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Abstract  

A central question in ecology and evolution is to understand why sexual selection varies so 

much in strength across taxa, and it has long been known that ecological factors are crucial to 

this respect. Temperature is a particularly critical abiotic ecological factor that can drastically 

modulate a wide range of physiological, morphological and behavioural traits, impacting 

individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits 

substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most 

species in the wild sexual selection will regularly unfold in a dynamic thermal environment. 

Unfortunately, studies have so far almost completely neglected the role of temperature as a 

modulator of sexual selection. Here, we outline the main pathways via which temperature can 

affect the intensity and form (i.e. mechanisms) of sexual selection, via: a) direct effects on 

secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-

fitness covariance), and b) indirect effects on key mating parameters, sex-specific 

reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building 

upon this framework, we show that, by focusing exclusively on the first order effects that 

environmental temperature has on traits linked with individual fitness and population 

viability, current global warming studies may be ignoring important eco-evolutionary 

feedbacks mediated by sexual selection. Finally, we tested the general prediction that 

temperature modulates sexual selection by conducting a meta-analysis of available studies 

experimentally manipulating temperature and reporting effects on the variance of 

male/female reproductive success and/or traits under sexual selection. Our results show a 

clear association between temperature and sexual selection measures in both sexes. In short, 

we suggest that studying the feedback between temperature and sexual selection processes 

can be vital to better understand variation in the strength of sexual selection in nature, and its 

consequences for population viability in response to environmental change (e.g. global 

warming).  
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I. Introduction 38 

Since Darwin’s first formulation of sexual selection (Darwin, 1871), the process whereby 39 

organisms evolve to be better competitors in the reproductive arena, it has become a 40 

cornerstone to understand the evolution of male and female adaptations and life-histories 41 

(Andersson, 1994), speciation (Janicke et al., 2018), and the maintenance of sexual 42 

reproduction itself (Agrawal, 2001). Precisely due to its central role in evolutionary theory, 43 

we have also come to understand that sexual selection is an equally important determinant of 44 

population viability and evolvability, and thus of a population’s capacity to withstand 45 

environmental change (Pomiankowski & Moller, 1995; Cally, Stuart-Fox & Holman, 2019). 46 

Indeed, sexual selection is a potent mechanism by which the genome can be purged of 47 

deleterious mutations (Whitlock & Agrawal, 2009; Radwan, 2004) and, in so doing, 48 

effectively protect populations against extinction (Lumley et al., 2015; Jarzebowska & 49 

Radwan, 2010). Sexual selection has been shown to increase the rate of adaptation in traits 50 

under both sexual and natural selection via “genic capture” (Rowe & Houle, 1996; Lorch et 51 

al., 2003), a process presumed to be particularly effective in response to directional 52 

environmental change (Martinez-Ruiz & Knell, 2017; Long, Agrawal & Rowe, 2012b; 53 

Parrett & Knell, 2018). Given the undisputed relevance of sexual selection for individual 54 

phenotypes and a population fate (Cally et al., 2019), a central question in evolutionary 55 

biology is to disentangle why sexual selection varies so much in its form, strength and 56 

outcome across taxa.  57 

We have long realized that ecological factors are crucial to understand the operation 58 

of sexual selection (Emlen & Oring, 1977; Maan & Seehausen, 2011) and sexual conflict 59 

(Rowe et al., 1994; Arbuthnott et al., 2014; Perry, Garroway & Rowe, 2017; Berger et al., 60 

2014; Perry & Rowe, 2018; García-Roa, Chirinos & Carazo, 2019). Despite the fact that 61 

studies on the factors governing eco-evolutionary interactions are still scarce (Svensson, 62 

2019), there is increasing evidence that sexual selection frequently fluctuates with changing 63 

environmental conditions (Evans & Garcia-Gonzalez, 2016; Miller & Svensson, 2014; 64 

Cornwallis & Uller, 2010). For example, the strength and direction of sexual selection can 65 

vary with resource quality and availability (Gillespie et al., 2014; Gwynne & Simmons, 66 

1990), population density (Kokko & Rankin, 2006), or sex ratio (Punzalan, Rodd & Rowe, 67 

2010), amongst others (Miller & Svensson, 2014). Surprisingly, however, while there is 68 

ample evidence that temperature strongly impacts organism physiology, metabolism, 69 

morphology and behaviour, its role in relation to sexual selection and sexual conflict has 70 
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mostly been neglected. There is good evidence that sexual selection can influence the 71 

capacity of a population to withstand environmental change in the form of rising 72 

temperatures (Plesnar-Bielak et al., 2012b; Parrett & Knell, 2018; Miller & Svensson, 2014), 73 

but we know very little about how temperature affects sexual selection.  74 

In particular, only a handful of studies have tackled the role of temperature 75 

fluctuations at an ecologically relevant temporal (i.e. circadian, seasonal, or inter-seasonal) 76 

and/or spatial (i.e. micro- and macro geographic) scale. In the worm pipefish (Nerophis 77 

lumbriciformis) sexual selection seems to be stronger in warm waters (Monteiro & Lyons, 78 

2012), and there is significant co-variation between water temperature and several potential 79 

indicators of sexual selection intensity (e.g. sexual size dimorphism) across populations along 80 

a thermal cline (Monteiro et al., 2017). Temperature has also been shown to disrupt mating 81 

patterns in Artemia (Artemia franciscana), ultimately modulating sexual selection intensity 82 

(Santos, Vieira & Monteiro, 2018). In grey-seals (Halichoerus grypus), changes in local 83 

weather conditions affect the degree of polygyny and hence the opportunity for selection 84 

(Twiss et al., 2007). Similarly, a decade-long study in a population of free-ranging sand 85 

lizards (Lacerta agilis) reported that elevated temperatures correlated with an increase in the 86 

degree of polygyny, number of sires per clutch, and the opportunity for post-copulatory 87 

sexual selection (Olsson et al., 2011). In the cigarette beetle (Lasioderma serricorne), 88 

thermal conditions affect post-copulatory, but not pre-copulatory, traits. This is bound to 89 

change the relative weight of (and covariance between) the two episodes of sexual selection 90 

which, in turn, will determine the nature and total opportunity for sexual selection (Suzaki et 91 

al., 2018). While tantalizing results, studies so far have provided preliminary and mostly 92 

indirect support for the idea that temperature can be fundamental in modulating sexual 93 

selection across taxa. Much of the attention has focused on understanding the direct 94 

consequences of abrupt temperature shifts (e.g. stressful/extreme events) on organism fitness 95 

and population viability. However, most organisms are reproductively active across a 96 

relatively wide range of temperatures in the wild, which means intra- and inter-sexual 97 

selection will normally unfold in a constantly fluctuating thermal environment. This contrasts 98 

starkly with the constant temperature conditions under which most sexual selection research 99 

has been (and still is) currently conducted in the lab. To conclude, we know surprisingly little 100 

about: a) whether and how temperature fluctuations might modulate the nature and strength 101 

of sexual selection, and b) whether and how this may lead to eco-evolutionary feedback, and 102 

hence affect population viability. The overarching aim of this paper is to knit together 103 

existing theory to provide a comprehensive conceptual framework for how and why 104 
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temperature effects on organisms may modulate sexual selection (Fig. 1), and hopefully 105 

stimulate further study on this area of research.  106 

II. Framework for the study of temperature and sexual selection 107 

There is a fundamental reason why temperature is bound to be a particularly salient and 108 

potentially crucial ecological determinant of sexual selection. The laws of thermodynamics 109 

pose constraints on biochemical processes inherent to metabolism and development, with 110 

cascading effects on organism physiology, morphology, phenology and behaviour. 111 

Temperature is a measure of the amount of kinetic energy in a system, and kinetic energy 112 

determines the rate of conformational changes in proteins (e.g. enzymes), the activation 113 

energy of reactants in biochemical reactions (Fields, 2001) and the fluidity of cell 114 

membranes, which in turn determines the transport of materials in and out of cells (Hazel & 115 

Williams, 1990). In this way, kinetic effects ultimately impact performance of cell, organ and 116 

systemic (e.g. muscular, nervous, digestive) processes over a wide temporal scale that spans 117 

short term effects (e.g. fast metabolic changes measured in minutes/seconds), medium term 118 

effects (i.e. within an ontogenetic phase, measured in hours/days) and long-term changes 119 

across different ontogenetic phases and –potentially– generations (reviewed in (Abram et al., 120 

2017)). In the wild, temperature can vary significantly at all these time scales, setting the 121 

scene for its widespread effects on organism phenotypes. Precisely due to these bottom-up 122 

effects, organisms have evolved to respond to environmental temperature variation at all 123 

these time scales, via top-down integrated effects mediated by the central nervous system, in 124 

a distinct way to arguably other abiotic environmental variables (Abram et al., 2017).  125 

Furthermore, the scaling up of bottom-up and top-down temperature effects can ultimately 126 

impact ecosystem-level processes such as population growth rates, trophic interactions or 127 

biomass production (Brown et al., 2004; Gillooly et al., 2001)). Unsurprisingly, there is 128 

ample evidence that, via bottom-up and top-down effects, temperature strongly impacts all 129 

aspects of an animal phenotype, including its physiology, morphology, phenology and 130 

behaviour (e.g. (Noble, Stenhouse & Schwanz, 2017b; Abram et al., 2017; Hetem et al., 131 

2014)). For example, the metabolic theory of ecology poses that temperature is the main 132 

determinant of metabolic rate along with body size, which has itself partly evolved in 133 

response to environmental temperature (Brown et al., 2004; Gillooly et al., 2001).  134 

Obviously, traits involved in sexual selection are no exception and thus temperature 135 

has an outstanding potential to modulate secondary sexual traits and how they co-vary with 136 

fitness, impacting both the intensity and the relative importance of sexual selection 137 
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mechanisms. Conceptually, we suggest it is useful to distinguish between direct and indirect 138 

effects of temperature on sexual selection (Fig. 1). By direct effects we mean that 139 

temperature variation will translate in immediate changes in the selection of secondary sexual 140 

traits, by affecting either the opportunity for selection, trait-fitness covariance or trait 141 

heritability. By indirect effects, we mean that temperature variation will affect the 142 

phenotypes, demography, trade-offs and/or sex-specific reproductive costs/benefits of 143 

organisms in a way that will change sexual selection pressures. While this classification does 144 

not reflect a true dichotomy, we do believe it is conceptually useful to identify the different 145 

process involved (see below). A similar distinction can be made regarding the type of 146 

temperature variation faced by organisms. More specifically, we believe it can be useful to 147 

distinguish between the effects of temperature variation within the range of temperatures 148 

under which organisms have adapted to reproduce in their recent evolutionary past vs. 149 

maladaptive temperature variations (e.g. climate change) that will trigger stress responses 150 

