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Abstract 18 

• Recent advances in drone technology have rapidly led to their use for monitoring and 19 

managing wildlife populations but a broad and generalised framework for their 20 

application to complex wildlife aggregations is still lacking 21 

• We present a generalised semi-automated approach where machine learning can map 22 

targets of interest in drone imagery, supported by predictive modelling for estimating 23 

wildlife aggregation populations. We demonstrated this application on four large 24 

spatially complex breeding waterbird colonies on floodplains, ranging from ~20,000 25 

to ~250,000 birds, providing estimates of bird nests 26 

• Our mapping and modelling approach was applicable to all four colonies, without any 27 

modification, effectively dealing with variation in nest size, shape, colour and density 28 

and considerable background variation (vegetation, water, sand, soil etc.). Our semi-29 

automated approach was between 3 to 8 times faster than manually counting nests 30 

from imagery at the same level of accuracy 31 

• This approach is a significant improvement for monitoring large and complex 32 

aggregations of wildlife, offering an innovative solution for monitoring large and 33 

complex aggregations where ground counts are costly, difficult or not possible. Our 34 

framework requires minimal technical ability, is open-source (e.g., Google Earth 35 

Engine and R), and generalisable to other surveys  36 
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1 Introduction 37 

Recent advances in technology offer the potential to improve field methods for rapidly and 38 

effectively monitoring biodiversity (Pimm et al. 2015). Among these advances is the use of 39 

aerial vehicles, or drones, that can carry remote sensing instruments to capture extremely 40 

high spatial resolution imagery with temporal flexibility (Anderson & Gaston 2013). Drones 41 

are relatively easy to use and their increasing ‘off the shelf’ application to wildlife research 42 

has been innovative and exciting (Chabot & Bird 2012; Chabot & Bird 2015). There are 43 

increasing novel applications for monitoring both populations and behaviours of different 44 

fauna, including birds (Chabot & Francis 2016; Hodgson et al. 2018), elephants (Vermeulen 45 

et al. 2013), crocodiles (Evans et al. 2016) and marine mammals (Seymour et al. 2017). 46 

 47 

Given the ability of drones to collect high quality data near large aggregations of wildlife, 48 

they offer an attractive opportunity for improved methods and increased cost effectiveness of 49 

monitoring wildlife population. The relative advantages of aerial counting for wildlife 50 

monitoring is long established, including reduced detection error, increased precision, 51 

reduced observer effects and retrospective analysis of data and. For example, aerial counting 52 

was more accurate and precise than ground counting using aerial images of penguin colonies 53 

(Fraser et al. 1999) and geese (Boyd 2000). Similar advantages of image-based counts over 54 

ground-based counts have been demonstrated for drone acquired imagery too (Hodgson et al. 55 

2018). 56 

 57 

At large spatial scales (km) and for large aggregations (e.g. >5,000-10,000 individuals), aerial 58 

surveys provide cost effective information on counts of individuals, breeding-pairs and nests 59 

(Caughley 1977; Kingsford & Porter 2009), although sometimes suffering high variability 60 

and imprecision (Kingsford 1999). High altitude imagery from aeroplanes allows large areas, 61 
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if not whole aggregations, to be captured in single images (e.g. in Boyd (2000) ~30 photos 62 

captured flocks of ~10,000 geese). Owing to the fact that similar areas require many 63 

thousands of drone images and to the extra complexity from increased spatial resolution, 64 

drone use for monitoring wildlife aggregations continues to be limited to monitoring 65 

relatively small aggregations (i.e. < 5-10,000 individuals), though there are some notable 66 

exceptions (Chabot & Bird 2012; Chabot, Craik & Bird 2015; Afán, Máñez & Díaz-Delgado 67 

2018). 68 

 69 

Manually counting targets of interest (e.g. individual animals, breeding-pairs, nests) from 70 

aerial images, regardless of capture platform, is laborious. This has driven the development of 71 

automated or semi-automated counting approaches (Chabot & Francis 2016; Hollings et al. 72 

2018), aided by the widespread availability of increased computing power, growing computer 73 

literacy and new methods. Current approaches typically involve spectral thresholding 74 

(Chabot & Bird 2012; Seymour et al. 2017), point process algorithms (Descamps et al. 2011) 75 

or combinations of spectral properties and predictive modelling (Hodgson et al. 2018). These 76 

methods rely on high contrast (i.e. dark animals on light backgrounds or light animals on dark 77 

backgrounds) and consistency in the shape and colour of the targets (Hollings et al. 2018). 78 

They are generally only applicable when the spectral and structural characteristics of the 79 

animals (in the images) are unique compared to the rest of the image (Chabot & Francis 80 

2016). More recently, remote sensing-based methods have been used to overcome challenges 81 

with low contrast and high variation among target objects (Groom et al. 2011; Drever et al. 82 

