylogenetic network from a set of genes 239 or quartet concordance factors (Larget et al. 2010). The implemented algorithm increases scalability of 240 the analysis to larger datasets, but does not have a formal method for evaluating the true number of 241 hybridization events and cannot infer hybridization between sister species (Solis-Lemus et al. 2016).

242 Population genetics approaches offer another window onto hybridization/introgression. Genome-243 wide markers such as SNPs from RAD-seq, genotyping-by-sequencing, or whole-genome resequencing 244 can be used to identify hybrid individuals and, in some cases, to delimit regions of the genome that have 245 been introgressed. Putative hybrids are genotyped, along with individuals from the parent species thought 246 not to be admixed. Admixture analysis (i.e., in STRUCTURE, Pritchard et al. 2000) is then used to 247 characterize the genetic composition of putative hybrids, estimating the genetic contribution of K source 248 populations to individuals. This admixture analysis can then be used to calculate a hybrid index and 249 estimate the type of hybrid (F1, F2, advanced generation). When marker coverage of the genome is 250 sufficiently dense and genetic distances between markers are known, admixture mapping analysis can be 251 conducted for smaller genomic regions to delimit which are likely of hybrid origin (Chakraborty and 252 Weiss 1988). Because ILS also affects this type of data, Patterson's D (and related statistics) and QuIBL 253 tests are used as well. As a caveat, admixture analysis assigns variants to populations based on existing 254 variation in the dataset and specified K and is therefore sensitive to biased sampling and misspecified K 255 (Lawson et al. 2018), which could lead to misidentification of hybrid individuals and genomic regions. 256 Other metrics that can be used to delimit introgressed genomic regions are relative and absolute 257 divergence (FST and dXY), with the assumption that regions of the genome of hybrid origin will have a 258 higher divergence value compared to the background rate for the entire genome. Like the other metrics 259 mentioned here, divergence is affected by factors other than hybridization such as local recombination 260 rate (Noor and Bennett 2009). Therefore, researchers usually use many different metrics together to build 261 an overall case for hybrid origin of individuals and genomic regions.

262

263 CHALLENGES OF DETECTING DEEP RETICULATION

264 Detecting hybridization becomes an increasing challenge when considering possible events that occurred 265 deeper in evolutionary history. Sources of anecdotal evidence useful for detecting recent or contemporary 266 hybridization such as intermediate morphologies, overlapping ranges of putative parents, and increases in 267 chromosome number (in the case of allopolyploids) are typically no longer available given thousands to 268 millions of years of evolutionary change in phenotype, geographic range, and genome structure. The 269 inference of ancient hybridization therefore relies largely on phylogenomic signal, which also tends to 270 erode with the passage of evolutionary time. 271 On the one hand, with hybridization and subsequent backcrossing, purging of introgressed alleles

271 On the one hand, with hybridization and subsequent backcrossing, purging of introgressed alleles
 272 via recombination can quickly reduce the extent of information available for reconstructing past
 272 backgroup of the standard subsequent backgroup of the standard

273 hybridization (Moran et al. 2021). On the other hand, signal for gene flow (especially when limited) can

274 be very challenging to tease apart from the noise of ILS, a more or less constant backdrop to phylogenetic 275 signal that varies in intensity with factors such as time between divergences and population size. In general, we might expect the circumstances that give rise to extensive ILS (e.g., rapid diversification 276 277 across heterogeneous landscapes) to also create ample opportunities for hybridization (due to close 278 proximity of closely related species, which may be brought into repeated contact with climatic 279 fluctuations). Rapid diversification will generally leave little signal in gene trees for later inference of 280 discrete evolutionary processes, and when that signal is eroded over time due to saturation or selection, 281 most individual gene trees might offer limited useful information. Taken together, in many cases, we 282 might be left with a limited ability to identify cases of ancient hybridization with certitude. Because signal 283 for past hybridization from the nuclear genome can be lost or obscured over time, well-supported 284 cytonuclear discordance might represent the best remaining evidence for ancient hybridization (Sun et al. 285 2015; Stull et al. 2015, 2020). However, often both nuclear and chloroplast data show uncertainty or 286 conflicting signals for particular deep relationships (e.g., Gitzendanner et al. 2018; Leebens-Mack et al. 287 2019), in which case cytonuclear discordance itself is no longer itself a reliable indicator. Furthermore, 288 many instances of ancient hybridization will not be reflected by cytonuclear discordance given that 289 chloroplast capture does not always accompany introgression.

290 Recent studies on Amaranthaceae s.l. (Morales-Briones et al. 2021) and Malpighiales (Cai et al. 291 2021) represent excellent examples of the challenges of detecting ancient hybridization in the context of 292 ancient, rapid radiations. In both cases, there are extreme levels of gene tree discordance along the 293 backbone, to the extent that it seems impossible to resolve clear bifurcating relationships among major 294 lineages, or even clear patterns of alternative conflicting relationships. While signal for gene flow does 295 appear to be present (e.g., imbalanced frequencies of alternative topologies), this occurs alongside 296 extensive ILS and gene-tree estimation error. Inferring discrete hybridization events from these complex phylogenomic contexts is beyond the abilities of current methods, but reframing how we think about such 297 298 phylogenomic challenges might nevertheless offer meaningful biological insights (e.g., Parins-Fukuchi et 299 al. 2021).

300 Extinction represents another roadblock to the detection of ancient hybridization, a point that has received relatively little attention until recently (e.g., Thomas et al. 2017; Tricou et al. 2022). Extinction 301 302 can obscure the parental lineages involved in ancient hybridization events, and in some cases might lead 303 to incorrect inferences of the parental lineages involved. For example, relatives of the extinct parental 304 lineages might be incorrectly inferred as participating in gene flow in the absence of the parental lineages 305 themselves (Lawson et al. 2018). In the case of polyploidy, instances of allopolyploidy could be 306 incorrectly reconstructed as autopolyploidy in gene-tree reconciliation approaches if both parental 307 lineages have gone extinct (Thomas et al. 2017). Similar problems with inference can also emerge from 308 incomplete sampling of extant lineages, but such problems should be remedied with the addition of more 309 complete data. Extinction, however, will likely represent an intractable barrier to a more complete 310 understanding of ancient hybridization in many cases. While extinction should generally represent a more 311 common confounding factor in the reconstruction of ancient hybridization events, we suggest that it is an 312 important issue to consider even when examining more shallow hybridization events given the extent of 313 recent and ongoing extinction in the Anthropocene.

314

315 GENETIC CONSEQUENCES OF HYBRIDIZATION

- 316 Although much of this review focuses on the positive ("creative") potential of hybridization in evolution,
- 317 it is important to stress that hybridization often, and perhaps predominantly, has negative outcomes,

ranging from ecological selection against hybrids to more fundamental genetic and/or genomic obstacles.
In this section we outline the more immediate genetic consequences of hybridization, both positive and
negative, and the different means by which populations and genomes can stabilize after hybridization.

321 Hybridization can result in distinct evolutionary outcomes depending on the parental contributors 322 and the processes involved in the stabilization of hybrid populations (Arnold 1992). A fundamental initial 323 filter for hybrid success and subsequent genetic outcomes concerns whether or not the F1 and subsequent hybrid generations are viable and fertile, which is influenced by the genetic composition of the parental 324 325 lineages and the environments in which they live (Yakimowski and Rieseberg 2014; Moran et al. 2021). 326 Ecological selection against F1 hybrids may occur due to abiotic filtering of unsuitable intermediate 327 phenotypes from either parent's niche (e.g., in Encelia, DiVittorio et al. 2020; in Mimulus, Kenney and 328 Sweigart 2016). Pollinator and herbivore interactions may also be disrupted in F1 hybrids (e.g., in 329 Mimulus, Schemske and Bradshaw 1999; in Eucalyptus, Whitham et al. 1994). Regarding innate 330 reproductive isolation mechanisms, both genetic incompatibilities (reviewed in Bomblies 2010) and the 331 accumulation of deleterious alleles (hybridization load) can negatively impact the viability and fitness of 332 hybrid individuals. Fertility in particular is often compromised by incompatibilities (e.g., in Mimulus, 333 Sweigart et al. 2006). However, the extent of hybrid sterility varies greatly, and even with highly limited 334 fertility and rarely viable offspring, there is potential for hybrid success, especially since fertility can 335 increase with subsequent generations and the process of polyploidization can "rescue" hybrids from 336 sterility (Stebbins 1950). Assuming some level of fertility in hybrids, several processes can stabilize F_1 337 hybrids or subsequent hybrid generations and influence evolutionary outcomes. These include 338 polyploidization, introgression, and recombinational speciation (Grant 1971).

339 In the context of hybridization, polyploidy is significant in several ways. With hybrids that are 340 partially or largely sterile due to chromosomal incompatibilities, polyploidy can lead to the recovery of 341 fertility. Polyploidy can also result in reproductive isolation from parental lineages, effectively serving as 342 an "instantaneous" speciation mechanism. Polyploidy is also significant in that it results in fixed 343 heterosis, while other forms of hybrid stabilization typically result in the rapid erosion of heterozygosity. 344 The importance of allopolyploidy (i.e., polyploidy involving hybridization between different species, also 345 termed amphiploidy) in plant evolution has long been emphasized. Stebbins (1959) remarked that 346 "[a]mphiploidy, or the production of stable, true-breeding new species through the doubling of 347 chromosome number of a sterile interspecific hybrid, is now generally recognized as one of the 348 commonest ways in which plant species arise." A survey by Wood et al. (2009) found that, in 349 angiosperms and ferns, 15% and 31% of speciation events, respectively, are accompanied by ploidy 350 increases, generally underscoring the importance of polyploidy in plant speciation. Understanding the 351 long-term evolutionary consequences of polyploidization is an area of active research, building off recent 352 studies documenting the presence of ancient polyploidy in most major plant lineages (e.g., Jiao et al. 353 2011, Jiao et al. 2014; Li et al. 2015; Leebens-Mack et al. 2019; Stull et al. 2021).

354 Another means by which hybrid populations/generations can stabilize is through recombinational 355 speciation, whereby segregation and recombination of chromosomal variants of the two parents result in 356 hybrids that are both fertile and reproductively isolated from their parental populations. This is perhaps 357 the primary mechanism of homoploid hybrid speciation (Coyne and Orr 2004). As noted by Yakimowski 358 and Rieseberg (2014), this model of hybrid speciation was initially proposed by Stebbins (1957a, 1959) 359 and then more formally developed and named by Grant (1958). While this mode of hybrid speciation 360 appears to be much less common than hybrid polyploid speciation, there are multiple empirical examples 361 (e.g., Stebbins 1957b; Grant 1971, 1981; Rieseberg 1991).

362 Introgression is another primary means by which the products of hybridization can become 363 established and effectively contribute to evolution. Introgression occurs when hybrids, after F_1 formation, 364 subsequently backcross with one or both parental species, with demographic processes and selection on 365 recombinant types quickly winnowing heterozygosity. This process can result in the transfer of a few 366 genes or chromosomal segments from one species to another. It has long been appreciated that 367 introgression could serve as a major source of variation for evolution (Anderson 1949)—a means of 368 generating considerable variation and perhaps novel features more rapidly than could other processes 369 such as mutation (Abbott et al. 2013; Soltis 2013; Suarez-Gonzalez et al. 2018). While adaptive 370 introgression (i.e., the transfer of fitness-increasing alleles from one population to another) is widely 371 recognized as an important process (Edelman and Mallet 2021), we note that introgression can also break 372 up adaptive allele combinations (segregation load) and result in the transfer of deleterious mutations 373 (hybridization load), resulting in fitness decreases (Moran et al. 2021).

374 Introgression can manifest in different ways. In some cases, introgression might result in one 375 widespread species effectively swamping into extinction a second, rare species (Todesco et al. 2016). 376 Hybrid populations could be relatively ephemeral, with a relatively brief phase of backcrossing with one 377 or both parents, such that both parental lineages largely retain evolutionary independence. With hybrid 378 swarms, however, persistent hybrid populations can contribute to ongoing backcrossing and gene flow 379 between the two parental species, perhaps resulting in more blurred species boundaries, at least at 380 geographic points of contact between hybrid and parental populations. Syngameons, groups of related 381 species that engage in frequent hybridization, represent another context where introgression is common 382 and potentially a significant source of adaptive variation (Lotsy 1925; Grant 1971), a topic that will be 383 discussed further below.

384

385 EXAMPLES OF ANCIENT HYBRIDIZATION

386 Below we review examples of well-documented cases of ancient hybridization (in the sense of our 387 genomic definition above) across vascular plant phylogeny that occurred at different points in geologic 388 history. Several clades (e.g., Fagales and Rosaceae) are discussed in greater detail because they have 389 experienced extensive hybridization throughout their evolutionary history. The examples discussed here 390 are not meant to be comprehensive but instead highlight that ancient hybridization spans the phylogenetic 391 breadth of vascular plants and underscore major themes concerning the evolutionary significance of deep 392 reticulation and the challenges of detecting it. We also note that one way to bolster inferences of ancient 393 hybridization is through reconstructions of ancestral ecological niches and paleo-distributions, which can 394 aid in evaluating the plausibility of ancient hybridization events suggested by phylogenomic evidence. 395 This type of approach is exemplified by Folk et al. (2018b), examining ancient hybridization in 396 Saxifragaceae, which we discuss further below. While most studies of this type have focused on putative 397 hybridization events during the Pleistocene (e.g., Ma et al. 2019), there is clearly potential to apply such 398 approaches to deeper time scales as paleoclimatic models permit (Folk et al. 2022).