(Fig. 1). Again, we note this distinction is not absolute, both because stress responses are 151 

adaptive in themselves and because the limits of “natural” vs. maladaptive temperatures is in 152 

most cases fuzzy. However, the type of evolutionary responses and underlying theory at play 153 

are likely to be qualitatively different in these two cases (see below), and this distinction is 154 

useful in disentangling evolutionary responses to stressful stimuli that are not specific of 155 

temperature from responses that will be specific of temperature.  156 

(1) Direct effects of temperature on sexual selection 157 

First, maladaptive environmental variation, including temperature, can directly affect sexual 158 

selection. Fitness landscape theory predicts that the variability of secondary sexual traits 159 

under strong stabilizing selection will be particularly affected by stressful temperature 160 

fluctuations, leading to pronounced genotype-by-environment interactions (Martinossi-161 

Allibert, Arnqvist & Berger, 2017). Given that males are typically under stronger sexual 162 

selection than females (Janicke et al., 2016), this may lead to sex-specific environmental 163 

sensitivity and a concomitant change in the net opportunity for sexual selection (Martinossi-164 

Allibert et al., 2017). In addition, Martinossi-Allibert et al. (Martinossi-Allibert et al., 2019a) 165 

recently showed that rapid environmental change can in principle result in less effective good 166 

genes sexual selection, at least in groups of small to medium size organisms (i.e. applicable 167 

to most species in the wild). This happens because stress increases selection on both sexes 168 

(by increasing the variance in fitness), but selection on females is “harder” than on males so 169 

that IM/IF decreases drastically (e.g. (Martinossi-Allibert et al., 2018a) . Briefly, because 170 

female fitness depends on fecundity selection while male fitness depends on their ability to 171 
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monopolize fertilizations within a mating patch, group size poses an upper limit for male (but 172 

not female) variance (Martinossi-Allibert et al., 2019a). In contrast, there is substantial 173 

theoretical and empirical work showing that genomic conflict between the sexes should be 174 

ameliorated in populations facing environments to which they are not adapted, hence 175 

increasing population adaptation (e.g. (Long, Agrawal & Rowe, 2012a; Punzalan, Delcourt & 176 

Rundle, 2014; Berger et al., 2014)). This happens, essentially, because natural selection 177 

under a maladaptive environment tends to align male and female interests. It is important to 178 

note that the maladaptive effects described above, however, are predicted in response to 179 

variations in any abiotic factor that places organisms in a maladaptive environment. In this 180 

sense, temperature may well be a particularly pervasive stressful abiotic factor, but the 181 

theoretical underpinnings of its effects are no different to other abiotic factors.  182 

Maladaptive temperature changes have also been shown to have specific and 183 

widespread effects on essential features of reproduction (e.g. spermatogenesis) that may 184 

directly translate in changes in the opportunity for selection (e.g. (Walsh et al., 2019; Sales et 185 

al., 2018). More importantly, inasmuch as the expression of many phenotypic traits is 186 

governed by temperature-dependent processes, both their mean and their variance can be 187 

affected by temperature variation regardless of whether such variation is maladaptive or not. 188 

Several studies have established links between temperature variation and changes in the 189 

levels of genetic variance (measured as additive genetic variances, heritability, or 190 

evolvability) of morphological or life-history traits (Bubliy & Loeschcke, 2002; Husby, 191 

Visser & Kruuk, 2011; Martinez-Padilla et al., 2017; Sgro & Hoffmann, 2002). Similarly, 192 

recent work by Berger et al. suggests that, due to kinetic effects affecting protein 193 

functionality, elevated temperatures can cause a dramatic increase in the fitness effects of de 194 

novo mutations over a biologically relevant temperature range (Berger, Stangberg & Walters, 195 

2018). Temperature variation can hence affect the variance in the reproductive success of 196 

males and females (IM/IF), and with it the opportunity for selection. In short, temperature 197 

variation within both adaptive and maladaptive ranges can directly modulate the variance in 198 

reproductive traits, in fitness (i.e. opportunity for selection), and the co-variance between the 199 

two, thus directly affecting sexual selection (Fig. 1).  200 

(2) Indirect effects of temperature on sexual selection 201 

There are numerous ways in which temperature variation, both within and outside the 202 

adapted range, can indirectly affect sexual selection. First and foremost, as we discuss below 203 

there are several pathways by which temperature can affect key parameters of the mating 204 

system (i.e. the ecology of sexual selection) that will end up modulating the opportunity for 205 
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selection (e.g. sex-specific potential reproduction rates, operational sex ratios, density etc.). 206 

Sex-specific reproductive costs and benefits are, in many cases, largely dependent on the 207 

environment (e.g. costs of investment in offspring, sex-specific mortality linked to 208 

reproduction, costs of parental care, etc.), and are also amenable to be modulated by 209 

temperature, hence potentially impacting sex-specific selection pressures and the opportunity 210 

for sexual selection (e.g. (Grazer & Martin, 2012)). The same rationale holds for trade-offs 211 

(e.g. those depending on physiological constraints) and population demography (e.g. 212 

population growth rate mediated by nutrient availability), which we also discuss below. 213 

Finally, indirect effects will also include the influence of temperature on other abiotic factors 214 

that can directly (e.g. oxygen concentration in air/water) or indirectly (e.g. humidity, water 215 

turbidity etc.) affect animal phenotypes, and ultimately shape sexual selection processes.  216 

III. Specific pathways for temperature effects on sexual selection 217 

 (1) Temperature effects on secondary sexual traits and associated preferences 218 

 (a) Behaviour, physiology and life-history traits related to sexual selection 219 

Temperature has been shown to drive changes in many facets of reproductive behaviour that 220 

can be important determinants of sexual selection, including underlying physiological 221 

mechanisms. For example, temperature is a key determinant of metabolism and activity 222 

levels in most species of animals (Gunderson & Leal, 2015; Kearney et al., 2010), which can 223 

directly affect mate searching, the number of male-male and male-female interactions, and 224 

general patterns of male and female spatio-temporal distribution. In the ambush bug 225 

(Phymata americana), sexual dimorphism in colour has been shaped by sexual selection on 226 

thermoregulatory performance, whereby dark males have higher mate-searching success at 227 

cool ambient temperatures (Punzalan, Rodd & Rowe, 2008). Similarly, temperature can 228 

modulate male-male competition intensity (e.g. aggressiveness (Kvarnemo, 1998)), courtship 229 

rates, mating latency and duration (Jiao et al., 2009), female choice (Conrad, Stocker & 230 

Ayasse, 2017), re-mating rates (Katsuki & Miyatake, 2009), and female fecundity (Nunney & 231 

Cheung, 1997). There are also studies showing that temperature affects sexual signals and/or 232 

sexual signalling behaviour or perception (Conrad et al., 2017; Sentis et al., 2015; Llusia et 233 

al., 2013; Linn, Campbell & Roelofs, 1988; Groot & Zizzari, 2019), with potential impacts 234 

on mate choice and intrasexual competition. Actually, any effect of temperature on the 235 

phenotypic mean and variance of sexually selected characters is likely to influence selection 236 

on a secondary sexual trait (i.e. the covariance between trait value and relative fitness). Given 237 

that the expression of many traits (including secondary sexual traits) can be dependent on 238 
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temperature (House et al., 2013; Reinhardt, Dobler & Abbott, 2015; West & Packer, 2002), 239 

its significance to understand mate preferences and sexual selection at large is evident. 240 

Post-copulatory processes have also been reported to be under the influence of 241 

temperature. It is well known that the sperm phenotype is in many species contingent on 242 

temperature (Reinhardt et al., 2015; Sales et al., 2018; Walsh et al., 2019). Most notably, 243 

sperm competition ability (i.e. in terms of both sperm offence and defence) through the 244 

amount and quality of sperm transferred (Katsuki & Miyatake, 2009; Vasudeva, Deeming & 245 

Eady, 2014; Lieshout, Tomkins & Simmons, 2013). For example, a recent study in the 246 

Mediterranean field cricket (Grillus bimaculatus) showed that 4ºC temperature differences 247 

(within the natural range of variation of the study population in the wild) significantly 248 

affected sperm production and quality. Males had higher sperm production and quality when 249 

they were exposed to hotter temperatures throughout development, but the opposite was true 250 

if they were exposed to hotter temperatures as adults (Gasparini et al., 2017). In addition, 251 

temperature also impacted on offspring fitness via effects on male sperm (i.e. non-adaptive 252 

paternal effects). These results show that temperature effects on sperm traits and overall 253 

competitiveness may depend on the temporal scale of temperature fluctuations with respect to 254 

ontogeny, and highlight the potential for transgenerational effects. Sperm competitiveness 255 

determines siring success, which together with mating success is the main component of male 256 

reproductive success in polyandrous species. Critically, then, the action of temperature on 257 

sperm competitiveness has the potential to directly affect the opportunity for sexual selection, 258 

either through its effects on male variance in post-copulatory reproductive success or on the 259 

covariance between the pre-mating and post-mating episodes of sexual selection (Evans & 260 

Garcia-Gonzalez, 2016).  261 

Finally, temperature can exert significant changes in life-history traits across different 262 

species and populations (Isaac, 2009; Jensen et al., 2008), some of which are sex-specific 263 

(Rogell et al., 2014). Many of these changes (e.g. in lifespan, the onset of reproduction, 264 

survival, age or size at maturity) have great potential to affect important parameters 265 

modulating intra- or inter-sexual selection, such as the OSR, the potential reproductive rate or 266 

the environmental potential for polygyny/polyandry.   267 

 (b) Body size and sexual size dimorphism 268 

Body size, a primary determinant of both inter- and intra-sexual competition, is under the 269 

influence of environmental temperature through both plastic and evolutionary responses 270 

(Lindmark et al., 2018; Fox, Stillwell & Moya-Larano, 2007). For example, temperature has 271 
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been shown to reduce sexual dimorphism in some insects by modifying emergence times and 272 

developmental rates (De Block & Stoks, 2003; Ketola et al., 2012). This is predicted to 273 

decrease the capacity of males to monopolize females, and with it the opportunity for 274 

selection (Vanpa et al., 2008; Fox et al., 2007). In the leaf beetle Stator limbatus temperature 275 

can affect scramble competition, whereby smaller males are more successful at finding mates 276 

than large males when at cool temperatures (Moya-Laraño, El-Sayyid & Fox, 2007). 277 

Similarly, temperature is one of the main environmental factors underlying phenotypic 278 

plasticity in body size, and the sexes commonly show marked difference in their degree of 279 

phenotypic plasticity to body size (Stillwell et al., 2010). For example, males of the seed 280 

beetle (Callosobruchus maculatus) exhibit greater plasticity in body size than females in 281 

response to temperature manipulations (Stillwell & Fox, 2007), and existing evidence shows 282 

that, in insects, male body size varies more with latitude and altitude than female body size 283 

(Blackenhorn et al., 2006). Some of these differences in SSD may be explained by the 284 

