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Abstract: How early life experiences are stored on a molecular level and affect behavioural phenotypes 

later in life is not well understood. In fish, reproductive phenotypes are often easily discernible and 

frequently depend on previous life experiences. DNA methylation is an epigenetic mechanism which is 

both sensitive to environmental conditions and stable across cell divisions. In this study, we therefore 

investigate whether DNA methylation mediates early life experiences and predetermines the territorial 

male reproductive phenotype in the round goby, Neogobius melanostomus. We investigate early life 

predisposition by growth back-calculations and then study DNA methylation by MBD-Seq in the round 

goby hypothalamus as the brain region controlling vertebrate reproductive behaviour. We find that the 

territorial reproductive phenotype is linked to a high growth rate in the first year of life. Hypothalamic 

DNA methylation patterns, however, reflect the current behavioural status independently of early life 

experiences. Together, our data suggest a non-predetermination scenario in which indeterminate males 

progress to a non-territorial status in the spawning season, and in which some males then assume a 

specialized territorial phenotype if current conditions are favourable. 
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1. Introduction 

 

Life experiences influence the fitness of animals by shaping traits like survival, growth rate, or 

fecundity [1]. Behaviour is also influenced by life experiences. In fish, dispersal and migration [2, 3] or 

appropriate response to predators [4, 5] are known to depend on conditions during early life stages. 

Additionally, reproductive behaviour is an essential character shaped by experience. For example, the 

outcome of competitive or of mating interactions is not only shaped by immediate cues (such as the size 

of the opponent or the attractiveness of the mate), but also by early life experiences of food availability, 

predator pressure, social status or adverse experiences [6, 7]. However, how such early life experiences 

are stored on a molecular level and later translated into gene expression patterns and behavioural 

phenotypes is not well understood.  

 

The presence of alternative behavioural phenotypes within a single species as well as the 

observation of predisposition by early life experiences suggest a role for epigenetic mechanisms in the 

storage of early life experiences and the translation into a behavioural phenotype [8]. Epigenetic 

mechanisms are known to mediate plasticity [9] because they respond to environmental changes without 

affecting the DNA sequence, and regulate gene expression [10, 11] .  

 

The best studied epigenetic mechanism is DNA methylation. DNA methylation has been shown to 

respond to temperature in wild vertebrates [12], numerous environmental factors in plants [13] and larval 

nutrition in bees [14]. DNA methylation at promoters [15], enhancer elements and in gene bodies [16] 

can regulate gene expression. Importantly, DNA methylation can be stable over mitotic cell cycles and 

is known to mediate cellular memory [17]. Indeed, DNA methylation patterns correlate with behavioural 

outcomes after early life stress in humans and rodents [18, 19], or after toxicant exposure in zebrafish 

[20]. Thus, DNA methylation acquired earlier in life may, for example, silence a behaviour-relevant gene 

and thus predispose the animal for a certain behavioural phenotype later in life. Indeed, earlier studies 

in Atlantic salmon have highlighted the potential role of DNA methylation as the mediator between 

environment and reproductive phenotype [21]. However, our understanding of the role of DNA 

methylation patterns in predisposing individuals for the expression of certain phenotypes is limited. In 

particular, studies which assess whether DNA methylation patterns predict an animal phenotype prior 

to its manifestation are still missing.  



 

 

Reproductive behaviours are usually associated with certain easily discernible phenotypes, which 

makes them an excellent model to study associated epigenetic mechanisms. Fish in particular display 

a great variety of reproductive phenotypes [22-24], such as external versus internal fertilization, paternal 

versus maternal brood care, or one-to-one pairings versus broadcast spawning in aggregations or 

hermaphroditism [23, 25, 26]. Fish reproductive phenotypes often entail characteristic colours and/or 

morphologies which are easy to detect. They are therefore among the best-studied experimental models 

within behavioural biology [27] and have been investigated in detail in many fish species [26, 28, 29]. 

Males in particular often adopt a territorial or a non-territorial phenotype. Typically, territorial or 

“bourgeois” males monopolize and defend resources such as nesting opportunities, court for females 

and provide brood care. Non-territorial males occasionally adopt a parasitic or sneaker life style [28, 29]. 

Sneaker males do not invest in territories nor build nests, and instead may try to steal fertilization by 

mimicking females and/or releasing sperm during the mating of a spawning couple [28, 30]. Most often, 

fish male reproductive phenotypes are conditional, i.e. dependent on life history events or ecological 

factors [31]. Prominent examples for alternative reproductive phenotypes are described within the 

families Gobiidae, Cichlidae, Centrarchidae, Salmonidae and Labridae [28, 29]. In recent years, some 

of these male reproductive phenotypes have been associated with molecular phenotypes. Several 

studies report differential gene expression between brains of dominant and subordinate males, or 

reproductive and pre-spawning males, for example in salmon [32], peacock blenny [8], cichlids [33, 34], 

ocellated wrasse [35, 36], bluegill sunfish [37], black-faced blenny [38], and bluehead wrasse [39].  

 

The round goby Neogobius melanostomus displays no major inter- or intra-sexual dimorphism 

outside the mating season. During the mating season, however, some males display a pale, 

inconspicuous colouring and do not guard nests (Figure 1a), while others undergo morphological 

changes and develop an intense black body pigmentation and puffy cheeks (Figure 1a) [40, 41]. The 

black-colored males occupy a nest, court females, and guard the eggs after oviposition [41]. Bleeker et 

al. (2017) [40] described morphological differences in size, gonado-somatic index and other 

morphological features between putative sneaker males and territorial males, with few intermediates 

present in the population. This may indicate that the round goby mating phenotype is determined before 

the first breeding season, and does not depend on current conditions. At the same time, Bleeker et al. 