2015; Liu, Chen & Wen 2015; Afán, Máñez & Díaz-Delgado 2018; Chabot, Dillon & Francis 83 

2018).  84 

 85 
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Despite the interest in automated methods for counting aggregations of birds, their use by 86 

ecologists and managers for monitoring complex wildlife aggregations remains limited 87 

(Chabot & Francis 2016), with manual approaches still dominating (Buckland et al. 2012; 88 

Drever et al. 2015). There are three key reasons that have been highlighted for the disconnect 89 

between new methods and their ecological application: 1) most methods have only been 90 

demonstrated at small spatial scales relative to real-world applications (even if the number of 91 

individuals is very large) and in homogenous areas with little environmental complexity 92 

(Hollings et al. 2018); 2) ecological complexity and outcomes are not appropriately 93 

considered with respect to the mobility of individuals and variation in the types of target 94 

features of interest (Baxter & Hamilton 2018); and 3) there is a high technical threshold for 95 

implementing most methods (Chabot & Francis 2016).  96 

 97 

In this paper, we develop a semi-automated framework for monitoring large complex wildlife 98 

aggregations using drone-acquired imagery. We use the case study of colonial waterbird 99 

breeding colonies because they present the key challenges currently inhibiting uptake of 100 

drone-based methods; the colonies cover large spatial extents and can have range of density 101 

of animals across these extents; there are many thousands of highly mobile individuals that 102 

cannot be contained to single drone images; the target features of interest are nests, which can 103 

exhibit significant differences in structure and colour across space and time (e.g. empty nests, 104 

adult/juvenile/chick/egg occupied nest, variable nest material, variable nest shape and 105 

arrangement); and considerable variation in background environment (mud, sand, water, 106 

live/dead vegetation). We developed a set of generalised methods, that transferred directly 107 

between colonies without modification, and required relatively little technical ability to 108 

apply. We captured imagery over four breeding waterbird colonies in New South Wales, 109 

Australia, ranging in size from ~20,000 to >200,000 birds, including the largest ever 110 
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waterbird colonies to be surveyed by drone. We detail flight planning, image acquisition and 111 

processing, manual and automated methods for mapping and accurately counting nests. We 112 

include the Google Earth Engine and R code required for our analyses, along with a web-app  113 

to explore drone data, intermediate machine learning predictor and nest map layers. 114 

 115 

2 Materials & methods 116 

Our primary motivation was mapping and counting nests for breeding colonial waterbirds, 117 

with wide applicability. The methodology needed to work on both small (~10,000 – 20,000 118 

birds) and large (200,000+ birds) colonies and be transferable across different environments 119 

and applications, requiring limited technical modification or ability. We developed a modular 120 

approach that included: 1) drone image surveys of four large breeding colonies; 2) manual 121 

counting of nests for training and validation; 3) a machine learning mapping method to map 122 

nests from drone imagery; and 4) a predictive modelling method to estimate total nest 123 

numbers.  124 

 125 

2.1 Study location and bird colony details 126 

Straw-necked Ibis (Threskiornis spinicollis) are an Australian nomadic waterbird species 127 

which form very large breeding colonies, sometimes mixed with other waterbird species, 128 

when ecological conditions are favourable (Brandis et al. 2014). We surveyed four colonies: 129 

Merrimajeel, Zoo Paddock, Eulimbah and Block Bank (Table 1). We surveyed the colonies at 130 

around their maximum size, determined by progression of breeding (Brandis et al. 2011).  131 

Straw-necked Ibis typically make their nests in flooded wetlands and floodplains, using 132 

inundated vegetation as nesting material raised above ground/water level. Their nests can be 133 

isolated nests or ‘clumped’ (10-200 nests). The nests are generally round or oblong in shape, 134 

but are often irregular in large clumps, with trampled vegetation, forming a dark green to 135 
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brown colour, which increasingly whitens with guano (Fig. 1), until nests are abandoned 136 

either when offspring are lost or chicks fledge; at the latter stages, nests begin to lose 137 

structure and colour. At any point, nests may be empty, occupied by adults, eggs or juveniles, 138 

or a combination depending on parental foraging and care and chick mortality and fledging. 139 

A colony usually has a mixture of nest and juvenile ages. Most (>90 – 95%) of birds in the 140 

colonies were Straw-necked Ibis, a dark glossy blue-black bird on their back and wings, and 141 

with a white underside (black when viewed from above). There were also small numbers 142 

(<500-1000) of Australian White Ibis (T. Molucca), Glossy Ibis (Plegadis falcinellus) and 143 

Spoonbills (Platalea spp.) (Fig. 1). 144 

 145 

2.2 Drone data and processing 146 

Drone image data were collected during Spring and Summer of 2016 and 2017 (Table 1), 147 

using a DJI Phantom 3 Professional quad-copter, with the stock single sensor red/green/blue 148 