“condition-dependence hypothesis”, which predicts that traits under stronger directional 285 

selection will be more condition-dependent, and hence more responsive to environmental 286 

cues (Bonduriansky, 2007). It would be interesting to explore whether the larger sex is 287 

generally more affected by stressful temperature changes than the smaller sex, and how this 288 

may affect sexual selection. 289 

(c) Mate choice preferences  290 

We have long known that temperature can affect mate choice preferences in both vertebrates 291 

and invertebrates. For example, classic studies by Walker (Walker, 1957), in crickets, and by 292 

Gerhardt (Gerhardt, 1978), in anurans, described thermal coupling; whereby female 293 

preferences shift to track temperature-dependent changes in male sexual signals. Thermal 294 

coupling may reflect adaptive phenotypic plasticity or non-functional physiological responses 295 

to temperature (Greenfield & Medlock, 2007; Ritchie et al., 2001), but at least in some cases 296 

it will act to buffer mate choice against disruption by temperature fluctuations (Beckers & 297 

Schul, 2008). In other cases, however, temperature effects on preferences can disrupt mate 298 

choice processes. For example, in the American green tree frog (Hyla cinerea) temperature 299 

effects on female preferences are not matched by changes in male signals, potentially 300 

hampering species recognition at low temperatures (Gerhardt & Mudry, 1980). Similarly, in 301 

the pipefish Sygnathus abaster warm temperatures seem to affect female preferences towards 302 

males (Silva et al., 2007). More generally, temperature may also indirectly affect female 303 

preferences via its effects on body condition. In some species, females in good condition 304 
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have been shown to exert stronger preferences and/or invest more in mate assessment 305 

(Hebets, Wesson & Shamble, 2008; Cotton, Small & Pomiankowski, 2006).  306 

(2) Temperature effects on mating systems 307 

The strength and form of sexual selection ultimately depend on the mating system, and hence 308 

on the “ecology of sexual selection” (Emlen & Oring, 1977; Schuster & Wade, 2003). First, 309 

there are multiple ways in which temperature can affect the environmental potential for 310 

polygyny/polyandry; i.e. the potential for the environment  (e.g. clumped resources) to allow 311 

for the monopolization of multiple males (Emlen & Oring, 1977). For example, by 312 

prolonging/shortening the reproductive season (Sheriff et al., 2011), temperature shifts may 313 

make female reproduction more or less synchronous and/or clump/spread out the breeding 314 

population in time. This may increase/decrease male opportunities to monopolize females 315 

and, ultimately, the environmental potential for polygyny/polyandry (Olsson et al., 2011). In 316 

the Barn swallow (Hirundo rustica), warming temperatures have been reported to increase 317 

protandry, and this has been associated with an increase in the size of a secondary sexual 318 

character, which is suggestive of stronger sexual selection (Moller, 2004). Female 319 

reproductive diapause (i.e. period of reproductive arrestment in response to adverse 320 

environmental conditions, such as low temperatures in winter) is also at least partially 321 

controlled by temperature in many insect species. In contrast, males usually either lack 322 

reproductive diapause or is less intense than in females (Pener, 1992). As such, temperature 323 

effects on the onset/outset of female reproductive diapause can, in theory, drastically affect 324 

the synchrony of female receptivity within the reproductive season, with potentially 325 

important consequences for levels of polygyny and polygamy.  326 

Second, several studies have shown that temperature can drastically modulate the 327 

potential reproductive rate (PRR) of males and females, and do so in a sex-specific manner 328 

(Kvarnemo, 1994). For example, environmental temperature has frequently been found to 329 

affect the availability of nutritional resources during reproduction (Vatka, Orell & Rytkönen, 330 

2011), which is generally expected to affect female PRR more than male PRR because egg 331 

production is particularly dependent on food intake in many animals (Warner, Lovern & 332 

Shine, 2007). Much in the same way, temperature shifts are likely to affect oviposition site 333 

availability in many species (e.g. (Fogleman, 1979; Berger, Walters & Gotthard, 2008)), 334 

which could also differentially affect the PRR of females. On the other hand, high 335 

temperature may differentially increase male (vs. female) PRR if male reproductive rates are 336 

particularly dependent on activity levels, as is frequently the case in species with resource-337 
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defence polygynous systems. Temperature also drastically influences incubation time, 338 

particularly in species where egg development depends almost exclusively on environmental 339 

temperature (most ectotherms), thus greatly determining the PRR of the sex in charge of 340 

incubation and brood care (Kokko, Klug & Jennions, 2012; Kokko & Jennions, 2008). This is 341 

the case in sand gobies (Pomatoschistus minutus), where males build a nest and care for the 342 

eggs until hatching. Increased temperature accelerates egg developmental rates and ultimately 343 

male PRR, as they can be alleviated from egg guarding sooner (Kvarnemo, 1994).  344 

Sex-specific temperature effects on polygyny/polyandry levels and PRR are 345 

ultimately expected to indirectly modulate the operational sex ratio (OSR) by modulating 346 

how and when males and females enter and exit the mating pool, and hence the strength of 347 

sexual selection (Schuster & Wade, 2003; Kvarnemo, 1996; Kokko et al., 2012). 348 

Temperature can also directly affect the OSR in species with temperature-dependent sex-349 

determination (Cunningham, While & Wapstra, 2017; Grayson et al., 2014), or if the sexes 350 

have different reproductive operational temperature ranges. The latter will be particularly 351 

likely in species with strong sexual size dimorphism. For example, in species where females 352 

are larger than males, females may exhibit a greater acclimation capacity in response to 353 

temperature fluctuations and extremes (Rohr et al., 2018) and, hence, be reproductively 354 

active over a wider range of temperatures (Stone, 1994). The implication is that the OSR will 355 

be progressively more female-biased as temperatures approach the thresholds of the male 356 

reproductive operational thermal range.  357 

Finally, population density can be a crucial determinant of mating systems, and hence 358 

sexual selection processes, in many taxa. Density can strongly affect mating skew or mate 359 

encounter rates, for example, with cascading effects on mate choice, mate guarding, re-360 

mating rates or female resistance (Kokko & Rankin, 2006). In turn, population density (and 361 

population dynamics at large) is frequently bound to be under the strong influence of 362 

temperature (Gamelon et al., 2017). Through its effects on population density, temperature 363 

could thus also be an important determinant of sexual selection (Fig. 1).   364 

(3) Temperature effects on sex-specific costs/benefits of reproduction 365 

Changes in environmental temperatures can alter the costs/benefits of reproduction in a sex-366 

specific way (e.g. costs of investment in offspring, sex-specific mortality linked to 367 

reproduction, costs of parental care, offspring survival etc.), impacting sex-specific selection 368 

pressures and the opportunity for sexual selection. For example, Grazer and Martin (Grazer & 369 

Martin, 2012) showed that the survival costs of reproduction for females of the flour beetle 370 
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Tribolium castaneum decrease at higher temperatures. Studies looking at how temperature 371 

may affect sex-specific reproductive costs and benefits are still very scarce and focus on the 372 

short-term plastic consequences of thermal stress, yet provide good preliminary evidence that 373 

such effects are not only possible, but may be theoretically expected (Martinossi-Allibert et 374 

al., 2017). More generally, the relative importance of intra- and inter-sexual selection can 375 

also vary with environmental conditions (Miller & Svensson, 2014). For example, in collared 376 

flycatchers (Ficedula albicollis) mate choice has a heritable component, and selection on 377 

mate choice varies annually according to climatic conditions: females choosing highly 378 

ornamented males have increased reproductive success in dry breeding seasons and vice 379 

versa in wet breeding seasons (Robinson et al., 2012). To our knowledge, however, there is 380 

no evidence thus far of similar effects mediated by temperature. 381 

(4) Temperature effects on constraints and trade-offs 382 

Temperature may also modulate sexual selection through its effects on physiological trade-383 

offs. For example, environmental temperatures can affect pathogen abundance and virulence, 384 

as well as host susceptibility and immune response (Elliot, Blanford & Thomas, 2002). 385 

Several studies have also shown that immunity is related to body condition, and that it trades-386 

off with reproductive effort and primary and secondary sexual traits (Simmons & Roberts, 387 

2005; Mills et al., 2010; Cotter et al., 2010). Therefore, studying the interplay between 388 

thermal ecology and immune ecology, and their combined effects on sexual selection, may 389 

inform on other avenues thorough which temperature can affect sexual selection. Similarly, 390 

temperature can shape the costs and benefits of secondary sexual traits, for example of visual 391 

signals that may also play a role in thermoregulation. This seems to be the case of the 392 

sexually selected male wing coloration in the dragonfly Pachydiplax longipennis. In this 393 

species, greater wing coloration improves flight performance under cool conditions (leading 394 

to greater territory acquisition), but dramatically reduces it under warm conditions, which 395 

seems to constraint the evolution of sexual coloration in the hottest portions of the species’ 396 

range  (Moore et al., 2019). As stated above, some studies have also established links 397 

between temperature variation and changes in the levels of genetic variance (measured as 398 

additive genetic variances, heritability, or evolvability) and in morphological or life-history 399 

traits (Bubliy & Loeschcke, 2002; Husby et al., 2011; Martinez-Padilla et al., 2017; Sgro & 400 

Hoffmann, 2002). These results show that the evolutionary potential of populations to adapt 401 

to changing environments is constrained by genetic architectures that can be temperature-402 

dependent. For instance, in Martinez-Padilla et al.'s (Martinez-Padilla et al., 2017) study 403 
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using data from 20 European wild bird populations belonging to 12 species, the evolutionary 404 

potential of traits relating to body size and body mass (relevant for sexual selection in 405 

general) were associated with environmental favourability, which was greatly influenced by 406 

temperature.  407 

(5) Temperature effects on population dynamics/demographics 408 

Temperature can affect sexual selection through its impact on population 409 

demography/dynamics (Gavrilets, 2000; Gay et al., 2010). Temperature variation can 410 

underlie changes in population growth (e.g. through the availability of nutrients; (Clark et al., 411 

2003)), pose limits to population size (e.g. modify population carrying capacity; (Newman, 412 

2003) ), determine the spatial-temporal distribution of populations and individuals (e.g. 413 

driving population subdivision and consequently altering population sizes and the 414 

probabilities of encountering the opposite sex; (Yasui & Garcia-Gonzalez, 2016)), and affect 415 

population viscosity (i.e. limit dispersal), mating patch size and sexual networks (Pizzari, 416 