(2017) [40] suggest that all males above a size threshold of 9.35 cm have the potential to eventually 



 

become territorial at some point during mating season, provided nesting sites are available. 

Indeterminate males above the threshold are most likely capable, but not bound to becoming a 

nestholder. This may indicate that the round goby mating phenotype is induced by context (nest 

availability, male-male competition) and thus depends on current conditions. A conditional tactic for 

males of intermediate size is common in other goby species such as black goby, sand goby or grass 

goby [42-44]. Importantly, the study of epigenetic marks requires an assembled genome, which is 

available for the round goby (I. Adrian-Kalchhauser, publication in preparation). The round goby is 

therefore an excellent model to study the role of epigenetics in the establishment of reproductive 

phenotypes. 

 

To investigate a link between DNA methylation as a molecular mechanism regulating reproductive 

phenotype and the phenotype itself, investigations must focus on the functional organ controlling the 

phenotype. In the vertebrate brain, the hypothalamus regulates many aspects of male reproductive 

phenotypes [45]. It intersects the neuronal and the endocrinological networks, and controls gonad 

development and social aspects of reproduction through the hypothalamus-pituitary-gonad axis [46]. 

Inputs from sensory organs are received and integrated by the inferior hypothalamic lobes. Sexual 

maturation and the expression of reproductive phenotypes is then mediated by steroid hormones 

produced and released in the hypothalamus [36]. For example, gonadotropin releasing hormone [47], 

arginine vasotocin as the major regulator of social reproductive behaviour [48] KiSS peptides as triggers 

for GnRH release [46], and brain aromatase [49] are produced in the hypothalamus.  

 

In this paper, we investigate DNA methylation as a mechanism potentially responding to early life 

experiences and regulating reproductive phenotypes in the adult round goby. We first confirm that round 

goby reproductive phenotypes could potentially be predisposed using growth back-calculations in 

territorial and non-territorial males. We then map round goby brain regions by 3D reconstruction to 

confirm the location of the hypothalamus. Finally, we analyse DNA methylation patterns in the inferior 

lobes of the hypothalamus and hypothesize (1) a predetermination scenario, where early life 

experiences would be epigenetically imprinted, or (2) an on-the-spot decision scenario, where 

indeterminate males with baseline DNA methylation patterns would adopt a territorial phenotype only if 

conditions are favourable (Figure 1b). We sample phenotypically indeterminate males before the 

spawning season, and phenotypically territorial and non-territorial males during the spawning season. 



 

Then, we identify territorial-like DNA methylation patterns and investigate whether they are present in 

the hypothalamus before the expression of the territorial phenotype. We assume that an appearance of 

territorial methylation patterns in indeterminate males caught before spawning season would suggest 

predetermination, while an appearance of territorial methylation patterns only upon overt phenotype 

expression would suggest a conditional determination by current conditions (Figure 1c). In other words, 

if phenotypically indeterminate males exhibit territorial-like DNA methylation patterns, predetermination 

of territorial behaviour is more likely. If phenotypically indeterminate males do not exhibit territorial-like 

DNA methylation patterns, an on-the-spot scenario is more likely. Finally, to compare our DNA 

methylation data to available gene expression data from other fish species, we analyse promotor DNA 

methylation at the orthologs of genes that are differentially expressed between male reproductive 

phenotypes in other fish species. 

  



 

 

 

Figure 1. The territorial phenotype in round goby. a. Usually, round goby males (and females) are light 

brown or grey (top panel). In the spawning season, territorial males develop a black colouration (bottom 

panel). b. The territorial phenotype may be predetermined by early life conditions such as predation or 

food availability (Scenario 1). Alternatively, the territorial phenotype may be induced by current 

conditions such as nest availability (Scenario 2). c. DNA methylation patterns at an exemplary region 

for a predetermination scenario (left) and a condition dependent scenario (right). Balls on sticks 

represent methylated (black) or unmethylated (white) cytosines. 
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2. Materials and Methods  

 

2.1. Growth in first year and luminosity 

 

To investigate whether the territorial phenotype in the round goby could potentially be predisposed, 

we related growth rate in first year to body pigmentation in 113 males. Body pigmentation in fish is often 

controlled through endocrine pathways [50, 51], and body pigmentation expressed as luminosity is a 

commonly used proxy for reproductive status in male round goby [40, 41] (Figure 1a).  

 

Males were sampled by hand netting and with fykenets in the Bay of Gdansk in Poland in the spring 

of 2009 (Table S1). Individuals were frozen after catch and later thawed prior to digital photography. To 

determine luminosity, each individual was photographed on its left side next to a grayscale for 

calibration. Relative luminosity was measured using Photoshop Elements 9. To obtain an intuitive value 

for luminosity between 0 and 1 and to include both the white and black ends of the colour spectrum into 

this value, the luminosity was expressed as =1-(1/(White-Black)*(Fish-Black)). To determine growth in 

early life, operculum bones were analysed. Each individual’s body length was measured as total length 

from the tip of the snout to the end of the caudal fin. The operculum bone was removed, boiled in water 

and cleaned for age and growth measurements. Age of each individual was measured by counting the 

winter bands on the opercula bone. The size of each individual in the first and second year of their lives 

was then calculated according to Bagenal and Teasch (1978) [52] using the equation: 𝐹𝐹𝐹𝐹𝐹𝐹ℎ(𝐹𝐹) =

𝑌𝑌∗𝐿𝐿(𝑂𝑂𝑂𝑂)∗(𝐿𝐿(𝐹𝐹)−𝑌𝑌)
𝐿𝐿(𝑂𝑂𝑂𝑂)

, where L(Oi) is the length from the tip of the opercula to the i-th winter band, L(OT) is the 

total length of the opercula, L(F) is the length of the fish and Y is the y-intercept of the equation for the 

linear regression between L(OT) and L(F). Size at age one was then subtracted from the size at age 

two to acquire the growth in the first year. We used a Spearman’s R ranks test to detect a relationship 

between a trait value of early life (growth) and of adult life (pigmentation as a proxy for reproductive 

behaviour). 