399

400 Rosids

401 The large rosid clade of angiosperms (~90,000 species; Sun et al. 2020) represents one of the first

402 documented cases of ancient reticulation involving major angiosperm lineages. The placement of the

403 rosid subclade of Celastrales, Oxalidales, and Malpighiales (known as the COM clade, including ~19,000

- 404 species) has been highly contentious, with different data sets supporting very different placements (Sun et
- 405 al. 2015; reviewed in Soltis et al. 2018). Chloroplast genes support a relationship between the COM clade

- both support a relationship between the COM clade and members of Malvidae, the other large rosid
- 408 subclade (e.g., Duarte et al. 2010; Soltis et al., 2011; Zhang et al. 2012). Several morphological features,
- including an unusual type of ovule and contorted petals, also support the placement of the COM cladewith malvids (Endress and Matthews 2006). Signals for both conflicting topologies (i.e., COM with
- with malvids (Endress and Matthews 2006). Signals for both conflicting topologies (i.e., COM with
 fabids vs. COM with malvids) are present in nuclear data and were likely not caused by sampling or
- 411 fabids vs. COM with malvids) are present in nuclear data and were likely not caused by sampling or 412 systematic errors, supporting a biological source of conflict such as reticulation or ancient introgression
- 412 systematic errors, supporting a biological source of conflict such as reticulation or ancient introgression
- 413 during the early diversification and rapid radiation of the rosid clade (Sun et al. 2015).414

415 Saxifragaceae

flow.

416 Multiple examples of deep hybridization have been documented in Saxifragaceae. One of the most

- 417 noteworthy of these involves the well-supported capture of the chloroplast genome from the ancestor of
- 418 two species of *Mitella* (currently with a circumboreal distribution) by the ancestor of a clade of five
- 419 species of Heuchera from southern Californian (Folk et al. 2018b). Extant members of these two clades
- 420 are currently separated by ca. 1,300 km, which, at face value, might suggest that hybridization between
- 421 these two lineages is improbable. However, Folk et al. (2018b) used a multifaceted approach employing
- 422 niche modeling and estimates of ancestral ranges to show that the two clades potentially shared suitable
- habitat during the Pleistocene, when the reconstructed geographic distributions of the clades overlapped
 in southern California (Fig. 3). During that time, the analyses revealed that the distribution of the *Mitella*clade ancestor was pushed well to the south, providing an opportunity for ancient hybridization and gene

428

429 430

431 432 433

434 435 436

437 438 439

440 441

446

Figure 3. Adapted from figs. 1 and 5 of Folk et al. (2018). (A) Current distribution of *Heuchera* (blue) and *Mitella* (red). (B) Phylogenetic positions of the focal clades (*Heuchera*, blue; *Mitella*, red). (C) Projections of ancestral geographic ranges based on estimates of ancestral niche space for *Heuchera* (blue) and *Mitella* (red).

450 Fagales

- 451 Oaks (*Quercus*) have long been an exemplar for hybridization, with a reputation for rampant
- 452 hybridization and phenotypic variability (Palmer 1948; Hardin 1975). Recent hybridization is thought to
- 453 occur only among species within the same taxonomic section (Palmer 1948; Hardin 1975), but evidence
- 454 also suggests that ancient hybridization events occurred between the ancestors of different sections of
- 455 Quercus as well as between those of different genera of subfamily Quercoideae of Fagaceae. Almost
- every genus in Fagaceae has been described as sharing chloroplast haplotypes with another (Manos et al. 456
- 457 2008; Xiang et al. 2014; Simeone et al. 2016; Yang et al. 2021), belying nuclear and morphological data
- 458 that resolve them as monophyletic (Manos et al. 2001; Oh and Manos 2008). This cytonuclear 459 incongruence indicates that long-retained signals of either ILS or hybridization have persisted in these
- 460 genomes for millions of years. Almost all studies found that haplotypes clustered by geography, with a
- 461 North-Central American and a Eurasian clade, similar to chloroplast haplotype clustering by geography
- 462 within Quercus itself (Whittemore and Schaal 1991; Petit et al. 1993; Dumolin-Lapegue et al. 1997;
- 463 Simeone et al. 2016).

464 The extent of ancient 465 hybridization in oaks and relatives in 466 Quercoideae revealed within the nuclear 467 genome has been the focus of several 468 recent studies. Liu et al. (in review) 469 tested for signals of hybridization using 470 hundreds of nuclear loci and full 471 chloroplast genomes for over 400 472 species in Fagaceae and recovered 473 geographic structuring of chloroplast 474 haplotypes and nuclear evidence of 475 multiple deep reticulation events 476 between oaks and other genera in 477 Fagaceae. Similarly, Zhou et al. (2022; 478 Fig. 4) used over 2000 nuclear loci and 479 complete chloroplast genomes to 480 investigate signals of hybridization for 481 over 90 species across Fagaceae and also 482 recovered geographic clustering of 483

chloroplast genotypes and rampant

the clade containing Castanea,

cytonuclear discordance at the base of

484

Figure 4. From Zhou et al. (2022; fig. 2) showing conflicts between nuclear and chloroplast phylogenies.

- 486 Castanopsis, Chrysolepis, Lithocarpus, Notholithocarpus, and Quercus. However, analyses of nuclear 487 genes did not detect deep reticulation and found strong evidence of hybridization only within *Ouercus*.
- 488 As evidenced by these studies, the chloroplast genome has retained a much stronger signal of 489 ancient hybridization than the nuclear genome. The geographic clustering evident at even deep 490 relationships implies that hybridization between the ancestors of *Ouercus* and other genera was common
- 491 enough to be preserved millions of years later. In contrast, recombination and continued divergence of
- 492 introgressed haploblocks in the nuclear genome have made it much harder to identify which regions of the
- genome may have been exchanged by the ancestors of these genera. At the shallower scale, it is thought 493

494 that the geographic clustering of chloroplast haplotypes between oak species is a signal of the

- confinement of many species to glacial refugia during the Pleistocene, which provided an opportunity for
- 496 hybridization, and their subsequent northward recolonization when climates warmed afterwards (Petit et
- 497 al. 2002). Given the association of hybridization with rapid changes in climate (e.g., Buggs 2007; Ryan et
- 498 al. 2018), it is possible that the deeper events detected in these studies arose from similar circumstances of
- 499 environmental upheaval. Oaks and their ancestors seem to undergo periodic cycles of hybridization and
- 500 diversification corresponding to fluctuations in their ranges; Cannon and Petit (2020) suggest that these
- 501 cycles and the group's ability to hybridize is actually adaptive in itself, allowing for species in the group 502 to incorporate genetic variation from relatives which could help them to respond to changes in climate.
- 503 Given recent evidence for introgression of genes associated with drought, waterlogging, and budbreak in 504 several species of Quercus (Fitz-Gibbon et al. 2017; Leroy et al. 2020), the adaptive function of many 505 introgressed alleles seems at the very least plausible. However, considering the difficulties of even
- identifying signals of ancient hybridization in the nuclear genome, verification of adaptive introgression
 of nuclear genes during ancient hybridization may be infeasible in most cases.
- Ancient hybridization has been reported in other clades of Fagales (Zhang et al. 2019; Cardoni et al. 2021), with Betulaceae being a salient example. Wang et al. (2022), using genome resequencing to
- 510 investigate ancient hybridization in Coryloideae (Betulaceae), found that Carpinus sect. Distegocarpus
 511 likely originated via homoploid hybrid speciation between the parental lineages Carpinus sect. Carpinus
- and Ostrya. Given that similar patterns of genomic admixture are shared between all three species of sect.
- 513 Distegocarpus and the putative parental lineages, this reticulation event (dated at 17-33 mya) likely
- 514 corresponds closely to the origin of the section, which subsequently diversified into three species 515 (*Carpinus cordata*, *C. fangiana*, and *C. japonica*).
- 516

517 Rosaceae

- 518 Rosaceae are another excellent example of a clade with extensive hybridization throughout its
- evolutionary history, with numerous documented cases between closely related extant species (e.g., in *Rubus, Fragaria, Potentilla, Rosa,* Spiraea; Šarhanová et al. 2017; Debray et al. 2021; Qiao et al. 2021)
 as well as more ancient cases between the ancestors of small to large clades within the family (e.g.,
 Morales-Briones et al. 2018; Hodel et al. 2021, 2022). The many examples of hybridization in Rosaceae
 illustrate well how the process can function as an evolutionary force, contributing to speciation and the
 origins of phenotypic and phylogenetic diversity.
- 525 Hybridization has long been considered common in *Prunus*, and molecular data reveal that it is 526 indeed rampant. Cultivated species frequently hybridize with each other as well as with wild species. For 527 example, the rare Eurasian shrub Prunus fruticosa (ground cherry) has hybridized with cultivated P. 528 cerasus (Macková et al. 2018), while genomic data suggest extensive natural interspecific hybridization 529 among sympatric species of Prunus (Baek et al. 2018). At a deeper level in Prunus, Hodel et al. (2021) 530 documented a hybridization event involving subgenus Amygdalus and subgenus Prunus using a 531 phylogenomic approach. In Rubus, hybridization is not only common among close relatives, but is also 532 one of the driving forces in the formation of naturally occurring apomictic lineages in subgenus Rubus in 533 Europe (Šarhanová et al. 2017). In the Pacific Northwest of the U.S., hybridization between native and 534 introduced species of Rubus is generating novel genotypes that may represent the early stages of newly 535 formed invasive species. Alice et al. (2001) documented hybridization between distant relatives (i.e., R. 536 caesius from subgenus Rubus and R. idaeus from subgenus Idaeobatus); most of the detected hybrids
- 537 appeared to be later-generation hybrids, suggesting that hybridization between these distantly related

species has the potential for generating new species, or at least genetic diversity. *Alchemilla* also shows
 signatures of hybridization at both shallow and deep phylogenetic levels (Morales-Briones et al. 2018).

- 540 The apple tribe (Maleae) has also long been suspected to have a hybrid and/or allopolyploid 541 origin given its high base chromosome number (x = 17) relative to other Rosaceae lineages (with x = 5, 7, 7)
- 542 8, or 9), and several alternative hybridization scenarios have been hypothesized to explain Maleae origins,
 543 generally involving ancestors of amygdaloid or spiraeoid lineages (Evans and Campbell 2002). Recent
- 544 phylogenomic analyses (Hodel et al. 2022) suggest that the ancestor of the Maleae (x = 17) + Gillenieae
- (x = 9) arose via hybridization between two distantly related Amygdaloideae lineages: (1) an ancestor of
- 546 tribe Spiraeeae (x = 9) and (2) an ancestor of the clade Sorbarieae (x = 9) + Exochordeae (x = 8) +
- 547 Kerrieae (x = 9); this was then followed by polyploidy (x = 18) and an uploidy (x = 17) in the Maleae
- 548 lineage, resulting in the apple tribe's current base chromosome number.
- 549

550 Asterids

- 551 Phylogenetic analyses of asterids based primarily on the chloroplast genome have consistently recovered
- 552 Cornales and Ericales as successive sisters to the core asterids (e.g., Albach et al. 2001; Soltis et al. 2011;

P = 0.777

А

553 Stull et al. 2015), while data from the nuclear genome has supported Cornales and Ericales as sister (e.g.,

Outgroup

Cornales

Ericales

- 554 Zhang et al. 2012). In an in-
- 555depth comparison of asterid
- 556 phylogeny based on chloroplast
- and nuclear datasets, Stull et al.
- **558** (2020) determined that these
- 559 conflicting relationships likely
- stem from hybridization duringthe early diversification of
- 562 asterids (Fig. 5). The
- 563 predominant nuclear signal ($\frac{2}{3}$ of

well-supported nuclear genes)

Figure 5. From Stull et al. (2020; fig. 5) showing (A) the optimal inferred phylogenetic network for asterids, with Ericales as a reticulate lineage, and (b) dated nuclear gene trees supporting alternative resolutions of asterid phylogeny.

- supports a sister relationship between Cornales and Ericales, but ¹/₃ of the nuclear genes support a sister
- 566 relationship between Ericales and *Gentianidae* (the chloroplast topology). Along with network analyses
- 567 and coalescent simulations, these results suggest the possibility that Ericales is a reticulate lineage
- 568 resulting from hybridization between ancestors of Cornales and *Gentianidae*.
- 569

564

570 Caryophyllales

- 571 Most studies examining ancient whole-genome duplication (WGD) do not specifically address whether 572 inferred WGD events were caused by auto- or allopolyploidy, but this distinction is critically important
- 573 for a better understanding of how polyploidy has shaped plant evolution. Yang et al. (2018), in a
- 574 phylotranscriptomic study of Caryophyllales, devised an approach for inferring auto- vs. allopolyploidy
- 575 from orthogroup trees, finding strong support for two ancient allopolyploidy events, one in
- 576 Amaranthaceae and another in the ancestor of *Schiedea* (Caryophyllaceae). The type of polyploidy (auto-
- 577 vs. allo-) responsible for the remaining 24 WGD events, however, appeared to be unclear. The question of
- 578 whether most ancient WGD events represent auto- or allopolyploidy is one that deserves greater attention.
- 579 It is also worth noting that some cases of presumed ancient homoploid hybridization could represent
- allopolyploidy obscured by subsequent diploidization.
- 581

0

Outgroup

Ericales

Cornales

582 Amaryllidaceae

- 583 Tribe Hippeastreae (Amaryllidaceae) provides an example of deep reticulation in the monocots. The tribe
- 584 consists of 10–13 genera and ca. 180 species. Phylogenetic analyses of nuclear and chloroplast regions
- 585 revealed two well-supported clades within the tribe (Garcia et al. 2014). Within one of these clades, the
- 586 mainly Neotropical Hippeastrinae, Garcia et al. (2014, 2017) uncovered widespread cytonuclear
- 587 discordance and rampant non-monophyly of genera. Closer examination of the data revealed that the 588 discordance is likely due to numerous ancient hybridization events (some associated with polyploidy)
- 589 preceding the radiation of this major clade (Garcia et al. 2017). In contrast, phylogenetic analysis of the
- 590
- second clade of Hippeastreae, subtribe Traubiinae, shows a tree-like pattern, consistent with the apparent
- 591 absence of hybridization and allopolyploidy in this clade (Garcia et al. 2017).
- 592