Biernaskie & Carazo, 2015; McDonald et al., 2013; McDonald & Pizzari, 2018; McDonald et 417 

al., 2019). As such, temperature may be an important modulator of sexual selection at a large 418 

taxonomic scale. Importantly, while some of the temperature effects on population dynamics 419 

are predicted to be temperature-specific, via the scaling of bottom-up and top-down 420 

integrated effects (Brown et al., 2004; Gillooly, 2001; Abram et al., 2017), others will simply 421 

be due to correlated effects via other abiotic factors. 422 

 (6) Abiotic factors correlated with temperature  423 

Some of the effects described above may be at least partly driven in nature by abiotic factors 424 

that are correlated with temperature, and not necessarily by temperature per se, such as 425 

temperature effects via the availability of nutrients (Clark et al., 2003). For example, 426 

increases in environmental temperature may facilitate eutrophication and consequently lead 427 

to elevated water turbidity (Paerl & Paul, 2012), with obvious consequences for the action of 428 

sexual selection in aquatic animals in which mate choice is based on visual signals. Human 429 

activities leading to higher turbidity have been identified as important threats to the biological 430 

diversity of one of the most notable examples of explosive evolution known, the highly 431 

diverse species flocks of cichlid fish from the Great Lakes of Africa. In these fish, water 432 

turbidity is known to interfere with mate choice and to relax sexual selection (Maan & 433 

Seehausen, 2011; Seehausen, Alphen & Witte, 1997), and similar findings have been 434 

reported in other systems (Engstrom & Candolin, 2007; Candolin, Tukiainen & Bertell, 435 

2016). In contrast, in the broad-nosed pipefish (Syngnathus typhle, a species with male 436 
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pregnancy), turbidity strengthens sexual selection (Sundin et al., 2017). Humidity is an 437 

abiotic factor that is also closely linked to temperature, and there is some evidence that it 438 

could also affect sexual selection. In the common lizard (Zootoca vivipara), for example, 439 

post-natal humidity differentially affects female vs. male growth, thereby influencing adult 440 

SSD and, potentially, sexual selection (Le Galliard et al., 2006). Nonetheless, due to the 441 

widespread thermodynamic constraints on enzymatic activity, the resulting physiological, 442 

morphological, behavioural and life-history traits of organisms are inherently temperature-443 

dependent (Clarke, 2004; Brown et al., 2004). Hence, temperature is likely to be generally 444 

more central for sexual selection processes than other abiotic factors.  445 

III. Temperature and sexual conflict 446 

A particularly direct link between sexual selection and population viability emerges due to 447 

the consequences of sexual conflict. Strong sexual selection frequently leads to sexual 448 

conflict, where male and female evolutionary interests do not coincide. While classic theory 449 

of sexual selection often assumed that male/female coevolution is largely mutualistic, an 450 

increasing appreciation of sexual conflict has led to the realisation that genes that confer a 451 

reproductive advantage to males may have the opposite effect in females, and vice versa. 452 

According to the genetic underpinnings of the traits under sexual selection, sexual conflict 453 

can take two qualitatively distinct forms: inter-locus or intra-locus sexual conflict. Inter-locus 454 

sexual conflict (IRSC) occurs in relation to traits governed by genes that are at different loci 455 

in males and females, and which expression benefits one sex at the cost of the other. IRSC 456 

frequently gives rise to an antagonistic process of intersexual coevolution (Arnqvist & Rowe, 457 

2005; Arnqvist & Rowe, 2013), particularly in polygamous species where males and females 458 

often show different optima for mating frequencies and reproductive schedules (Chapman et 459 

al., 1995; Rice, 1996; Holland & Rice, 1999; Arnqvist & Rowe, 2005). Sexually antagonistic 460 

coevolution has received much attention in recent years (Rice, 1996; Holland & Rice, 1999; 461 

Wigby & Chapman, 2004), and is currently recognized as one of the key evolutionary 462 

processes shaping male and female adaptations and life-history traits (Bonduriansky et al., 463 

2008), but also population viability and diversification. Intra-locus sexual conflict (IASC) 464 

arises when there is sex-specific selection on a trait expressed in both sexes and the shared 465 

genetic architecture underlying the expression of the trait impedes optimal expression levels 466 

in each sex (Arnqvist & Rowe 1995). The theoretical basis of IASC was developed long ago 467 

(Lande 1980; Rice 1984) and, although its effects have proven to be more subtle than IRSC, 468 

it is receiving increasing empirical attention (Bonduriansky & Chenoweth 2009). 469 
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Sexual conflict can, via IRSC and IASC, act both as an engine of biodiversity and to 470 

decrease population viability. On the one hand, sexually antagonistic coevolution can 471 

function as an engine of biodiversity, both by leading to and/or reinforcing reproductive 472 

isolation and speciation (Parker & Partridge, 1998; Rice, 1998) and by promoting increased 473 

intraspecific genetic variation without speciation (Gavrilets, 2014). On the other hand, 474 

sexually antagonistic co-evolution can lead to adaptations in one sex (most frequently males) 475 

that harm members of the other sex (most frequently females (Pitnick & Garcia-Gonzalez, 476 

2002)). As a matter of fact, male adaptations that cause harm to females, and female 477 

adaptations to resist such harm, are indeed paradigmatic examples of IRSC (Arnqvist & 478 

Rowe, 2005). Male harm to females generally leads to a decrease in population productivity 479 

(i.e. by depressing net female productivity (Berger et al., 2016; Arnqvist & Tuda, 2010; 480 

Holland & Rice, 1999) that can facilitate population extinction (Le Galliard et al., 2005). 481 

Furthermore sexual conflict can also decrease male and female fitness by displacing the sexes 482 

from their respective evolutionary optima (i.e. normally referred to as “gender load” but 483 

hereafter referred to as “sex load” (Rice & Chippindale, 2002)), normally via IASC. 484 

Ultimately, whether sexual conflict fosters biodiversity or reduces population productivity 485 

and facilitates extinction will depend, among other things, on population size (Gay et al., 486 

2010), the potential for sex load (Berger et al., 2016), and the degree and form of associated 487 

male harm adaptations and female counter-adaptations (Arnqvist & Rowe, 2005). In addition, 488 

sexual conflict can feedback to affect the opportunity, form and/or intensity of sexual 489 

selection. For example, avoiding male harassment (a common source of harm to females) in 490 

crickets leads to a larger opportunity for (and stronger) sexual selection (Hall et al., 2008). To 491 

summarize, there is now ample theoretical and empirical evidence that sexual conflict is a 492 

fundamental engine of biodiversity, a driving force of male and female adaptations and life-493 

histories, and a keystone determinant of population viability and extinction risk.  494 

Despite the impressive advances in the field of sexual conflict, we are still far from 495 

being able to explain the overwhelming diversity of related adaptations or their net impact on 496 

population viability. The apparently arbitrary nature of the coevolutionary trajectories that 497 

often result from strong sexual conflict has been sometimes interpreted to mean that ecology 498 

occupies a rear seat in such processes, or is altogether irrelevant (Arbuthnott et al., 2014; 499 

Coyne & Orr, 2004). This, however, seems highly unlikely given that sexual conflict 500 

critically depends on the intensity of male-male competition, and sexual selection is 501 

profoundly affected by ecological factors. In fact, there is now good evidence to show that 502 

the opportunity for sexual conflict does depend on the ecological context (Perry et al., 2017; 503 
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Arbuthnott et al., 2014; Gomez-Llano, Bensch & Svensson, 2018; De Lisle et al., 2018; 504 

Perry & Rowe, 2018), including maladaptive environmental changes (Connallon & Clark, 505 

2014) and environmental fluctuation per se (Connallon & Hall, 2018) 506 

Temperature can in principle modulate both adaptations for sexual conflict (e.g. by 507 

affecting the expression of adaptations leading to male harm via behavioural plasticity) and 508 

sexual conflict itself, via its effects on the degree to which male and female interests overlap. 509 

A few studies have shown that stressful temperature environments (and stressful 510 

environments at large) can relax sexual conflict, because in a maladaptive environment male 511 

and female interests may tend to overlap more due to strong concordant selection (Long et 512 

al., 2012a; Berger et al., 2014; Connallon & Hall, 2018) (but see (Delcourt, Blows & Rundle, 513 

2009; Punzalan et al., 2014; Connallon & Hall, 2016; Holman & Jacomb, 2017; Martinossi-514 

Allibert et al., 2018a)). However, there is scarcely any information on whether non-extreme 515 

temperature fluctuations at an ecologically relevant temporal (i.e. circadian, seasonal, or 516 

inter-seasonal) and/or spatial (i.e. micro- and macro geographic) scale modulate sexual 517 

conflict.  518 

(1) Temperature effects on inter-locus sexual conflict 519 

Temperature can be expected to modulate IRSC in two ways. First, by constraining or 520 

conditioning the expression of male/female traits evolved via IRSC. For example, García-Roa 521 

et al. (García-Roa et al., 2019) manipulated sexual conflict levels in Drosophila 522 

melanogaster and showed that resulting male harm to females decreased sharply in both 523 

colder (21ºC) and hotter (29ºC) social environments than at the average temperature to which 524 

the population was adapted (25ºC). In this species, therefore, temperature shifts are likely 525 

modulators of male harm mechanisms (e.g. production of sperm and/or toxic components in 526 

the ejaculate; (Chapman et al., 1995; Perry, Sirot & Wigby, 2013), which is perhaps to be 527 

expected whenever male harm adaptations cannot be optimally expressed across the whole 528 

range of temperatures at which reproduction ensues. D. melanogaster exhibits both pre-529 

copulatory (i.e. sexual harassment) and post-copulatory (i.e. toxic ejaculates) mechanisms of 530 

male harm and, interestingly, preliminary evidence suggests these are affected differently by 531 

warm vs. cold temperatures (García-Roa et al., 2019). Investment in pre- vs. post-copulatory 532 

male-male competition traits/mechanisms can be traded-off via resource-allocation (e.g. 533 

(Simmons & Emlen, 2006), and male ejaculates have been shown to manipulate female 534 

mating frequency and affect the balance between pre-copulatory and post-copulatory sexual 535 

selection in D. melanogaster (Morimoto et al., 2019). Hence, such temperature effects are 536 
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likely to modulate both the total opportunity for sexual selection and the integration between 537 

pre- and post-mating processes (Evans & Garcia-Gonzalez, 2016). Recent work on seed 538 

beetles (Callosobruchus maculatus) has also reported evidence that a stressful increase in 539 

temperature can reduce IRSC in both polygamous and monogamous populations though, 540 

interestingly, not so in populations with male-limited evolution (Martinossi-Allibert et al., 541 

2019b).  542 

Second, variation in temperature, such as consistent spatial inter-population 543 

differences or long-term intra-population fluctuations, can vary the degree to which male and 544 

female reproductive interests diverge. This type of effect may modulate the intensity and/or 545 

direction of sexually antagonistic coevolution. For example, Perry et al. showed that different 546 

ecological parameters, among them temperature, contributed to explain inter-population 547 

differences in a sexually antagonistic arms-race in natural populations of water striders 548 

(Gerris incognitus (Perry et al., 2017)), likely due to inter-population differences in 549 

ecological forces acting on mating system variation and ensuing sexual conflict (Perry & 550 