 

2.2. Brain morphology 

 

To identify the hypothalamus, we reconstructed the morphology of the round goby brain (Figure 

S3). The brain of several adult males was exposed by dorsally opening the skull. The individuals were 



 

then immersed in 30 ml 4% formaline in 0.1 M phospate buffer (Stock solution 0.5 M, pH 7.4: 54.5 g 

Na2HPO4 (anhydrous), 16 g NaH2PO4 (anhydrous), 1000 ml distilled water). The fixative was exchanged 

once on the following day. A few days later, the individuals were transferred to PBS for sample shipping 

to the University of Bonn, where fixed brains were stained, sectioned and imaged. To this end, brains 

were removed from the cranial cavity and stained with 0.5 % cresyl violet containing 0.01 % Triton X-

100 for 5.5 h. They were then dehydrated in an ascending ethanol series (50 %, 70 %, 80 %, 96 %, 

each for 1 h). Embedding in methacrylate was done in three steps using the Technovit 7100 Kombipack 

(Kulzer GmbH, Germany). After pre-infiltration for 3 h in a 1:1 mixture of 96 % EtOH and Technovit 7100 

and overnight incubation in the infiltration solution (100 ml Technovit 7100 + 1 g Hardener I), the brains 

were embedded with 15 ml infiltration solution + 1 ml Hardener II. One brain was then cut in caudal-

frontal orientation into transverse sections at a thickness of 5 µm on a self-constructed microtome. This 

microtome allows automatic cutting and digitalisation of samples with the help of an attached camera 

(iDS Imaging Development Systems GmbH) which takes images of the block face as sections are 

removed (USCHI; Ultimate Section Cutting Histology Instrument, Prof. Hofmann, Department of 

Comparative Neuroanatomy, University of Bonn; publication in preparation). The brain was then 

reconstructed by automatically aligning stained brain structures between sections in Animal Explorer 

2.0 (self-written software, Prof. Hofmann, Department of Comparative Neuroanatomy, University of 

Bonn, publication in preparation). 

 

2.3. Sampling of males for methylated DNA analysis 

 

Indeterminate, non-territorial, and territorial males were caught in the harbour of Kleinhuenigen, 

Basel, Switzerland (47°35’14.8”N 7°35’36.2”E, see Figure S1 for map) and processed according to the 

workflow depicted in Figure 2. Indeterminate males were caught before the reproductive season 

(between 21st of March and 24th of March 2016) with minnow traps (Figure S2). Territorial and non-

territorial males were caught within the reproductive season (between 17th of May and 6th of June 2016) 

with spawning traps (Figure S2) as described in Hirsch et al., 2016 [53] and with minnow traps. The use 

of different traps accounts for the different behaviours of territorial and non-territorial males. Non-

territorial males actively forage for food and only occasionally seek shelter. Territorial males guard and 

defend a nest, which they do not leave until the eggs have hatched. Therefore, minnow traps catch 

exclusively non-territorial males, while spawning traps catch mostly black territorial spawning males. 



 

 

 

 

Figure 2. Experimental setup. Indeterminate males were sampled before the reproductive season, while 

males with non-territorial and territorial phenotype were sampled within the reproductive season. DNA 

methylation patterns in the inferior hypothalamic lobes were analysed according to the outlined 

procedure. 

 

All fish were caught from a sampling depth of 3 - 4 m with permission GS 18-07-01 from the 

environmental department Basel-Stadt and permission 1022H from the animal welfare committee Basel-

Stadt. Care was taken to pick similar-sized individuals with the aim to minimize confounding noise 

introduced by different ages. Average total lengths ± standard deviation were 10.54 ± 0.45 cm for 

indeterminate males, 10.22 ± 0.23 cm for non-territorial males, and 10.5 ± 0.29 cm for territorial males 

(not significantly different according to pairwise t-tests). This is a size range in which all males have the 

potential to perform territorial behaviour [40] (see introduction). We determined age by scale analyses 

according to Grul'a et al., 2012 [54], and found that all animals were between 2 and 3 years old. Animals 

were anesthetised after catch with clove oil (conc. 40 mg/l in a 1:10 EtOH-dilution) according to best 



 

practise regulation from the local fishery authority, transported to the laboratory, and frozen at -80° until 

further processing. 

 

2.4. Brain dissection 

 

To isolate the inferior hypothalamic lobes, males were thawed on ice. The brains were exposed by 

removing the dorsal head tissue and the skull bones, followed by severing of the optical nerves and the 

spinal cord. The brains were removed from the skull and placed ventral side up on a plastic container 

on wet ice. Under a stereo microscope, the hypothalamus was dissected, placed in a chilled FastPrep 

Lysing Matrix A tube (#116910050, MP Biomedicals) containing 400 mg of beads, flash frozen in liquid 

nitrogen and stored at -80 °C. A step by step documentation of the dissection procedure is provided in 

the Supplementary Files (Figure S3). 