593 **Mesangiosperms**

- 594 Despite intensive study, phylogenetic relationships among the five clades (magnoliids, monocots,
- 595 eudicots, Chloranthales, Ceratophyllales) of *Mesangiospermae* have remained uncertain due to their rapid
- 596 radiation (Moore et al. 2007). Several phylogenetic analyses have recovered Chloranthaceae sister to
- 597 magnoliids (reviewed in Soltis et al. 2019). However, incongruence has long been noted between nuclear
- 598 and chloroplast DNA datasets regarding the placement of magnoliids + Chloranthaceae (or magnoliids
- 599 alone in those studies in which Chloranthaceae were not included) relative to other mesangiosperms.
- 600 Chloroplast trees have routinely recovered magnoliids and Chloranthaceae as sister to a clade of
- 601 monocots plus eudicots; in contrast, phylogenetic analyses of nuclear genes typically placed monocots as
- 602 the sister to a clade of magnoliids, Chloranthaceae, and eudicots (e.g., Moore et al. 2007; Leebens-Mack
- 603 et al. 2019; Chaw et al. 2019; Chen et al. 2019; Li et al. 2019; Soltis et al. 2011). Using complete nuclear
- 604 genome sequences for Amborella and representatives of all mesangiosperm lineages, Guo et al. (2021)
- 605 conducted a variety of phylogenomic analyses to understand the conflict underlying these contentious
- 606 relationships, finding that ancient hybridization is a plausible cause for the observed conflict concerning
- 607 the placement of Chloranthales + magnoliids relative to eudicots and monocots.
- 608

609 **Gymnosperms**

- 610 Increasing evidence for WGD (both recent and ancient; Li et al. 2015; Wu et al. 2016; Leebens-Mack et
- 611 al. 2019; Stull et al. 2021) and (relatively) recent hybridization (Worth et al. 2016; Sullivan et al. 2017;
- 612 Ma et al. 2019) in various lineages of gymnosperms suggests a possible role for ancient hybridization in
- 613 gymnosperm evolution, but well-documented examples are relatively few compared to those of flowering
- 614 plants. However, one example comes from Cupressaceae: Liu et al. (2022) found evidence for ancient
- 615 hybridization involving the ancestors of two clades of Cupressoideae, one including *Microbiota*,
- 616 *Platycladus*, and *Tetraclinis* and the other including *Juniperus*, *Cupressus*, *Hesperocyparis*, *Callitropsis*,
- 617 and Xanthocyparis. One intriguing incongruence that deserves further attention concerns the phylogenetic
- 618 placement of *Ginkgo* (Stull et al. 2021). Most nuclear genes place *Ginkgo* sister to cycads, but an
- 619 appreciable number of genes support *Ginkgo* sister to conifers, consistent with many morphological
- 620 phylogenetic analyses of seed plants (e.g., Crane 1985). Phylogenomic analyses also support an ancient
- 621 WGD in the common ancestor of extant gymnosperms (Stull et al. 2021; Liu et al. 2022), the branch
- 622 subtending these alternative placements of Ginkgo.
- 623
- 624
- 625

626 Ferns

Hybridization and allopolyploidy are also common across ferns (Barrington et al. 1989; Otto and Whitton
2000; Sigel 2016; Leebens-Mack et al. 2019), and recent emphasis has been placed on examples of "deep
hybridization" in ferns. However, these reports generally pertain to recently formed hybrids among
distantly related lineages, rather than to instances of hybridization that occurred in the distant past. For

- example, xCystocarpium roskamianum is a recently formed inter-generic hybrid between Gymnocarpium
 and Cystopteris, which diverged ca. 60 mya (Rothfels et al. 2015). Similarly, xLindsaeosoria flynnii is
- another recently formed inter-generic hybrid involving Lindsaea and Odontosoria, whose divergence
- 634 perhaps traces back to the Mesozoic (Lehtonen 2018).
- 635 Ranker and Sundue (2015) suggested that ferns exhibit slower evolution of reproductive barriers 636 than angiosperms, which should facilitate hybridization in general, including among more distantly 637 related lineages than is typical for other plant clades. If correct, hybridization among fern species should 638 be widespread. But the extent of ancient hybridization in fern evolutionary history remains unclear. The 639 best information from phylogenomics comes from the Leebens-Mack et al. (2019), which provides 640 evidence for shallow as well as some deep polyploidy events, implicating ancient hybridization if 641 allopolyploidy was at play. Additionally, recently published, high-quality fern genomes and 642 transcriptomes provide strong evidence for a few ancient polyploidy events in ferns, with several 643 polyploidy events inferred in the common ancestors of smaller orders and families (Huang et al. 2019, 644 Pelosi et al. 2022), one associated with the origin of core leptosporangiate ferns (Li et al. 2018; Huang et 645 al. 2019; Huang et al. 2022; Marchant et al. 2022) and possibly another associated with much of 646 Polypodiales (Leebens-Mack et al. 2019; Pelosi et al. 2022). However, there remain few robust, large-647 scale comparisons of fern phylogeny based on comparably sampled nuclear vs. chloroplast datasets. 648 Furthermore, because of their large and complex genomes, complete genome sequencing of ferns, which 649 could reveal such ancient signatures, is in its infancy.
- 650

651 MACROEVOLUTIONARY SIGNIFICANCE OF HYBRIDIZATION

652 Hybridization can be viewed as a fundamentally microevolutionary process given that it essentially 653 represents a form of gene flow that can either lead to the establishment of hybrid populations or genetic 654 introgression from one species or population to another, and as a consequence, it influences the pool of 655 variation on which selection can operate. However, it may have broader macroevolutionary significance 656 in the sense that it may either influence or accompany other broader patterns in plant evolution. In 657 particular, the reality that hybridization can occur among divergent populations as well as lineages 658 considered taxonomically to be separate species underscores that hybridization is a phenomenon that in 659 some senses transcends evolutionary scales. Given the capacity of hybridization to reconnect diverging 660 lineages and potentially impart lasting influence on evolutionary trajectories, evaluation of the significance of hybridization events whose signals appear across broader evolutionary scales is warranted. 661 662 It is also worth considering both biotic and abiotic circumstances that might influence the frequency of 663 hybridization among different lineages and at different times in Earth history. In this section, we consider 664 the macroevolutionary significance of hybridization. We do not use the term macroevolution in any 665 specific mechanistic sense (e.g., in reference to species selection), but instead as a general umbrella for 666 considering how hybridization might influence broader patterns of plant evolution, and how different 667 circumstances or traits might influence the frequency of hybridization across space, time, and phylogeny.

670 The ecological, geographic, and geologic context of hybridization

671 One of the significant themes to come out of the last 70 years of hybridization work is the association of 672 hybridization with ecological and range change. Many classic cases of hybridization date to the 673 Pleistocene, as ranges of different species were brought into secondary contact in glacial refugia or 674 subsequently following range expansion during interglacial periods (e.g., Anderson and Stebbins 1954; 675 Petit et al. 1997, Edwards et al. 2006; Joly et al. 2009b). Other periods of significant geologic and environmental change might also have corresponded with increased levels of hybridization. For example, 676 677 the availability of land bridges in the Northern Hemisphere during the early-mid Eocene may have 678 facilitated oak migrations between Eurasia and the Americas, bringing lineages into contact and resulting 679 in hybridization (Liu et al. in review). Similarly, climate change in the late Miocene to Pliocene might 680 have brought various oak lineages into contact due to range shifts, again resulting in widespread 681 hybridization (Zhou et al. 2022). The Cretaceous-Paleogene (K-Pg) mass extinction may have coincided 682 with (or have been followed by or possibly even driven) a wave of polyploidization (Fawcett et al. 2009; 683 Van de Peer et al. 2021), although further research is needed to evaluate the strength of this possible 684 connection. This suggested wave has been explained both by the enhanced persistence of the polyploids 685 themselves, as well as a possible increase in unreduced gamete production and diploid hybridization 686 caused by the extreme environmental and disturbed ecological conditions present in the wake of the 687 asteroid impact (Levin and Soltis, 2018; Levin 2020). Of course, responses to climate change and 688 ecological disturbance can be lineage-specific and idiosyncratic, and so different geologic periods and 689 environmental contexts might impact lineages very differently with regard to range shifts and patterns of 690 gene flow. But nevertheless, periods of Earth history (and regions of the globe) that experienced bouts of 691 ecological disturbance, climate change, and/or intermittent land connections (with consequent 692 community-level range fluctuations) might have experienced increased frequencies of hybridization.

693 During remarkable phases of diversification of major lineages (e.g., angiosperms), there may 694 have been generally increased opportunities for hybridization as well, simply as a byproduct of the 695 presence of numerous closely related lineages (lacking pre- or postzygotic barriers) in close proximity. 696 For example, the large-scale ecological shift from gymno- to angiosperm dominance in the mid-697 Cretaceous (at a global scale) might represent a unique period in angiosperm history where diversification 698 rates were elevated, ranges were shifting relatively rapidly, and as a result hybridization was particularly 699 common (Boulter et al. 1988); this is not inconsistent with the numerous angiosperm phylogenies 700 showing considerable genomic conflict at nodes dating to the early-mid Cretaceous. Of course, rapid 701 diversification itself can be a source of conflict (via ILS), and angiosperms have undergone repeated 702 bouts of remarkable diversification (Magallón and Castillo 2009; Tank et al. 2015; Landis et al. 2018), so 703 if there is any merit to the notion that the initial emergence and radiation of major lineages is often 704 accompanied by increased levels of hybridization, we would expect to see periodic bursts of hybridization 705 throughout geologic history at different locations in plant phylogeny.

706 It is important to note that the association of hybridization with large-scale geographic patterns is 707 not new; it could be viewed as an extension of classic theory about ecological control of hybridization. 708 Anderson's "hybridization of the habitat" (Anderson 1948) centered the importance of ecological 709 circumstances in the promotion of hybrid formation and establishment. Visible early-generation hybrids 710 were often spotted in anthropogenically disturbed places and in the transition zones between two types of 711 habitats ("hybrid habitats"), leading Anderson to conclude that hybrids were probably excluded from 712 parental ranges via ecological filtering or competitive exclusion with parents. Rapid environmental 713 changes might in some cases result in "hybrid habitats" due to the establishment of large areas of unique

- habitat or a transition zone where no parental species is well-adapted, allowing for the persistence of
- 715 hybrids. Another interpretation is that these "hybrid habitats" are simply points of contact between
- 716 different species ranges and habitats, and as climates change, these areas of contact will naturally shift as
- 717 well, creating more opportunities for hybridization.
- 718

719 Trait and phylogenetic correlations with hybridization frequency

720 Several attempts have been made to characterize traits commonly associated with hybridization, as well 721 as to identify lineages in which hybridization is more frequent, perhaps as a consequence of the traits they 722 possess (e.g., Grant 1971; Ellstrand et al. 1996; Whitney et al. 2010; Mitchell et al. 2019). While some 723 traits might generally facilitate hybrid formation, others seem potentially important for facilitating hybrid 724 persistence. Grant (1971) described several different life history paradigms associated with different 725 hybridization patterns, observing that homoploid syngameons (e.g., Ceanothus) were usually long-lived 726 woody species with stable chromosome structure, large population size, and often (but not always) wind 727 pollination. Ellstrand et al. (1996) found strong taxonomic clustering of hybridizing taxa, as well as a 728 tendency for hybrids to be outcrossing perennials with the ability to reproduce clonally; however, they did 729 not differentiate between polyploid and homoploid hybrids in their study. We expect chromosomes of 730 homoploid hybrid taxa to be comparatively conserved with regards to structure and sequence; otherwise 731 viable hybrid offspring would be unlikely (without clonality to allow the persistence of hybrids with odd 732 chromosome pairs). This corresponds with Grant's (1971) observation that trees often form syngameons; 733 their long generation times result in slower rates of evolution, increasing the chance that diverged species 734 will still maintain enough genetic similarity to cross successfully.

735 Wind pollination, as a more promiscuous form of pollen spread than animal-mediated pollination, 736 is often thought to facilitate hybridization. Wind pollination is a feature of many taxa famous for 737 homoploid hybridization (e.g., Populus, Quercus, Nothofagus; Smith and Sytsma 1990; Williams et al. 738 2001; Acosta and Premoli 2018), but many other groups in which hybridization is common are insect-739 pollinated (e.g., Helianthus, Eucalyptus; Rieseberg 1991; Van Diijk et al. 2020), indicating that pollinator 740 choice can lead to porous species barriers. In fact, even in cases of tight pollinator specialization, such as 741 figs, hybridization can still occur, perhaps in particular during pollinator-host switches (Wang et al. 742 2021). A study by Mitchell et al. (2021) examined the correlation of 11 different traits with hybridization 743 and found weak positive associations between perenniality, woodiness, outcrossing, abiotic pollination, 744 and larger genomes and increased frequencies of hybridization, but some of these results were scale 745 dependent. Hybridization is a complex phenomenon that appears to require the confluence of several to 746 multiple abiotic and biotic factors (and for populations to persist once formed), and so it is not surprising 747 that particular traits generally show inconsistent relationships with hybridization frequency. For example, 748 traits that facilitate hybrid persistence (e.g., perenniality) will not show a strong relationship with 749 hybridization when paired with other traits that prevent hybrid formation in the first place (e.g., high-750 fidelity biotic pollination).