Rowe, 2018).  551 

(2) Temperature effects on intra-locus sexual conflict 552 

As in the case of IRSC, spatio-temporal variation in temperature can modulate IASC by 553 

changing the degree to which male and female interests overlap. IASC is generally expected 554 

to decrease in novel environments, for example due to concordant natural selection of 555 

previously neutral alleles in both sexes (Long et al., 2012b). In accordance with theory, 556 

Berger and colleagues showed that sex load via intra-locus sexual conflict is reduced in a 557 

natural population of the seed beetles (Callosobruchus maculatus) subject to a stressful 558 

thermal environment ((Berger et al., 2014); see also (Martinossi-Allibert et al., 2018b)). To 559 

conclude, there is now theoretical and empirical evidence to show that temperature does 560 

indeed have the potential to modulate both IASC and IRSC. Interestingly, data so far seem to 561 

suggest that the negative impact of sexual conflict on population viability, due both to sex 562 

load and female harm, may be ameliorated when populations face temperature changes. We 563 

suggest exploring this idea should be a priority in the near future not only because it will 564 

further our understanding of sexual conflict, but also because, in species with high sexual 565 

conflict, this type of effects can ultimately increase the ability of populations to avoid 566 

extinction in the face of persistent anthropogenic temperature changes (e.g. global warming).  567 
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IV. Temperature, sexual selection and rapid environmental change 568 

From an eco-evolutionary point of view, rapid environmental change results in a mismatch 569 

between an organism’s optimal and current environment, potentially leading to population 570 

decline and extinction. Whether a population is able to withstand such environmental change  571 

and avoid extinction over the long-term will depend essentially on whether it is capable of 572 

adapting quickly enough to track these changes (Hoffmann & Sgro, 2011; Parmesan, 2006; 573 

Kingsolver & Buckley, 2017; Martinez-Padilla et al., 2017). Most studies that try to predict 574 

the consequences of rapid environmental change for natural populations focus on studying 575 

the direct effects of temperature shifts on phenotypic traits that plastically respond to 576 

temperature, and then examine how these changes affect population viability, and the 577 

potential for subsequent evolutionary rescue. Above we have reviewed how these effects can 578 

affect sexual selection through a variety of pathways (Fig. 1). In doing so, the initial impact 579 

of a sustained temperature shift can feedback to influence a wide diversity of phenotypic 580 

traits that are not directly affected by temperature. Furthermore, as mentioned above sexual 581 

selection has great potential to influence the fate of populations/species (Cally et al., 2019), 582 

especially those facing directional environmental changes such as for example those imposed 583 

by global warming (Candolin & Heuschele, 2008). In particular, recent evidence has shown 584 

that strong sexual selection can help buffer against warming temperatures, with experimental 585 

populations facing rising temperatures having higher fecundity and offspring survival when 586 

under a strong sexual selection regime (Parrett & Knell, 2018). This means that any effects of 587 

temperature on sexual selection are likely to feedback and impact a wide range of phenotypic 588 

traits linked with population viability and extinction. In addition, current projections predict 589 

global warming to result not only in an increase in mean and modal temperatures, but also in 590 

temperature fluctuations at any given spatial scale (IPCC, 2014). This makes it all the more 591 

important to understand how such fluctuations may impact sexual selection via both short-592 

term plastic changes and long-term evolutionary responses. 593 

V. Processes involved in effects of temperature on sexual selection 594 

An overarching question to the links we have described so far is what type of responses 595 

(adaptive and non-adaptive) may result from temperature shifts in the environment. Adaptive 596 

population-level responses in the face of environmental change can ensue via both natural 597 

selection (including sexual selection), by exploiting existing genetic variation, and via 598 

phenotypic plasticity, by exploiting the ability of individuals to adjust their phenotype to the 599 

environment and/or by revealing cryptic genetic variation that can later be the target of 600 
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selection, via genetic assimilation (West-Eberhard, 2003; Gilbert, Bosch & Ledon-Rettig, 601 

2015; Snell-Rood et al., 2010). For example, high developmental temperatures have been 602 

shown to reveal cryptic genetic variation in female sperm compartments of the yellow dung 603 

fly (Scathopaga stercoraria), which play a key role in cryptic female choice in this species 604 

(Berger et al., 2011). Phenotypic plasticity (whether adaptive or maladaptive) is likely to be 605 

of particular importance in understanding temperature-mediated effects on sexual selection 606 

for the obvious reason that development is critically affected by environmental temperature 607 

in most species, and particularly so in ectotherms. Accordingly, meta-analyses have 608 

identified strong long-lasting effects of developmental temperature on suites of traits, such as 609 

growth rate, physiology, performance and morphology (Seebacher, White & Franklin, 2014; 610 

Noble et al., 2017b). Behavioural plasticity, including paternal effects, might also be very 611 

important because it is a way in which parents can buffer the developmental temperature of 612 

their offspring, mitigating the consequences of environmental temperature shifts (Du & 613 

Shine, 2015; Huey, Hertz & Sinervo, 2003).  614 

As in any selective process, sexual selection responses to changes in temperature will 615 

depend on the amount of additive genetic variation underlying the trait or traits affected. 616 

Interestingly, temperature fluctuations may actually play an important role in the 617 

maintenance of genetic variation underlying sexually selected traits and mate preferences 618 

through genotype-by (temperature-determined) environment interactions. Evidence for such 619 

role of temperature variation has been found across study systems (Miller & Svensson, 2014; 620 

Jia, Greenfield & Collins, 2000; Narraway et al., 2010; Hunt & Hosken D, 2014), and it has 621 

been shown that plastic responses to novel environments more generally tend to align with 622 

underlying additive genetic variation in traits (Noble, Radersma & Uller, 2019). 623 

Finally, temperature is also likely to impact sexual selection via intergenerational and 624 

transgenerational effects. First, because temperature is frequently a cue for many other 625 

sources of environmental variation (e.g. food availability, onset of reproductive/breeding 626 

period etc.). Second, because temperature affects a host of physiological mechanisms with 627 

consequences that may spill over to subsequent generations via paternal effects or the 628 

transmission of epigenetic marks. Paternal germline epigenetic changes that are 629 

environmentally triggered are increasingly recognised as modulators of sperm function 630 

(Jenkins et al., 2017; Stuppia et al., 2015) but also, remarkably, as sources of variance in the 631 

offspring phenotype (Miller, Brinkworth & Iles, 2010; Wang, Liu & Sun, 2017; Jenkins et 632 

al., 2017; Stuppia et al., 2015; Donkin & Barres, 2018; Evans et al., 2019). In the nematode 633 
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Caenorhabditis elegans, for instance, temperature variation induces multigenerational 634 

inheritance of gene expression through both oocytes and sperm (Klosin et al., 2017). 635 

Demonstrating such long-lasting epigenetic memory of parental temperature experiences, and 636 

at the same time unravelling the underlying mechanisms, is challenging and has been seldom 637 

achieved (Klosin et al., 2017). Nonetheless, there are reasons to suspect that temperature-638 

induced transmission of epigenetic marks affecting sperm and offspring phenotypes may be 639 

common (Evans et al., 2019). In most systems, we ignore whether cross-generational effects 640 

driven by paternal environment are driven by epigenetic mechanisms or mediated by other 641 

factors (e.g. direct or female-moderated paternal effects arising from variation in the non-642 

sperm fraction of the ejaculate (Garcia-Gonzalez & Simmons, 2007; Gasparini et al., 2018)). 643 

However, any intergenerational or transgenerational effect has the capacity to significantly 644 

alter the economics of sexual interactions (Dowling, Williams & Garcia-Gonzalez, 2014; 645 

Zajitschek et al., 2018), leading to unknown but presumably significant effects on sexual 646 

selection. We anticipate that investigations focusing on how temperature-driven maternal and 647 

paternal effects impact sexual selection will yield important insight.  648 

VI. Meta-analysis: experimental evidence that temperature impacts on sexual selection 649 

To test whether available data support the idea that temperature can significantly modulate 650 

sexual selection, we conducted a systematic review and meta-analysis of the existing 651 

literature focusing on studies that experimentally manipulated temperature and measured its 652 

impact on either: 1) mating or reproductive success of males and/or females or 2) its effect on 653 

traits known to be under sexual selection. While excellent observational studies exist, given 654 

that temperature can be correlated with a host of other environmental changes, we avoided 655 

including correlative studies in our meta-analysis. Our focus in this meta-analysis is to 656 

explore temperature effects per se, beyond any effects that temperature may have due to 657 

subjecting individuals/populations to a new environment to which they are maladapted. 658 

Environmental stress can modulate the strength of sexual selection in a variety of ways 659 

(Arbuthnott & Whitlock, 2018), for example increasing sexual selection if the variability in 660 

fitness is inflated when populations are pushed off their fitness peak (Martinossi-Allibert et 661 

al., 2017; Martinossi-Allibert et al., 2018a). As such, drastic temperature changes can 662 

modulate sexual selection not due to specific effects of temperature but by imposing a 663 

stressful environment, much in the same way as a pollutant or a sharp change in another 664 

abiotic factor would. To avoid conflating this type of effects, here we also explicitly avoided 665 
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studies implementing heat/cold shock treatments and also assessed the potential influence of 666 

using extreme temperature treatments (see below).  667 

It is also important to note that there are no clear theoretical expectations regarding 668 

the directionality of temperature effects on sexual selection processes. As laid out above, 669 

increases/decreases in temperature are not necessarily expected to impact sexual selection 670 

parameters in the same direction across different species. Some biological processes will tend 671 

to exhibit monotonic relationships in temperature that are relevant to selection. For example, 672 

given that temperature constrains certain fundamental biochemical properties such enzymic 673 

reactions, it has recently been proposed that mutations will have increasing fitness effects, 674 

and hence lead to stronger selection, with increasing temperatures (Berger et al., 2018). 675 

However, the net relationship between temperature and sexual selection across taxa is likely 676 

to rest largely on the physiology, morphology, behaviour and mating system of each species. 677 

Thus, our main aim was not so much to explore the directionality of the relationship between 678 

temperature and sexual selection, but to test the more general prediction that temperature has 679 

the potential to affect sexual selection in different species, irrespective of direction.   680 

(1) Literature Search and Data Collection 681 

We conducted a systematic review and meta-analysis of the existing literature following the 682 

PRISMA protocol (Liberati et al., 2009) as closely as possible. More specifically, we looked 683 

for studies that experimentally manipulated temperature and measured its impact on either: 1) 684 

mating or reproductive success of males and/or females or 2) its effect on traits known to be 685 

under sexual selection. We only extracted phenotypic trait values when it was clear from the 686 

reported paper, or the raw data, that the trait directly impacted reproductive success. If traits 687 

had a tenuous link with reproductive success they were not included. We conducted a first 688 

literature search on 11/09/18 using the Scopus, PubMed and Web of Science (WoS) 689 

databases with the search terms “sexual selection” AND “selecti* intensity” AND 690 