 

2.5. Confirmation of DNA methylation 

 

Since DNA methylation has not been assessed in the round goby before, we next confirmed the 

presence of DNA methylation using experimental and bioinformatic approaches. For experimental 

confirmation, we digested genomic DNA isolated from round goby muscle tissue with two isoschizomeric 

restriction enzymes with different sensitivity to methylation (Figure S4). Hpa II and Msp I both recognise 

and cleave the sequence C/CGG. However, Hpa II is sensitive to CpG methylation and will not cleave 

a methylated target sequence. Msp I is unaffected by methylation. In organisms with scarce CpG 

methylation, both enzymes generate low molecular weight fragments, which appear as a smear at the 

bottom of an agarose gel. In organisms with significant DNA methylation, Hpa II frequently cannot 

access its target sequence, and therefore generates fragments high molecular weight fragments which 

stay at the top of an agarose gel. DNA treated with the M.SssI methyltransferase is fully methylated and 

can be cut only by Msp I but not Hpa II, and therefore constitutes a useful control in this experiment.  

 

For bioinformatic confirmation, we calculated the CG ratio of the round goby genome (genome 

sequence available from IAK on request, publication in preparation) using the EMBOSS toolkit (version 

6.6.0; Olson, 2002). Methylated Cytosines have a propensity for C to T mutation by deamination. 

Therefore, genomes of organisms that methylate their DNA contain less CG dinucleotides than 



 

expected. The fruit fly does not perform genome wide DNA methylation and has a CG ratio of 0.99, 

while organisms such as human, zebrafish or fugu which methylate their genomes feature CG ratios of 

0.2, 0.55 and 0.63, respectively [55].  

 

2.6. DNA isolation 

 

To isolate DNA, frozen samples were lysed by bead beating in 500 µl rat tail lysis buffer (0.1 M Tris 

pH 8.0, 0.2 M NaCl2, 5 mM EDTA, 0.4 % SDS) for 20 seconds at 4 m/s on dry ice using the Fast Prep-

24™ 5G (MP Biomedicals). DNA was isolated from the lysate by standard phenol/chloroform extraction 

and ethanol precipitation. DNA concentration, quality, and integrity were assessed with a Fragment 

Analyzer (Advanced Analytical Technologies). 

 

2.7. Enrichment of methylated DNA 

 

To enrich for methylated DNA regions, we used the MethylMiner™ Methylated DNA enrichment kit 

(Invitrogen) as previously described [56]. DNA samples were first sheared to a fragment size of 400 bp 

on a Covaris M220 Focused-ultrasonicator. Fragments smaller than 100 bp were removed using 

Agencourt AMPure© XP beads. Then, we immunoprecipitated methylated DNA fragments according to 

the manufacturer’s instructions. 

 

2.8. Library preparation and sequencing 

 

Sequencing libraries were prepared at the Genomics Facility Basel with the KAPA Hyper Prep Kit 

(Kapa Biosystems) following the manufacturer’s instructions. Residual adapters and adapter dimers 

were removed with Agencourt© AMPure© XP beads (Beckman Coulter). Finally, 15 barcoded DNA 

samples (from five indeterminate, five territorial and five non-territorial males) were pooled equimolarly 

for sequencing after quantification with the Quant-iT ™ PicoGreen© dsDNA Assay Kit. The pooled 

sample was concentrated to 8 pM for NextSeq sequencing. Single-read sequencing was performed for 

85 cycles with a NextSeq 500/550 v2 sequencing reagent kit (Illumina). Base calling and demultiplexing 

was performed by the Illumina Casava (1.8.2) software. We obtained 15.673.477 ± 1.482.935 raw reads 

per sample (min 13.245.959, max 17.652.564). 



 

 

2.9. Read cleaning and alignment 

 

To clean raw reads, we discarded all reads containing Illumina Trueseq adapter sequence using 

Cutadapt version 1.9.1 [57]. This approach was preferred over adapter clipping considering the relation 

of read length (86 bp) to Illumina Trueseq adapter sequences (50 bp). We then filtered for quality with 

prinseq version 0.20.4 [58] (minimum phred quality score ≥ 20, no non-nucleotide sequences, CG 

content ≤ 20% or ≥ 80%, no low complexity reads). In a next step we aligned the processed reads to 

the N. melanostomus reference genome (I. Adrian-Kalchhauser, publication in preparation) end-to-end 

with bowtie2 version 2.2.9 [59]. Mapping quality filtering (cutoff 10) and SAM to BAM and BED file 

conversion was done with samtools version 1.2 [60] and bedtools version 2.25.0 [61]. Of the raw reads 

(15.673.477 ± 1.482.935), 98.18 ± 0.56 % were retained after adaptor removal and quality filtering. 92.58 

± 0.62 % of the trimmed and quality cleaned reads aligned to the genome.  

 

2.10. Peak Calling 

 

To determine methylated regions in the genome, we called peaks with MACS2 based on the reads 

of methylation pull-downs compared to reads of sheared but uncaptured input DNA in each sample 

individually. Peaks from all samples were then merged using bedtools, resulting in 334’511 peaks. The 

number of methylation reads in each peak and each sample was calculated using FeatureCounts, 

ignoring strand information and reads that had a quality score of less than 1. We then removed peaks 

on short and often repetitive scaffolds (less than 250 kb), thereby removing 9% of all peaks, and peaks 

on scaffold 364. Scaffold 364 collectively displayed extremely high differences between samples and 

was therefore excluded from further analyses. The most likely explanation are structural sequence 

elements with above / below average DNA methylation levels that differ between individuals [62]. 1% of 

the peaks was removed because they contained zero reads in 2 or more samples, which was likely 

caused by indels in individual fish. 