(RGB) camera. Colonies were within large flooded extents (km’s wide), so multi-rotor drones 149 

were the only option, with no landing area for fixed-wing drones. We launched a drone from 150 

an amphibious vehicle or canoe used to enter the colonies. Flights were conducted using 151 

parallel flight lines, at ~100 m and speed of 5-10 ms-1 (Lyons et al. 2018a; Lyons et al. 2019). 152 

We aimed to acquire imagery with ~70% forward and lateral overlap to ensure adequate 153 

coverage for post-processing. Depending on weather and environmental conditions, we 154 

surveyed 5 – 40 hectares per flight, requiring multiple flights to survey each colony. There 155 

were no obvious negative interactions with the waterbirds; further animal ethics 156 

considerations can be found in Lyons et al. (2018a), and a more detailed protocol for drone-157 

based monitoring of waterbird colonies in Lyons et al. (2019). 158 

 159 
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The drone imagery was processed using the commercial software Pix4DMapper (v4.19, 160 

Pix4D SA), which uses a photogrammetry technique called ‘structure from motion’ to 161 

identify points in overlapping images, ultimately generating a 3D point cloud reconstruction 162 

of the landscape. The 3D information is then used to generate a digital surface model and an 163 

orthorectified image mosaic. Only standard accuracy GPS (5 – 10 m accuracy) was used for 164 

georeferencing. This resulted in some error in absolute geographic location, but was not 165 

important, given our focus on identification and relative position of nests in the image 166 

mosaics. 167 

 168 

2.3 Semi-automated approach for nest counting 169 

Once the imagery was acquired, we needed to effectively identify nests which were highly 170 

variable in shape and colour, and sometimes had low contrast to the surrounding environment 171 

(Fig. 1). We initially tested a point process algorithm (Descamps et al. 2011) but it could not 172 

handle large data sizes; an object-based image analysis routine (sensu Chabot, Dillon and 173 

Francis (2018) but it had difficultly identifying >3,000-5,000 nests with one ruleset; and a 174 

machine learning/modelling approach (Hodgson et al. 2018) but it could not identify >1,000 175 

nests with one parameterisation (see Data accessibility for modified Matlab routine). No 176 

particular technique worked effectively within or between the colonies, supporting similar 177 

findings on the limitations of automated and semi-automated methods (Hollings et al. 2018). 178 

So, we developed a modular approach, adaptable to variable target properties and scalable to 179 

large spatial extents, applicable to multiple colonies. This involved first mapping the area of 180 

nests using a remote sensing approach, and then estimating the number of nests using a 181 

predictive modelling approach. 182 

 183 
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2.3.1 Manual counts for training and validation data 184 

A comprehensive training and validation data set was critical for developing counting 185 

methods. So, we first manually and systematically counted all the nests in the imagery over 186 

all colonies. We imposed a 50 x 50 m grid of quadrats on each colony, and digitally 187 

annotated every visible nest. We used this gridded method for two reasons: 1) it enabled an 188 

observer to sequentially work through the whole colony, while reducing distraction (and 189 

computer memory overhead) from surrounding areas; and 2) it reflected real-world practices 190 

when users choose only a limited number of training quadrats to manually count nests. 191 

During the field work, we also counted nests (in situ) for GPS-tagged clumps at each colony 192 

which we used to test the accuracy of the drone-based manual counting. 193 

 194 

2.3.2 Machine learning mapping  195 

Subsequently, we applied a supervised machine learning approach to map nests at each 196 

colony. We defined nests as any material or bird that constituted a nest or nest clump, based 197 

on our experience in the field. Motivated by its robustness to redundant predictor variables, 198 

we used a random forest classifier (Breiman 2001). Random forests are a machine learning 199 

algorithm that uses information from a training set and a suite of relevant predictor variables 200 

to predict class membership of all the image pixels in the study area. Random forests are 201 

particularly robust to redundant predictors, which is an important feature given that all data 202 

came from the one sensor. This allowed us to include many different image-based predictor 203 

variables without altering the approach for different colonies.  204 

 205 

With all nests manually identified, we sampled a subset to train the random forest classifier. 206 

We randomly placed points across the colony, at least 30 m apart, and randomly chose a 207 

number of those points as a classifier training location. To approximate the 50 x 50 m 208 
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quadrats, a 30 m buffer was placed around each chosen training locations, within which all 209 

manually counted nests were selected for training. We trialled between 5 and 20 training 210 

locations for each of the colonies. The classifier also requires non-target features (non-nest) 211 

randomly spread across the colonies: 1000 points for the smaller colonies (Eulimbah and 212 

Block Bank) and 10,000 points for the larger colonies (Merrimajeel and Zoo Paddock). 213 

