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ABSTRACT20

We often quantify the rate at which a behaviour occurs by counting the number of times it occurs within
a specific, short observation period. Measuring behaviour in such a way is typically unavoidable but
induces error. This error acts to systematically reduce effect sizes, including metrics of particular interest
to behavioural and evolutionary ecologists such as R2, repeatability (intra-class correlation, ICC) and
heritability. Through introducing a null model, the Poisson process, for describing the frequency of
behaviour, we give a mechanistic explanation of how this problem arises and demonstrate how it makes
comparisons between studies and species problematic, because the magnitude of the error depends on
how frequently the behaviour has been observed as well as how biologically variable the behaviour is.
Importantly, the degree of error is predictable and so can be corrected for. Using the example of parental
provisioning rate in birds, we assess the applicability of our null model for describing the frequency of
behaviour. We then survey recent literature and demonstrate that the error is rarely accounted for in
current analyses. We highlight the problems that arise from this and provide solutions. We further discuss
the biological implications of deviations from our null model, and highlight the new avenues of research
that they may provide. Adopting our recommendations into analyses of behavioural counts will improve
the accuracy of estimated effect sizes and allow meaningful comparisons to be made between studies.
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INTRODUCTION36

Behaviour is frequently quantified by counting the number of times a specific event occurs within37

an observation period. This includes studies of parental care (e.g. number of feeding visits), social38

interactions such as allopreening/grooming or aggression (e.g. number of interactions) and mate choice39

(e.g. number of copulations, courtship behaviours). Typically, when behaviour is quantified in such a40

way, we do not observe the total time over which a behaviour takes place, and thus, all occurrences of the41

behaviour. Rather we sample a shorter time period in order to calculate a representative ‘rate’ at which the42

behaviour occurs. Take the example of parental provisioning behaviour in birds - although the nestling43

period may last 2 or more weeks, researchers typically record the feeding visits that occur in a shorter44

period of time, often in a 1 or 2 hour period (Murphy et al., 2015). Measuring behaviour in this way45



is often unavoidable for practical reasons, nevertheless we accept that there will be some error in the46

quantification of a behaviour. Intuitively we also know that the longer we observe a behaviour, the better47

the representation of that behaviour we will have (i.e. diminishing error with increasing sampling effort;48

see Murphy et al., 2015; Lendvai et al., 2015; Sánchez-Tójar et al., 2018, for empirical evidence of this).49

Evolutionary and behavioural ecologists are often interested in quantifying the total amount of50

variation that is due to differences between individuals and environments. We therefore frequently use51

metrics such as R2 (proportion of total variance explained by a particular model), repeatability (the52

proportion of total variance due to individual identity effects; also known as the intraclass correlation53

coefficient - ICC) or heritability (proportion of total variance due to additive genetic effects) or, more54

broadly, quantify standardised effect sizes (Nakagawa and Cuthill, 2007; Nakagawa and Schielzeth, 2010,55

2013). However, commonly used methods for analysing variation in behavioural counts fail to distinguish56

between the contribution of biological variation and the error introduced by sampling. Without taking this57

into account, we will both systematically underestimate effect sizes, and limit our ability to compare such58

metrics between studies, due to variation in sampling effort.59

Here, we outline a broad model for thinking about how behavioural count data arise, which demon-60

strates the inevitability of systematic error in such data. We suggest a simple null model for describing61

these processes and discuss the problems associated with ignoring the stochasticity inherent in this data.62

Using the example of provisioning rate in birds, a frequently used, count-based measure of parental care,63

we show how behavioural counts fit our null model well. Through a literature survey we show how64

widespread the problem of not accounting for this stochastic error is. Finally we present some solutions to65

this problem. Despite the large focus of this article on provisioning, all the theoretical and practical issues66

and solutions described here are directly relevant to other behaviours sampled by counting events in a67

restricted time window.68

BEHAVIOUR AS A POINT PROCESS69

Let us take a general example to describe our behavioural count data. Imagine that we want to describe70

the factors affecting the frequency (or rate) at which bees enter a nest. Here each arrival represents the71

behaviour of interest occurring. To do this, we watch the entrance to a nest for set observation periods (e.g.72

1 hour). There will be many factors influencing the length of the intervals between arrivals (interval length),73

only a few of which we will realistically be able to quantify (e.g. biotic factors such as the abundance and74

distribution of food/competitors/predators and abiotic factors such as temperature/rainfall/wind/humidity75

at each moment during the this observation). As we are unable to describe the complex processes that76

lead to the timing of this behaviour, we can therefore describe the arrival of these bees (or more generally77

the occurrence of behaviour), as a stochastic process through time. Note that we are not suggesting that78

the behaviour arises through a stochastic process, rather that we can describe it as a stochastic process;79

although the behaviour may be completely deterministic, we do not have the information needed to80

describe it in this way. We therefore need a model that describes the stochastic distribution of events81

through time. This is broadly known as a point process, a probabilistic model for describing points (or82

events) in some space, for example the distribution of points occurring on a straight line or analogously as83

events occurring through time (Figure 1, and see Table 1 for glossary of terms).84

Introducing the Poisson process85

A commonly used point process is the Poisson process (Daley and Vere-Jones, 2003). It has a single86

parameter, the arrival rate (λ ) for a given unit of time (e.g. 10 arrivals/hour). By using counts of behaviour87

(from a sampling period) as a representative measure of that behaviour, we are making the assumption that88

there is an underlying rate, which we try to capture during the observation. As we want to understand the89

factors affecting the rate at which bees enter a nest, it is this parameter, λ , that we are broadly interested90

in estimating (note that we never observe this rate directly, it is an underlying, latent property of this91

process).92

The simplest Poisson process is the homogeneous Poisson process, which assumes that the arrival93

rate (λ ) is constant through time. Given the simplicity of this process, we believe that it is a highly94

suitable starting point or null model with which to describe behavioural counts. It also has several useful95

properties, which we can compare with real data to assess the suitability of this model (explored in Does a96

Poisson process provide a good description of behaviour?). First, it assumes that the probability of arrival97

is constant over time, which results in the interval lengths within an observation being exponentially98
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distributed. Second, a Poisson process results in a predictable amount of variation in the number of visits99

observed (per observation) across multiple observations; these counts (for each observation) follow a100

Poisson distribution, with mean (and variance) equal to the length of the observation period (t) multiplied101

by the arrival rate, or λ t. We will describe this mean as the expected number of arrivals for an observation102