 

2.11. PCA and dendrograms 

 



 

We used the prcomp function in R to calculate a PCA on the normalized read counts (counts per 

million, cpm) across samples. We then filtered out 6458 peaks with very low read count by keeping only 

peaks that had a cpm > 1 in more than 80% of samples in at least one group (n = 156647 peaks). Finally, 

Voom normalization was performed to be able to identify differentially methylated peaks using Limma. 

To calculate dendrograms/heatmaps, we used the heatmap.2 function in R on the normalized counts of 

differentially methylated BC peaks (54 peaks with -log10 adjusted p-value > 0.1) or on the first 6 Principal 

Components of the PCA of all filtered peaks (on normalized counts). Since one of the five territorial 

males (sample C3) behaved as an outlier in both analyses, it was excluded, and analyses were re-run 

without this sample. The most likely explanation is that non-hypothalamic tissue was inadvertently 

included during the dissection of the C3 brain. 

 

2.12. Pairwise comparisons  

 

To identify differentially methylated peaks, we used Limma for group comparisons, calculating fold 

changes and p-values, which were adjusted for multiple testing using Benjamini-Hochberg correction. 

Regions with below-average adjusted p-values were identified from the overall distribution of p-value 

versus fold change in R (Figure S6). For comparison AB, we chose the cutoff 0.01, for comparison AC, 

0.1, and for comparison BC, 0.015 to single out peaks with high fold change and low p-value. Regions 

passing the cutoff in two contrasts were considered as overlapping for the respective phenotype. 

 

2.13. Analysis of DNA methylation at candidate gene promotors  

 

To compare our results with previous studies, we searched the literature on fish alternative 

reproductive tactics and sex determination for genes that were reported as differentially expressed in 

alternative reproductive morphs by quantitative PCR, microarray analysis, or transcriptome sequencing 

[32-39, 63-65]. Gene names were noted as reported in text, tables or figures and are listed in Table S2. 

To identify the corresponding genes in round goby, we first identified the zebrafish orthologue on ZFIN 

wherever possible and retrieved the gene symbol. Zebrafish gene symbols were not retrieved if the gene 

name as reported in the literature had more than three hits on ZFIN (e.g. GABA receptor alpha), or if 

the reported gene did not yield any hits on ZFIN (e.g. pfkar2b). Using Ensembl BioMart, the zebrafish 

gene symbols were then matched with zebrafish stable gene IDs. When one gene symbol matched two 



 

stable gene IDs, one was arbitrarily retained. When a gene symbol could not be linked to a stable gene 

ID, which can happen because of a recent gene curation (for example, the gene “l1cama” was merged 

from two genes in 2016), the RefSeq ID of the gene was retrieved. Finally, zebrafish stable gene IDs 

were used to retrieve zebrafish protein sequences through Ensembl BioMart (unique records only), and 

zebrafish RefSeq IDs were used to retrieve zebrafish protein sequences through Batch Entrez (Table 

S2). Then, round goby orthologs of those zebrafish proteins were identified with Blast2GO [66]. 

 

The same approach was followed with candidate pathways and gene groups associated with 

alternative reproductive strategies in the literature, for example “neuronal plasticity” (Table S2). 

Pathways and functions reported in the literature were disregarded when they were very general (such 

as “catabolic process”) or when the process was much more closely related to processes other than 

reproduction and therefore would yield many unrelated genes (such as “skeletal system development”). 

Zebrafish genes associated with the respective keywords were identified on ZFIN, and processed as 

above to identify round goby orthologues.  

 

To analyse DNA methylation at genes differentially expressed between fish reproductive 

phenotypes in other species, we determined the methylation levels (read counts determined using 

Feature Counts, cpm normalization as described above for peaks) at the promoters of these genes. 

Since promoters are not annotated in the round goby, we defined promoter regions as the proximal 

region 2 kb upstream the TSS [56, 67]. Using reciprocal Blast, we confirmed the round goby orthologues 

for the zebrafish protein sequences previously retrieved. Then we used the Limma package in R to 

perform a Romer analysis (a gene set enrichment analysis method based on rotation testing, which 

allows to perform this analysis with fewer replicates) to determine the competitive enrichment of DNA 

methylation at genes associated with male reproductive phenotypes. 

 

3. Results 

 

3.1. Early life growth rate is related to adult male phenotype  

 

Growth rate analyses suggested that individuals which grow well in early life express a territorial 

phenotype later in life. We expressed growth in the first year as back-calculated size increase in mm 



 

total length according to growth rings on opercula bones, compared it to whole body luminosity as a 

proxy for reproductive phenotype, and found that dark skin colouration is significantly associated with 

above-average growth in the first year of life (Spearman’s rank test: T=0.018, Spearman’s R=0.22, 

p=0.018; Figure 3). This suggests that early life experiences influence whether or not a male round goby 

becomes territorial as an adult. 

 

 

Figure 3. Predetermination of the territorial phenotype. Males that grew better than average in their first 

year of life (dots towards the right side of the graph) often display a black-colored territorial phenotype 

in the spawning season. 