 214 

We derived arithmetic and textural metrics from the red, green and blue channels (𝑟, 𝑔, 𝑏 215 

respectively) in the drone data to use as predictor variables in the random forest 216 

classification. These included: a ‘white’ index 
𝑏+𝑔

𝑟
; a Laplacian-8 edge-detection kernel on 217 

the ‘white’ metric; an RGB vegetation index 
𝑔−𝑟

𝑔+𝑟
 (Bendig et al. 2015); a ‘green brightness’ 218 

index 
𝑔

𝑏+𝑔+𝑟
; the ‘contrast’, ‘variance’, ‘inverse difference moment’ and ‘shade’ texture 219 

metrics from the Gray Level Co-occurrence Matrix (Haralick 1979), applied to each of the 220 

‘white’ index and blue band; the standard deviation within a 2 m and 7 m radius of each pixel 221 

applied to the ‘shade’ metric and vegetation index; and a 1st and 2nd order difference of 222 

gaussians (Polakowski et al. 1997) on the ‘shade’ metric. 223 

 224 

The training data set was compiled by extracting the pixel values for each image metric layer 225 

within a 10 cm buffer, around each training nest and non-nest point, so the random forest 226 

classifier was a binary nest and non-nest classification. The algorithm was parameterised with 227 

500 trees and a minimum leaf population of 10. We implemented the classification in the 228 

Google Earth Engine (Gorelick et al. 2017), allowing seamless prototyping, visualisation and 229 

production environment for processing the large high resolution image data sets. Any 230 

contiguous areas less than 0.03 m2 were removed (classification noise was unlikely to be bird 231 

nests) and exported from the Earth Engine. The Google Earth Engine is freely available to 232 



11 

 

anyone, and we provide the code required to run the classifications, along with an interactive 233 

web-app to explore some drone data, predictor layers and nest classification interactively 234 

(link in Data accessibility section). 235 

 236 

2.3.2 Predictive model estimation 237 

To estimate the number of nests as a function of the mapped nest area for each colony, we 238 

used predictive modelling. We first summarised the number of manually counted nests and 239 

the mapped nest area within each 50 x 50 m quadrat. We then predicted the number of nests 240 

in each quadrat, with the whole colony count being the sum of the quadrat estimates. We used 241 

two simple approaches: 1) an assumption that the number of nests was directly proportional 242 

to the mapped nest area (linear area:count ratio); and 2) a generalised linear model (GLM; 243 

Poisson error distribution) of nest count as a function of nest area and local nest density. We 244 

expected that the local density of nests would have a relationship to the number of nests. 245 

Density was calculated as the percentage of the 50 x 50 m quadrat mapped as nests. Using a 246 

GLM with a negative binomial error distribution or a generalised additive model with 247 

smoothers for nest area and density provided no appreciable gains, so neither was pursued.  248 

 249 

We used a resampling procedure to examine the number of manually counted 50 x 50 m 250 

quadrats needed to accurately estimate the number of nests for a whole colony. This involved 251 

repeated random sampling of n quadrats, estimating the number of nests using the area ratio 252 

and GLM approaches described above. We used 800 iterations without replacement (i.e. 253 

Monte Carlo resampling, not a bootstrap) for each of 1, 2, …, nmax quadrats. This resulted in a 254 

sampling distribution of 800 whole-colony nest count estimates at each n.  255 

 256 
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To simulate the scenario of limited resources for manual counting, we implemented another 257 

resampling approach to determine whether a given sample of the manually counted quadrats 258 

provided an accurate estimate (plus a confidence interval) of nest count for a whole colony. 259 

This involved a random draw of n quadrats (i.e. scenario of choosing a set of quadrats for 260 

training), and applying a repeated k-fold cross-validation using the area ratio and GLM 261 

estimation approaches. Each random draw of quadrats was stratified by mapped nest area 262 

density, to simulate choosing a range of nest density quadrats to count. We used k = 10 and 263 

10 repeats for the cross-validation, and varied n from ~10-40% of the total number of 264 

manually counted quadrats. This resulted in a sampling distribution of 100 nest count 265 

estimates for each random draw of quadrats, and we took the mean as the resampling estimate 266 

and 2.5 and 97.5 percentiles as a 95% confidence interval. We decided on k-fold resampling 267 

as a good approach to reduce bias for the small sample sizes, but a range of resampling 268 

options are available (Lyons et al. 2018b). All statistical analysis was performed in R version 269 

3.5.1 ((Team 2018); see Data accessibility section). 270 

 271 

3 Results 272 

3.1 Manual training and validation nest counts 273 

The four study colonies varied widely in size, number of nests and bird density (Table 1). The 274 

flying height of ~100 m generated orthomosaic imagery with a pixel size between 3 – 4 cm. It 275 

took 5 – 15 minutes to manually count the nests in a 50 x 50 m quadrat, with higher nest 276 

density on the upper end of that time. Ibis nests and the flooded colony environment were so 277 

variably complex that it was often not possible to accurately manually count nests, even from 278 