(c.f. de Villemereuil et al., 2016). In other words, for every observation there is an underlying arrival103

rate leading to an expected number of arrivals, but we observe this with a certain degree of (quantifiable)104

error caused by the stochastic nature of the process (Figure 2A). For example, if λ is 10 arrivals/hour,105

then the expected number of arrivals in one hour would be 10, two hours 20 etc, but we would observe106

considerable variation around these expectations. Formulaically we describe this as y ∼ Poisson(λ t),107

where y is the observed counts. We will refer to this error as stochastic error. In the statistical literature,108

this would be referred to as aleatory uncertainty (Kiureghian and Ditlevsen, 2009). This error is analogous109

to measurement error, with similar consequences (outlined below).110

Now imagine that we want to compare different bee nests (for instance we may be interested in the111

differences in arrival rate due to factors such as the nest’s size, distance to food etc.). If all nests had112

the same arrival rate, then by watching them for the same observation period, the observed number of113

arrivals across these observations would be Poisson distributed (Figure 2A). In other words, we would114

still observe variation in the number of arrivals between observations of different nests, even if there is no115

variation in their arrival rates (Figure 2A). If the arrival rates differ between nests (i.e. variation in the116

expected number of arrivals, due to factors such as nest size etc) the combined observations would be117

over-dispersed (i.e. more variation present than explained simply by the Poisson distribution; Figure 2B).118

Diminishing stochastic error119

As mentioned above, it seems intuitive that longer observations result in lower error (Lendvai et al., 2015;120

Morvai et al., 2016). As both the mean number of observed arrivals across all observations increases (for121

example through longer observations) and with greater variation in arrival rates, the amount of stochastic122

error, relative to total observed variance, diminishes. Let’s look more carefully at why this is the case.123

First, following the law of total variance, the total observed variance in the number of arrivals across124

observations (σ2
y ) is equal to the expectation of the stochastic variance (σ2

stoc) plus the variance in expected125

number of arrivals (σ2
λ t )126

σ
2
y = σ

2
stoc +σ

2
λ t (1)

Second, the stochastic variance and variance in the expected number of arrivals do not scale in the same127

way. This is most easily demonstrated by thinking of variability in terms of the coefficient of variation, a128

dimensionless measure of variability (CVx = σx/x̄ , where x̄ and σx are the mean and standard deviation,129

respectively, of x). The variation in expected number of arrivals, when measured as CV, remains constant130

as the mean number of arrivals increases. This is because the standard deviation scales directly with131

the mean (e.g. σ2x = 2σx). So, if the observation period was twice as long, all the expected number of132

visits across observations would double, as would their SD, whilst the CV remains the same (Figure 3A;133

2σx/2x̄ = σx/x̄)). Put as an equation, if the observation period (t) is constant across observations,134

CVexp = σλ t/λ̄ t = tσλ/tλ̄ = σλ/λ̄ (2)

and so changing the observation period does not change the CV in the expected number of visits. In135

contrast, due to the nature of the Poisson distribution (i.e. the mean equals the variance), as the mean136

(number of arrivals) increases, the Poisson distributed stochastic error becomes relatively less variable (i.e.137

CV decreases; CVstoc =
√

λ̄ t/λ̄ t; Figure 3A). In other words, the stochastic error diminishes relative to the138

variation in expected number of arrivals as the sampled number of arrivals becomes larger.139

Given that σ2
stoc = λ̄ t and that σ2

λ t = (λ̄ tCVexp)
2 we can rewrite equation 1 as:140

σ
2
y = λ̄ t +(λ̄ tCVexp)

2 (3)

We can now see that the variation due to stochastic error is equal to the mean, whilst the variation in the141

expected number of visits across observations is a function of both the expected CV (a constant) and142

the square of the mean. Therefore, as the mean number of observed visits increases, the variance due143

to the expected number of arrivals increases exponentially compared with stochastic error. This results144
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in a rapid decrease in the observed CV and an increase in the proportion of the observed variation due145

to variation in the expected number of arrivals (Figures 3B, C). In other words, the amount of times a146

behaviour occurs in an observation period directly affects the confidence we can have in quantifying147

the rate at which it occurs. Equally, the greater the amount of underlying variation in arrival rates (i.e.148

expected CV; shown by different lines in Figures 3B, C), the lower the impact the stochastic error has and149

the more the observed variation reflects this expected variation in arrival rate (Figure 3C).150

This stochastic error can be seen as analogous to measurement error; if we take a variable measured151

with a large amount of error, averaging over an increasing number of measurements would give a better152

estimate. Similarly, the more events we observe, the more the stochastic error is averaged over, and the153

greater precision we have in our estimate of λ .154

Dynamic rates155

A homogeneous Poisson process assumes that the rate at which a behaviour occurs is the same throughout156

the observation. It is, however, possible that individuals adjust their behaviour at a very fine scale (e.g.157

Johnstone et al., 2014; Schlicht et al., 2016), meaning that the expected rate changes during the observation.158

A changing arrival rate does not, however, violate the assumptions of a general Poisson process. Indeed,159

there exist models that allow the rate to be dynamic (e.g. inhomogenous Poisson processes Heuer et al.,160

2010). For example, in a Cox point processes, a generalisation of the Poisson process, the arrival rate161

is also assumed to be stochastic, and modelled as a latent variable (Blackwell et al. 2016; Spence et al.162

2021; see also Johnstone et al. 2014 for a related example in behavioural ecology). When not modelled,163

such dynamically changing behaviour will add further error to the estimation of the overall rate at which164

a behaviour occurs. Consequently, if the behaviour of interest is extremely dynamic, we would not165

expect to find anything we measure on a broad scale to correlate with it. However, many behaviours166

have been found to consistently differ between individuals, as shown in the recent flurry of studies on167

animal personality (Bell et al., 2009; Beekman and Jordan, 2017), and are frequently found to vary among168

different environments. Such findings indicate that there is a consistent rate that can be measured over169

these time periods in many behaviours.170

Refractory periods and the non-independence of visits171

A homogeneous Poisson process also assumes that, at any time point, the time to next arrival is independent172

of when the previous arrival occurred (i.e. the likelihood of an event occurring is constant over time).173

