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 17 

Glossary 18 

Batch – a set of analysed samples that are inherently dependent on each other, e.g. all using the 19 

sample standard curve, machine, time of day, technician or that are equally affected by any other 20 

unknown variation.  21 

Cluster – a set of samples that are distinct in the timing of their analysis; this typically includes multiple 22 

batches. 23 

Within-individual effects – Longitudinal changes within an individual. 24 
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Between-individual effects – Comparison of differences across individuals induced by demographic 25 

effects such as selective (dis)appearance. 26 

 27 

Abstract (max 350 words) 28 

1. The longitudinal study of populations is a core tool for understanding ecological and 29 

evolutionary processes. These studies typically collect samples over individual lifetimes and 30 

across multiple generations, building up a continuously growing biobank from which samples 31 

are then analysed in clusters over time in the laboratory. To ensure data are comparable 32 

among clusters we need to account for among-cluster variation and confounding variables, 33 

yet this is often ignored.  34 

2. The commonly used approaches in structuring samples for analysis, sequential and 35 

randomisation, generate bias due to non-independence between their time of collection and 36 

cluster. We propose a new sample selection strategy, slicing, specifically designed to 37 

statistically account for this bias. Slicing would, however, be suboptimal if aggregating 38 

longitudinal samples of the same individual within a single batch reduces measurement error 39 

and thereby increases statistical power to detect within-individual effects, a notion we 40 

challenge using simulations.  41 

3. Our slicing approach, whereby recently and previously collected samples are analysed in a 42 

cluster together, enables statistical separation of collection time and cluster effects through 43 

appropriate mixed models. Additionally, we recommend the use of internal controls 44 

(reference samples) to further assess among-cluster variation. Our simulations show similar 45 

precision and higher statistical power to detect cohort, within- and between-individual effects 46 

when samples are sliced across batches, compared with strategies that aggregate longitudinal 47 

samples or use randomised allocation.  48 

4. While the best approach to analysing long-term datasets depends on the structure of the data 49 

and questions of interest, it is vital to account for among-cluster and batch variation. This can 50 
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be achieved through mixed models and appropriate sample selection strategies. Our slicing 51 

approach is simple to apply and creates the necessary statistical independence of batch and 52 

cluster from environmental or biological variables of interest. Crucially, it allows subsequent 53 

samples to be added in later analyses without completely confounding them with cluster. Our 54 

approach maximises the value of every sample, as each will optimally contribute to unbiased 55 

statistical inference from the data. Slicing therefore has the potential to maximise the power 56 

of growing biobanks to address important ecological, epidemiological and evolutionary 57 

questions. 58 

 59 

Keywords: Ageing, biobank, internal controls, longitudinal, long-term studies, mixed models, slicing, 60 

telomeres 61 

 62 

Introduction 63 

Individuals and populations are shaped by ecological and evolutionary processes, for example, 64 

population structures regulated by demographic processes, and genetic variation and adaptation 65 

controlled by evolution. These processes commonly operate over multiple years, decades or even 66 

centuries (Clutton-Brock & Sheldon 2010). Consequently, long-term studies form a crucial basis for 67 

empirical studies into evolutionary processes and their interface with ecology.  68 

 Long-term studies can be performed cross-sectionally, where individuals are sampled once. 69 

These data allow broad inferences on processes within and between populations. However, cross-70 

sectional studies have the limitation that they cannot distinguish between, for example, selective 71 

disappearance due to intrinsic or environmental factors and within-individual changes such as ageing 72 

effects, or result in processes being masked by individual heterogeneity (Nussey et al. 2008). Another 73 

issue is that the assumptions required for the analysis of cross-sectional data, e.g. stationary age 74 

distribution and equal probability of sampling, are rarely met in natural populations (Gaillard et al. 75 

1994). In contrast, longitudinal long-term studies, gathering data repeatedly over the lifetimes of 76 
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individuals, can eliminate biases associated with cross-sectional data. Moreover, these longitudinal 77 

studies can distinguish within-individual patterns from between-individual variation, providing 78 

opportunities to uncover the mechanisms and evolution behind many biological processes (Nussey et 79 

al. 2008; Dugdale et al. 2011; Hammers et al. 2015; Fairlie et al. 2016). For example, individual-based 80 

longitudinal studies can be used to identify proximate causes of changes in life-history traits (Clutton-81 