3 – 4 cm pixel drone imagery. Occasionally, artefacts from drone imagery processing also 279 

obstructed counting. The accuracy of the manual counting was estimated using the on-ground 280 

field counts, which ranged from ±6% to ±12% (Table 1). The smallest colony had a manual 281 
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count of 7717 nests and the largest colony had 96,989 nests, and with an estimated population 282 

of over 200,000 birds at the time (Lyons et al. 2018a).  283 

 284 

3.2 Semi-automated approach 285 

The same Google Earth Engine code was applied to each colony, showing that the nest area 286 

mapping routine was robust to differing background environments and nest characteristics 287 

within and among each of the colonies. Around 10 of the 30 m training buffer locations were 288 

required for consistent classification of the large extent colonies (Merrimajeel, Zoo Paddock; 289 

~5% total area), and around 5 for the smaller extent colonies (Eulimbah, Block Bank; ~10% 290 

total area). Our assessment of consistent was relatively ad hoc, using a visual assessment of 291 

whether nests and background were well separated. We left a quantitative assessment of 292 

accuracy for estimation of the total numbers. The chosen predictor variables did a good job at 293 

extracting the salient features of the bird colonies (Fig. 2) and the machine learning 294 

classification appeared to identify nests and birds appropriately (Fig. 3).  295 

 296 

The first resampling routine demonstrated that considerable variation in nest estimates was 297 

likely given any random draw of quadrats, but only a small subset of the quadrats was 298 

required to capture most of the variation and provide estimates within the manual count error 299 

range (Supplementary Fig. 1). There was no noticeable improvement in using the GLM 300 

estimation method over the straight area ratio method. Comparing the results of the nest 301 

count estimates for individual quadrats showed that there was a large amount of variation 302 

among estimates for individual quadrats, the primary motivation for the use of a resampling-303 

based estimate (Supplementary Fig. 2). 304 

 305 
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For the k-fold nest count estimation, we decided that an adequate number of quadrats (n) to 306 

use would be signified by most of the estimates from each k-fold cross-validation falling 307 

within the error margin of the manual nest counting (Fig. 4, Table 2). For the two largest 308 

colonies, Merrimajeel and Zoo Paddock, we used 30 quadrats (~12% of all 50 x 50 m 309 

quadrats) to provide accurate estimates. For the two smaller colonies, Eulimbah and Block 310 

Bank, we used 15 and 10 quadrats respectively (~20% and ~30% of total quadrats 311 

respectively). The manual effort time saving was best for the larger colonies – the nest counts 312 

were eight times faster for the two larger colonies (Merrimajeel and Zoo Paddock), but only 313 

five and three times faster for Eulimbah and Block Bank respectively (Table 2). The 314 

estimation was most accurate for the smaller two colonies, and there was some over-315 

estimation for the larger colonies, particularly Zoo Paddock (Fig. 4), that could not be 316 

rectified with more training data. Again, there was no noticeable gain in using the GLM 317 

estimation method over the straight area ratio method; the gain from stratifying the random 318 

draw by mapped nest density was far more appreciable. 319 

 320 

4 Discussion 321 

We developed a generalised approach for monitoring complex wildlife aggregations, 322 

demonstrated through a semi-automated analysis providing estimates of numbers of nests in 323 

four large and complex waterbird colonies, using remotely sensed data captured via drones. 324 

The method was effective and provided accurate estimates at significant time savings 325 

compared to manual counts from the imagery. In our study, we obtained credible and useful 326 

estimates for one of Australia’s more extensive breeding of colonial waterbirds. Our 327 

methodology is simple and robust enough to be applied in multiple environments, and works 328 

for both simple and complex target features. Continued development will see drone-based 329 

monitoring become integrated into waterbird monitoring (Lyons et al. 2019), and used to help 330 
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quantify salient biological features like nesting success (Sarda-Palomera et al. 2017). There 331 

are potential benefits for monitoring some of the many other species of birds that form 332 

complex aggregations, as well as other animals such as marine animals in coral reef and 333 

rocky shore environments, migrating ungulates across different vegetation types or even 334 

unorthodox applications for counting spatially and spectrally complex target features such as 335 

coral bommies. 336 

 337 

Our approach is modular, and the nest mapping and counting is implemented on free open 338 

source platforms, allowing users to readily change parameters or substitute their own or more 339 

appropriate methods. The semi-automated approach applied a machine learning classifier to 340 

high-resolution drone imagery to identify nests (Figs. 2 & 3), supported by modelling to 341 

estimate nest counts (Fig. 4). The methods were effectively applied across four different 342 

waterbird colonies, that contained highly variable target features on variable backgrounds. 343 