This is known as the Markov property, and results in an exponential distribution of interval lengths (with174

a modal interval length of 0). Up until now we have been considering arrivals of bees at a nest, which are175

likely to be largely independent of each other. When considering the behaviour of a single individual,176

however, this may seem unrealistic. It is important to note that when considering this assumption of177

independence, it does not matter if we are watching an individual, a pair, a group or a set of unique178

individuals. The assumption of independence relates simply to whether the timing of one event affects the179

occurrence of the next event, and not to the individual that does the event (although the chance that the180

assumption of independence is violated may increase with fewer individuals).181

Let us consider then, the arrival rate to the nest of an individual bee (rather than the overall arrival182

rate at the nest). As bees have to find food and return to the nest, the probability of this individual bee183

arriving at the nest is likely to be lower just after its last arrival occurred, meaning the probability of the184

bee arriving changes over time. This is known as a refractory period (i.e. a period in which a behaviour is185

unlikely to reoccur). A refractory period can be described in a point process with an additional parameter.186

As stated above, a Poisson process assumes that the interval lengths follow an exponential distribution,187

with a modal interval length of 0. The exponential distribution is a special case of the gamma distribution,188

in which one of its two parameters, α , is fixed to 1 (no refractory period). When α > 1, we have a point189

process with a refractory period. α describes the refractory period in terms of the expected interval length.190

The refractory period itself can be more intuitively thought of as the mode of the gamma distribution (see191

Supplementary Material S1).192

As the interval lengths no longer follow an exponential distribution when there is a refractory period,193

the number of arrivals in a given period of time would no longer follow a Poisson distribution, violating194

the assumptions of the Poisson process. A refractory period reduces the amount of stochastic error for a195

particular mean (i.e. underdispersion with respect to a Poisson distribution) in a predictable way, and so196

can be modelled using the additional α parameter to describe the relative extent of the refractory period197

(see Supplementary Material S1). Although a refractory period results in less stochastic error for given198
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mean number of observations, it is important to note that the stochastic error will always be proportional199

to this mean, and so the relative amount of stochastic error will still diminish as more events are observed,200

or with more biological variation. In the context of the equations above, with a refractory period σ2
stoc201

becomes λ̄ t/α rather than λ̄ t (1/α is commonly refered to as φ or the dispersion parameter in some202

analytical models). Furthermore, small refractory periods do not lead to substantial deviations away from203

a Poisson process.204

In behavioural data, there are several instances where such refractory periods may exist, for example,205

if an individual has to do something before the behaviour reoccurs. As in the example above, this might206

be seen in arrival or feeding rates, especially if foraging sites are located far away from the nests. Sexual207

behaviours are also likely to show such refractory periods; this is well studied in rats and humans for208

example (Levin, 2009), and it is likely that there is a minimum interval length between copulations in209

many other species. Quantification of refractory periods is therefore important, but to our knowledge210

has not yet been systematically investigated for any behavioural trait measured this way (at least in the211

context of behavioural ecology). The little quantitative information about the presence, and length, of212

refractory periods makes it very difficult to judge their impact, at least currently.213

Embracing a null model214

... there is no need to ask the question “Is the model true”. If “truth” is to be the “whole215

truth” the answer must be “No”. The only question of interest is “Is the model illuminating216

and useful?”217

George Box, 1979218

Here we argue that a Poisson process is a good null model to describe the stochastic nature of219

behaviours sampled in specific periods of time (a type of point process) for the following 3 reasons.220

First, it is simple and tractable, and it allows us to account for how stochastic error predictably changes221

with sampling effort. We acknowledge that it may not be the perfect model for such behaviours in all222

circumstances (as discussed above). However, this is not the purpose of a null model. Currently, we have223

no clear null model, as generally we simply ignore the presence of this stochastic error (see literature224

survey below), which is induced by the processes underlying behavioural count data. As we will discuss225

below, ignoring this stochastic error (the presence of which we believe to be undeniable, the form/extent226

of which can be the subject of debate) leads to systematic error in the analysis of behavioural counts.227

Second, deviation from this model gives us valuable information. We believe that assuming (and more228

importantly understanding) such a null model gives us insight into the processes underlying the data,229

whether deviations from this model occur, and if so what they may represent. Many fields have embraced230

null models (for example, the ideal-free distribution in behavioural ecology or the Hardy-Weinberg231

Equilibrium in population genetics), and it is standard practice to quantify deviation from these models.232

Finally, such a null model would force us to confront what assumptions we are making when analysing233

our behavioural count data.234

PROBLEMS WITH IGNORING STOCHASTIC ERROR235

Generally, stochastic error induces the same analytical problems as measurement error. Although these236

have been covered elsewhere (e.g. Freckleton, 2011; Garamszegi, 2016; Ponzi et al., 2018; Dingemanse237

et al., 2021), they have not been discussed in the context of behavioural count data, and so we briefly238

outline the problems here for completeness.239

Analysing variation in behavioural counts240

When stochastic error is not explicitly modelled, it is included in the residual, unexplained variation241

(Figure 4). This imposes an upper limit to the variance in, for example, arrival rate that can be explained242

(Figure 3C), because the stochastic error will always remain unexplained, unless explicitly accounted for243

(Figure 4; Nakagawa and Schielzeth, 2013; Nakagawa et al., 2017a). To demonstrate this, let us return to244

our population of bee nests where the mean (±SD) arrival rate across nests is 10±3 arrivals/hour (i.e. an245

expected CV of 0.3), and 50% of this expected variation in arrival rate is due to consistent differences246

between nests (i.e. repeatability (ICC) on the expected scale = 0.5). Assuming that arrival rates in this247

population are well described by a Poisson process, a study that observed nests for 2 hours (Study A;248

Figure 4), would observe an average of 20±7.5 arrivals per observation and estimate a repeatability of249

5/22



0.32, just over half of the actual repeatability. Not accounting for this stochastic error leads, therefore, to250

a general underestimation of underlying effect sizes.251

Different studies will also vary in the mean number of observed arrivals and/or the underlying variation252

in expected arrival rates, through having different observation periods, or simply because of intrinsic253

differences among populations. As the proportion of total variance due to stochastic error is dependent on254

both of these factors (Figure 3C), metrics that relies on the estimation of total variance (e.g. standardised255

effect sizes, ICC and R2) are not comparable between studies, when not accounting for this changing256

stochastic error. Imagine that two more studies (Studies B and C) are performed in the population257

described above, but with shorter observation periods (60 and 30 mins, respectively), averaging 10 and258