Through the lens of oak diversity, Cannon and Petit (2020) proposed that the ability to hybridize itself while maintaining species boundaries (i.e., the syngameon strategy) may be adaptive. This hypothesis is intriguing and will require future work to test fully, in particular, to establish which traits would need to be selected to maintain the ability to hybridize and whether these traits are consistent across the Tree of Life. Additional work from a speciation biology paradigm could test the plausibility of maintaining equilibrium between selecting for regions of the genome that preserve the ability to hybridize and other regions that contribute to species boundaries. Another line of investigation could be establishing

- the timing of diversification and hybridization events in conjunction with selective pressures for the
- ability to hybridize, which we may even be able to do in real time due to Anthropocene-driven
- renvironmental change and ecological disturbance. Of course, these are a few of many possible avenues of
- investigation regarding this question. Another important problem is obtaining a more complete
- violation of the many lineages operate as syngameons. It has been suggested that many diverse
- tropical tree genera might represent syngameons, but these are more poorly understood compared to
- temperate systems (but see Larson et al. 2021).
- 765

766 Hybridization and species diversification

767 While perhaps more attention has been paid to hybridization as a vehicle for the evolution of novel 768 phenotypes (Anderson and Stebbins 1954; Seehausen 2004; Suarez-Gonzalez et al. 2018), there has also 769 been interest in whether hybridization might directly influence diversification rates in plants and other 770 organisms. There are several ways that hybridization could influence diversification rates, either 771 positively or negatively; hybridization could also in some cases impact standing levels of biodiversity 772 without any influence on diversification rates per se. When hybridization (and the resulting rich genetic 773 variation) is paired with the right ecological circumstances (e.g., the colonization of an island system by a 774 hybrid population), this could lead to an adaptive radiation (Barrier et al. 1999; Choi et al. 2021) and, 775 presumably, increased rates of speciation in the radiating lineage. Conversely, hybridization could lead to 776 decreased speciation rates (or simply decreased levels of standing diversity) via the merging of recently 777 divergent lineages upon secondary contact. However, there are also deeper theoretical concerns regarding 778 the relationship between diversification and hybridization. Diversification itself might create more 779 opportunities for hybridization-given close geographic proximity of multiple, minimally divergent 780 lineages—and so the observation of species-rich lineages with rampant hybridization is not in itself 781 sufficient evidence that hybridization is the driving force. In other words, disentangling the causal 782 relationship of these two processes is not trivial (Mitchell and Whitney 2021), and perhaps in some cases 783 there is a positive feedback of interrelated causality leading to increases in both. A recent study explicitly 784 examining the relationship between hybridization and diversification (Mitchell and Whitney 2021) overall 785 found a relatively limited relationship between these phenomena at a broad scale, although a stronger 786 positive relationship was observed when taking life history traits (e.g., perenniality and woodiness) into 787 consideration.

788 Diversification rates aside, hybridization (particularly in association with polyploidy) can 789 hypothetically increase standing diversity via a ratchet mechanism (Scarpino et al. 2014), whereby 790 allopolyploidy produces distinct lineages that are reproductively isolated from their parents. In clades 791 where hybridization/allopolyploidy is ubiquitous, such as Rosaceae, this ratchet mechanism can perhaps 792 lead to appreciable increases in species diversity without directly imparting any influence on inherent 793 speciation rates in the conventional sense (Vamosi and Dickinson 2006). However, this raises the 794 question of whether the resulting allopolyploidy lineages themselves might generally have elevated rates 795 of diversification, but prevailing evidence suggests there is generally a limited relationship between 796 polyploidization events and diversification (Tank et al. 2015; Landis et al. 2018; Smith et al. 2018; Stull 797 et al. 2021), although this may, in part, be a data-deficient problem. Overall, the relationship between 798 hybridization and diversification might best be characterized as idiosyncratic. We suggest that future 799 research on this topic focus on understanding, for particular clades, the specific contexts in which (or 800 circumstances by which) hybridization influences diversification rates (either positively or negatively) or 801 standing diversity, instead of searching for a general positive or negative relationship between

802 hybridization and diversification across major lineages. It seems likely that the relationship between

- 803 hybridization and diversification/diversity is too complex to draw meaningful (simple) generalizations at a broad scale, but through focused case studies, more detailed general principles might emerge on how
- 804
- 805 hybridization influences diversification (and vice versa).
- 806

807 NOMENCLATURAL IMPLICATIONS

808 The chloroplast genome has been the primary source of data in plant phylogenetics for over three decades 809 given the relative ease of isolating, sequencing, and analyzing chloroplast DNA (e.g., Ritland and Clegg 810 1987; Palmer et al. 1988; Gitzendanner et al. 2018; Li et al. 2019). As a result, our current major 811 classifications (e.g., APG IV 2016; PPG I 2016) are largely based on chloroplast phylogenies. But it was 812 always made clear in the formulation of these classifications that nuclear data would ultimately be 813 required to confirm their accuracy, especially in light of processes such as chloroplast capture that can 814 mislead organismal phylogenies (Rieseberg and Soltis 1991). The surge in availability of nuclear 815 sequence data from target capture, transcriptome, and whole-genome sequencing over the past decade has 816 provided much-needed perspective on vascular plant phylogeny from the nuclear genome. Notably, as 817 reviewed above, many nuclear phylogenomic studies have revealed deep incongruences with plastome 818 phylogenies, in some cases involving the placements of clades recognized as families, orders, or more 819 inclusive named clades (e.g., Folk et al. 2018b; Liu et al. 2022; Leebens-Mack et al. 2019; Stull et al. 820 2020). This raises the important question of how best to treat these chloroplast-nuclear incongruencies in 821 classifications moving forward. One solution is to continue with the chloroplast placements, as in the 822 APG treatments to date (APG IV 2016), for reasons of stability, with an asterisk or some other means 823 used to indicate that a lineage stems from reticulation and might have an alternative nuclear phylogenetic 824 placement. However, we argue this is an untenable approach given that the nuclear genome is more representative of organismal phylogeny as a whole, and therefore classifications should be updated to 825 826 reflect the nuclear phylogeny. Then the issue still remains of how to treat or depict reticulate lineages in 827 classification. One option, made possible by the PhyloCode (Cantino and De Queiroz 2020), is to place 828 reticulate lineages in both parental clades. Thus, in the case of the COM clade (Sun et al. 2015), it would 829 be placed in both Malvidae (the predominant nuclear signal) and Fabidae (the predominant chloroplast 830 signal and the APG IV placement), as was done in the PhyloCode treatment of the COM clade (Judd et al. 831 2020a,b). This approach then raises the question: how admixed must a clade be to warrant this treatment? 832 Arguably, the amount of admixture must be significant, but what counts as significant may differ based 833 on the age and size of the clade. This issue is discussed further below.

834 In contrast to the PhyloCode, there currently is no readily available means for designating deep 835 reticulation events in the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Turland 836 et al. 2018). Under the ICN, hybrids between species and between species in different genera can be given 837 names. For example, hybrids between Magnolia denudata × Magnolia liliiflora have been given the name 838 Magnolia \times soulangeana. However, when a person sees the name Magnolia \times soulangeana in the 839 literature, the parents would not be known to the reader without looking into the hybrid name in more 840 detail. A hybrid can also be designated by using an \times between the putative parents. For example, one 841 could use Magnolia denudata \times Magnolia liliiflora (to designate Magnolia \times soulangeana). The code also 842 permits the use of new generic names for hybrids between two species from different genera. The generic 843 name Sorbopyrus has been used for hybrids between Sorbus and Pyrus, and ×Sorbopyrus auricularis is a 844 hybrid between Sorbus aria and Pyrus communis. It is possible that the code of nomenclature could be

845 extended to allow the application of these approaches to deep reticulation events involving named 846 lineages above the generic rank. For example, ×Ericales would designate that the Ericales lineage has
847 reticulation in its history or is of reticulate origin (Stull et al. 2020). However, this system of naming

- 848 would not in itself indicate the putative parents and does not define the alternative clades, as the
- 849 PhyloCode permits. This could be done by indicating the involved parental lineages in parentheses:
- 850 ×Ericales (Cornales/Gentianidae).

851 Whether we are currently ready to overhaul (or update) angiosperm classification (or vascular 852 plant classification more broadly) based on available nuclear phylogenies is another question. Recently 853 generated large-scale nuclear datasets are incredibly valuable, but these can also be compromised by 854 analytical challenges including paralogy, data quality, and low-information gene trees, which can result in 855 spurious topologies, especially among major lineages. Many areas of angiosperm phylogeny display high 856 levels of conflict between not only nuclear and chloroplast datasets, but within and among nuclear 857 datasets themselves. Nuclear phylogenomic studies focused on particular problems in angiosperm 858 phylogeny—e.g., asterids (Stull et al. 2020; Zhang et al. 2020), Caryophyllales (Walker et al. 2018; Yang 859 et al. 2018), Caesalpinioideae (Leguminosae; Ringelberg et al. 2022), Commelinales (Zuntini et al. 2021), 860 Gentianales (Antonelli et al. 2021), Orchidaceae (Pérez-Escobar et al. 2021), Piperales (Jost et al. 2021)— 861 perhaps represent a more reliable basis for making specific classification or nomenclatural changes 862 compared with broader analyses of plant phylogeny (Leebens-Mack et al. 2019; Baker et al. 2022).

863 Another fundamental question is what level of hybridization should we consider sufficiently 864 substantial to be reflected in names and classifications. For example, if lineage A (sister to lineage B) 865 shows a small proportion of nuclear genes (e.g., <5%) reflecting introgression from lineage C, should we 866 seek to reflect this in our classifications? What if the proportion of introgressed genes is higher (e.g., 867 25%)? Does it matter what relationship the chloroplast genome reflects in such cases? With cytonuclear 868 discordance, the chloroplast genome might support A and C as sister, even if the preponderance of 869 nuclear signal supports A and B as sister. What about a case where 60 percent of the nuclear genome 870 supports A and B as sister, while 40 percent of the nuclear genome (as well as the chloroplast genome) 871 support A and C as sister? The issues raised above will represent important considerations for the plant 872 systematics community moving forward.

873

874 DEPICTING AND ANALYZING A RETICULATE TREE OF LIFE

875 The concept of the Tree of Life is a wonderful metaphor

- 876 for the evolutionary connectivity of all life but is also
- 877 problematic biologically in that it assumes a bifurcating
- tree. We have known for a long time, in part based on
- 879 rampant hybridization among the tips of the plant branch
- 880 of the Tree of Life, that this assumption is unrealistic.
- 881 With growing evidence for reticulation across the depth
- 882 of green plant evolution, this raises the question of how
- 883 best to depict plant phylogeny so that it is easy to view
- 884 yet biologically realistic, while remaining a useful tool
- 885 for teaching students and educating the public.
- 886 Phylogenetic relationships in Bacteria and Archaea are
- 887 generally depicted as a network, given the prevalence of
- 888 reticulation via horizontal gene transfer (Dagan et al.,

Figure 6. Network representation of prokaryote phylogeny including both vertical inheritance and lateral exchange (from Dagan and Martin 2009; fig. 2).

2008; Dagan and Martin 2009; Gontier, 2015; Kunin et al. 2005; Fig. 6), and perhaps the plant

- 890 community should increasingly move toward these types of depictions (Fig. 7)—a Net of Life rather than
- a Tree of Life for plant evolutionary history. Of course, as noted above, network methods are increasingly
- being used in the phylogenetics community, but these are extremely limited in their scalability and are
- 893 often wanting in effective communication of evolutionary patterns. Methods development in
- reconstructing, visualizing, and applying phylogenetic networks for evolutionary inferences is a critical
- direction in evolutionary biology that is currently in its infancy (e.g., Hibbins and Hahn 2021). It is
 important to note that the vast majority of comparative methods aimed at inferring divergence times.
- 897 diversification rates, ancestral states and trait evolution, biogeographic history, and other aspects of
- evolutionary history typically require or assume a bifurcating tree. Of course, for many applications, the
- use of strictly bifurcating trees is likely a reasonable simplifying assumption. But in lineages with
- 900 rampant hybridization, the reconstruction and analyses of phylogenetic networks will ultimately be
- 901 essential for a more accurate understanding of evolutionary history and processes.
- 902

903 SUMMARY AND FUTURE DIRECTIONS

904 Hybridization has been recognized for nearly a century as an important force in plant evolution, but we 905 are only now beginning to appreciate the extent of reticulation in shaping both genomes and their 906 resulting phenomes across the plant branch of the Tree of Life. Not only does hybridization frequently 907 tangle the tips of the Tree, it is also evident among the deeper branches, revealing past evidence of 908 reticulation that renders plant evolutionary history as a potentially complex network, the extent of which 909 is vet to be uncovered. This shift of perspective from a bifurcating tree to a network is not exactly a 910 surprise, but the phylogenetic depth of the network paradigm as revealed by genomic and phylogenomic 911 studies is reshaping our view of the structure of the Tree and requiring new developments in methods of 912 reconstructing, visualizing, communicating, and computing over plant evolutionary history. The genetic 913 consequences envisioned decades ago for recent hybridization are being reinterpreted to accommodate 914 deep time. Moreover, genome sequences and nuclear phylogenies are revealing the complex, mosaic 915 nature of plant genomes and the possible roles that hybridization (with or without WGD) may have 916 played in catalyzing plant diversity, potentially blurring the boundary between microevolutionary 917 processes and macroevolutionary patterns. We hope that this review will likewise catalyze new studies 918 that cross disciplinary boundaries to clarify the legacy and fate of hybridization in plant evolution. 919

Figure 7. Different options for visual representations of reticulation. (a) Phylogeny with reticulation events depicted by arrows or lines between lineages connected by gene flow. This approach is commonly used to display results of phylogenetic network inference. This format is easy to read and can convey directionality (through arrows) and degree (through line weight), but does not directly show alternative topologies. (b) Main phylogeny in front with alternative topologies behind in different colors, with widths at tips proportional to the number of gene trees supporting the topology for each tip. This format directly conveys the degree of gene flow and alternative topologies and emphasizes as well the mosaic nature of genomes. However, it becomes hard to read when depicting too many alternative topologies or too many tips. (c) Tanglegram, two alternative topologies facing each other, with connections between corresponding tips. This method is commonly used to depict differences between two main topologies from different sources, such as nuclear and chloroplast trees. This format allows for easy visualization of group-wide patterns and alternative topologies, but can only accommodate two topologies at once, and thus may not be able to accommodate complicated multi-event reticulation scenarios or fully capture the extent of gene-tree discordance. (d) Main phylogeny in front with a cloud of alternative topologies plotted behind, one for every locus analyzed. Commonly used for large, genome-wide datasets. This format depicts each alternative topology and its amount of support, making it useful for comparing overall trends in the dataset. However, it can be hard to read, depending on the number and distribution of alternative topologies. (e) Main phylogeny plotted in three dimensions, with reticulation events depicted by lines between lineages connected by gene flow. Tips of the phylogeny are projected onto a two-dimensional cross-section with groupings of shared ancestry in gray and groupings based on reticulation events in colors corresponding to lines in threedimensional phylogeny. Similar in concept to (a), but the three-dimensional rendering may allow for depictions of more reticulation events on one tree, and the two-dimensional projection quickly shows "main" and "reticulation" clusters of evolutionary similarity. Currently, to our knowledge, there are no tools for depicting phylogenies in three dimensions or tools

955 956

957 ACKNOWLEDGEMENTS

We thank Lee Sweetlove for inviting us to submit a TPJ Foundation Review paper. We thank Loren
Rieseberg for helpful discussion on how to define "ancient hybridization" and for highlighting some of
the earliest literature discussing the possibility and prevalence of ancient hybridization in plants. This
work was supported in part by NSF grant DEB-2043478 to DES and PSS.