 

3.2. The round goby has a typical teleost brain  

 

To reliably identify and dissect the hypothalamus, we reconstructed the round goby brain 

morphology. Overall, we found a typical teleost brain characterized by a large rhombencephalon, a 

distinct visual tectum opticum, and pronounced inferior hypothalamic lobes. 3D reconstructions 

identified corpus cerebelli, tectum opticum, inferior hypothalamic lobes, telencephalon, saccus 

vasculosus, pituitary gland, and the bulbus olfactorius of the round goby (Figure 4). The cerebellum was 

the most conspicuous rhombencephalic structure. The tectum opticum covered most parts of the dorsal 

and lateral surface in the midbrain. The diencephalic components inferior lobes and pituitary gland 
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dominated the ventral brain region. Measurements of the four major regions showed that the tectum 

opticum was the largest structure, followed by the telencephalon, the inferior lobes, and the cerebellum. 

 

 

 

Figure 4. Round goby brain morphology. a. 3D reconstruction of a round goby brain, lateral view. Inferior 

hypothalamic lobes are highlighted in pink. b. Dissected round goby brain, ventral view. Anterior is to 

the left in both panels. 

 

3.3. The round goby displays DNA methylation 

 

In silico and wet lab approaches confirmed that DNA in the round goby was methylated (Figure 

S4). The methylation sensitive enzyme Hpa II generated larger molecular weight fragments than the 

methylation insensitive enzyme Msp I. Based on CG frequency calculations, the observed-to-expected 

CG ratio of round goby was 0.4, which is lower than the ratio expected for a non-DNA-methylating 

organism (1). 
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3.4. Territorial DNA methylation patterns arise concomitantly with the phenotype 

 

When clustering samples based on all peaks, we found that global methylation patterns did not 

differ between reproductive phenotypes. Genome-wide hierarchical clustering of PCA eigenvalues 

derived from the entire methylome did not separate indeterminate, non-territorial, and territorial males 

(Figure 5a). We could, however, identify a set of differentially methylated regions (DMRs) between the 

different phenotypes in pairwise comparisons. When analysing only those peaks which were 

differentially methylated between territorial and non-territorial males, we found that 1.) non-territorial 

males were most similar to indeterminate males, and 2.) territorial-like DNA methylation patterns were 

not present in any of the indeterminate males. When clustering all samples based on regions 

differentially methylated between territorial and non-territorial males, indeterminate males collectively 

clustered with non-territorial males (Figure 5b). The results of pairwise comparisons between 

indeterminate, non-territorial, and territorial males supported the idea of a stepwise progression from an 

indeterminate to a non-territorial, and, given permissive conditions, a territorial phenotype (Figure 5c). 

Indeterminate males and non-territorial males differed at only 34 regions, while non-territorial and 

territorial males differed at 56 regions, and indeterminate and territorial males differed at 97 regions.  

 



 

 

 

Figure 5. Indeterminate males do not display territorial DNA methylation patterns. a. Clustering based 

on genome wide PCA eigenvalues of all peak regions. Indeterminate, non-territorial, and territorial males 

are distributed randomly throughout the tree. b. Clustering based on regions differentially methylated 

between non-territorial and territorial males. Branches for indeterminate, non-territorial, and territorial 

males cluster within the respective groups. Additionally, indeterminate males cluster with non-territorial 

males. c. Results of pairwise comparisons. Green and red triangles represent regions that gain / lose 

DNA methylation during the transition represented by the grey arrow. Arrow lengths and triangle areas 

are scaled to represent the number of regions with differential DNA methylation. Differentially methylated 

regions that overlap between two comparisons are indicated by orange / grey corners. 
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Pairwise comparisons identified 15 regions with DNA methylation patterns that were characteristic 

for territorial males but not for indeterminate or non-territorial males (“territorial signature”). Using the 

round goby genome browser (access available from IAK on request) and the coordinates of those 15 

regions, we found that these regions were frequently located in the vicinity of genes that were relevant 

for neuronal function and neural plasticity. For example, we identified genes associated with neuronal 

processes such as Tankyrase 1, sialic acid-binding Ig-like lectin, clarin 1, alkaline sphingomyelin 

phospho-diesterase, arachidonate 15-lipoxygenase, or neuroblast differentiation-associated protein 

AHNAK-like as overlapping or neighbouring genes. We also found genes potentially relevant for 

neuronal plasticity, such as genes implicated in signaling at membranes (star-related lipid transfer 

protein 8, an adhesion G-protein coupled receptor, and Guanine nucleotide exchange factor VAV2), 

genes regulating gene expression (THAP domain protein, several zinc finger proteins, WD repeat-

containing protein 5, and bromodomain-containing protein 3), genes important for cell adhesion and 

extracellular matrix organisation (Tetraspanin, ADMTS-like protein, V-set and transmembrane domain 

containing protein, C-type mannose receptor), and genes encoding RNA regulatory proteins such as 

Staufen or the spliceosomal Gem-associated protein. 

 

Finally, we investigated DNA methylation levels at the promoters of genes and gene groups that 

were reported as differentially expressed between alternative male reproductive phenotypes in other 

fish. We found that, promoter methylation at these genes and gene groups differed from promoter 

methylation at the average gene. According to Gene Set Enrichment analysis, promoters of genes 

associated with fish male reproductive phenotypes in the literature (Table S2) were significantly more 

often differentially methylated between the territorial and the non-territorial phenotype than the average 

gene (Figure 6).  