5 arrivals per observation. As a different amount of stochastic error was observed in both cases, the259

resulting repeatabilities would be much lower still, 0.24 and 0.16 respectively (Figure 4). Effect sizes,260

therefore, may differ between studies due to both the intrinsic characteristics of the population and the261

sampling effort. Note that these calculations assume of an underlying Poisson process. If, for example,262

the refractory period was to differ between different studies then, without accounting the differing form of263

stochastic error, the results would also not be comparable.264

The low predictive power of behaviour265

Behavioural count data typically correlates poorly with other variables. However, because of the potentially266

large proportion of observed variation that is due to stochastic error, the observed number of events is267

constrained in how much variation in another trait it can explain (Figures 3C, 4). For example, arrival rate268

estimated from a short observation period will correlate poorly with the underlying arrival rate, due to this269

stochastic error (Lendvai et al., 2015; Morvai et al., 2016). Consequently, this measure may explain little270

variation in another variable - even if it actually has had a strong effect. Moreover, stochastic error in271

one predictor variable can have a large effect on the parameter estimates of other covariates in the model,272

as the covariance between different parameters is not properly estimated, creating potentially spurious273

relationships between predictor variables and the response variable (Freckleton, 2011). Note that these274

effects are a general consequence of any kind of measurement error in predictor variables, but will be275

particularly pronounced with the level of error seen in count data.276

DOES A POISSON PROCESS PROVIDE A GOOD DESCRIPTION OF BE-277

HAVIOUR?278

Up until now we have been focusing on a general example whilst arguing that a Poisson process represents279

a suitable descriptive model for behavioural count data. Now we will take a frequently used behavioural280

count - provisioning rate - to demonstrate the utility of this model and highlight the extent of the problems281

caused by not taking such stochastic error into account. Parental provisioning rate (measured as the282

number of feeding visits within a certain unit of time) is often used as a quantitative assessment of283

parental investment in birds and analyses of provisioning rate have contributed a considerable amount284

to our understanding of parental care (e.g. Harrison et al., 2009). As a Poisson process makes certain285

assumptions, we can compare the patterns we see in observed data with those we expect from a Poisson286

process, to assess how good a model this is for describing our data. There are 3 important patterns which287

can emerge.288

First, a Poisson process assumes that visits to the nest are independent from each other, in others words289

there is no refractory period. Note that the assumption of independence is not violated by our watching290

the same individual, rather referring to the probability of a visit occurring depending on when the last291

visit occurred. Although this is perhaps the most obvious way in which provisioning rate could violate292

the assumptions of a Poisson process, at the moment, there is little evidence that substantial refractory293

periods exist for provisioning rate. For example, distributions of inter-visit interval lengths that appear294

close to exponential (as expected from a Poisson process) have been observed in several species (Great295

tit (Parus major) - Johnstone et al. 2014; Acorn Woodpecker (Melanerpes formicivorus) - Figure 3 in296

Koenig and Walters 2016; Red Winged Blackbird (Agelaius phoeniceus) - Figure 2 in Westneat et al. 2013;297

Pied Flycatcher (Ficedula hypoleuca) - Figure S1 in Westneat et al. 2017; Chestnut-crowned Babbler298

(Pomatostomus ruficeps) - Savage et al. 2017; House Sparrow (Passer domesticus) - Figure S1 in Ihle299

et al. 2019). Furthermore, many studies analyse per nest visit rates (i.e. with two or more parents/carers),300

in which case refractory periods are likely to be extremely low.301
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Second, from a Poisson process we would expect Poisson distributed error. With additional factors302

influencing provisioning rate (due to individual, brood or environmental characteristics), we would303

see additional variation (i.e. overdispersion with respect to a Poisson distribution; Figure 2) and so304

the variance in the number of observed visits between observations would be greater than the mean.305

Observing overdispersion does not necessarily mean that the stochastic error is Poisson distributed; we306

could still observe more variation than expected in a Poisson distribution, if for example the stochastic307

error was lower (due to a refractory period) and biological variation greater. The variance being more than308

or equal to the mean is rather a minimum requirement for Poisson distributed error to exist. Consistent309

underdispersion with respect to a Poisson distribution across population level estimates of variation, on310

the other hand, would indicate that the error was not Poisson distributed, violating the assumptions of our311

null model. As shown below (see Literature Survey), overdispersion is consistently found across studies312

and species in provisioning rate, which is consistent with our model of a Poisson process and additional313

between-observation variation in expected provisioning rates.314

Finally, we would expect to see a dramatic decrease in the relative variability of provisioning data with315

an increase in the mean number of observed visits (Figure 3A). Using recently published data (Lendvai316

et al., 2015), we can see this systematic decrease in CV with increasing observation time (Figure 3D; see317

Supplementary Material S2 for further details), in accordance with theoretical predictions. Concurrently318

we would also expect that metrics such as repeatability would increase with the mean number of observed319

visits (Figure 3C). Again, we can show this effect empirically using the data of Lendvai et al. (2015). By320

calculating the repeatability of provisioning rate using the same overall total time period, but split into321

differently sized observations periods (and not correcting for this stochastic error), we indeed find that322

repeatability dramatically increases with observation period (i.e. with mean number of observed visits;323

Figure 3E, Supplementary Material S2), in line with expectations from a Poisson process.324

Together this evidence demonstrates that provisioning data has a high level of stochastic error, the325

magnitude of which is in line with that predicted by a Poisson process. Therefore, a Poisson process326

seems a highly suitable model for provisioning rate. We should stress, however, that the validity of these327

assumptions should be assessed on a behaviour and study specific basis.328

ASSESSING THE SIZE OF THE PROBLEM - LITERATURE SURVEY329

Recent work has suggested that only a small amount of variation in provisioning rate is generally explained330

by individual, brood or environmental characteristics (Williams, 2012; Williams and a. Fowler, 2015), a331

trend that is commonly found across behavioural traits (e.g. low repeatabilities; Bell et al., 2009; Wolak332

et al., 2012). It has also been suggested that provisioning rate often has little or no detectable effects on333

offspring phenotype (e.g. fledgling size, survival etc; Schwagmeyer and Mock, 2008; Williams, 2012;334

Williams and a. Fowler, 2015), bringing into question its utility as an indicator of parental investment.335