962

963 **REFERENCES**

Abott, R., Albach, D., Ansell, S., Arntzen, J.W., Baird, J.E., Bierne, N. (2013) Hybridization and
speciation. *Journal of Evolutionary Biology*, 26, 229–246.

966

Acosta, M.C. & Premoli, A.C. (2018) Understanding the extensive hybridization in South American
Nothofagus through karyotype analysis. *Botanical Journal of the Linnean Society*, 188, 74-86.

Alice, L.A., Eriksson, T., Eriksen, B. & Campbell, C.S. (2001) Hybridization and gene flow between
 distantly related species of Rubus (Rosaceae): evidence from nuclear ribosomal DNA internal transcribed
 spacer region sequences. *Systematic Botany*, 26, 769-778.

973

Albach, D.C., Soltis, P.S., Soltis, D.E. & Olmstead, R.G. (2001) Phylogenetic analysis of asterids based
on sequences of four genes. *Annals of the Missouri Botanical Garden*, 88, 163-212.

976

Alix, K., Gérard, P.R., Schwarzacher, T. & Heslop-Harrison, J.S. (2017) Polyploidy and interspecific
hybridization: partners for adaptation, speciation and evolution in plants. *Annals of Botany*, 120, 183-194.

- 980 *Amborella* Genome Project. (2013) The *Amborella* genome and the evolution of flowering plants.
- **981** *Science*, **324**, 1241089.

982	
983	Anderson, E. (1948) Hybridization of the habitat. Evolution, 2, 1–9.
984	
985 986	Anderson, E. (1949) Introgressive Hybridization. New York: John Wiley & Sons, Inc.
987	Anderson, E. & Hubricht, L. (1938) The evidence for introgressive hybridization. American Journal of
988	Botany, 25 , 396–402.
989	
990	Anderson, E., & Stebbins, G.L. (1954) Hybridization as an evolutionary stimulus. Evolution, 8, 378-
991	388.
992	
993	Angiosperm Phylogeny Group IV: Chase, M.W., M. J. M. Christenhusz, M. F. Fay, J. W. Byng,
994	W. S. Judd, D. E. Soltis, D. J. Mabberley, A.N. Sennikov, P.S. Soltis, P.F. Stevens. (2016) An update
995	of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants.
996	Botanical Journal of the Linnean Society, 181 , 1-20.
997	
998	Antonelli, A., Clarkson, J.J., Kainulainen, K., Maurin, O., Brewer, G.E., Davis, A.P., Epitawalage,
999	N., Goyder, D.J., Livshultz, T., Persson, C. & Pokorny, L, et al. (2021) Settling a family feud: A
1000	high-level phylogenomic framework for the Gentianales based on 353 nuclear genes and partial
1001	plastomes. American Journal of Botany, 108, 1143-1165.
1002	Arnold, M.L. (1992) Natural Hybridization as an evolutionary process. Annual Review of Ecology and
1003	<i>Systematics</i> , 23 , 237–261.
1004	
1005	Arnold, M.L. (1997) Natural hybridization and evolution. Oxford, UK: Oxford University Press.
1006	
1007	Asmussen, M.A., & Schnabel, A. (1991) Comparative effects of pollen and seed migration on the
1008	cytonuclear structure of plant populations. I. Maternal cytoplasmic inheritance. Genetics, 128, 639-654.
1009	
1010	Baek, S., Choi, K., Kim, G.B., Yu, H.J., Cho, A., Jang, H., Kim, C., Kim, H.J., Chang, K.S., Kim,
1011	J.H. & Mun, J.H. (2018) Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific
1012	hybridization between sympatric flowering cherries. Genome Biology, 19, 1-17.
1013	
1014	Baker, W.J., Bailey, P., Barber, V., Barker, A., Bellot, S., Bishop, D., Botigué, L.R., Brewer, G.,
1015	Carruthers, T., Clarkson, J.J., et al. (2022) A comprehensive phylogenomic platform for exploring the
1016	angiosperm tree of life. Systematic Biology, 71, 301-319.
1017	
1018	Bapteste, E., van Iersel, L., Janke, A., Kelchner, S., Kelk, S., McInerney, J.O. et al. (2013) Networks:
1019	expanding evolutionary thinking. Trends in Genetics, 29, 439–441.
1020	
1021	Barrier, M., Baldwin, B.G., Robichaux, R.H. & Purugganan, M. D. (1999). Interspecific hybrid
1022	ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae)
1023	inferred from floral homeotic gene duplications. <i>Molecular Biology and Evolution</i> , 16 , 1105–1113.
1024	

1025 Barrington, D.S., Haufler, C.H., Werth, C.R. (1989) Hybridization, reticulation, and species concepts 1026 in ferns. American Fern Journal, 79, 55-64. 1027 1028 Bomblies, K. (2010) Doomed lovers: mechanisms of isolation and incompatibility in plants. Annual 1029 Review of Plant Biology, 61, 109-124. 1030 1031 Boulter, M.C., Spicer, R.A. & Thomas, B.A. (1988) Patterns of plant extinction from some 1032 palaeobotanical evidence. Extinction and Survival in the Fossil Record, 34, 1-36. 1033 1034 Buggs, R.J.A. (2007) Empirical study of hybrid zone movement. *Heredity*, 99, 301-312. 1035 1036 Cai, L., Xi, Z., Lemmon, E.M., Lemmon, A.R., Mast, A., Buddenhagen, C.E. et al. (2021) The perfect 1037 storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most 1038 recalcitrant ancient angiosperm clade, Malpighiales. Systematic Biology, 70, 491–507. 1039 1040 Cannon, C.H. & Petit, R.J. (2020) The oak syngameon: more than the sum of its parts. New Phytologist, 1041 226, 978-983. 1042 1043 Cantino, P.D. & De Queiroz, K. (2020) International Code of Phylogenetic Nomenclature (PhyloCode): 1044 Version 6. Boca Raton, FL: CRC Press. 1045 1046 Cardoni, S., Piredda, R., Denk, T., Grimm, G.W., et al. (2021) 5S-IGS rDNA in wind-pollinated trees 1047 (Fagus L.) encapsulates 55 million years of reticulate evolution and hybrid origins of modern species. The 1048 Plant Journal, 109, 909-926. 1049 1050 Chakraborty, R. & Weiss, K.M. (1988) Admixture as a tool for finding linked genes and detecting that 1051 difference from allelic association between loci. Proceedings of the National Academy of Sciences of the 1052 United States of America, 85, 9119-9123. 1053 1054 Chaw, S. M., Liu, Y.C., Wu, Y.W. et al. (2019) Stout camphor tree genome fills gaps in understanding 1055 of flowering plant genome evolution. Nature Plants, 5, 63-73. 1056 1057 Chen, J., Hao, Z., Guang, X. et al. (2019) Liriodendron genome sheds light on angiosperm phylogeny 1058 and species-pair differentiation. Nature Plants, 5, 18-25. 1059 1060 Choi, J.Y., Dai, X., Alam, O., Peng, J.Z., Rughani, P., Hickey, S. et al. (2021). Ancestral 1061 polymorphisms shape the adaptive radiation of Metrosideros across the Hawaiian Islands. Proceedings of 1062 the National Academy of Sciences of the United States of America, 118, e2023801118. 1063 Coyne, J.A. & Orr, H.A. (2004) Speciation (vol. 37). Sunderland, MA: Sinauer Associates. 1064 1065 Crane, P. R. (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the 1066 Missouri Botanical Garden, 72, 716–793.

1068	Cui, L., Wall, P.K., Leebens-Mack, J., Lindsay, B.G., Soltis, D., Doyle, J.J., Soltis, P., Carlson, J.,
1069	Arumuganathan, A., Barakat, A., Albert, V., Ma, H. & DePamphilis, C.W. (2006) Widespread
1070	genome duplications throughout the history of flowering plants. Genome Research, 16, 738-749.
1071	
1072	Dagan, T., Artz-Randrup, Y. & Martin, W. (2008) Modular networks and cumulative impact of lateral
1073	transfer in prokaryote genome evolution. Proceedings of the National Academy of Sciences of the United
1074	<i>States of America</i> , 105 , 10039–10044.
1075	
1076	Dagan, T. & Martin, W. (2009) Getting a better picture of microbial evolution en route to a network of
1077	genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2187–2196.
1078	
1079	Debray, K., Le Paslier, M.C., Bérard, A., Thouroude, T., Michel, G., Marie-Magdelaine, J.,
1080	Bruneau, A., Foucher, F. & Malécot, V. (2022) Unveiling the patterns of reticulated evolutionary
1081	processes with Phylogenomics: hybridization and polyploidy in the genus Rosa. Systematic Biology, 71,
1082	547-569.
1083	
1084	DiVittorio, C.T., Singhal, S., Roddy, A.B., Zapata, F., Ackerly, D.D., Baldwin, B.G., Brodersen,
1085	C.R., Búrguez, A., Fine, P.V., Padilla Flores, M. & Solis, E. (2020) Natural selection maintains species
1086	despite frequent hybridization in the desert shrub Encelia. Proceedings of the National Academy of
1087	<i>Sciences</i> , 117 , 33373–33383.
1088	
1089	Doyle, J.J. (1992) Gene trees and species trees: molecular systematics as one-character taxonomy.
1090	Systematic Botany, 17, 144–163.
1091	
1092	Duarte, J.M., Wall, P.K., Edger, P.P., Landherr, L.L., Ma, H., Pires, P.K., Leebens-Mack, J. &
1093	Depamphilis , C.W. (2010) Identification of shared single copy nuclear genes in Arabidopsis, Populus,
1094	Vitis and Oryzaand their phylogenetic utility across various taxonomic levels. <i>BMC Evolutionary</i>
1095	<i>Biology</i> , 10 , 1-18.
1096	
1097	Dumolin-Lapegue, S., Demesure, B., Fineschi, S., Le Come, V. & Petit, R.J. (1997) Phylogeographic
1098	structure of white oaks throughout the European continent. <i>Genetics</i> . 146 . 1475-1487.
1099	
1100	Durand, E.Y., Patterson, N., Reich, D. & Slatkin, M. (2011) Testing for ancient admixture between
1101	closely related populations. <i>Molecular Biology and Evolution</i> , 28 , 2239–2252.
1102	
1103	Edelman, N.B. & Mallet, J. (2021) Prevalence and adaptive impact of introgression Annual Review of
1104	Genetics 55 265–283
1105	
1106	Edelman, N.B., Frandsen, P.B., Miyagi, M., Clavijo, B., Davey, J., Dikow, R.B. et al. (2019) Genomic
1107	architecture and introgression shape a butterfly radiation <i>Science</i> 366 594–599
1108	

1109 1110 1111 1112	Edwards, C.E., Soltis, D.E. & Soltis, P.S. (2006) Molecular phylogeny of Conradina and other scrub mints (Lamiaceae) from the southeastern USA: evidence for hybridization in Pleistocene refugia?. <i>Systematic Botany</i> , 31 , 193-207.
1113 1114 1115	Ellstrand, N.C., Whitkus, R. & Rieseberg, L.H. (1996) Distribution of spontaneous plant hybrids. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 93 , 5090–5093.
1116 1117 1118	Endress, P.K. & Matthews, M.L. (2006) First steps towards a floral structural characterization of the major rosid subclades. <i>Plant Systematics and Evolution</i> , 260 , 223-251.
1119 1120 1121 1122	Fawcett, J.A., Maere, S. & Van De Peer, Y. (2009) Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. <i>Proceedings of the National Academy of Sciences</i> , 106 , 5737-5742.
1123 1124 1125 1126	Fitz-Gibbon, S., Hipp, A.L., Pham, K.K., Manos, P.S. & Sork, V.L. (2017) Phylogenomic inferences from reference-mapped and de novo assembled short-read sequence data using RADseq sequencing of California white oaks (Quercus section Quercus). <i>Genome</i> , 60 , 743-755.
1127 1128 1129 1130	Folk, R.A., Mandel, J.R. & Freudenstein, J.V. (2017) Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. <i>Systematic Biology</i> , 66 , 320–337.
1131 1132 1133	Folk, R.A., Soltis, P.S., Soltis, D.E. & Guralnick, R. (2018a) New prospects in the detection and comparative analysis of hybridization in the tree of life. <i>American Journal of Botany</i> , 105, 364–375.
1134 1135 1136 1137	Folk, R.A., Visger, C.J., Soltis, P.S., Soltis, D.E. & Guralnick, R.P. (2018b) Geographic range dynamics drove ancient hybridization in a lineage of angiosperms. <i>The American Naturalist</i> , 192 , 171-187.
1138 1139 1140 1141	Folk, R.A., Gaynor, M.L., Engle-Wrye, N.J., O'Meara, B.C., Soltis, P.S., Soltis, D.E., et al. (2022) Identifying climatic drivers of hybridization in Heuchereae (Saxifragaceae). <i>bioRxiv</i> , doi: https://doi.org/10.1101/2022.08.24.505154.
1142 1143 1144	Funk, V.A . (1981) Species concerns in estimating plant phylogenies In: Funk, V.A. & Brooks, D.R. (Eds.) <i>Advances in Cladistics 1</i> . New York: New York Botanical Garden, pp. 73–86.
1145 1146 1147	Gallez, G.P. & Gottlieb, L.D. (1982) Genetic evidence for the hybrid origin of the diploid plant Stephanomeria diegensis. <i>Evolution</i> , 36 , 1158-1167.
1148 1149 1150 1151	García, N., Meerow, A.W., Soltis, D.E. & Soltis, P.S. (2014) Testing deep reticulate evolution in Amaryllidaceae tribe Hippeastreae (Asparagales) with ITS and chloroplast sequence data. <i>Systematic Botany</i> , 39 , 75-89.