Brock & Sheldon 2010). 82 

The individual-based collection of longitudinal data and biological samples from natural or 83 

laboratory populations leads to large, continuously growing biobanks. Through laboratory analyses 84 

these biobanks can provide vital information on, for example, individual telomere length (Boonekamp 85 

et al. 2014; Fairlie et al. 2016), serological values (Telfer et al. 2008; Andraud et al. 2014) and genetic 86 

variation (Berry et al. 2012; Tollenaere et al. 2012). The laboratory analysis of samples from growing 87 

biobanks is often inevitably conducted on separate groups of samples over time (e.g. after each 88 

fieldwork season, each year, coinciding with grant cycles). Such a group of samples – a cluster – will 89 

be collectively analysed under similar conditions, but these conditions might differ between clusters 90 

(e.g. different analyst, different machine, different month). Samples within a cluster are then 91 

subdivided into batches (e.g. qPCR plates) where, again, samples are analysed under similar 92 

conditions, but conditions may vary between batches (e.g. different reagents, different day). The 93 

problem with this differential timing in analysis of batches and clusters is that it induces an unknown 94 

level of variation that is often confounded with the independent variables of interest, which reduces 95 

the ability to compare results across samples and draw reliable conclusions. For example, temporal 96 

variation or where multiple populations are studied, spatial differences, in resource availability can be 97 

confounded with cluster when samples are analysed after each period of collection, resulting in a 98 

failure to separate the effects of resource availability and cluster on a response variable. 99 

The two main approaches currently used to structure samples into clusters in long-term 100 

studies suffer from differential timing in analysis. First, sequential analysis (i.e. running clusters in the 101 

order in which they were collected) allows clustered analysis of samples (e.g. by year) and has the 102 
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advantage that samples can be analysed immediately, but this method confounds cluster with 103 

organising variable (e.g. year) effects (Fig. 1a). Second, analysing multiple years within a cluster so that 104 

year can be randomised among batches ensures that samples are sufficiently mixed to avoid 105 

confounds, and should already be standard practice (Fig. 1b). However, this randomisation approach 106 

requires a delay before analyses can be completed, so that samples collected at different time points 107 

can be analysed together and organising variable and cluster effects can then be separated. 108 

Furthermore, after applying this randomisation approach, any subsequently collected samples cannot 109 

be compared to the already confounded samples as they will be subject to statistically uncontrollable 110 

variation due to clustering of the samples already analysed. For example, separately randomising two 111 

time periods of five years of sampling into two clusters results in uncontrollable variation between 112 

these two clusters and confounds the first five years in cluster one with the subsequent years in cluster 113 

two (Fig. 1b). Even though analysing the same samples multiple times in subsequent clusters can avoid 114 

this issue, the additional costs and depletion of samples makes this an undesirable solution. 115 

Additionally, the randomisation of samples among batches within a cluster is time-consuming and the 116 

detailed reordering of samples from the biobank is prone to error due to sample labelling and placing.  117 
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 118 

Fig. 1. Schematic of three strategies to select samples from the biobank. The sequential analysis 119 

strategy (a) can confound cluster and year, while randomisation of multiple years within a cluster (b) 120 

prevents this confound but generates uncontrollable variation between clusters. The slicing approach 121 

(c) combines the advantages of these approaches and can be used to sequentially analyse growing 122 

biobanks, while maintaining independence between cluster and associated variables. The biobank is 123 

sliced (e.g. by year), thereby analysing a set of continuously collected samples sequentially in each 124 

subsequent cluster. Slicing width (frequency of new samples collected) and angle (degree of 125 

independence between slices) determine the level of statistical independence between clusters. 126 

‘Samples left’ are samples collected in subsequent years to highlight that, unlike with the sequential 127 

strategy, in randomisation and slicing strategies samples cannot be analysed immediately.  128 

 129 
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The variation among clusters, created by the use of the sequential and randomisation 130 

selection strategies, might be trivial, but there is no way to assess it. The randomisation strategy 131 

applied to completed biobanks would enable separation of cluster and organising variable effects, but 132 

this approach is not suited for biobanks that are still growing. In addition to confounding cluster and 133 

organising variable effects, confounds can arise in many other ways (e.g. change in reagents or analyst 134 

over time), which could coincide with changing population dynamics (e.g. age composition, 135 

environmental effects). This uncontrollable variation among clusters and potential confounding 136 

factors can lead to false positive or false negative results due to temporal correlations with cluster 137 

effects. Hence, these methods cannot provide the comparable analyses of samples over time required 138 

in long-term studies. 139 

The differential timing in the analysis of a growing biobank that results in among-cluster 140 