However, such conclusions may arise from failing to account for the presence of stochastic error. How336

much of a problem these issues present depends largely on both the sampling effort employed in such337

studies, how variable this effort is among studies, and whether or not the presence of stochastic error is338

accounted for. In order to ascertain the breadth of the problems outlined above, we conducted a survey of339

papers analysing provisioning rate (measured as the number of visits), published in 2015/16. We did not340

intend the search to be exhaustive, rather to generate a representative set of recent papers on provisioning341

rate.342

Survey Methods343

On 13/12/2016 JLP searched Web of Science using the search term:344

(TS=("visit rate" OR "number of visit*" OR "nest visit*" OR "provisioning"345

OR "feeding rate" OR "parental care" OR "number of feed*") AND TS=(chick*346

OR nest* OR fledg* OR offspring) AND TS=(*bird* OR passerine* OR avian347

OR chick*) NOT TS=(veterinary OR chicken* OR hen* OR broiler* OR poult*348

OR layer* OR "Japanese quail*" OR turkey* OR chickpea* OR pollin*)) AND349

PY=(2015 OR 2016) AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)350

returning 289 papers. JLP and MI screened the abstracts to exclude any papers that did not relate to351

provisioning (or show primary data e.g. reviews). JLP and NK read the remaining 143 papers, looking352

specifically for studies that measured provisioning as number of visits, as opposed to inter-visit intervals353
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or quantity of food. Although we did not target these studies, we included any studies that measured354

incubation feeding by males. This process returned 81 studies. At a reviewers request, JLP repeated this355

process for papers published in 2022, searching Web of Science on 05/12/2022, returning 147 papers,356

which reduced to 46 after abstracts screening, 29 of which analysed provisioning data.357

From the 81 papers from 2015/16, JLP and NK extracted the study species, the method of data358

collection (direct, video, RFID etc) and length of observation period (hours). We also extracted summary359

data for each analysis that was conducted using provisioning rate, totalling 427 analyses across all360

the studies. For each analysis, we recorded whether provisioning was used as a response or predictor361

variable. If analysed as a response, we recorded what error distribution was used e.g. Gaussian (including362

linear regressions, t-tests, ANOVAs, correlations), Poisson, Negative Binomial, non-parametric etc. If363

not otherwise stated, we assumed Gaussian error distribution was used, because this is the default in364

most statistical software. We recorded whether the number of visits itself was analysed, or whether365

it was transformed into a rate (e.g visits per hour or visits per chick). The latter of these metrics366

(response/predictor, distribution, number/rate) were also extracted from the 29 papers from 2022 by JLP,367

giving 79 analyses.368

For each 2015/16 analysis, we then extracted, where possible, mean and SD of provisioning data used369

in that analysis (note some analyses used the same data, so we recorded how many times that data set was370

used and in what ways). If SE and sample size (N) were presented SD was calculated as SD = SE
√

N. If371

range and/or inter-quartile range were presented then a SD was derived following the formulas presented372

in Wan et al. (2014). If not presented in the text, mean and SD or SE were extracted from figures using373

the digitize and metaDigitise packages in R (Poisot, 2011; Pick et al., 2019), or from raw data if available.374

If parameter estimates from models were presented, the intercept was taken as a measure of the mean375

provisioning rate (and back-transformed if necessary), as long as any covariates were centered, but the376

associated SE was not used. We aimed to collect means and SDs that were representative of the data that377

was analysed. This meant that when means and SDs from different groups included in the same analyses378

were presented (for example, means presented per sex, but data analysed across both sexes), we pooled379

these M estimates (from samples x1 through xM) according to the formulas:380

x̄ =
∑i Nxi x̄i

∑i Nxi

(4)

σx =

√√√√ 1
∑i Nxi −1

(
∑

i

[
(Nxi −1)σ2

xi
+Nxi x̄

2
i

]
−

[
∑

i
Nxi

]
x̄2

)
. (5)

Where the mean (±SD) provisioning was presented as a rate (i.e. had been transformed from the scale on381

which it was collected), we back-transformed these to their original scale, e.g. if the observation period382

was 4 hours, but provisioning was presented as visits/hour, we multiplied both the mean and SD by 4. For383

estimates where the observation period varied, we corrected them relative to the mean observation period384

(or mode if this was presented). Similarly, when rates were presented as per chick, and the mean number385

of chicks was presented, then we back calculated the mean, but not SD. For estimates for which we had386

SD, and were not presented as per chick, we calculated the expected CV as387

CVexp =

√
σ2

x − x̄
x̄

(6)

. For several estimates, especially when the mean is low the expected CV cannot be calculated, and the388

mean is larger than the variance (see Supplementary Material S5). To these estimates we gave a value of389

0. We then calculated the proportion of observed variation due variation in expected provisioning rate as390

x̄CV 2
exp

1+ x̄CV 2
exp

(7)

The papers included in the study, and the data extracted from them, are presented in Table S1.391

Survey Results392

Our survey of papers published in 2015/16 found 81 studies of 64 species that fitted our criteria, containing393

427 analyses of provisioning rate (343 as a response and 84 as a predictor) and our 2022 survey found394
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29 studies containing 79 analyses of provisioning rate (50 as a response and 29 as a predictor). For 350395

of the 2015/16 analyses we could extract the mean number of observed visits for the data used in the396

analysis, which was typically low (median = 8.41, Figure 5). For 301 analyses we were also able to397

extract a standard deviation of provisioning rate, and so calculate expected CV. For 34 of these analyses,398

it was not possible to calculate expected CV, and so it was assumed to be 0 (Supplementary Material S5).399

Expected CV ranged from 0 to 1.234 (median=0.449).400

Using the expected CV and mean number of observed visits for each sample, we were able to calculate401

the proportion of observed variation in provisioning rate that is due to expected, biological, variation (see402

Supplementary Material S3). Across these estimates, the median proportion was 0.627 (Figure 5). This403

represents the maximum effect size (e.g. R2 or ICC) that can be estimated from this data, if sampling404

error is not accounted for (i.e. if the true ICC was 1 the estimated ICC would be 0.627, and if the true405

ICC were 0.5, then the estimated ICC would be 0.3135 etc.). Of the 427 analyses, only 7% and 22% (in406

2015/16 and 2022, respectively) modelled the stochastic error by assuming a Poisson error distribution407

when provisioning rate was analysed as a response variable (see below, note no other corrections were408

used), whilst no study in either survey accounted for stochastic error when modelling provisioning rate409

as a predictor variable. Effect sizes from these studies are therefore consistently, and often substantially,410

underestimated. Repeatabilities, for example, would be underestimated on average by 37%, as would411

the effect of provisioning rate on other variables such as chick mass or survival. Moreover, because of412

the large variation in this proportion among studies (range: 0 - 0.982), interpretation of, and comparison413

amongst, effect size estimates from these studies is not meaningful, as any differences may simply be due414

to methodology, rather than to biological differences. More generally, no study on the repeatability of415

provisioning behaviour has accounted for (i.e. removed) this sampling error (see Khwaja et al., 2017, for416

summary of studies), suggesting that these estimates are underestimations, and that the comparison among417

these studies may be problematic. Note that we have assumed in these calculations that this stochastic418

error is Poisson-distributed. As discussed above, this may not be the case. However, this survey still419

demonstrates how wide ranging the current underestimation of effect size is. Furthermore, as refractory420

periods may vary between studies, not accounting for the stochastic error makes comparison between421

studies extremely problematic.422

ANALYTICAL SOLUTIONS423

Directly modelling stochastic error424

In the majority of analyses (80% and 63% in our surveys of 2015/16 and 2022, respectively), behavioural425

counts are analysed as a response variable. Stochastic error can be accounted for in such analyses by426

using a generalised linear mixed model (GLMM) framework, specifying a Poisson error distribution.427