“temperature” or “sexual selection” AND “selecti* strength” AND “temperature” for animal 691 

taxa. Overall, very few papers were found with these search strings (21 total: Scopus = 5, 692 

PubMed = 11 and WoS = 5). After removing duplicates only 15 papers were relevant and 2 693 

more were added through forward and backward searches of citations and references in the 694 

15 papers. Given the small number of hits, we conducted a second search on 17/09/18 across 695 

the same databases (i.e. Scopus, PubMed and WoS), using a more general search query: 696 

“sexual selection” AND “fitness” AND “temperature” OR “mating success” AND “fitness” 697 

AND “temperature” OR “reproductive success” AND “fitness” AND “temperature”. This 698 
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search string was able to capture a broader set of studies for screening. In total, we found 747 699 

studies (Scopus = 291; PubMed = 98; WoS = 358) and after removing 249 duplicates, we 700 

were left with 498 unique studies for more detailed screening. Based on the title and abstract 701 

we excluded studies that were not on animals (n = 38), had no measure of sexual selection or 702 

traits under sexual selection (n = 354), did not do a temperature manipulation (n = 145), and 703 

where the effects of temperature could not be isolated because they were confounded by 704 

other abiotic or biotic variables (n = 46). We also excluded n = 12 review and theoretical 705 

model papers. Note that many studies met more than one of the above criteria, and after this 706 

search we were left with a total of 61 papers across both searches as being potentially 707 

relevant. We carefully screened these papers to identify articles that met all our above 708 

inclusion criteria, and at this stage we also excluded all papers reporting heat/cold shock 709 

treatments), which left us with a final set of 19 studies.  710 

 We extracted mean fitness or trait value from each temperature treatment along with 711 

the standard deviation and sample size for each group from tables and figures using the R 712 

package metaDigitise to extract from figures (Pick, Nakagawa & Noble, 2018). Experimental 713 

designs were highly variable across studies and there were designs that exhibited some level 714 

of non-independence in replicate measurements within temperature treatments (e.g. 715 

measurements of replicate individuals from isofemale lines). Given that this can affect the 716 

sampling variance of the effect size we used conservative sample sizes (i.e. the number of 717 

independent lines, or number of mating cages) (Noble et al., 2017a). However, when raw 718 

data were available, and could be clearly interpreted, we calculated an intraclass correlation 719 

coefficient for the clusters (e.g. lines) and computed an ‘effective sample size’ for the 720 

treatment and used this for calculating the sampling variance (Noble et al., 2017a). Fitness 721 

was often reported on a proportion scale (e.g. the average proportion of mating’s/offspring 722 

sired). While these are not normally distributed, they were often treated as so in the paper, 723 

and given that we required ratio-scale data for our effect sizes (see below) we assumed that 724 

these were approximately normally distributed in accordance with the study. Nonetheless, we 725 

conducted a sensitivity analysis to determine if effect sizes calculated with proportion data 726 

were different than non-proportion data and included this as a covariate to assess their impact 727 

on inferences. This had little impact on our major conclusions and so we assumed proportion 728 

data was similar to effect sizes derived from other measurement types (See Supplementary 729 

Materials Section 6.2). A few studies conducted experimental manipulations under 730 

fluctuating conditions, but for comparison across studies we focused on constant temperature 731 

treatments. In addition, several studies used more than two temperature treatments, in which 732 
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case we extracted only the extreme temperatures provided within the range of minimum-733 

maximum mean monthly temperatures in spring-summer. We did this to avoid introducing a 734 

form of non-independence in our data through the use of shared-temperature treatments when 735 

calculating effect sizes (Noble et al., 2017a). We acknowledge that some studies included 736 

were on populations that were part of experimental evolution experiments reared in the lab at 737 

specific constant temperatures. It is not entirely clear the impact this may have on phenotypic 738 

variance if the temperature manipulation was conducted using conditions population were 739 

reared at (see Supplementary Materials section 6.2 for a more thorough discussion of this 740 

problem). However, we dealt with this issue to some extent by analysing magnitudes of 741 

variance difference (see below). Finally, we were conservative and only used data from 742 

treatments where there was potential for sexual selection to occur (e.g. multiple males and / 743 

or females competing) and excluded data from treatments of single pair mating experiments. 744 

(2) Effect size statistics– Comparing variance in fitness 745 

We compared how temperature impacted both the mean and variance across experimental 746 

groups using the log response ratio (lnRR), the log variance ratio (lnVR) and the log 747 

coefficient of variation ratio (lnCVR) (for effect size equations see (Nakagawa et al., 2015). 748 

We were most interested in how variance in reproductive success, or traits known to be 749 

directly related to reproductive success, change as a function of temperature as this directly 750 

tests temperature effects on sexual selection. Hence, we focus mainly on lnVR and lnCVR in 751 

our meta-analysis, but we report the results from lnRR in the Supplementary Materials. We 752 

used lnVR as a direct estimate of the variance. However, given that lnVR does not account 753 

for mean-variance relationships that existed in our data (See Supplementary Materials), we 754 

used lnCVR to estimate how variance in reproductive success change independent of changes 755 

in average fitness / trait between temperature treatments (Nakagawa et al., 2015). In all cases, 756 

when using directional effect sizes (i.e. not absolute magnitude) positive effect sizes 757 

indicated higher temperature treatments had a larger variance compared to lower temperature 758 

treatments, whereas negative effect sizes indicated the opposite.  759 

(3) Moderator Variables 760 

We collected a number of variables we, a priori, predicted would moderate the impact of 761 

temperature on sexual selection within and across studies. These included: 1) the temperature 762 

difference between experimental treatments (continuous variable) – larger temperature 763 

differences between treatments are likely to lead to greater effect sizes; 2) the sex of the 764 

sample – we predict stronger sexual selection and effects of temperature in males compared 765 
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to females (Janicke et al., 2016); 3) life-history stage at which the temperature manipulation 766 

took place (i.e. “lifetime”, “juvenile/early”, “adults”) – given that temperature can impact 767 

development that subsequently affects reproductive traits and success; and 4) whether the 768 

trait in question was a ‘direct’ or ‘indirect’ proxy for sexual selection, where ‘direct’ 769 

estimates were those measuring some aspect of mating or reproductive success and ‘indirect’ 770 

were those estimated with traits that were linked to mating or reproductive success. Finally, 771 

in some cases, “hot” or “cold” temperature treatments were necessarily outside of the natural 772 

range (see above), so we also classified all effects sizes depending on whether the 773 

temperature treatment was “natural” or “stressful”. Briefly, if experimental individuals came 774 

from a natural population, treatments were categorized as “natural” vs. “stressful” depending 775 

on whether they were within the aforementioned max-min temperature range for that 776 

population. If experimental individuals came from populations adapted to the lab (i.e. kept 777 

for more than 100 generations under a constant temperature regime), we considered 778 

temperature treatments > 4ºC away from their normal rearing temperature as stressful. In two 779 

cases, experimental individuals came from long-term lab populations reared at a given 780 

temperature that were then subject to a short-term (< 20 generations; (Plesnar-Bielak et al., 781 

2012a; Plesnar-Bielak et al., 2018)) experimental evolution study at a different temperature; 782 

in these two cases we considered the long-term rearing temperature as the “ancestral” 783 

temperature.  784 

(4) Meta-analysis 785 

We used multi-level meta-analytic (MLMA) and multi-level meta-regression models 786 

(MLMR) in the R package metafor (Viechtbauer, 2010) to test temperature effects on sexual 787 

selection and to explore drivers of effect size variation (Nakagawa & Santos, 2012; Hadfield 788 

& Nakagawa, 2010). In all models we included a random effect of study and species and also 789 

included an observation-level random effect to estimate residual variance, given that metafor  790 

does not estimate one by default. While we had a diversity of species in our dataset, these 791 

were taxonomically biased towards insects and we had difficulty resolving the phylogenetic 792 

position of most of the taxa in our dataset (tested with TimeTree.org – only 5 / 15 species 793 

were identified) – we therefore were limited in our ability to control for phylogeny in our 794 

analyses (Noble et al., 2017a; Chamberlain et al., 2012). Instead, we used a phylogeny that 795 

was based only on topological relationships between taxa. We used Grafen’s method (Grafen, 796 

1989) to create phylogenetic correlation matrices and included these matrices in our models 797 

as a sensitivity analysis. Including phylogenetic correlation matrices or not did not impact our 798 
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results (See Supplementary Materials 6.2) and so we just controlled for species in our models 799 

by including a random effect of species. We also assessed publication bias by looking at 800 

funnel plots and found little evidence for bias that may impact our results (See Fig. S1 – 801 

Section 5, Supplementary Materials). 802 

In addition to estimating the overall directional mean effect across studies from our 803 

MLMA models, we estimated measures of effect size heterogeneity using I2 (Higgins & 804 

Thompson, 2002; Nakagawa & Santos, 2012). We estimated the between study heterogeneity 805 

(I2stdy – proportion of variation in effects from shared studies), species heterogeneity (I2sp – 806 

proportion of variation in effects from shared species) and total sampling heterogeneity (I2err) 807 

which is the proportion of variation in effects resulting from sampling variance. I2err describes 808 

just how much variation in effects can simply be explained by changes in samples sizes (i.e. 809 

related to sampling variance) across studies as opposed to real biological variation. 810 

Directional predictions regarding temperatures role on sexual selection processes depends on 811 

many factors (as discussed above) which make clear directional predictions on how variance 812 

is expected to change challenging. As such, we estimated the overall magnitude of variance 813 

difference across temperature treatments. To avoid bias in these estimates, we modelled the 814 

directional effect sizes assuming a normal distribution and then subsequently transformed this 815 

mean estimate using the folded normal distribution, to get the mean absolute magnitude 816 

(sensu (Morrissey, 2016)). To estimate uncertainty around this estimate, we used a Bayesian 817 

approach with MCMCglmm (Hadfield, 2010), and applied the entire posterior distribution of 818 

mean estimates to the folded normal.  819 

 We tested whether our hypothesized moderators explained heterogeneity in effects 820 

using our MLMR models. Given our limited sample size (Males: n = 31 effects from k = 14 821 

studies; Females: n = 18 effects from 9 studies), we limited the number of moderators fit to 822 

each model to two, and modelled the sexes separately as subset analyses. We ended up not 823 

modelling developmental stage given that most of the studies manipulated temperature over 824 

the lifetime of the animals. A full presentation on the results and models run can be found in 825 

the Supplementary Materials Sections 2, 3 and 6. In all cases we present 95% 826 

credible/confidence intervals around our mean effect sizes. Intervals not overlapping each 827 

other and zero are considered significant. 828 

(5) Meta-analysis results and discussion 829 

Experimental studies assessing the effects of temperature on sexual selection are currently 830 

biased towards insects (16/19 studies), with only one on arachnids and two on fish. Between 831 
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study heterogeneity was moderate to high for males (I2stdy: lnVR = 0.77, lnCVR = 0.34) and 832 

small to non-existent for females (I2stdy: lnVR = 0.13, lnCVR = 0). However, differences 833 

between males and females likely reflect the different number of effects reported for each 834 

sex. Nonetheless, there was still a moderate amount of heterogeneity beyond simple sampling 835 

variance (I2err - Males: lnVR = 0.16, lnCVR = 0.31; females: lnVR = 0.33, lnCVR = 0.31).  836 