variation can be partially accounted for using appropriate normalisation of data, for example, by 141 

including internal controls (or reference sample/calibrator) in all batches (e.g. qPCR plates), to which 142 

sample data can be normalised (Cawthon 2002). However, normalisation through internal controls 143 

can only be applied in specific forms of analyses (e.g. qPCR, antibody hormone analysis). The internal 144 

controls provide measures of precision (e.g. repeatability) which should be reported as standard in 145 

studies (Nussey et al. 2014) and allow inferences on among-batch variation. Still, the strong 146 

dependence of multiple samples in one batch on a single reference sample can inflate noise and/or 147 

be inadequate to fully correct for among-batch variation. When such effects are modelled using mixed 148 

effects models, laboratory analysis effects (e.g. qPCR plate, Froy et al. 2017) still explain a considerable 149 

proportion of the variance. This suggests that inclusion of a reference sample only partially accounts 150 

for among-batch and among-cluster variation and thereby provides a potentially false sense of 151 

confidence of the data acquired. 152 

In addition to data normalisation, modelling statistical dependence through mixed models can 153 

also increase the reliability of results from data collected in differentially analysed clusters (Bolker et 154 

al. 2009). Mixed models allow flexible inclusion of random effects (Gelman & Hill 2006), such as 155 
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clusters and batches, which allow to control for among-cluster variation, and thus an accurate 156 

estimate of repeatability. Accurate repeatability estimates, in turn, lead to more accurate estimates 157 

of other fixed (e.g. age) or random effects (e.g. year) or parameters calculated from these effects (e.g. 158 

heritability).  159 

While internal controls and mixed models can partially account for among-cluster variation, 160 

the differential timing in analysis is further complicated by the commonly applied sample allocation 161 

strategy (i.e. allocating samples to batches), where longitudinal samples from a single individual need 162 

to be analysed in the same batch. For example, a population monitored yearly provides multiple 163 

samples per individual from which telomere lengths can be estimated. An individual’s cohort and year 164 

of sampling can have biological effects that impact telomere length (i.e. environmental variation that 165 

we are interested in). However, the batch in which samples are analysed can affect the telomere 166 

length estimate as well due to technical variation (i.e. experimental variation that we are not 167 

interested in, but want to correct for). To account for this technical variation, samples from a single 168 

individual are often analysed in the same batch (e.g. Beirne et al. 2014, Nettle et al. 2015), which is 169 

thought to increase the statistical power to detect within-individual effects. The reasoning here is that 170 

longitudinal samples are then exposed to the same technical noise, which allows higher statistical 171 

power to dissect out the biology, without batch effects confounding longitudinal analysis of samples 172 

(Nordfjall et al. 2005; Salomons et al. 2009; Rius-Ottenheim et al. 2012; Herborn et al. 2014; Nettle et 173 

al. 2015).  174 

However, the sample allocation strategy of aggregating longitudinal samples from individuals 175 

within a single batch, has two disadvantages. Firstly, analyses need to be postponed until all samples 176 

from a single individual have been collected. Second, it requires detailed picking and reordering of 177 

samples, which increases the likelihood of human error, sample mix-ups and therefore false 178 

interpretations of the data. Although it seems intuitive that aggregating samples from a single 179 

individual in the same batch should improve precision, the reduction in statistical power to detect 180 
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within-individual effects in long-term studies might be negligible relative to randomly allocating 181 

samples to batches, with appropriate statistical methodology, but this has not been quantified.  182 

Here, we present an approach to the analysis of samples from growing biobanks that, while 183 

maintaining statistical independence, accounts for among-cluster variation and controls for other 184 

potentially confounding effects (Fig. 1c). Additionally, we test the assumption that aggregating 185 

longitudinal samples within batches results in higher statistical power to detect within-individual 186 

effects. We then discuss the analysis of long-term data, highlight the importance of appropriate 187 

statistical mixed models in these studies, and elaborate on potential biases and the use of long-term 188 

data in a meta-analytical context. While we will mainly consider the field of evolutionary biology, using 189 

telomere dynamics as an illustrative example, these considerations and techniques can be applied to 190 

a range of fields, including epidemiology, ecology and laboratory-based science. 191 

 192 

Materials and Methods 193 

Slicing approach 194 

We have developed a slicing approach to select samples from growing biobanks, such that recently 195 

added samples are analysed in clusters together with previously obtained samples, ensuring statistical 196 

independence of collection time and cluster. The biobank is divided into slices (Fig. 1c), where a slice 197 

resembles a group of collectively gathered samples (e.g. in the same year) analysed together. Slicing 198 

uses a varying proportion of samples from each given sampling period (i.e. slices), sequentially 199 

analysed in a single cluster, to statistically account for temporal and cluster bias. Slicing therefore 200 

combines convenient sequential analysis with the maintenance of statistical independence. 201 