Broadly GLMMs account for distribution specific variance (i.e. the Poisson distributed stochastic error)428

seen on the observed level, and transform the data from the expected scale onto the ‘latent’ scale, using429

a ‘link’ function (in this case typically the log function). The data is normally distributed on the latent430

scale, fulfilling linear model assumptions (see Bolker et al., 2009; Nakagawa and Schielzeth, 2010;431

de Villemereuil et al., 2016, for a helpful breakdown of these models). We present examples in the432

Supplementary Material (S6).433

By using GLMMs, the stochastic variation is specifically modelled, and ICC and R2 estimates can be434

made with or without the Poisson distributed stochastic error (i.e. by including it or not in the calculation435

of total variance; Figure 4). Traditionally R2 and ICC are calculated with stochastic error (Nakagawa436

and Schielzeth, 2010, 2013). However, the overriding utility of this has recently been discussed, and it437

has been suggested that under some circumstances it is more appropriate to measure such metrics on the438

expected scale (i.e without stochastic error; see de Villemereuil et al., 2016, for a more general discussion439

of this in the context of heritability, with reference to both Poisson and Binomial stochastic error). In the440

case of variables such as provisioning rate (that are sampled in a fixed period of time), we would argue that441

these metrics should be estimated without the inclusion of this stochastic error in the estimation of total442

variance (Figure 4), as this is dependent on the sampling effort, and so the metrics are more biologically443

meaningful on the expected rather than the observed scale. Note that in some cases the actual behavioural444

count, rather than the rate, is more relevant to a researcher’s question, for example correlating the total445

number of feeds within a time period with the mass change of chicks within that same time period. In446

this case, it would not be appropriate to account for the stochastic error (i.e. by following the methods447

proposed in Nakagawa and Schielzeth 2010, 2013, see also Nakagawa et al. 2017a), as the number of448
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feeds rather than the underlying rate would be the variable of interest.449

Typically, provisioning rate has been analysed assuming a Gaussian error distribution (i.e. in linear450

(mixed) models (L(M)Ms); 77% and 70 % of analyses in our surveys of 2015/16 and 2022, respectively).451

The implicit assumption in these analyses is that all the variance can be explained i.e. that there is no452

stochastic error that will always remain unexplained (Nakagawa and Schielzeth, 2013; Nakagawa et al.,453

2017a, Figure 4). There has been much recent debate about the relative merits of using Gaussian or454

Poisson error distributions to model count data (O’Hara and Kotze, 2010; Ives, 2015; Warton et al.,455

2016; Morrissey and Ruxton, 2020). Here we emphasise that this stochastic error needs to be accounted456

for (which is possible using either method; see Supplementary Material S6). Our recommendation for457

GLMMs is therefore specifically based on the explicit estimation of stochastic error in these models,458

leading to an output that is more intuitive and easier to deal with. Using LMMs to estimate effect sizes,459

and post hoc removing stochastic error, can also result in estimates that are not bounded by 0 and 1 (the460

limits of ICC and R2). Gaussian distributions are also unbounded, suggesting that observations below 0 are461

possible. A common alternative is to assume a log-Gaussian distribution (i.e. through log-transformation462

of counts). Although this is bounded above 0, 0 is not a value that can exist, whilst being a possible value463

for observed data (O’Hara and Kotze, 2010).464

The resulting Poisson GLMMs are highly likely to be overdispersed, as it is unlikely that a given set465

of predictors will explain all underlying variation. To account for this (additive) overdispersion, models466

should be run as mixed models, including an observation level random effect (Hinde, 1982). The estimate467

of variance from this observation level random effect can be used as the estimate for overdispersion468

(non-distribution specific) variance, analogous to the residual variance of a linear model. Note that some469

software (e.g. MCMCglmm; Hadfield, 2010) explicitly does this by default. It is also possible to model470

such overdispersion in other ways, e.g. by assuming a negative binomial error distribution. This can471

be parameterised as a Poisson-gamma mixture distribution (rather than the Poisson-log normal mixture472

typically used in Poisson GLMMs).473

It is worth noting that the parameter estimates themselves (i.e. estimates of intercepts, slopes and474

variance components) should not change between the different models (log-normal and Poisson). These475

effect sizes only differ when standardised by total variance (which is how metrics are typically compared476

between studies). In studies of repeatability, we therefore also advocate reporting CVB - coefficient of477

between individual variation (Holtmann et al. 2017; see also Dochtermann and Royauté 2019). CVB478

reflects a mean-standardised measure of the amount of between individual variation. It is independent of479

the method of analysis and the degree of stochastic error and so can readily be compared between studies,480

regardless of sampling effort. It is analogous to CVA (the coefficient of additive genetic variation; Houle,481

1992), which was proposed to address similar issues of comparing additive genetic variation between482

studies. Both CVA and CVB were first proposed in the context of Gaussian traits, and their derivation for483

other distributions is more complex. Recently, de Villemereuil et al. (2016) derived a formulation of CVA484

for non-Gaussian traits, which holds also for CVB. From a Poisson GLMM, CVB is equal to the standard485

deviation of the between individual effects on the latent scale. A demonstration of the calculation of CVB486

is presented in Supplementary Material S6.487

Our assumption here is that the stochastic error is Poisson distributed, which may not be the case if,488

for example, substantial refractory periods exist. The reduction in stochastic error due to such refractory489

periods is also predictable, and can be modelled with a Tweedie distribution (see Supplementary Material490

S1) or Generalised or Conway-Maxwell Poisson distributions (Lynch et al., 2014). Alternatively, the491

length of intervals between behaviours can be modelled, which we discuss further below. Note that, with492

or without a refractory period, current methods still act to systematically underestimate effect sizes, as they493

do not account for stochastic error. It should also be noted that when refractory periods are small, assuming494

Poisson distributed error results in less bias than assuming no stochastic error (see Supplementary material495