1152	García, N., Folk, R.A., Meerow, A.W., Chamala, S., Gitzendanner, M.A., de Oliveira, R.S., Soltis,
1153	D.E. & Soltis, P.S. (2017) Deep reticulation and incomplete lineage sorting obscure the diploid
1154	phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae). Molecular Phylogenetics and
1155	<i>Evolution</i> , 111 , 231-247.
1156	
1157	Gitzendanner, M.A., Soltis, P.S., Wong, G.K.S., Ruhfel, B.R. & Soltis, D.E. (2018) Plastid
1158	phylogenomic analysis of green plants: a billion years of evolutionary history. American Journal of
1159	<i>Botany</i> , 105 , 291–301.
1160	
1161	Gontier, N. (2015) Reticulate Evolution Everywhere In: Gontier, N. (Ed.) Reticulate Evolution.
1162	Copenhagen: Springer Cham, pp. 1–40.
1163	
1164	Grant, V. (1958) The regulation of recombination in plants. Cold Spring Harbor Symposium in
1165	Quantitative Biology, 23, 337-363.
1166	
1167	Grant, V. (1971) Plant Speciation. New York: Columbia University Press.
1168	
1169	Grant, V. (1981) Plant Speciation, 2nd edition, New York: Columbia University Press.
1170	
1171	Green R.E. Krause J. Briggs A.W. Maricic T. Stenzel II. Kitcher M. et al. (2010) A draft
1172	sequence of the Neandertal genome <i>Science</i> 328 710–722
1173	sequence of the roundertal genome. Selence, 526 , 710–722.
1174	Haartman I (1751-1764) Plantae Hybridge Holm: Amoenitates Academicae
1175	fraartman, g. (1751, 1764) I tantae Hybridae. from: Amoentates Academicae.
1176	Hardin IW (1975) Hybridization and introgression in Ouercus alba Journal of the Arnold Arboratum
1177	56 336-363
1178	30, 330-303.
1170	Harrison R.C. (1990) Hybrid zones: windows on evolutionary process In: Futuyma D & Antonovics I
1180	(Eds.) Oxford Surveys in Evolutionary Biology Vol. 7 New York: Oxford University Press, pp. 60, 128
1100	(Eds.) Oxford Surveys in Evolutionary Biology. Vol. 7. New Tork. Oxford University (1ess, pp. 69–128.
1101	Hibbing MS & Hobby MW (2021) The offects of introgramsion corose the year de of quantitative traits
1102	HIDDINS, M.S. & Hann, M.W. (2021) The effects of introgression across thousands of quantitative trans
1103	revealed by gene expression in wild tomatoes. PLos Genetics, 17, e1009892
1184	
1185	Hibbins, M.S & Hahn, M.W. (2022) Phylogenomic approaches to detecting and characterizing
1186	introgression. Genetics, 220, iyab1/3.
1187	
1188	Hodel, R.G., Zimmer, E. & Wen, J. (2021) A phylogenomic approach resolves the backbone of Prunus
1189	(Rosaceae) and identifies signals of hybridization and allopolyploidy. Molecular Phylogenetics and
1190	<i>Evolution</i> , 160 , 107118.
1191	
1192	Hodel, R.G., Zimmer, E.A., Liu, B.B. & Wen, J. (2022) Synthesis of Nuclear and Chloroplast Data
1193	Combined With Network Analyses Supports the Polyploid Origin of the Apple Tribe and the Hybrid
1194	Origin of the Maleae-Gillenieae Clade. Frontiers in Plant Science, 12, 820997.
1195	

1196 1197 1198	Huang, C.H., Qi, X., Chen, D., Qi, J., Ma, H. (2019) Recurrent genome duplication events likely contributed to both ancient and recent rise of ferns. <i>Molecular Ecology and Evolution</i> , 62 , 433-455.
1199 1200 1201	Huang, X., Wang, W., Gong, T. et al. (2022) The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. <i>Nature Plants</i> , 8, 500–512.
1202 1203 1204 1205	Jiao, Y., Wickett, N., Ayyampalayam, S., Chanderbali, A., Landherr, L., Ralph P.E. et al. (2011) Phylogenomic analysis reveals ancient genome duplications in seed plant and angiosperm history. <i>Nature</i> , 473, 97–100.
1206 1207 1208	Jiao, Y. & Paterson, A.H. (2014) Polyploidy-associated genome modifications during land plant evolution. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 369 , 20130355.
1209 1210 1211	Joly, S., McLenachan, P.A. & Lockhart, P.J. (2009a) A statistical approach for distinguishing hybridization and incomplete lineage sorting. <i>The American Naturalist</i> , 2 , E54–E70.
1212 1213 1214 1215	Joly, S., Heenan, P.B. & Lockhart, P.J. (2009b) A Pleistocene inter-tribal allopolyploidization event precedes the species radiation of Pachycladon (Brassicaceae) in New Zealand. <i>Molecular Phylogenetics and Evolution</i> , 51 , 365-372.
1216 1217 1218 1219	Jost, M., Samain, M.S., Marques, I., Graham, S.W. & Wanke, S. (2021) Discordant phylogenomic placement of Hydnoraceae and Lactoridaceae within Piperales using data from all three genomes. <i>Frontiers in Plant Science</i> , 12 , 586.
1220 1221 1222 1223	Judd, W.S., Soltis, D.E., & Soltis, P.S. (2020) Malvidae. In, K. de Queiroz, P. D. Cantino and J. Gauthier (eds.), Phylonyms: a Companion to the PhyloCode. 1st Edition. CRC Press, Taylor & Francis Group (Boca Raton). 1352 pages. https://doi.org/10.1201/9780429446276. Pp. 331-334.
1224 1225 1226 1227 1228	Judd, W.S., Soltis, D.E., & Soltis, P.S. Fabidae. 2020. In, K. de Queiroz, P. D. Cantino and J. Gauthier (eds.), Phylonyms: a Companion to the PhyloCode. 1st Edition. CRC Press, Taylor & Francis Group (Boca Raton). 1352 pages; https://www.taylorfrancis.com/books/9780429446276. https://doi.org/10.1201/9780429446276. Pp. 339-344.
1229 1230 1231 1232	Katche, E., Gaebelein, R., Idris, Z., Vasquez-Teuber, P., Lo, Y.T., Nugent, D. et al. (2021) Stable, fertile lines produced by hybridization between allotetraploids Brassica juncea (AABB) and Brassica carinata (BBCC) have merged the A and C genomes. <i>New Phytologist</i> , 230 , 1242–1257.
1233 1234 1235	Kenney, A.M. & Sweigart, A.L. (2016) Reproductive isolation and introgression between sympatric Mimulus species. <i>Molecular Ecology</i> , 25 , 2499–2517.
1236 1237 1238	Kölreuter, J.G. (1766) Vorläufige nachricht von einigen das geschlecht der pflanzen betreffenden versuchen und beobachtungen, nebst fortsetzungen 1, 2 und 3 (1761-1766). Leipzig: Wilhelm Engelmann.

1239 1240	Kunin, V., Goldovsky, L., Darzentas, N. & Ouzounis, C.A. (2005) The net of life: reconstructing the microbial phylogenetic network. <i>Genome Research</i> , 15 , 954–959.
1241	
1242	Landis, J.B., Soltis, D.E., Li, Z., Marx, H.E., Barker, M.S., Tank, D.C. & Soltis, P.S. (2018) Impact
1243	of whole-genome duplication events on diversification rates in angiosperms. <i>American Journal of Rotany</i>
1244	105 3/8_363
1244	103, 546-505.
1240	Largat R. R. Katha S.K. Doway, C.N. & Aná C. (2010) BUCKy: gana trad/spacies trad reconciliation
1240	with Payosian concordance analysis <i>Bioinformatics</i> 26 2010 2011
1241	with Dayesian concordance analysis. <i>Dioinjormatics</i> , 20 , 2910-2911.
1240	Larger C.S. (2006) The agricultural revelution of environmental extertraphecilimations for health and
1249	Larsen, C.S. (2006) The agricultural revolution as environmental catastrophe. Implications for health and lifestule in the Helesene. Queternery Internetional 150 , 12, 20
1250	mestyle in the Holocene. Quaternary International, 150, 12-20.
1201	L D.A. W
1202	Larson, D.A., Vargas, O.W., Vicentini, A. & Dick, C.W. (2021) Admixture may be extensive among
1203	nyperdominant Amazon rainforest tree species. New Phytologist, 232, 2520-2534.
1254	L. D. L. V. D. J. & F. L. L. D. (2010) A 4 4
1200	Lawson, D.J., Van Dorp, L. & Falusn, D. (2018) A tutorial on now not to over-interpret STRUCTURE
1256	and ADMIXIURE bar plots. <i>Nature communications</i> , 9, 1–11.
1257	
1258	Leebens-Mack, J.H., Barker, M.S., Carpenter, E.J., Deyholos, M.K., Gitzendanner, M.A., et al.
1259 1260	(2019) One thousand plant transcriptomes and the phylogenomics of green plants. <i>Nature</i> , 574 , 679–685.
1261	Lehtonen, S. (2018) × Lindsaeosoria flvnnii (Lindsaeaceae), another confirmed example of deep
1262	hybridization among the ferns. American Fern Journal, 108 , 7-18.
1263	
1264	Levin, D.A. (2020) Has the Polyploid Wave Ebbed? Frontiers in Plant Science, 11, 251.
1265	, (), F
1266	Levin, D.A. & Soltis, D.E. (2018) Factors promoting polyploid persistence and diversification and
1267	limiting diploid speciation during the K–Pg interlude. <i>Current Opinion in Plant Biology</i> , 42 , 1-7.
1268	
1269	Lepais, O. & Gerber, S. (2011) Reproductive patterns shape introgression dynamics and species
1270	succession within the European white oak species complex <i>Evolution</i> 65 156-170
1271	Succession what we European white our species complete Evolution, de, 120 170.
1272	Leroy, T., Louvet, J.M., Lalanne, C., Le Provost, G., Labadie, K., Aury, J.M., Delzon, S., Plomion,
1273	C. & Kremer. A. (2020) Adaptive introgression as a driver of local adaptation to climate in European
1274	white oaks New Phytologist 226 1171-1182
1275	(inte outs. 100, 1 hytologist, 220, 11,1 1102.
1276	Li F.W. Brouwer P. Carretero-Paulet L. Cheng S. De Vries J. Delaux P.M. Filv A
1277	Konners N Kuo I V Li Z & Simenc M (2018) Fern genomes elucidate land plant evolution and
1278	evanobacterial symbioses Nature Plants 4 460-472
1270	Cyanobacterial Symptoses. <i>Tvatare 1 tantis</i> , 4 , 400-472.
1280	Li HT Vi TS Cao I M Ma PF 7hang T Vang IR Citzandannar M A Fritsch DW
1281	Cai I Luo V & Wang H (2019) Origin of angiosnerms and the nuzzle of the Iurassia gap. Nature
1201	Car, S., Euo, T. & Wang, H. (2017) Origin of angiosperins and the puzzle of the Jurassic gap. Nature Plants 5 A61 A70
1202	I $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$