Depending on the frequency at which new samples are obtained, the ‘width’ of the slices can 202 

be changed (Fig. 1c). For example, low analysis frequency requires wider slices to account for among-203 

cluster variation. This decision is directly related to the slicing ‘angle’ (Fig. 1c), which determines the 204 

degree of independence of sampling year from cluster. For example, if there are environmental effects 205 

related to the collection time of samples, slicing samples by collection time (i.e. lower angle) removes 206 
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possible confounds with cluster effects. For slicing to be effective across clusters, it requires multiple 207 

years/cohorts to be present within a single cluster and at least one of those years/cohorts to be 208 

present in a different cluster. Depending on slicing width and angle, a slice covers approximately one-209 

third of each batch, when slicing across three batches, with three separate slices covering the same 210 

batch (Fig. 1c and see simulations). Such a strategy also naturally allocates samples of certain slices to 211 

batches in subsequent clusters, bridging clusters together (Fig. 1c) and allowing control of among-212 

cluster variation. Setting the slicing angle and width is a trade-off between statistical independence 213 

(assessing statistical power in the case of confounding effects) and the number of samples that remain 214 

unanalysed until addition of newly collected samples. This latter point is a constraint, as the number 215 

of samples that can be analysed simultaneously will be reduced, if only slightly, by this approach unless 216 

samples are analysed multiple times. We argue that the creation of statistical independence and 217 

accounting for among-cluster variation are merits that outweigh this limitation.    218 

Growing biobanks that store samples sequentially, can easily apply the slicing selection 219 

strategy by using a slicing width that ensures the analysis of multiple years and cohorts in a single 220 

cluster. If the number of samples exceeds the preferred slicing width, additional clusters can be 221 

analysed using the same layout (e.g. slicing a year/cohort multiple times but analysing them in 222 

separate clusters with slices from other years/cohorts). This approach minimises errors due to sample 223 

selection when samples are already stored sequentially, as picking samples at random across a wide 224 

biobank can be both impractical (multiple boxes, freezers), bad for sample integrity (sorting through 225 

many samples can risk defrosting) and prone to error (due to transcription or pipetting errors).  226 

Slicing of newly acquired samples is similar to slicing from an existing biobank, but to prevent 227 

confounding effects, analysis needs to be postponed until samples from multiple time periods have 228 

been collected (e.g. seasons, years and cohorts). In both existing and growing biobanks, slicing over 229 

the potential confounding variable (e.g. year/cohort) is essential to statistically separate among-230 

cluster variation and confounding effects. 231 
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The slicing strategy, however, cannot be applied to clusters under the common assumption 232 

that longitudinal samples need to be aggregated in a single batch, because longitudinal samples are 233 

generally collected in different fieldwork sessions and therefore analysed in different batches. 234 

Combining the slicing of clusters with aggregation of longitudinal samples in a batches or 235 

randomisation of samples across batches maintains the disadvantage that samples still need to be 236 

picked, increasing the likelihood for human error. We therefore simulated different strategies to test 237 

the assumption that aggregating longitudinal samples results in higher statistical power to detect 238 

within-individual effects. Besides aggregation of longitudinal samples and random allocation of 239 

samples among batches, we also simulated slicing across batches which allows convenient sequential 240 

analysis of clusters and batches, as long as, for example, multiple years are analysed in a single cluster 241 

and a single batch (Fig. 1c), while maintaining statistical independence. 242 

 243 

Simulations 244 

We determined statistical power and precision to detect individual and cohort effects, using different 245 

sample allocation strategies (i.e. samples from a single individual aggregated in the same batch, 246 

randomly allocated to batches, or ‘sliced’ across batches), with simulations run in R 3.3.1 (R 247 