S1). The choice that researchers make in how to calculate effect sizes (i.e. whether to remove stochastic496

error, and if so the magnitude of that error) should be clearly defined in studies, allowing assessment and497

future recalculation of relevant effect sizes.498

Figure 6 demonstrates the effect of using different methods in the estimation of R2 on simulated data499

(Supplementary Material S5). In Figure 6A, we can see that by not correcting for this stochastic error500

(using linear models; black dots), R2 would increase as the mean number of observed visits increases and501

would be systematically underestimated, as is seen in real provisioning data (Figure 3E). Accounting502

for this error using Poisson GLMMs, results in (predominantly) unbiased estimates of R2 (except at low503
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expected CV and mean number of observed visits; Figure 6C). The precision of these models is also504

affected by both the expected CV and the mean number of observed visits, with precision increasing as505

they both increase (Figure 6D).506

Behavioural counts as predictors - Measurement error models507

Although stochastic error can easily be modelled when behavioural counts are the response variables,508

commonly used statistical software do not allow for the inclusion of error in predictor variables (linear509

models, for example, assume that there is no error in the predictors). Indeed, no analysis in our literature510

survey (out of 84 in 2015/16 and 29 in 2022) accounted for this stochastic error when provisioning rate511

was used as a predictor variable. In order to model this error, we can use a class of models, known as512

measurement error or ‘error in variable’ models, that allow error in the predictor variables to be specified.513

These models are, however, complex to implement at present, although can readily be created in software514

such as Stan (Carpenter et al., 2017). Measurement error models act very similarly to GLMMs, by creating515

a latent variable (i.e. expected provisioning rate) which is then used as a predictor in the main model.516

Variation in observation time between different observations can therefore easily be accounted for, as can517

variables that may differ between observations. For example, if a researcher wanted to analyse the effect518

of provisioning rate on chick mass at fledging, but provisioning rate had been measured at different brood519

ages or in different environmental conditions at different nests, this variation could easily be accounted for.520

In Supplementary Material S6 we present a practical example of such models in Stan (see also Freckleton,521

2011; Garamszegi, 2016; Ponzi et al., 2018; Dingemanse et al., 2021, for examples of the co sequences of522

measurement error and how to deal with it in ecology and evolution).523

In Figure 6B we demonstrate the effect of not correcting for this stochastic error when using be-524

havioural rate as a predictor variable (black dots); as the mean number of observed visits increases, the525

predictive power of the behaviour increases, but is systematically downwardly biased. Measurement error526

models (red dots) account well for this Poisson error, but as with GLMMs, their precision is low when the527

mean number of observed visits is low.528

Analyse number, rather than transforming to rate529

In many studies the observation periods vary. This is frequently corrected for by scaling the observed530

number of events to create a rate (e.g. visits/hour). In the provisioning literature, many studies also correct531

for brood size when calculating provisioning rate (e.g. visits/hour/chick). Indeed, only 29% and 40% of532

studies in our literature survey (in 2015/16 and 2022 respectively) analysed their data as a count rather533

than a rate. However, when modelling count data, the raw number of observed events should be used,534

as transformations will create several problems. Firstly, because of the way the mean, stochastic error535

and expected variance scale (discussed above), by transforming the data the correct amount of Poisson536

variance cannot be directly estimated (Figure 4). Once the number of observed arrivals is transformed537

to a different scale (e.g. the number of arrivals is standardised to arrivals/hour), the mean no longer538

represents the stochastic variance. For example, if the 20±7.5 arrivals observed in study A from Figure539

4 (120 mins), is transformed to 10±3.75 arrivals/hour, the expected CV (i.e. the amount of biological540

variation) is calculated as 0.2 (instead of 0.3), as we are overestimating the amount of Poisson sampling541

error. Conversely, the 5±2.7 arrivals in observations from study C (30 mins) when transformed becomes542

10±5.4 arrivals/hour, with an expected CV of 0.438. Therefore, depending on the direction of the scaling543

(i.e. making the mean smaller or larger), this would lead to the respective over- or underestimation of544

Poisson variance, and so a corresponding over- or underestimation of effect sizes (see also Supplementary545

Materials S5 and S6). Instead, variation in observation time can be accounted for by using a Poisson546

‘exposure’ model (Gelman and Hill, 2007), by including log observation period as an offset (a covariate547

with the slope fixed to 1). Similarly, brood size should be corrected for by including it as a covariate in the548

GLMM. Correcting provisioning rate for brood size (e.g. using visits/hour/chick) incurs further problems549

associated with the use of ratios, as the relationship between brood size and provisioning rate is often not550

linear (Raubenheimer, 1995; Nakagawa et al., 2017b), and spurious correlations are created when brood551

size is included as a covariate in addition to being corrected for in the response variable (Kronmal, 1993).552

Modelling interval lengths553

Given some of the problems outlined above, it may seem more appealing to model the length of the554

intervals between behaviours rather than the count of the behaviours. Modelling interval lengths instead555

of counts is not a solution in itself, however. Clearly, there is an advantage to analysing interval lengths556
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when auxiliary interval level data exists (such as environmental variables measured at the level of the557

interval), as this provides an opportunity to start to understand what processes contribute to the apparent558

stochastic nature of these interval lengths. However, auxiliary data are typically collected on the level of559

the observation and not the interval, which does not give more information to the analysis than analysing560

counts. Without interval-level data, the mean interval length for an observation is essentially the variable561

of interest, and this is clearly a simple re-parametrisation of the counts (mean interval length = observation562

period / count). As discussed above, we know that the interval lengths within an observation will show a563

high level of stochastic error (they are expected to be exponentially distributed under the Poisson process564

model). They can be treated as repeated measurements, where the within observation variation in interval565

lengths represents the stochastic error.566

Given our extensive discussion above, we would encourage the use of a gamma distribution when567

modelling behavioural interval lengths. This approach also allows a population level α to be estimated,568

and so some of the assumptions of a Poisson process can be directly assessed. An interesting extension to569

this, would be to model whether both the refractory period and the return rate vary between observations570

and further whether they systematically differ between individuals or environments.571