1283	
1284	Li, Z., Baniaga, A.E., Sessa, E.B., Scascitelli, M., Graham, S.W., Rieseberg, L.H. & Barker, M.S.
1285	(2015) Early genome duplications in conifers and other seed plants. Science Advances, 1, e1501084.
1286	
1287	Liu, SY., Yang, YY., Tian, Q., Yang, ZY., Kates, H., et al. (in review). Phylogenomic analyses
1288	reveal widespread gene flow during the early radiation of oaks and relatives (Fagaceae: Quercoideae).
1289	
1290	Liu, X.Q., Xia, X.M., Chen, L. & Wang, X.Q. (2022) Phylogeny and evolution of Cupressaceae:
1291	updates on intergeneric relationships and new insights on ancient intergeneric hybridization. <i>Molecular</i>
1292	<i>Phylogenetics and Evolution</i> , 177 , 107606.
1293	
1294	Liu, Y., Wang, S., Li, L., Yang, T., Dong, S., Wei, T., Wu, S., Liu, Y., Gong, Y., Feng, X. & Ma, J.
1295	(2022) The <i>Cvcas</i> genome and the early evolution of seed plants. <i>Nature Plants</i> , 8 , 389-401.
1296	
1297	Linder, C.R. & Rieseberg, L.H. (2004) Reconstructing patterns of reticulate evolution in plants.
1298	American Journal of Botany, 91, 1700–1708.
1299	
1300	Lotsv, J.P. (1925) Species or linneon. Genetica, 7, 487–506.
1301	
1302	Ma, Y., Wang, J., Hu, Q. et al. (2019) Ancient introgression drives adaptation to cooler and drier
1303	mountain habitats in a cypress species complex. Communications Biology, 2, 213.
1304	
1305	Maddison, W.P. (1997) Gene trees in species trees. Systematic Biology, 46, 523–536.
1306	
1307	Macková, L., Vít, P. & Urfus, T. (2018) Crop-to-wild hybridization in cherries—Empirical evidence
1308	from Prunus fruticosa. Evolutionary Applications, 11, 1748-1759.
1309	5 5 11 5 7
1310	Magallón, S. & Castillo, A. (2009) Angiosperm diversification through time. American Journal of
1311	Botany, 96, 349-365.
1312	
1313	Mallet, J. (2005) Hybridization as an invasion of the genome. <i>Trends in Ecology and Evolution</i> , 20 , 229–
1314	237.
1315	
1316	Manos, P.S., Zhou, Z.K. & Cannon, C.H. (2001) Systematics of Fagaceae: phylogenetic tests of
1317	reproductive trait evolution. International Journal of Plant Sciences, 162, 1361-1379.
1318	
1319	Manos, P.S., Cannon, C.H. & Oh, S.H. (2008) Phylogenetic relationships and taxonomic status of the
1320	paleoendemic Fagaceae of western North America: recognition of a new genus, Notholithocarpus.
1321	Madroño, 55 , 181-190.
1322	
1323	Marchant, D.B., Chen, G., Cai, S., Chen, F., Schafran, P., et al. (in press). Dynamic genome evolution
1324	in a model fern. Nature Plants, https://doi.org/10.1038/s41477-022-01226-7.
1325	

1326 1327	Martin, S.H., Davey, J.W., Jiggins, C.D. (2015) Evaluating the use of ABBA-BABA statistics to locate introgressed loci. <i>Molecular Biology and Evolution</i> , 32 , 244-257
1328 1329	McCauley, D.E. (1994) Contrasting the distribution of chloroplast DNA and allozyme polymorphism
1330 1331 1332	among local populations of Silene alba: Implications for studies of gene flow in plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 91 , 8127–8131.
1333 1334 1335	Mitchell, N. & Whitney, K.D. (2021) Limited evidence for a positive relationship between hybridization and diversification across seed plant families. <i>Evolution</i> , 75 , 1966–1982.
1336 1337 1338	Mitchell, N., Campbell, L.G., Ahern, J.R., Paine, K.C., Giroldo, A.B. & Whitney, K.D. (2019) Correlates of hybridization in plants. <i>Evolution Letters</i> , 3 , 570–585.
1339 1340 1341 1342	Moore, M.J., Bell, C.D., Soltis, P.S. & Soltis, D.E. (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. <i>Proceedings of the National Academy of Sciences</i> , 104 , 19363-19368.
1343 1344 1345	Moran, B.M., Payne, C., Langdon, Q., Powell, D., Brandvain, Y. & Schumer, M. (2021) The genomic consequences of hybridization. <i>eLife</i> , 10 , e69016.
1346 1347 1348 1349	Morales-Briones, D.F., Liston, A. & Tank, D.C. (2018) Phylogenomic analyses reveal a deep history of hybridization and polyploidy in the Neotropical genus Lachemilla (Rosaceae). <i>New Phytologist</i> , 218 , 1668-1684.
1350 1351 1352 1353	Morales-Briones, D.F., Kadereit, G., Tefarikis, D.T., Moore, M.J., Smith, S.A., Brockington, S.F. <i>et al.</i> (2021) Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae sl. <i>Systematic Biology</i> , 70 , 219–235.
1354 1355 1356 1357	Nei, M. (1986) Stochastic errors in DNA evolution and molecular phylogeny In: Gershowitz, H., Rucknagel, D.L., & Tashian, R.E. (Eds.) <i>Evolutionary Perspectives and the New Genetics</i> . New York: A.R. Liss, pp. 133–147.
1358 1359 1360	Nieto Feliner, G., Casacuberta, J. & Wendel, J.F. (2020) Genomics of evolutionary novelty in hybrids and polyploids. <i>Frontiers in Genetics</i> , 11 , 792.
1361 1362 1363	Noor, M.A. & Bennett, S.M. (2009) Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. <i>Heredity</i> , 103 , 439–444.
1364 1365 1366	Oh, S.H. & Manos, P.S. (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. <i>Taxon</i> , 57 , 434-451.
1367 1368 1369	Otto, S.P. & Whitton, J. (2000) Polyploid incidence and evolution. <i>Annual Review of Genetics</i> , 34 , 401-437.

1370	Ottenburghs, J. (2021) The genic view of hybridization in the Anthropocene. Evolutionary Applications,
1371	14, 2342-2360.
1372	
1373	Palmer, E.J. (1948) Hybrid oaks of North America. Journal of the Arnold Arboretum, 29, 1-48.
1374	
1375	Palmer, J.D. (1985) Chloroplast DNA and molecular phylogeny. <i>Bioessays</i> , 2, 263–267.
1376	
1377	Palmer, J.D., Jansen, R.K., Michaels, H.J., Chase, M.W. & Manhart, J.R. (1988) Chloroplast DNA
1378	variation and plant phylogeny. Annals of the Missouri Botanical Garden, 75, 1180-1206.
1379	
1380	Parins-Fukuchi, C., Stull, G.W. & Smith, S.A. (2021) Phylogenomic conflict coincides with rapid
1381	morphological innovation. <i>Proceedings of the National Academy of Sciences</i> . 118 , e2023058118.
1382	
1383	Pease. J.B. & Hahn. M.W. (2015) Detection and polarization of introgression in a five-taxon phylogeny
1384	Systematic Biology 64 651–662
1385	Systematic Biology, 01, 001 002.
1386	Pelosi, J.A., Kim, F.H., Barbazuk, W.B., Sessa, F.B. (2022) Phylotranscriptomics illuminates the
1387	placement of whole genome duplications and gene retention in ferns. <i>Frontiers in Plant Science</i> 14
1388	882/4/1
1389	002441.
1300	Párez-Escober O.A. Dodsworth S. Bogerín D. Bellot S. Belhuene I.A. Schlev R.I. Kikuchi
1301	I A Marris SK Epitawalaga N Cowan D & Maurin O (2021) Hundrads of nuclear and plastid
1302	loci vield novel insights into orchid relationships. American Journal of Rotany 108, 1166, 1180
1302	for yield hover insights into orenid relationships. American Sournal of Dolany, 106, 1100-1180.
1304	Datit D I Kromer A & Wagner D B (1002) Geographic structure of chloroplast DNA
1305	nolymorphisms in European cales. Theoretical and Applied Consting. 87, 122, 128
1206	porymorphisms in European oaks. Theoretical and Applied Genetics, 87, 122-128.
1390	Datit D I Dingon E Domosura D Daciliari D Dugonsso A & Kromar A (1007) Chloroplast
1209	DNA footprints of postalagial recolonization by oaks. <i>Brocassings of the National Academy of Sciences</i>
1200	DIVA Tootprints of postgracial recordinzation by oaks. <i>Proceedings of the National Academy of Sciences</i> ,
1399	94 , 9990-10001.
1400	Datia D.J. Duaman S. Daudáas S. Dung V. Chaddad: D. Caaut F. Cattuall, J. Caaild U.M. man
1401	Petit, R.J., Brewer, S., Bordacs, S., Burg, K., Cheddadi, R., Coart, E., Cottrell, J., Csaiki, U.M., Van
1402	Dam, B., Deans, J.D. & Espinel, S. (2002) Identification of rerugia and post-glacial colonisation routes
1403	of European white oaks based on chloroplast DNA and fossil pollen evidence. <i>Forest Ecology and</i>
1404	Management, 156 , 49-74.
1405	
1406	PPG I. (2016) A community-derived classification for extant lycophytes and ferns. Journal of
1407	Systematics and Evolution 54: 563-603.
1408	
1409	Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus
1410	genotype data. Genetics, 155, 945–959.
1411	

1412	Qiao, Q., Edger, P.P., Xue, L., Qiong, L., Lu, J., Zhang, Y., Cao, Q., Yocca, A.E., Platts, A.E.,
1413	Knapp, S.J. & Van Montagu, M. (2021) Evolutionary history and pan-genome dynamics of strawberry
1414	(Fragaria spp.). Proceedings of the National Academy of Sciences, 118, e2105431118.
1415	
1416	Rieseberg, L.H. (1991) Homoploid reticulate evolution in Helianthus (Asteraceae): Evidence from
1417	ribosomal genes. American Journal of Botany 78: 1218-1237.
1418	
1419	Rieseberg, L.H. & Soltis, D.E. (1991) Phylogenetic consequences of cytoplasmic gene flow in plants.
1420	<i>Evolutionary Trends in Plants</i> , 5, 65–84.
1421	
1422	Rieseberg, L.H., Beckstrom-Sernberg, S. & Doan, K. (1990) Helianthus annuus spp. texanus has
1423	chloroplast DNA and nuclear ribosomal RNA genes of <i>Helianthus debilis</i> ssp. <i>cucumerifolius</i> .
1424	Proceedings of the National Academy of Sciences of the United States of America, 87, 593–597.
1425	
1426	Ringelberg, J.J., Koenen, E.J., Iganci, J.R., de Oueiroz, L.P., Murphy, D.J., Gaudeul, M., Bruneau,
1427	A., Luckow, M., Lewis, G.P. & Hughes, C.E. (2022) Phylogenomic analysis of 997 nuclear genes
1428	reveals the need for extensive generic re-delimitation in Caesalpinioideae (Leguminosae). <i>PhytoKevs</i> .
1429	205 3-58
1430	
1431	Ritland, K & Clegg, M T (1987) Evolutionary analysis of plant DNA sequences. The American
1432	Naturalist 130 S74-S100
1433	
1434	Roberts, H.F. (1929) Plant hybridization before Mendel Princeton: Princeton University Press
1435	Roberts, III ((1)2)) I tant hybridization bejore menaet. I intection: I intection oniversity i ress.
1436	Rothfels, C.J., Johnson, A.K., Hovenkamn, P.H., Swofford, D.L., Roskam, H.C., Fraser-Jenkins,
1437	C.R., Windham, M.D. & Pryer, K.M. (2015) Natural hybridization between genera that diverged from
1438	each other approximately 60 million years ago <i>The American Naturalist</i> 185 433-442
1439	each other approximately of minion years ago. The mine team reader and, 196, 195, 195, 192.
1440	Rvan, S.F., Deines, J.M., Scriber, J.M., Pfrender, M.F., Jones, S.F., Emrich, S.J. & Hellmann, J.J.
1441	(2018) Climate-mediated hybrid zone movement revealed with genomics museum collection and
1442	simulation modeling. Proceedings of the National Academy of Sciences 115 E2284-E2291
1443	sintulation modeling. I receculings of the rational nearenty of Selences, 110, 1220 (1222) 1.
1444	Sang, T & Zhong, V (2000) Testing hybridization hypotheses based on incongruent gene trees
1445	Systematic Riology 49 422–434
1446	<i>Systematic Dividey</i> , 17, 122–131.
1440	Šarhanová P. Sharhel T.F. Sochor M. Vašut R.I. Dančák M. & Trávníček B. (2017)
1448	Hybridization drives evolution of anomicts in Rubus subgenus Rubus: evidence from microsatellite
1440	markers Annals of Rotany 120 317-328
14450	markers. <i>Annuis of Dotany</i> , 120 , 517-520.
1450	Scarning S.V. Levin D.A. & Meyers I.A. (2014) Polyploid formation shapes flowering plant
1452	diversity. The American Naturalist 184 A56-A65
1452	
1454	Schemeles D.W. & Bradshaw Ir. H.D. (1000) Dollingtor preference and the evolution of flored traits in
1455	monkeyflowers (Minulus) Proceedings of the National Academy of Sciences 06 11010 11015
1400	monkeynowers (minimus). 1 roceedings of the mailonal Academy of sciences, 70 ,11710–11915.