Development Core Team 2018, see supplementary Data S2). 248 

 We simulated a population of 200 individuals in 10 cohorts that were sampled once a year for 249 

a maximum of 5 years. ‘Telomere length’ was used as an example response variable; however, this is 250 

applicable to any longitudinally measured continuous variable. Starting telomere length was drawn 251 

from a Gaussian distribution to fix between-individual standard deviation (SD = 1.00) and all 252 

individuals shared the same within-individual shortening rate of telomeres (0.06*1, scaled to SD = 1 253 

parameter, = 0.06 per year). 254 

We simulated cohort effects (20 individuals per cohort) by taking the fraction (0.9) of 255 

generated values drawn from a uniform distribution (between 0 and 1) and added these to the 256 

response variable. We chose to model ‘cohort’ as a possible biological confound with experimentally 257 
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induced variation. The choice to model such specific biology is rather arbitrary as we are simulating 258 

the confounding effect of ‘batch of analysis’ and biology. Individual probability of death was then 259 

modelled via telomere length associated with mortality (Eq. 1), 260 

𝑦𝑖 = 0.25(−0.23 ∗ 𝑥𝑖)                 (1) 261 

where x is initial telomere length for ith individual, with a baseline probability of death of 0.25 and a 262 

slope of -0.23, providing mortality (yi) per year drawn from a uniform distribution. This resulted in the 263 

probability of death varying with ±2 SD telomere length from 0.14 to 0.36 per year. Mortality was 264 

partly determined by the response variable (to simulate selective disappearance from the population, 265 

determined by the between-individual age component, see next paragraph), with variable telomere 266 

lengths to start with (between-individual variation) and a set within-individual shortening (within-267 

individual age component, see next paragraph). 268 

We simulated the relationship between telomere length and age (in years) both within and 269 

between individuals. Between-individual effects were modelled using the mean age at which the 270 

individual’s trait was measured, and within-individual effects as the age at which an individual’s trait 271 

was measured minus the mean measurement age for that individual (van de Pol & Wright 2009). 272 

Simulations were run 5,000 times, for a varying number of samples (12, 24, 36, 48) per batch and 273 

simulated differences between batch means (batch attributable error, SD: 1, 2.5, 5, 10, 20, 40). This 274 

error is relatively high to ensure we control for potential effects of batch attributable error when 275 

determining the variation in statistical power among sample allocation strategies. Simulations were 276 

repeated three times to obtain three separate results per sample allocation strategy. The slicing 277 

strategy was simulated at an angle that resulted in at least three slices per batch. Note, to start the 278 

sample allocation, the first batch was filled by 2/3 with the first slice and by 1/3 with the second slice, 279 

where subsequent batches were filled by 1/3 with subsequent slices (Fig. 1c). Additional simulations 280 

were run with a doubled sample size (n = 400) to assess the effects on statistical power and precision 281 

estimates among sample allocation strategies. 282 
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The simulated data were analysed using linear mixed models in lme4 1.1-14 (Bates et al. 2015), 283 

where the model included random effects (at the intercept level) for individual (to control for repeated 284 

measurements on the same individual) and batch, and cohort was fitted as a fixed factor. Parameters 285 

of the simulations were manually optimised so that a power of approximately 0.5 was achieved to 286 

detect either within- or between-individual effects for the random allocation strategy, determined by 287 

a t-value of less than -2 (α ≈ 0.05). This intermediate level of statistical power avoids thresholding 288 

effects at either end of the power spectrum (0 or 1). Such a simulation strategy maximises the 289 

sensitivity in detecting any modulation of statistical power by the sample allocation strategy used, 290 

which is our focus. It is important to understand the effect of sample allocation strategy on precision 291 

estimates, as well as statistical power. We therefore quantified precision as the width of the 292 

distribution of parameter estimates from the models run on the repeated simulated datasets, as the 293 

absolute difference between the 75% and 25% percentile divided by the median (note, a precision 294 

value closer to zero means higher precision). 295 

 296 

Results 297 

Our simulations tested the widely held assumption that aggregating longitudinal samples of the same 298 

individual in a single batch increases statistical power to detect within-individual effects (e.g. Herborn 299 

et al. 2014; Nettle et al. 2015). The statistical power to detect within-individual effects was similar 300 

when longitudinal samples were aggregated (mean statistical power ± SD across sample sizes and 301 

three runs per simulation = 0.558 ± 0.007) and when samples were sliced (0.559 ± 0.006). It was 302 

somewhat lower when samples were randomly allocated to batches, but only when batches were 303 

small (i.e. n = 12; 0.543 ± 0.015; Fig. 2). For between-individual effects, however, the statistical power 304 

was similar when samples were sliced across batches (0.426 ± 0.006), and randomly allocated to 305 

batches (0.422 ± 0.007), but substantially lower (0.388 ± 0.021) when longitudinal samples were 306 

aggregated in a single batch (Fig. 2). The statistical power to detect cohort effects was much higher 307 

when samples were sliced across batches (0.469 ± 0.009) and randomly allocated to batches (0.461 ± 308 
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0.008) than when longitudinal samples were aggregated in a batch (0.140 ± 0.042; Fig. 2). A doubled 309 

sample size (n = 400) increased statistical power but did not alter variation in statistical power among 310 

sample allocation strategies (Fig. S1). The reduction in statistical power for aggregation of longitudinal 311 

samples in a batch is explained by the confounding of the between-individual/cohort and batch effect. 312 