 



 

 

 

Figure 6. Promoter methylation of candidate genes. a. Promoter DNA methylation (balls on a stick) has 

been reported to regulate gene expression, for example by preventing transcription factors (TF) from 

binding to the promotor. b. According to Gene Set Enrichment analysis, promoters of candidate genes 

associated with reproductive phenotypes in fish in the literature (Table S2) are significantly more often 

differentially methylated between the territorial and the non-territorial phenotype than the average gene. 

 

4. Discussion 

 

In this study, we investigated whether brain DNA methylation may play a role in memorizing and 

translating early life experiences into a behavioural phenotype later in life in a wild fish. Specifically, we 

compared hypothalamic DNA methylation levels between male reproductive phenotypes in the round 

goby. We hypothesized that early life experiences could manifest epigenetically as DNA methylation 

patterns, which could then persist to adult life and predetermine reproductive phenotypes. Our 

alternative hypothesis was that DNA methylation patterns characteristic for a reproductive phenotype 

could establish at the same time as the externally visible phenotype (Figure 1b). We found that the 
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reproductive phenotype in the round goby was linked to growth in the first year of life. We also found a 

clear distinction of territorial males based on hypothalamic DNA methylation pattern from non-territorial 

and indeterminate males. None of the non-territorial males and indeterminate males resembled territorial 

males in their methylation patterns. Rather, hypothalamic DNA methylation reflected the respective 

current behavioural phenotype. This suggests that non-territorial males may represent an indeterminate 

group rather than being fixed on a non-territorial fate, and supports an on-the-spot decision scenario for 

the territorial phenotype (Figure 1b, Scenario 2). Below we discuss the implications of these findings in 

relation to current research. 

 

Early life conditions are connected to adult reproductive phenotype 

 

Research clearly shows that early life experiences can determine the phenotype at later 

developmental stages [68]. In line with these observations, our data on growth in the first year of life and 

later reproductive phenotype suggested a relationship between early life experiences and later 

reproductive life conditions in round goby. This supports the assumption that round goby reproductive 

phenotypes could potentially be predetermined by early life-conditions, and makes an early epigenetic 

setting plausible. In fish, growth rate is an essential fitness determinant [69]. Most fish show an 

indeterminate growth rate with limited capability of compensatory growth, and size at maturity can vary 

greatly. Therefore, growth rate in the first year of life is a potentially powerful predictor of later 

reproductive strategy: once a male is outgrown by competitors, its ability to monopolize a mating 

resource decreases, which may promote the adoption of a non-territorial strategy. Our growth back-

calculations suggest predisposition, yet we did not find evidence for predetermination by epigenetic 

markers. This may be attributable to the different data sources. Growth / color data were taken in a 

different population than methylation data. Also, individuals from a large size-spectrum were analyzed 

for growth data, while the DNA-methylation study focused on a narrow size range. In the common goby 

Pomatoschistus microps or the black goby Gobius niger, only males at the ends of the size spectrum 

adopt a single phenotype, while males of medium size may act both as non-territorial and territorial 

males [42, 70]. By focusing on a narrow and intermediate size range, we might have excluded the 

extreme ends of growth rates and, thus, predetermined individuals. However, restricting age and size in 

the molecular data set was essential to avoid confounding the results since age related changes in DNA 

methylation have been described [71].  



 

 

Anatomical identification of brain regions controlling reproduction 

 

In vertebrates, the hypothalamus directs many aspects of male reproduction [45]. We therefore 

reconstructed round goby brain anatomy to unambiguously locate the hypothalamus. We find that the 

round goby displays a typical gobioid brain. Our brain map therefore enables us to reliably identify and 

isolate the inferior hypothalamic lobes. As is typical for gobies, the cerebellum and bulbus olfactorius 

are smaller, and the telencephalon larger than in other teleosts [72, 73]. Some gobioid fishes, particularly 

those sieving substrates for food, rely heavily on internal gustation and therefore display an enlarged 

vagal lobe and an accompanying dorsal expansion of the rhombencephalon [73]. The round goby feeds 

primarily on benthic invertebrates and lacks this feature [74]. Finally, the round goby pituitary gland is 

larger than in zebrafish or rainbow trout [75, 76] for reasons that are currently unknown.  

 

The round goby is a model organism for many aspects of behaviour, such as auditory processing 

and communication through vocal calls [77, 78], response to odors [79], sneaking [40, 41], sex-biased 

movement and aggression [80, 81], or feeding [82]. These behaviours are now amenable to 

neuromorphological and neurophysiological investigations given that the major brain regions have been 

mapped in this study. 

 

Assessment of DNA methylation across male reproductive phenotypes 

 

The growth data suggest that the territorial reproductive phenotype may be linked to early life 

conditions. We found, however, no evidence for predetermination based on DNA methylation patterns. 

Indeterminate and non-territorial males displayed similar baseline DNA methylation before and during 

the spawning season, and were clearly distinct from territorial males (Figure 5b). Territorial patterns 

were absent from all 10 males in the dataset that did not display the territorial phenotype. This suggests 

that territorial-like DNA methylation in the hypothalamus develops concomitantly with the appearance of 

the phenotype, and that territorial DNA methylation patterns are absent before the overt onset of the 

phenotype. Alternatively, predetermination could depend on  a few key genes involved in regulating 

reproductive strategy (Figure 5c). Higher sample numbers would be needed to address this.  