1456	
1457	Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology and Evolution, 19, 198-
1458	207.
1459	
1460	Sigel, E.M. (2016) Genetic and genomic aspects of hybridization in ferns. Journal of Systematics and
1461	<i>Evolution</i> , 54 , 638-655.
1462	
1463	Simeone, M.C., Grimm, G.W., Papini, A., Vessella, F., Cardoni, S., Tordoni, E., Piredda, R., Franc,
1464	A. & Denk, T. (2016) Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ, 4,
1465	e1897.
1466	
1467	Smith, R.L. & Sytsma, K.J. (1990) Evolution of Populus nigra (sect. Aigeiros): introgressive
1468	hybridization and the chloroplast contribution of Populus alba (sect. Populus). American Journal of
1469	Botany, 77, 1176-1187.
1470	
1471	Smith, S.A., Brown, J.W., Yang, Y., Bruenn, R., Drummond, C.P., Brockington, S.F., Walker, J.F.,
1472	Last, N., Douglas, N.A. & Moore, M.J. (2018) Disparity, diversity, and duplications in the
1473	Caryophyllales. <i>New Phytologist</i> , 217 , 836-854.
1474	
1475	Solís-Lemus, C., Bastide, P., & Ané, C. (2017) PhyloNetworks: a package for phylogenetic networks.
1476	Molecular Biology and Evolution. 34 , 3292–3298.
1477	
1478	Soltis, D.E. & Kuzoff, R.K. (1995) Discordance between nuclear and chloroplast phylogenies in the
1479	Heuchera group (Saxifragaceae). Evolution, 49 , 727–742.
1480	
1481	Soltis, P.S. (2013) Hybridization, speciation and novelty. <i>Journal of Evolutionary Biology</i> , 26, 291-293.
1482	
1483	Soltis, P.S. & Soltis, D.E. (2009) The role of hybridization in plant speciation. Annual Review of Plant
1484	Biology 60 561–588
1485	
1486	Soltis, D., Soltis, P., Endress, P., Chase, M.W., Manchester, S., Judd, W., Maiure, L. & Mavrodiev,
1487	E . (2018) Phylogeny and evolution of the angiosperms: revised and undated edition Chicago: University
1488	of Chicago Press
1489	
1490	Soltis, D.F., Smith, S.A., Cellinese, N., Wurdack, K.J., Tank, D.C., Brockington, S.F.,
1491	Refulio-Rodriguez N.F. Walker J.B. Moore M.J. Carlsward B.S. & Bell C.D. (2011)
1/02	Angiosperm phylogeny: 17 genes 640 tays American Journal of Rotany 08 704-730
1/02	Angiosperin phytogeny. 17 genes, 040 taxa. American Journal of Dolany, 90, 704-750.
1/0/	Soltis P.S. Folly P.A. & Soltis D.F. (2010) Darwin review: angiogneric phylogeny and evolutionary
1494	redictions. Proceedings of the Poyal Society P. 286 , 20100000
1/06	radiations. Troceedings of the Royal Society D, 200, 20190099.
1/07	Stabling C. L. (1050) Variation and Evolution in Dianta New Varley Columbia University Press
1/00	Steppins, G.L. (1950) variation and Evolution in Flants. New Tork. Columbia University Pless.
1490	

1499 Stebbins, G.L. (1957a) Self fertilization and population variability in the higher plants. The American 1500 *Naturalis*, **91**, 337–354. 1501 1502 Stebbins, G.L. (1957b) The hybrid origin of microspecies in the Elymus glaucus complex. Cytologia 1503 (supplement), 36, 336-340. 1504 1505 Stebbins, G.L. (1959) The role of hybridization in evolution. Proceedings of the American Philosophical 1506 Society, 103, 231–251. 1507 1508 Stebbins, G. L. (1971) Chromosomal Evolution in Higher Plants. London: Arnold... 1509 1510 Stull, G.W., Duno de Stefano, R., Soltis, D.E. & Soltis, P.S. (2015) Resolving basal lamiid phylogeny 1511 and the circumscription of Icacinaceae with a plastome-scale data set. American Journal of Botany, 102, 1512 1794–1813. 1513 Stull, G.W., Soltis, P.S., Soltis, D.E., Gitzendanner, M.A. & Smith, S.A. (2020) Nuclear phylogenomic 1514 1515 analyses of asterids conflict with plastome trees and support novel relationships among major lineages. 1516 American Journal of Botany, 107, 790-805. 1517 1518 Stull, G.W., Qu, X.J., Parins-Fukuchi, C., Yang, Y.Y., Yang, J.B., Yang, Z.Y. et al. (2021) Gene 1519 duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. 1520 Nature Plants, 7, 1015–1025 1521 1522 Suarez-Gonzalez, A., Lexer, C. & Cronk, Q.C. (2018) Adaptive introgression: a plant perspective. 1523 Biology Letters, 14, 20170688. 1524 1525 Sullivan, A.R., Schiffthaler, B., Thompson, S.L., Street, N.R. & Wang, X.R. (2017) Interspecific 1526 plastome recombination reflects ancient reticulate evolution in Picea (Pinaceae). Molecular Biology and 1527 Evolution, 34, 1689-1701. 1528 1529 Sun, M., Soltis, D.E., Soltis, P.S., Zhu, X., Burleigh, J.G. & Chen, Z. (2015) Deep phylogenetic 1530 incongruence in the angiosperm clade Rosidae. Molecular Phylogenetics and Evolution, 83, 156–166. 1531 1532 Sun, M., Folk, R.A, Gitzendanner, M.A., Soltis, P.S., Chen, Z., Soltis, D.E. & Guralnick, R.P. (2020) 1533 Recent, accelerated diversification in rosids occurred outside the tropics. *Nature Communications*, 11, 1534 3333. 1535 1536 Sweigart, A.L., Fishman, L. & Willis, J.H. (2006) A simple genetic incompatibility causes hybrid male 1537 sterility in Mimulus. Genetics, 172, 2465-2479. 1538 1539 Tank, D.C., Eastman, J.M., Pennell, M.W., Soltis, P.S., Soltis, D.E., Hinchliff, C.E., Brown, J.W., 1540 Sessa, E.B. & Harmon, L.J. (2015) Nested radiations and the pulse of angiosperm diversification: 1541 increased diversification rates often follow whole genome duplications. New Phytologist, 207, 454-467. 1542

1543	Thomas, G.W., Hussain Ather, C.S. & Hahn, M.W. (2017). Gene-tree reconciliation with MUL-trees
1544	to resolve polyploidy events. Systematic Biology, 66, 1007–1018.
1545	
1546	Todesco, M., Pascual, M.A., Owens, G.L., Ostevik, K.L., Moyers, B.T., Hübner, S. et al. 2016.
1547 1548	Hybridization and extinction. Evolutionary Applications, 9, 892–908.
1549	Tricou T. Tannier F. & de Vienne D.M. (2021) Ghost lineages highly influence the interpretation of
1550	introgression tests Systematic Riology sysc011
1551	intogression cests. Systematic Diology, syacorr.
1552	Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, L., Hellsten, U., Putnam, N., Ralph,
1553	S. Rombauts, S., Salamov, A. & Schein, J. (2006) The genome of black cottonwood <i>Populus</i>
1554	trichocarna (Torr & Gray) Science 313 1596-1604
1555	<i>inchocurpu</i> (1011. & Glug). Science, 510 , 1590-1001.
1556	Ungerer, M.C., Baird, S.J., Pan, J., Rieseberg, L.H. (1998) Proceedings of the National Academy of
1557	Sciences of the United States of America 95 11757–11762
1558	Sciences of the Onited States of America, 95, 11757-11762.
1559	Vamosi, J.C. & Dickinson, T.A. (2006) Polyploidy and diversification: a phylogenetic investigation in
1560	Rosaceae International Journal of Plant Sciences 167 349-358
1561	
1562	Van de Peer, Y., Ashman, T.L., Soltis, P.S. and Soltis, D.E. (2021) Polyploidy: an evolutionary and
1563	ecological force in stressful times <i>The Plant Cell</i> 33 11-26
1564	
1565	Van Diik, K.J., Wavcott, M., Ouarmby, J., Bickerton, D., Thornhill, A.H., Cross, H. & Biffin, E.
1566	(2020) Genomic screening reveals that the endangered Eucalyptus paludicola (Myrtaceae) is a hybrid.
1567	Diversity 12 468
1568	
1569	Walker, J.F., Yang, Y., Feng, T., Timoneda, A., Mikenas, J., Hutchison, V., Edwards, C., Wang, N.,
1570	Ahluwalia, S., Olivieri, J. & Walker-Hale, N. (2018) From cacti to carnivores: Improved
1571	phylotranscriptomic sampling and hierarchical homology inference provide further insight into the
1572	evolution of Carvophyllales <i>American Journal of Botany</i> 105 446-462
1573	
1574	Wang, G., Zhang, X., Herre, F.A., McKey, D., Machado, C.A., Yu, W.B., Cannon, C.H., Arnold,
1575	M.L., Pereira, R.A., Ming, R. & Liu, Y.F. (2021) Genomic evidence of prevalent hybridization
1576	throughout the evolutionary history of the fig-wasp pollination mutualism <i>Nature Communications</i> 12
1577	1-14.
1578	
1579	Wang, Z., Kang, M., Li, J., Zhang, Z., Wang, Y., Chen, C., Yang, Y. & Liu, J. (2022) Genomic
1580	evidence for homoploid hybrid speciation between ancestors of two different genera <i>Nature</i>
1581	Communications 13 1-9
1582	
1583	Welch, M.E. & Rieseberg, L.H. (2002) Patterns of genetic variation suggest a single, ancient origin for
1584	the diploid hybrid species Helianthus paradoxus. Evolution. 56. 2126–2137.
1585	

1586	Wen, D., Yu, Y., Zhu, J. & Nakhleh, L. (2018) Inferring phylogenetic networks using PhyloNet.
1587	Systematic Biology, 67, 735–740.
1588	
1589	Wendel, J.F. & Doyle, J.J. (1998) Phylogenetic incongruence: window into genome history and
1590	molecular evolution In: Molecular Systematics of Plants II. Boston: Springer, pp. 265-296.
1591	
1592	Whitney, K.D., Ahern, J.R., Campbell, L.G., Albert, L.P. & King, M.S. (2010) Patterns of
1593	hybridization in plants. Perspectives in Plant Ecology, Evolution and Systematics, 12, 175–182.
1594	
1595	Whittemore, A.T. & Schaal, B.A. (1991) Interspecific gene flow in sympatric oaks. Proceedings of the
1596	National Academy of Sciences, 88, 2540-2544.
1597	
1598	Whitham, T.G., Morrow, P.A. & Potts, B.M. (1994) Plant hybrid zones as centers of biodiversity: the
1599	herbivore community of two endemic Tasmanian eucalypts. <i>Oecologia</i> , 97 , 481–490.
1600	
1601	Williams, J.H., Boecklen, W.J. & Howard, D.J. (2001) Reproductive processes in two oak (Quercus)
1602	contact zones with different levels of hybridization. Heredity, 87, 680-690.
1603	
1604	Wood, T.E., Takebayashi, N., Barker, M.S., Mayrose, I., Greenspoon, P.B. & Rieseberg, L. (2009)
1605	The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of
1606	Sciences of the United States of America, 106 , 13875–13879.
1607	
1608	Worth, J.R., Larcombe, M.J., Sakaguchi, S., Marthick, J.R., Bowman, D.M., Ito, M. & Jordan, G.J.
1609	(2016) Transient hybridization, not homoploid hybrid speciation, between ancient and deeply divergent
1610	conifers. American Journal of Botany, 103, 246-259.
1611	
1612	Wu, H., Ma, Z., Wang, M.M., Qin, A.L., Ran, J.H. & Wang, X.Q. (2016) A high frequency of
1613	allopolyploid speciation in the gymnospermous genus <i>Ephedra</i> and its possible association with some
1614	biological and ecological features. Molecular Ecology, 25, 1192-1210.
1615	
1616	Xiang, X.G., Wang, W., Li, R.Q., Lin, L., Liu, Y., Zhou, Z.K., Li, Z.Y. & Chen, Z.D. (2014) Large-
1617	scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and
1618	environments in the Paleogene. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 16 , 101-110.
1619	
1620	Yakimowski, S.B. & Rieseberg, L.H. (2014) The role of homoploid hybridization in evolution: A
1621	century of studies synthesizing genetics and ecology. American Journal of Botany, 101, 1247–1258.
1622	
1623	Yang, Y., Moore, M.J., Brockington, S.F., Mikenas, J., Olivieri, J., Walker, J.F. & Smith, S.A.
1624	(2018) Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in
1625	Carvophyllales, including two allopolyploidy events. <i>New Phytologist</i> , 217 , 855-870.
1626	
1627	Yang, Y.Y., Qu, X.J., Zhang, R., Stull, G.W. & Yi, T.S. (2021) Plastid phylogenomic analyses of
1628	Fagales reveal signatures of conflict and ancient chloroplast capture. Molecular Phylogenetics and
1629	Evolution, 163, 107232.

1630	
1631	Zenil-Ferguson, R., Burleigh, J.G., Freyman, W.A., Igić, B., Mayrose, I. & Goldberg, E.E. (2019)
1632	Interaction among ploidy, breeding system and lineage diversification. New Phytologist, 224, 1252-1265.
1633	
1634	Zhang, B.W., Xu, L.L., Li, N., Yan, P.C., Jiang, X.H., Woeste, K.E., Lin, K., Renner, S.S., Zhang,
1635	D.Y. and Bai, W.N. (2019) Phylogenomics reveals an ancient hybrid origin of the Persian walnut.
1636	Molecular Biology and Evolution, 36 , 2451-2461.
1637	
1638	Zhang, C., Zhang, T., Luebert, F., Xiang, Y., Huang, C.H., Hu, Y., Rees, M., Frohlich, M.W., Qi, J.,
1639	Weigend, M. & Ma, H. (2020) Asterid phylogenomics/phylotranscriptomics uncover morphological
1640	evolutionary histories and support phylogenetic placement for numerous whole-genome duplications.
1641	Molecular Biology and Evolution, 37 , 3188-3210.
1642	
1643	Zhang, N., Zeng, L., Shan, H. & Ma, H. (2012) Highly conserved low-copy nuclear genes as effective
1644	markers for phylogenetic analyses in angiosperms. New Phytologist, 195, 923-937.
1645	
1646	Zhou, B.F., Yuan, S., Crowl, A.A., Liang, Y.Y., Shi, Y., Chen, X.Y., An, Q.Q., Kang, M., Manos,
1647	P.S. & Wang, B. (2022) Phylogenomic analyses highlight innovation and introgression in the continental
1648	radiations of Fagaceae across the Northern Hemisphere. Nature Communications, 13, 1-14.
1649	
1650	Zuntini, A.R., Frankel, L.P., Pokorny, L., Forest, F. & Baker, W.J. (2021) A comprehensive
1651	phylogenomic study of the monocot order Commelinales, with a new classification of Commelinaceae.
1652	American Journal of Botany, 108, 1066-1086.