Our slicing method outperforms both random allocation of samples and sample aggregation to 313 

disentangle within- and between-individual effects, an objective shared by many longitudinal studies 314 

(van de Pol & Wright 2009; Nussey et al. 2013). 315 



15 
 
 

 316 

317 

Fig. 2. Statistical power analyses of simulated data for individual and cohort effects among a variety 318 

of batch sizes (n=12 to 48) using three sample allocation strategies: (1) aggregating samples per 319 

individual in the same batch (solid, red), (2) assigning samples randomly to batches (dashed, blue) or 320 
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(3) slicing samples across batches (dotted, yellow). Raw data points from three separate simulations 321 

with mean statistical power per sample size are shown against among-batch variation. Statistical 322 

power decreased in all simulations with increasing among-batch variation, as expected, and increased 323 

when batch effects could be estimated more reliably with increasing numbers of samples per batch. 324 

Scales differ between cohort, within- and between-individual effects.  325 

 326 

The precision to estimate within-individual effects was similar when samples were sliced 327 

across batches (mean precision ± SD across sample sizes and three runs per simulation = 0.623 ± 328 

0.013), longitudinal samples were aggregated within batches (0.630 ± 0.012) and when samples were 329 

randomly allocated to batches (0.641 ± 0.017; Fig. 3). For between-individual effects the precision was 330 

also similar for slicing samples across batches (0.747 ± 0.013) and random allocation of samples to 331 

batches (0.752 ± 0.015), but marginally more imprecise at a lower number of samples per batch for 332 

aggregation of longitudinal samples in a single batch (0.792 ± 0.028; Fig. 3). Detection of cohort effects 333 

was more precise when longitudinal samples were aggregated within batches (1.528 ± 0.234) than 334 

when samples were randomly allocated to batches (3.505 ± 0.147) and sliced across batches (3.570 ± 335 

0.151; Fig. 3). A doubled sample size (n = 400) increased precision but did not alter variation in 336 

precision among sample allocation strategies (Fig. S2).  337 

The slicing strategy we propose here thus performs similarly to randomising samples for 338 

between-individual and cohort effects, but outperforms it on within-individual estimates. In general, 339 

a strategy of aggregating samples does not outperform slicing or randomisation. Simulations were run 340 

for a wide range of parameters and sample sizes (Figs 2, 3, S1, S2). When desirable, different 341 

parameter sets specific to current or future datasets can be included in the script provided 342 

(supplementary Data S2).  343 
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344 

Fig. 3. Precision analyses of simulated data for individual and cohort effects among a variety of batch 345 

sizes (n=12 to 48) using three sample allocation strategies: (1) aggregating samples per individual in 346 

the same batch (solid, red), (2) assigning samples randomly to batches (dashed, blue) or (3) slicing 347 

samples across batches (dotted, yellow). Raw data points from three separate simulations with mean 348 



18 
 
 

precision per sample size are shown against among-batch variation. Note, a precision value closer to 349 

zero means higher precision. Precision decreased in all simulations with increasing among-batch 350 

variation, as expected, and increased when batch effects could be estimated more reliably with 351 

increasing numbers of samples per batch. Scales differ between cohort, within- and between-352 

individual effects. 353 

 354 

Discussion 355 

Our simulations clearly demonstrate that the slicing and randomisation strategies outperform 356 

aggregation of longitudinal samples in a batch, without any loss in statistical power or precision. The 357 

ability to reject the null hypothesis when false (i.e. statistical power) was marginally greater for within-358 

individual effects when longitudinal samples were either aggregated within a batch or sliced across 359 

batches. Conversely, when samples were randomly allocated or sliced across batches, compared to 360 

aggregation of longitudinal samples within a batch, there was greater statistical power to detect 361 

between-individual effects.  362 

The lack of variation in statistical power to detect within-individual effects between the slicing, 363 

random and aggregation allocation strategies was the consequence of appropriate statistical 364 

methodology, accounting for batch, individual and cohort through fixed and random effects. These 365 

results disprove the assumption that samples from a single individual need to be analysed in the same 366 