The colonies ranged in size from around 7000 nests to almost 100,000 nests (Table 1), and 344 

our semi-automated method required only relatively small amount of training data to produce 345 

comparable accuracy to manually counting from the drone imagery (Fig. 4, Table 2). Here we 346 

further discuss the cost-benefit aspects, opportunities for wider uptake, current challenges, 347 

and finish with some recommendations moving forward.  348 

 349 

4.1 Cost-benefit of the semi-automated approach 350 

The two key motivators for drone-based automated methods are reducing (on-ground) human 351 

observer bias and reducing cost (Chabot & Bird 2015; Baxter & Hamilton 2018; Hodgson et 352 

al. 2018; Hollings et al. 2018). For large and complex wildlife aggregations, such as our 353 

waterbird colonies, it is rarely possible to perform comprehensive on-ground counts and so 354 

drone-use provides an attractive option, and coupled with semi-automated methods, presents 355 
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significant time savings too. In our case the large colonies were eight times quicker to survey 356 

(Table 2), representing a cost (time or money) saving of almost 90% compared to full manual 357 

counts. Cost-benefit analysis will continue to vary with user ability and conditions, including 358 

data acquisition in the field, drone image processing, modelling and programming, and even 359 

the level of detail and accuracy required for monitoring outcomes.  Benefits will also vary 360 

with the nature of application with one-off monitoring perhaps better achieved using manual 361 

methods, until the technology and processes become routine. The efficiency increases in 362 

Table 2 are probably more likely to represent the potential time savings of further application 363 

of the methods. For new applications in novel environments, large manual counts are 364 

probably still required to understand the potential sources of error. 365 

 366 

4.2 Opportunities for uptake of semi-automated methods 367 

Transferability across environments and spatial scales prevents widespread adoption of semi- 368 

and fully- automated methods in wildlife monitoring (Chabot & Francis 2016; Hollings et al. 369 

2018). We successfully implemented our semi-automated approach, using the same 370 

routine/code, on four different waterbird colonies, providing opportunities of transferability 371 

for other avian applications but also more broadly to a range of different large complex 372 

aggregations of wildlife. The key challenge we overcame was identification of target features 373 

with high spatial and spectral variation, on high variability backgrounds, across large spatial 374 

extents. Most current detection approaches rely on methods that require high consistency in 375 

the spatial and spectral organisation of target and background features. Our use of a random 376 

forest classifier efficiently handled redundant predictor data (Breiman 2001), allowing 377 

inclusion of many different colour, spatial and textural metrics as predictor layers. This 378 

helped capture more of the spatial and spectral variation in target features, compared to just 379 
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using the image colour, as well as potential image blur and illumination artefacts (Fig. 3, top 380 

row). 381 

 382 

Research is increasingly tackling this issue of consistency across target and background 383 

features, adapting methods from remote sensing mapping (Afán, Máñez & Díaz-Delgado 384 

2018; Chabot, Dillon & Francis 2018). Application of a single consistent detection routine to 385 

many different applications will provide significant opportunity for broad uptake across 386 

scientific and management applications (Hollings et al. 2018). Although we found that 387 

existing methods (Descamps et al. 2011; Chabot, Dillon & Francis 2018; Hodgson et al. 388 

2018) were not directly able to deal with the level of complexity in our case studies, our 389 

method ultimately required more training data, which reduces the overall cost saving. Thus 390 

continued development of a range of methods will provide opportunities for significant time 391 

and cost savings when applied over large spatial extents, over time. 392 

 393 

Detection approaches from imagery, such as drone imagery, are increasingly benefiting from 394 

the remote sensing disciplines (Chabot, Dillon & Francis 2018), due to innovations in dealing 395 

with large volumes of data efficiently. Existing detection methods typically deal with image 396 

tiles in the order of 1-10 Mb. Our waterbird colonies involved 500 Mb to 5 Gb of data, 397 

requiring significantly improved data management and analysis. Use of the Google Earth 398 

Engine platform (or similar platforms) enables handling of large data, and will facilitate 399 

future expansion into web-based tools where users only supply imagery and training data, 400 

reducing local expertise and computing resource requirements. 401 

 402 

We successfully identified both nests and individual birds when they were away from their 403 

nests (see Fig. 3, 3rd row). This demonstrates the opportunity to use our mapping driven 404 
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approach to identify and count individual waterbirds. Indeed Chabot, Dillon and Francis 405 

(2018) used an object-based mapping approach for identifying and counting individual Snow 406 

Geese. If only individual birds were of interest, and they did not form complex spatial 407 

aggregations, the mapping process would be sufficient to identify and count individuals (i.e. 408 

the k-fold estimation process would be unnecessary). This represents an additional cost 409 

saving because it took less training data to train the machine learning mapping (e.g. for 410 