The magnitude of effects (i.e. non-directional effect of temperature on variance) was 837 

moderate, suggesting that temperature does indeed influence direct and indirect measures of 838 

sexual selection (Fig. 2). In contrast, the overall directional mean effect on variance in all 839 

cases did not differ from zero (although there does seem to be a trend whereby higher 840 

temperatures are associated with increased variance). Therefore, there was no clear 841 

directional impact of temperature on sexual selection (Fig. 2). At an average temperature 842 

difference between treatments of 7.5 degrees Celsius, male variance decreased at the higher 843 

temperature relative to the lower temperature if the temperature manipulation was stressful or 844 

if it was a direct measure of reproductive fitness (Fig. 2A – lnVR). However, this effect was 845 

driven by changes in the mean phenotype and when controlling for the mean there was no 846 

significant change in variance resulting from stressed or natural conditions (Fig. 2B). In 847 

contrast, when controlling for the mean, traits indirectly associated with reproductive success 848 

showed an increased variance relative to lower temperatures (Fig. 2B). Results from females 849 

generally mirrored results from males, except it was not possible to robustly compare direct 850 

and indirect fitness measures given that indirect measures came from one study. An 851 

interesting difference with males is that, accounting for changes in the mean, stressful 852 

temperatures seemed to explain the observed increase in the variance of reproductive success 853 

in females (Fig. 2D). This may indicate that temperature effects on the variance of female 854 

reproductive success, and hence potentially sexual selection, are largely mediated by 855 

environmental stress. A recent model predicts exactly this outcome, due to the fact that 856 

fecundity selection on females is relatively “hard”, so that an increase in female variability in 857 

fitness is expected with environmental stress (Martinossi-Allibert et al., 2019a). In contrast, 858 

selection on males is relatively “soft” because they compete against other “maladapted” 859 

males and their fitness is mainly constrained by limited access to females and overall female 860 

productivity (Martinossi-Allibert et al., 2019a). In accordance with this idea, we found that 861 

temperature effects on males did not seem to be driven by stressful temperature treatments. 862 

Our meta-analysis offers suggestive evidence in support of the idea that temperature 863 

may be an important modulator of sexual selection. As evidenced by our systematic search, 864 
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available data are scant and come mostly from studies that did not aim to measure the 865 

relationship between temperature and sexual selection. We did find a few other observational 866 

studies reporting correlations between temperature and sexual selection in wild populations 867 

(the most relevant ones are discussed already as part of our broader conceptual review 868 

above), but interpretation in these cases is problematic due to the large number of 869 

confounding variables (e.g. humidity, precipitation). In addition, we failed to include Santos 870 

et al.’s (Santos et al., 2018) relevant study where they clearly show that temperature disrupts 871 

mating patterns, which impacts sexual selection intensity in Artemia franciscana. In this 872 

study, the authors measured selection differentials based on size differences between mated 873 

and unmated individuals. Body size has been shown to be under sexual selection in this 874 

species, but we opted to conservatively eliminate this from our meta-analysis because body 875 

size is also under strong natural selection and directly influenced by temperature. As stressed 876 

in the present review, and for the reasons stated, available studies were altogether 877 

surprisingly scarce. This made it difficult for our meta-analysis to properly evaluate the 878 

interesting questions arising from our review, such as the existence of sex-specific 879 

temperature effects on sexual selection and a general trend in the directionality of such 880 

effects (Berger et al., 2018). We hope that our work spurs further studies into the connections 881 

between temperature and sexual selection, which will allow for more powerful meta-882 

analyses. 883 

VII. The path ahead: studying the interplay between temperature, sexual selection and 884 

population viability. 885 

 (1) Considering temperature effects on sexual selection 886 

We suggest studies aimed to understand the link between sexual selection and temperature 887 

should focus not only on fluctuations in mean temperature, but also on the role of 888 

maximum/minimum temperatures and temperature variability per se. Spermatogenesis seems 889 

to be generally vulnerable to peak temperatures across different taxa (Walsh et al., 2019), 890 

suggesting that considering maximum/minimum temperatures may be particularly important 891 

when studying temperature effects on post-copulatory processes. For example, a recent study 892 

in the flour beetle (Tribolium castaneum) found that experimental heatwaves compromise 893 

sperm function even if they occur after sperm is stored in the female spermatheca, and that 894 

successive heat-waves can render males infertile (Sales et al., 2018). Sales et al. (Sales et al., 895 

2018) also reported temperature-induced transgenerational effects in line with those reported 896 

in other species (Gasparini et al., 2018).  897 
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Studying the role of temperature fluctuations may also shed important insight into the 898 

maintenance of additive (see above) and cryptic genetic variation, and generally on how 899 

sexual selection operates in complex environments (Miller & Svensson, 2014). Due to 900 

circadian, intra-seasonal and inter-seasonal temperature variation, many (if not most) 901 

organisms will be reproductively active under a range of environmental temperatures in the 902 

wild (i.e. reproductive operational thermal range). This means sexual selection will unfold in 903 

a constantly varying thermal environment which, as long as there are inter-individual 904 

differences in genotype-by-environment interactions, can both increase or decrease the 905 

opportunity for sexual selection, as well as change the relative importance and integration 906 

between pre- and post-copulatory processes. In a constantly fluctuating environment, males 907 

that are particularly successful at competing for reproduction at the mean temperature within 908 

its operational range may also happen to be better competitors at other temperatures (e.g. 909 

“thermal generalists”). In this scenario, the variability in net male mating/reproductive 910 

success will be higher when considering intra- and inter-sexual selection across the whole 911 

reproductive operational thermal range (and not just the mean temperature, as is commonly 912 

done in lab experiments) leading to higher opportunity for sexual selection/selection (Is/I; 913 

Fig. 3A). For example, in the red mason bee (Osmia bicornis) female choice is partly based 914 

on male vibrational signals, which are affected by the marked temperature changes that this 915 

species experiences during reproduction in the wild. In contrast to males that are rejected by 916 

females, vibrational signals by male bees that are accepted by females are far less influenced 917 

by temperature changes (Conrad et al., 2017). An added consequence of this type of scenario 918 

is that sexual selection traits that are particularly resilient to temperature will likely 919 

experience consistent selection across mating patches representing different thermal 920 

conditions, and hence steeper net selection gradients at the population level. In contrast, 921 

selection on more labile traits may vary in intensity and direction across mating patches that 922 

vary in their thermal conditions, and hence experience weaker selection pressures. 923 

Alternatively, due to temperature-dependent constraints and/or trade-offs in underlying 924 

mechanisms, males good at competing at a given temperature may be relatively less 925 

competitive at other temperatures (e.g. “thermal specialists”), leading to the opposite scenario 926 

(Fig. 3B). Yet another alternative is the coexistence of both thermal generalists and 927 

specialists in the same population, with frequency dependent effects that will necessarily rest 928 

largely on prevailing temperature conditions. This type of evolutionary scenarios can favour 929 

diverging strategies across the operational thermal range, and hence contribute to explain the 930 

maintenance of genetic variability (e.g. see Fig. 3B). As a case in point, Svensson et al. 931 
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(Svensson et al., 2020) recently showed that temperature drives pre-reproductive selection in 932 

the female-colour-polymorphic damselfly Ischnura elegans, such that the frequency of 933 

female morphs varies geographically due to differential temperature sensitivity and 934 

maturation rates across morphs. 935 

In the above cases, sexual selection will ultimately maximize mating/reproductive 936 

success over the whole range of reproductive operational temperatures, which underscores 937 

the need to integrate different episodes/mechanisms of sexual selection to consider the total 938 

opportunity for sexual selection (Evans & Garcia-Gonzalez, 2016; Miller & Svensson, 2014). 939 

Competition across fluctuating environments is also bound to affect covariation between 940 

pre/post and/or intra/inter-sexual mechanisms (Evans & Garcia-Gonzalez, 2016) if different 941 

mechanisms are affected differently by temperature; e.g. spermatogenesis and sperm 942 

competition processes may be more vulnerable to high temperatures (see above). 943 

Understanding how temperature affects different sexual selection mechanisms (i.e. inter- vs. 944 

intra-sexual and pre- vs post-copulatory), and in particular genotype-by-environment 945 

interactions, may thus be critical to our understanding of sexual selection in wild populations.  946 

Importantly, coarse-grained temperature fluctuations may have different 947 

consequences for sexual selection, as they may lead to maximization of geometric (rather 948 

than arithmetic) mean fitness. Fine-grained temperature variation (as discussed so far) 949 

reflects fluctuations in temperature that individual organisms experience across their 950 

reproductive lifespan, whereas coarse-grain temperature variation reflects fluctuations that 951 

are only experienced across generations (e.g. inter-seasonal variation in non-iteroparous 952 

species). In the latter case, temperature variation poses the classic problem of dealing with 953 

unpredictable future environments (Levins, 1968). Knowing whether such environmental 954 

fluctuations lead to different bet-hedging strategies (Slatkin, 1974) in the context of sexual 955 

selection would be key to understand the causes and consequences of sexual selection in 956 

complex environments. For example, some sexual selection mechanisms are bound to be 957 

more vulnerable to temperature changes than others (e.g. post-copulatory processes 958 

dependent on ejaculate size or quality at high temperatures). As a consequence, in a coarse-959 

grained temporal scale sexual selection may give rise to conservative bet hedging strategies 960 

by favouring investment in sexual selection traits that are more robust to temperature 961 

changes. Thus, strategies that may appear suboptimal when considering intra- and inter-962 

sexual selection within the lifetime of individuals (i.e. lower mean arithmetic fitness) may 963 

actually be advantageous when considering selection acting across multiple generations (i.e. 964 

higher mean geometric fitness; e.g. (Yasui & Garcia-Gonzalez, 2016)).  965 
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An interesting feature of ectotherms that should be taken into account when studying 966 

responses to temperature is that thermal fitness curves of ectotherms are highly asymmetric, 967 

such that fitness drops faster with increasing than decreasing temperatures away from the 968 

optimum (Martin & Huey, 2008). This can have important consequences. For example, the 969 

predicted optimal behaviour when fitness functions are non-linear will depend drastically on 970 

the variance and skewness of the fitness-temperature curve (Martin & Huey, 2008). Finally, 971 

an interesting question that we have already touched upon is whether we may expect 972 

directional effects of temperature on sexual selection. Generally speaking, we have argued 973 

above that we may expect the relationship between temperature and sexual selection to rest 974 

largely on the physiology, morphology, behaviour and mating system of each species.  975 