batch for greater statistical power to detect within-individual effects (Salomons et al. 2009; Beirne et 367 

al. 2014; Nettle et al. 2015). Such efforts will reduce the statistical power of the study and generate 368 

unnecessary effort in picking specific samples, which increases the likelihood of technical errors (e.g. 369 

sample mix-ups, freeze/thawing effects). 370 

The notion that longitudinal samples should not be aggregated in the same batch becomes 371 

particularly pronounced when cohort effects apply. The effort of grouping samples from a single 372 

individual together collects cohorts together (an individual’s cohort is fixed) in a batch thus reducing 373 

the statistical power to distinguish between different cohorts. Random allocation of samples and 374 
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slicing have a substantially greater statistical power to detect cohort effects due to a higher mixture 375 

of cohorts within the same batch. For telomere biology especially, estimating cohort effects reliably is 376 

important as it affects telomere length quite strongly (Spurgin et al. 2017), but cohort effects are not 377 

always estimated.  378 

While it depends on specifications of the dataset, we conclude the patterns should hold in 379 

general for the large majority of datasets. Thus, slicing batches provides optimal statistical power and 380 

precision to detect individual and cohort effects, when combined with appropriate statistical 381 

methodology (mixed model framework). Additionally, the benefits of applying slicing to clusters (i.e. 382 

logistics, less error-prone, no uncontrollable variation among clusters) allows sequential analysis of 383 

the biobank while ensuring statistical independence and accounting for among-cluster variation. 384 

These benefits make slicing the preferred method for analysing longitudinal long-term datasets. 385 

 386 

Integral approach to growing biobank analysis 387 

The optimal sample selection strategy for analysing specific long-term datasets depends on the 388 

structure of the data and questions of interest. However, in the majority of long-term datasets, slicing 389 

provides a sustainable outcome. It overcomes the problems with differential timing in analysis of 390 

clusters, which commonly occur in growing biobanks from long-term studies, allowing separate 391 

analysis of current data and flexible inclusion of this into future analyses. Furthermore, slicing allows 392 

sequential analysis of samples, preventing complicated sample labelling and placing among clusters 393 

and therefore reducing the potential for human error. However, the assumption that longitudinal 394 

samples should be aggregated in a single batch could hinder the slicing approach, but simulations in 395 

this study have disproven this assumption. Thus, slicing is the selection strategy with optimal statistical 396 

power to detect individual and cohort effects. Although slicing occasionally requires postponed 397 

analysis (i.e. part of the biobank needs to stay in place to secure statistical independence), the higher 398 

accuracy and comparability of analyses over time likely outweigh this limitation for the large majority 399 

of datasets. 400 
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 Even though slicing minimises the effects of among-cluster variation and confounding effects, 401 

the continued use of appropriate internal controls is advised. The extent to which internal controls 402 

account for among-batch variation remains questioned, as normalisation is based on a single 403 

reference sample (Cawthon 2002). The single reference sample point estimate, to which every other 404 

sample is corrected, has the same error as all the other samples and therefore inflates the error 405 

estimates. Although comparing samples among batches relies on the usage of this same, repeatedly 406 

analysed reference sample where large volumes are required, the combination with slicing increases 407 

accuracy and accounts for among-batch variation and internal controls should therefore be included 408 

in all batches. The inclusion of internal controls can at least alert the user of sudden changes in the 409 

analysis setup and are needed in some forms of analysis, mainly those where a dilution curve is 410 

required (e.g. qPCR, antibody-based hormone analysis).     411 

 In addition to internal controls, the use of statistical mixed models (Bolker et al. 2009) is 412 

required to analyse samples collected in long-term studies because, for example, storage duration is 413 

not accounted for by internal controls. Storage duration and batch effects are often recognised, but 414 

rarely modelled using appropriate methodology. Long-term data should therefore be analysed in 415 

mixed models, while including fixed and random effects (Bolker et al. 2009), to account for storage 416 

duration, batch effects and other potentially confounding effects with cluster. The failure to include 417 

these effects can inflate type I and type II errors when there is a temporal, spatial or other spurious 418 

correlation with any independent variable. 419 

 420 

External variation and meta-analyses 421 

Long-term studies usually span multiple years or decades in which changes in equipment (e.g. 422 

machines) or analyst among clusters can result in external variation that could compromise the 423 

integrity of the data (e.g. Reichert et al. 2017). Consistency in the analysis of samples in long-term 424 