Merrimajeel, ~5% of the quadrats were needed to train the random forest, but 12% were 411 

needed to train the k-fold estimation). For small and simple tasks (e.g. counting just a few 412 

thousand birds or nests) our k-fold estimation process could also be replaced with simple 413 

thresholding or classification of the predictor metrics. For example, thresholding and 414 

vectorizing the predictor layers we used (e.g. Fig. 2, bottom row) produces accurate nest 415 

counts, but these thresholds become increasingly variable as spatial scale increases, making 416 

consistent application difficult. 417 

 418 

4.3 Challenges for drone-based monitoring 419 

Our main challenge was converting mapped nests to nest count estimates. Although 420 

comparable to manual counting, we were unable to rectify over estimation for the Zoo 421 

Paddock colony (Fig. 4, Table 2). This colony has a large spatial extent but was only sparsely 422 

populated, compared to the other large colony (Merrimajeel; Table 1). Improved modelling 423 

of density effects may reduce this problem. As it was, only five out of the 40 scenarios we ran 424 

would be considered a sizable overestimation (Fig. 4), and even then these numbers would be 425 

unlikely to affect management decisions, but this may vary depending on location and species 426 

of interest. We randomly selected quadrats, so a more judicious initial choice of quadrats for 427 

training may rectify this issue to some degree. 428 

 429 
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Another challenge is the potential impact of uncertainty (~6-12%, Table 1) in manual 430 

counting that can propagate through to the mapping and estimations. Moving semi-automated 431 

methods to increasing spatial scales or more complex environments requires dealing with 432 

more variation in image quality and limitations in the resolution able to be captured (Hollings 433 

et al. 2018). In our surveys, image resolution and quality was challenge, affected by our 434 

ability to access appropriate remote points for take-off and landing, along with environmental 435 

and ethics considerations that limited time available to collect imagery. This in turn resulting 436 

in varying incident sun angles and wind conditions during image collection, resulting in sun 437 

glint and image blur that sometimes obscured manual counting. Identifying old nests (e.g. 438 

Fig.1, top and bottom rows) was difficult, potentially further increasing manual counting 439 

errors. Our cross-validation approach was motivated by the need to account for uncertainty, 440 

and generally accounted well for this error (Fig. 4, Supplementary Fig. 1 & 2), but had a cost 441 

in terms of increased training data requirements. 442 

 443 

Another challenge is the potential antipathy towards use of drones, when sometimes the 444 

literature present them in terms of taking over the role of surveyors. This is a fallacy because 445 

equally large amounts of human effort are needed in collection and processing of drone 446 

imagery, deriving the training and test data, and developing detection routines. Just as Fraser 447 

et al. (1999), almost two decades ago, demonstrated improved aerial counting from a kite-448 

mounted camera, drones are now becoming part of the toolkit. Further, researchers and 449 

managers can be excited about access to fast and accurate counting, without adequately 450 

considering the potential uncertainty, labour and skills required for effective use of drones for 451 

monitoring large and complex wildlife aggregations, and that drones still cannot produce all 452 

the required biodiversity metrics for monitoring (Callaghan et al. 2018).  453 

 454 
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4.3 Recommendations 455 

There are major improvements in data collection, interpretation and understanding which can 456 

come through using drone imagery, including cost savings and potentially improved 457 

accuracy. Applications will continue to grow, assisted by development of semi-automated 458 

methods such as ours. Drones should be viewed as a tool to complement ecological and 459 

environmental monitoring practitioners, rather than a replacement option. We suggest 460 

development of semi-automated approaches should focus on adaptability to deliver key 461 

monitoring indicators (Baxter & Hamilton 2018), and that detection methods themselves 462 

should aim for three main properties: 1) use predictor data that is easily derived from 463 

common drone-based (or airborne) imagery; 2) minimal parametrisation among 464 

environments, ensuring any parametrisation should be accessible to non-expert users; and 3) 465 

implementation on widely available platforms, not requiring significant local computing 466 

resources but able to manage large volumes of image data. 467 

 468 

5 Data accessibility 469 

Our nest mapping routines were implemented in the Google Earth Engine 470 

(https://earthengine.google.com/). All of the statistical analyses, including nest counting, 471 

were performed in the R programming environment (Team 2018). The Earth Engine and R 472 

code are available on Github (https://github.com/mitchest/bird-colony-count-drones) and 473 

archived on Zenodo (eventual Zenodo DOI link). Raw drone data cannot be released publicly 474 

for most of the colonies, because they are on private land, but the code provided includes the 475 

summarised data required for our analyses. We have developed a web-app through the Earth 476 

Engine (https://mitchest.users.earthengine.app/view/ibis-drone-count), using the public part 477 

of the Eulimbah colony, so users can explore drone data, predictor variables and nest map  478 

classification interactively. 479 

https://earthengine.google.com/
https://github.com/mitchest/bird-colony-count-drones
https://mitchest.users.earthengine.app/view/ibis-drone-count
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Tables 591 