However, some biological processes will tend to exhibit monotonic relationships with 976 

temperature that are relevant to sexual selection, potentially driving directional effects. Given 977 

that temperature constrains certain fundamental biochemical properties it has recently been 978 

proposed that mutations will have increasing fitness effects, and hence lead to stronger 979 

selection, with increasing temperatures (Berger et al., 2018). Similarly, some of the effects of 980 

temperature on mating systems may be expected to modulate sexual selection consistently in 981 

the same direction. For example, temperature increases may lead to longer reproductive 982 

seasons, which have been suggested to relax sexual selection by spreading competition over a 983 

longer time frame (Monteiro & Lyons, 2012). Detecting directional effects of temperature on 984 

sexual selection is an exciting prospect, as it may allow us to identify hereto unrecognized 985 

taxonomic (e.g. ectotherms vs. endotherms) and/or macro-evolutionary (e.g. tropics vs. 986 

temperate zones) patterns in sexual selection processes/traits.  987 

 988 
(2) Considering eco-evolutionary feedback 989 

As we have pointed out above, temperature effects on sexual selection may feedback to 990 

impact population viability and evolvability. The evidence that populations where sexual 991 

selection is present or intense adapt faster and are more effective in tracking the environment 992 

keeps accumulating (Parrett et al., 2019). A step forward would be to provide evidence that 993 

temperature effects on sexual selection can be strong enough to impact population viability 994 

and/or evolvability in a meaningful way. As far as we know, direct evidence for this is almost 995 

completely absent except for a few studies drawing indirect connections between 996 

temperature, sexual conflict intensity and population productivity (Berger et al., 2014; 997 

García-Roa et al., 2019; Martinossi-Allibert et al., 2019b). To bridge this gap, we suggest 998 

future studies looking at the relationship between sexual selection and temperature should try 999 
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to incorporate population measures of viability/evolvability, or at least attempt to extrapolate 1000 

fitness consequences at the level of individuals to populations, ideally under different 1001 

population demography scenarios (Edward et al., 2010).   1002 

 1003 
(3) Where and how to study temperature effects on sexual selection? 1004 

While the ideas described so far are in principle generally applicable to a wide range of 1005 

animals, it is obvious that some taxa, such as ectotherms, will be more vulnerable to 1006 

temperature effects on sexual selection. In consequence, we would generally predict much 1007 

stronger temperature effects on insects, reptiles, amphibians and fish than on, say, mammals 1008 

or birds. For this reason, future work on ectotherms is bound to bring a sharper focus on the 1009 

links between temperature and sexual selection. However, we stress the need to explore as 1010 

wide a variety of taxa as possible if the aim is to understand what mechanisms of sexual 1011 

selection are impacted by temperature and how.  1012 

Sexual selection in plants, too, is likely to be affected by temperature both directly 1013 

(e.g. physiology; (Hedhly, Hormaza & Herrero, 2009) and indirectly, via its effect on 1014 

pollinators through any of the pathways described above. More specifically, temperature may 1015 

affect intrasexual selection in plants at different levels. During competition for pollination, 1016 

via its effects on pollen receipt and removal (Murcia, 1990), the successful transfer of pollen 1017 

to stigmas (e.g. if temperature affects insect activity and/or spatial range (Nielsen et al., 1018 

2017)), and more generally by affecting plant-insect interactions (DeLucia et al., 2012). After 1019 

pollination, temperature is one of the main determinants of pollen performance, potentially 1020 

affecting the opportunity for sperm competition (i.e. postpollination intrasexual selection; 1021 

(Mazer et al., 2018)). In addition, temperature can affect the amount of time outcrossing 1022 

flowers stay fresh and receptive (Arroyo et al., 2013), modulating the possibility of receiving 1023 

pollen from multiple donors and hence the potential for postpollination intrasexual 1024 

competition. Flower size and morphology has also been shown to be dependent on 1025 

temperature in some species (Murcia, 1990), and stigma size and style length can intensify 1026 

gametophytic competition (Travers & Shea, 2001; Mazer et al., 2018). 1027 

Regardless of the specific taxa targeted, we suggest studies will need to consider the 1028 

effects of adult vs. developmental thermal environments, constant vs. fluctuating temperature 1029 

regimes (or heat/cold shocks), and the role of behaviour in buffering temperature effects on 1030 

reproductive parameters and mating systems in natural populations (and thus sexual selection 1031 

processes). More specifically, there is much need for realistic experimental studies, ideally on 1032 

individuals from wild populations, that manipulate temperature within their natural range (i.e. 1033 
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daily, intra-seasonal and inter-seasonal fluctuations) and ask how such manipulation affects 1034 

their mating system, ensuing sexual selection and/or sexual conflict intensity, and if possible 1035 

population viability. Similarly useful will be comprehensive field studies that seek to: a) 1036 

identify differences in traits between populations (e.g. secondary sexual traits), b) document 1037 

whether such differences can be explained by variation in the strength and/or form of sexual 1038 

selection, the relative importance of inter- vs. intra-sexual selection, and the relative weight 1039 

of pre-copulatory vs. post-copulatory episodes of selection, c) document the causes and 1040 

underlying mechanisms of sexual selection (e.g. social interactions, OSR, etc.), d) show that 1041 

temperature changes causal interactions in ways that modify selection (e.g. weaker social 1042 

interactions in hot climates) and e) study the broad consequences of temperature’s impact on 1043 

sexual selection, e.g. in terms of its opportunity and also in terms of population viability. 1044 

Given that temperature effects are best tested using carefully controlled experimental 1045 

manipulations at the population level it will likely mean that suitable invertebrate, plant and a 1046 

small sample of small vertebrate systems will contribute most to our understanding of how 1047 

temperature impacts sexual selection. This taxonomic bias may be challenging to deviate 1048 

from without creative ways to manipulate and isolate temperature in certain systems. 1049 

IX. Conclusions 1050 

(1) Given the relevance of sexual selection for individual phenotypes and population fates, a 1051 

central question in evolutionary biology is to disentangle why sexual selection and sexual 1052 

conflict vary so much in their form, strength and outcomes across taxa. The role of 1053 

ecology in explaining sexual selection has been considered prominent so far; albeit less so 1054 

in the case of sexual conflict. Surprisingly, though, the specific role of temperature, 1055 

perhaps the most important abiotic ecological factor at a global taxonomic scale, has been 1056 

relatively ignored.  1057 

(2) Temperature is a fundamental abiotic factor with a strong impact on organism physiology, 1058 

morphology and behaviour. In the wild, environmental temperature exhibits frequent and 1059 

significant variation at both the spatial scale (i.e. micro- and macro ecological) and 1060 

temporal scale (i.e. circadian, seasonal and inter-seasonal). However, the question whether 1061 

temperature can modulate sexual selection and sexual conflict, and the consequences in 1062 

terms of potential eco-evolutionary feedback on population viability, has been largely 1063 

neglected.  1064 
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(3) We currently lack the empirical data necessary to: a) understand the degree to which 1065 

temperature may affect sexual selection and sexual conflict in nature, b) the mechanisms 1066 

underlying such effects, in terms of how temperature modulates secondary sexual traits, 1067 

male/female reproductive success and mating systems, c) how such effects unfold in the 1068 

short (phenotypic plasticity) and the long (evolutionary) term, and d) the degree to which 1069 

such effects may impact population viability, and  1070 

(4) Here, we knit together existing theory and empirical data to weave a framework on how 1071 

temperature may modulate sexual selection via direct and indirect effects on sexually 1072 

selected traits and preferences, population dynamics, mating systems, constraints and trade-1073 

offs and correlated abiotic factors. Via these same pathways, temperature may also be a 1074 

fundamental modulator of sexual conflict, which is not only an increasingly appreciated 1075 

evolutionary mechanism to understand the evolution of male and female adaptations and 1076 

life-histories, but a particularly direct link between sexual selection and population 1077 

viability.  1078 

(5) While current studies on the impact of rapid environmental changes in temperature (e.g. 1079 

due to global warming) on population extinction focus mainly on first order effects of 1080 

rising temperatures on population viability, this approach ignores the potentially 1081 

important feedbacks on processes mediating sexual selection. Beyond directly affecting 1082 

population viability, we suggest rising temperatures may modulate sexual selection in 1083 

ways that can both exacerbate (e.g. if rising temperatures slow sexual selection and, with 1084 

it, the ability to purge mutations and/or viability of populations) or buffer (e.g. if rising 1085 

temperatures decrease sexual conflict, and with it, gender load) its impact on populations.  1086 

(6) To evaluate the general idea that sexual selection may be modulated by temperature, we 1087 

perform a meta-analysis of existing evidence (mostly from studies not directly aimed at 1088 

studying this link) where we provide preliminary evidence that temperature can indeed 1089 

modulate sexual selection within a biologically relevant range.  1090 

(7) We conclude that a priority for the immediate future is to explore fundamental questions 1091 

about the interplay between temperature and sexual selection, with respect to both short-1092 

term plastic changes (i.e. behavioural plasticity), intergenerational and transgenerational 1093 

effects, evolutionary responses, and the consequences that such processes have for 1094 

population viability. We highlight ways in which future studies may bridge these gaps in 1095 

knowledge. 1096 
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Figure 1. A schematic outline of pathways by which temperature can affect sexual selection, 

and ultimately population viability. 

Figure 2. Meta-analytic means for a temperature treatment difference of 7.5 degrees Celsius 

across MLMA and MLMR models for the log variance ratio (lnVR) and the log coefficient of 

variation ratio (lnCVR) for males and females. n = total number of effect sizes, whereas k = 

the total number of studies. Mean estimates and 95% credible/confidence intervals are 

provided. Subset analyses exploring the impact of various moderators on lnVR and lnCVR 

are provided (‘circles’), along with the overall meta-analytic mean (‘red diamond’) and the 

mean magnitude of log variance ratio differences between treatments (‘red square’). 

Figure 3. Depending on the shape of reaction norms to temperature fluctuations during the 

reproductively active period of the day/season, temperature effects on mating success may 

increase (A) or decrease (B) the opportunity for selection. For simplicity, here we consider an 

equiprobable distribution of temperatures across this range. In A, high quality competitors at 

the mean temperature adjust better to temperature fluctuations and maintain a more stable 

mating success and/or reproductive success across this thermal range. As a consequence, 

mean male variability in fitness is higher in fluctuating (vs. stable) thermal environments, and 

temperature effects increase the opportunity for sexual selection (Is) and/or the opportunity 

for selection at large (I). In B, individuals with high mating and/or reproductive success at the 

mean temperature fare worse at other temperatures (e.g. due to the existence of trade-offs 

and/or constraints in underlying mechanisms across temperatures). The variability in mean 

male fitness is hence reduced when considering intra- and inter-sexual selection across the 

whole thermal environment, and so are Is and/or I.  
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Figure 2.  
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Figure 3.  
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