studies (i.e. slicing) and testing for external variation allows for temporal intra-biobank comparisons 425 
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and flexible inclusion of data in future analyses, while accounting for among-cluster variation and 426 

potential confounding effects.  427 

 Consistency in the analysis of growing biobanks also allows for inter-biobank comparisons 428 

when comparing different studies in, for example, meta-analyses. These comparisons, however, 429 

require caution as analyses are often conducted in different laboratories, resulting in inconsistencies 430 

in the approaches to the analysis and high external variation. These effects do not necessarily affect 431 

within-study effect sizes and their comparability, although differences in measurement error (i.e. 432 

repeatability) will (see discussion in Simons, Cohen & Verhulst 2012). Caution is particularly warranted 433 

for comparative studies as some methods are inherently not comparable between studies on a 434 

continuous scale. For example, some methods are always compared to a standard, and are thus always 435 

relative (e.g. qPCR). Such methods become non-comparable as the standard that samples are 436 

compared to is not the same across studies (usually a pooled or reference sample). Conclusions 437 

derived from the data can therefore be compared quantitatively across studies (e.g. by summarising 438 

effect sizes across studies), but the raw data cannot be compared across species (i.e. comparing 439 

telomere lengths as estimated by qPCR; Tricola et al. 2018; Wilbourn et al. 2018). Thus, because 440 

telomere lengths estimated by qPCR are scaled to different internal controls and control genes, 441 

samples between species and studies cannot be compared in absolute terms, but are comparable in 442 

terms of effect size in a meta-analytic context (Tricola et al. 2018; Wilbourn et al. 2018). The several 443 

levels of external variation (e.g. internal controls, reagents or analyst) can be severe and affect effect 444 

sizes through differences in measurement error (Simons, Cohen & Verhulst 2012), as well as induce 445 

bias. Meta-analyses should therefore be interpreted with caution and should explore moderators for 446 

the methodology used where possible (Nakagawa & Santos 2012). Awareness of methodology, 447 

internal controls and approach to analysis are important in determining the potential for comparison 448 

among studies, populations and species. 449 

 450 

Conclusions 451 
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A major current challenge in long-term studies is analysing data as it is collected while also being able 452 

to include it in future analyses, without creating uncontrollable variation, allowing comparison of 453 

results over multiple years or even decades. This requires the ability to compare differentially timed 454 

analyses that are potentially biased by confounding cluster effects. This study shows the importance 455 

of considering the structure of samples among clusters and batches in long-term studies. The slicing 456 

approach proposed here retains statistical independence and accounts for among-cluster variation in 457 

the sequential analysis of growing biobanks. This approach is further characterised by optimal 458 

statistical power and precision to detect cohort, within- and between-individual effects, if analysed 459 

using appropriate internal controls, statistical mixed models and consistent methodology to control 460 

for confounding effects. A single sample’s scientific value increases through this approach, as it can be 461 

used separately in current studies, but can also be included in subsequent studies, providing 462 

sustainable (re)use of collected data. The approach we propose here (slicing, internal controls, mixed 463 

models) is easy to apply and improves the potential for these growing biobanks to address important 464 

ecological and evolutionary questions. 465 
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Fig. S1. Statistical power analyses (n = 400) for individual and cohort effects among a variety of batch 597 

sizes (n=12 to 48) using three sample allocation strategies: (1) aggregating samples per individual in 598 

the same batch (solid, red), (2) assigning samples randomly to batches (dashed, blue) or (3) slicing 599 

samples across batches (dotted, yellow). Raw data points from three separate simulations with mean 600 

statistical power per sample size are shown against among-batch variation. Statistical power 601 

decreased in all simulations with increasing among-batch variation, as expected, and increased when 602 

batch effects could be estimated more reliably with increasing numbers of samples per batch. Scales 603 

differ between cohort, within- and between-individual effects.  604 

 605 
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 606 

Fig. S2. Precision analyses (n = 400) for individual and cohort effects among a variety of batch sizes 607 

(n=12 to 48) using three sample allocation strategies: (1) aggregating samples per individual in the 608 

same batch (solid, red), (2) assigning samples randomly to batches (dashed, blue) or (3) slicing samples 609 

across batches (dotted, yellow). Raw data points from three separate simulations with mean precision 610 

per sample size are shown against among-batch variation. Note, a precision value closer to zero means 611 

higher precision. Precision decreased in all simulations with increasing among-batch variation, as 612 
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expected, and increased when batch effects could be estimated more reliably with increasing numbers 613 

of samples per batch. Scales differ between cohort, within- and between-individual effects. 614 

 615 