Table 1. Location and information on drone-surveyed waterbird colonies. All colonies were 592 

in New South Wales, Australia. Nests were manually counted from the drone-based imagery. 593 

Nest count error was calculated from in situ ground counts cross-referenced with manual nest 594 

counts from drone imagery. 595 

Location 

(Colony name) 

Date Approx. 

colony size 

Manual 

nest count 

Manual nest 

count error 

Estimated 

number of 

birds* 

Lachlan River 

(Merrimajeel) 

Oct 

2016 

60-65 Ha 96,989 ±6.1% 200-250,000 

Macquarie Marshes 

(Zoo Paddock) 

Nov 

2016 

60-65 Ha 20,411 ±8.8% 40-50,000 

Murrumbidgee River 

(Eulimbah) 

Nov 

2016 

15-20 Ha 13,343 ±8.4% 30-40,000 

Lachlan River 

(Block Bank) 

Sep 

2017 

7-10 Ha 7717 ±12.1% 15-20,000 

*From (Lyons et al. 2018a) – the estimated number of birds incorporates site-specific information. 596 

 597 

Table 2. Manual and semi-automated counting results for drone-surveyed waterbird colonies. 598 

Colonies were divided into a grid of quadrats and nests were manually counted with accuracy 599 

from in situ counts. k-fold nest estimates were derived from our semi-automated approach, 600 

using 40 different random subsets of quadrats.  601 

Colony 

name 

50 x 50 m 

quadrats 

in grid 

Manual nest 

count 

(± manual error) 

Mean and range 

of k-fold nest 

estimates 

Full 

count 

effort 

(hours) 

k-fold 

count 

effort 

(hours & 

speed-up) 

Merrimajeel 233 96,989 

(91,073–102,905) 

99,645 

(90,383–106,727) 

40 5 (8x) 

Zoo Paddock 244 20,411 

(18,615–22,207) 

21,432 

(16,627–27,361) 

42 5 (8x) 

Eulimbah 71 13,343 

(12,222–14,464) 

13,479 

(12,212–14,879) 

12 2.5 (5x) 

Block Bank 33 7717 

(6783–8651) 

7777 

(7152–8425) 

5.5 2 (3x) 

 602 
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Figures  604 

 605 

606 

 607 

 608 
 609 
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Figure 1. Example drone imagery showing the variation in nest types and environments 610 

across four breeding colonial waterbird colonies. Images from top row to bottom row are 611 

from the following colonies: Merrimajeel, Zoo Paddock, Eulimbah and Block Bank (details in 612 

Table 1). 613 

  614 
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Figure 2. An example of  image metrics derived from drone imagery over a waterbird colony 620 

(Eulimbah), used as predictor variables in the random forest classification: a – raw drone 621 

imagery; b – ‘white’ brightness image; c & d – GLCM ‘shade’ and ‘contrast’ of the ‘white’ 622 

metric; e – GLCM ‘shade’ of the blue reflectance; f – RGB vegetation index; g – difference 623 

of gaussians applied to the GLCM ‘shade’ on the ‘white’ metric; h – an RGB composite of 624 

the ‘white’ metric and the standard deviation within a 2m and 7 m radius for the GLCM 625 

‘shade’ of the ‘white’ metric. 626 
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Figure 3. Example nest area classifications for four colonial waterbird colonies, surveyed via 633 

drone and classified using a random forest classifier in the Google Earth Engine. Images from 634 

top row to bottom row are from the following colonies: Merrimajeel, Zoo Paddock, Eulimbah 635 

and Block Bank. Full details in Table 1 & 2. 636 

 637 

  638 
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 639 

Figure 4. Resampling estimates of nest counts for four breeding waterbird colonies surveyed 640 

via drone, trained using a classification of nest area and manually counted nests. Each black 641 

dot represents the mean of the sampling distribution (10x repeated k-fold k=10 cross-642 

validation) for a different subset of the manually counted training nests (corresponding lines 643 

denote 95% percentile), and the red horizontal lines denote the manual estimate for the whole 644 

colony, and the 95% error margin calculated from on-ground counts. 645 
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Supplementary Material 647 

 648 

Supplementary Figure 1. Resampling estimates of nest counts for breeding waterbird 649 

colonies surveyed via drone, trained using a classification of nest area and manually counted 650 

nests (area ratio method on left and GLM method on right). Each box plot represents the 651 

sampling distribution (800x Monte Carlo cross-validation) for a different subset of the 652 

manually counted training nests, and the red horizontal lines denote the manual estimate for 653 

the whole colony, and the 95% error margin calculated from on-ground counts. 654 
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 656 

Supplementary Figure 2. Individual quadrat nest area estimates from a machine learning 657 

classifier plotted against the manual count from the corresponding quadrat, for four breeding 658 

waterbird colonies surveyed via drone. 659 

 660 