 



 

All in all, however, our results do not show that hypothalamic DNA methylation plays a role in the 

long term memory of early environmental conditions. Rather, our data supports an on-the-spot decision 

scenario (Figure 1b, Scenario 2). This is interesting in the context of human mental health, where DNA 

methylation has been proposed to serve as a molecular memory mechanism altered by early life trauma 

and to correlate with mental health state. For example, childhood trauma and abuse induce 

characteristic DNA methylation patterns of the glucocorticoid receptor gene [83]. Also, DNA methylation 

levels at the Brain-Derived Neurotrophic factor gene are associated with Major Depressive Disorder 

[84]. Possibly, the round goby does store epigenetic memories of past events outside the inferior 

hypothalamic lobes, or using an alternative epigenetic mechanism (e.g. RNA or histone modifications).  

 

Our data also indicate that the territorial phenotype may involve a tissue specialisation process. In 

pairwise comparisons with territorial males, increases in methylation levels are more common than 

decreases in methylation levels (Figure 4c). Depending on the genomic position, increasing methylation 

can both silence [15] and activate gene expression [85, 86] and is a hallmark of cellular differentiation 

and specialisation [87, 88]. Therefore, the territorial phenotype may potentially represent a specialisation 

achieved by channeling gene expression.  

 

Finally, it is important to note that the hypothalamus contains a high diversity of neurons [89, 90]. 

Zones of proliferation and apoptosis have been described [91, 92], also in the context of reproduction 

[93]. Teleost brain plasticity may therefore have an impact on global methylation patterns in the inferior 

lobes. What we have identified as “territorial patterns” may reflect an increase in a certain neuronal 

subpopulation rather than DNA methylation changes in existing cells. 

 

DNA methylation and invasion success 

 

Plasticity in gene regulation has been suggested to play a role in the invasion success of round 

goby. Upon a temperature challenge, RNA expression levels in the round goby changed faster than in 

the related but less invasive tubenose goby [94]. In this context, it is interesting to note that the observed-

to-expected CG ratio of the round goby is rather low (round goby: 0.4, zebrafish: 0.55, Japanese 

pufferfish: 0.63; [55]). Low CG ratios indicate high DNA methylation levels. Humans, for example, have 

particularly high levels of DNA methylation compared to other vertebrates, and their average observed-



 

to-expected CG ratio is 0.2 [55]. Since gene expression can be regulated through DNA methylation in 

promotors, enhancers, and gene bodies [15, 95], one may speculate that the impressive adaptation 

capacities and flexibility of the round goby (and of other invasive species) may have epigenetic 

underpinnings. This could be explored in a straightforward and cost-effective approach by comparing 

observed-to-expected CG ratios across a carefully chosen panel of invasive and non-invasive, or more 

and less plastic fish species. 

 

Identification of differentially methylated genes involved in reproductive phenotypes 

 

Previous studies identified distinct gene expression patterns associated with reproductive 

phenotypes in fish [32-39, 65]. Similarly, we identified DNA methylation patterns that discriminate 

between non-territorial and territorial males. Some of the differentially methylated regions reside within 

predicted genes, others reside in the vicinity of predicted genes. It is an interesting observation that 

many genes physically close to differentially methylated regions seem to have neuronal functions.  

 

However, statements on functions should be taken with a grain of salt in the absence of functional 

data for three reasons. (1) In novel genomes, gene function is inferred solely from orthology with human 

genes. This process is particularly unreliable in fish considering their potential for neofunctionalization 

after genome duplication [96]. (2) Also, DNA methylation (as most epigenetic marks) may affect genes 

at a distance [97]. Physical vicinity between a methylated region and a gene is therefore not necessarily 

functionally significant. (3) Finally, the role of DNA methylation in fish has not been entirely clarified, and 

its effect on gene expression is not understood. Algorithms developed on mammals fail to identify CG 

islands in fish [98], and fish differ from mammals with respect to the distribution of methylated CGs in 

the genome [99]. Also, methylation patterns of exons and introns in zebrafish suggest that a gene’s 

transcriptional state strongly impacts gene body methylation [100]. The observed differential methylation 

patterns may thus represent a consequence rather than a cause of transcriptional activity. This 

interpretation is in line with the observation that DNA methylation reflected current rather than past or 

future behavioural status.  

 

These caveats nonwithstanding, we find that genes previously found to associate with reproductive 

phenotypes in fish are, as a group, differentially methylated between territorial and non-territorial males 



 

in the round goby. In the future, concomitant investigations on brain DNA methylation and brain gene 

expression in the same individual could help clarify the impact of DNA methylation on gene expression 

in the context of male reproduction. Time course analyses may help to clarify the dynamics of acquisition 

and erasure of epigenetic memories. We expect that a certain proportion of males in the analysed size 

group has previously transitioned through a reproductive phase. Yet, indeterminate and non-territorial 

males behaved homogenously as a group based on hypothalamic DNA methylation data. This suggests 

that they either share the same reproductive history, or that they have erased methylation patterns 

related to the previous territorial state in the hypothalamus. Epigenetic memories may, of course, persist 

in other parts of the brain, or in other tissues. 

 

5. Conclusions 

 

In conclusion, we find that the reproductive phenotype in the round goby is linked to growth in the 

first year of life. However, our data indicate that the territorial phenotype in round goby is not induced by 

pre-existing DNA methylation patterns in the inferior hypothalamic lobes. Rather, hypothalamic DNA 

methylation is in line with the current phenotypic status. The methylation data suggest a stepwise 

progression from indeterminate male to non-territorial male to territorial male during spawning season. 

In this scenario, all indeterminate males progress to become non-territorial males in the spawning 

season. These, in turn, will specialize into territorial males if conditions are favourable. 
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