DETERMINING SAMPLING EFFORT572

Researchers frequently consider sample size when planning studies. In this case, that would typically573

refer to the total number of observations. However, as we have shown, the number of events that are574

observed within each observation is also important. How then should we determine the best strategy for575

collecting such data?576

Readers may wonder why we do not simply recommend extremely short observation periods, given577

that we can correct for the additional stochastic error that is induced by this method. It is important to578

note, however, that when observing a low mean number of events, precision of model parameter estimates579

is low, and bias (under certain conditions) is high (Figure 6). This is because when the mean number of580

observed visits is low, the estimation of the residual, unexplained biological variation is poor. As the581

variance is so dominated by stochastic error, small random fluctuations in the mean (induced by sampling582

error) have disproportionately large effects on the estimation of residual variance and can even lead to the583

mean being larger than the observed variance, implying that there is no variation in expected rates. We584

can see this pattern in both simulated data and in data from the literature survey (Supplementary Material585

S5 and Figure S3). Moreover, this is likely why we see an upward bias in effect size at low mean values586

in the Poisson models, as the residual (i.e. expected) variance is underestimated.587

We should therefore seek to collect data under the conditions which minimise such effects. Ideally588

data would be collected in a fully automated way, meaning that all (or a large proportion of) events would589

be recorded, and the stochastic error across observations would be negligible. However, this is overly590

idealistic in most situations, as setting up such systems involves a large amount of time and money, and591

requires a high proportion of the population to be tagged to be effective. Thus, we advise using existing592

data (or a pilot study) to estimate a suitable observation period (see Supplementary Material S5 for how593

to calculate expected CV). This is not a one size fits all situation - an appropriate observation period will594

differ among study systems, according to the mean rate and variability of the behaviour. The emphasis,595

therefore, should be on the optimal mean number of observed events rather than optimal observation596

period, as it is the former that will directly determine the proportion of stochastic error. Our simulations597

show that an average of 20 events per observation minimises bias and maximises precision (but note598

that the results may vary according to parameters such as the simulated R2). We recognise that longer599

observations may limit the number of observations that can be made, although researchers can use tools600

such as planned missing data designs (Noble and Nakagawa, 2021) to offset this cost.601

Finally, it is worth noting that our calculations are made on the assumption that a Poisson process is602

the most suitable model for the behavioural count data in question, which may not be the case (see above).603

However, regardless of the exact form of the stochastic error, extending observation periods will act to604

reduce this error, and make comparisons between studies more meaningful.605

A CAUTIONARY NOTE ON OTHER MEASURES OF BEHAVIOUR606

Whilst the literature survey presented here focused on studies that specifically measured and analysed607

counts of provisioning, there were many studies in our original search that analysed variables that are608
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derived from visit rate, such as the amount of food brought to the nest or proportion of visits made by609

each sex. These metrics will equally be affected by the problems caused by stochastic error, as they610

depend on visit rate for their quantification, and therefore the stochastic error associated with visit rate is611

propagated to these other variables. We, therefore, would urge a similar word of warning in the use of any612

measures derived from short observations of behaviour. The kind of stochastic error we describe here613

applies not only to counts, but to any quantification of behaviour sampled in a short period of time. These614

problems can be resolved through careful thought about which distribution to use in the analysis, and the615

assumptions that a distribution has. For example, the amount of food brought to the nest might be well616

described by compound Poisson or Tweedie distributions ((see Thompson, 1984, for an example with617

rainfall data).618

CONCLUSIONS619

1. Stochastic error arises when measuring behaviour by counting the frequency of events in a sample620

period. The degree of this error depends on both the number of events observed and the variation621

in rates between observations. By not taking this error into account, we limit both the variation622

in these behaviours that we can explain and the utility of these variables as predictors of other623

traits. Furthermore, as the degree of this error depends on characteristics of the study, comparisons624

between studies are highly problematic.625

2. Using the null model of a Poisson process to describe this stochastic error, we can demonstrate it626

arises in a predictable manner, allowing researchers to account for it using established statistical627

methods. Whether, and how far, real behaviour count data deviates from this model is not well628

understood. Future work should seek to address this, as it will give a better biological understanding629

of the respective behaviour.630

3. Using the example of provisioning rate, we demonstrate the suitability of the Poisson process as631

a null model. However, through a literature survey we show that by far the majority of studies632

of provisioning rate do not account for this stochastic error and, due to the low mean number of633

observations per study, the amount of stochastic error is high. Whilst recent work may be correct634

in asserting that provisioning rate is not an accurate descriptor of parental investment (Williams,635

2012; Williams and a. Fowler, 2015), the methods that are currently employed to assess this are636

insufficient to draw this conclusion. Therefore, although we welcome further investigation of the637

different ways parents invest in their offspring (e.g. size / quantity / quality of prey), we suggest638

that we should not yet rule out the possibility that provisioning rate itself, when properly measured,639

is an adequate description of postnatal parental investment. The use of longer observations and640

correct statistical analysis will aid us in these endeavours.641

4. Finally, given the inevitability and predictable nature of this stochastic error, we should endeavour642

to quantify and account for it when analysing behavioural count data, as well as taking steps to643

minimise it where possible. Behavioural ecology is a discipline already fraught with relatively644

small effect sizes, and low power to detect them; we do ourselves a disservice by adding more error645

into the equation.646
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FIGURES AND TABLES782

Table 1. Glossary of terms used in the manuscript

Point/event Occurrence of a behaviour

Rate Number of events per unit time

Observation Observation of the unit of interest (e.g. an individual or a nest) for
a defined period of time

Observation period (t) The length of the observation (e.g. one hour)

Interval The interval between two events (e.g. arrivals at a nest)

Interval length The length of time between two events

Point process Statistical description of events occurring through time

Poisson process Simple point process with a single parameter, the rate (λ ).

λ ‘True’ rate, an underlying/latent, unmeasureable variable. Equal to
1/expected interval length. When we use the number of arrivals in
an observation period or the mean interval length, we are implicitly
estimating this quantity.

Expected number of events λ t i.e. the number of events we would expect to see in a given
time period and a given occurrence rate

Observed number of events (y) Number of events actually observed in an observation period

Stochastic error Error induced in our estimate of rate through sampling design

Refractory period A period in which a behaviour is unlikely to reoccur
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Figure 1. Behaviour can be described as points (or events) occurring on a straight line (through time), in
other words as a point process. 6 nest observations are shown (grey lines), that were all simulated using a
Poisson process with the same arrival rate (4.5 arrivals/hour) to demonstrate the variation that may arise
through observations of different nests with the same arrival rate. The red dotted lines demonstrate the
effect of shortening observation periods on the variation between observations.
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Figure 2. Visualisation of Poisson distributed stochastic error. A) If all observations are the same length
and have the same expected rate (e.g. t = 2, λ = 10 and σ2

λ t = 0, so λ t = 20), the number of visits across
all observations would be Poisson distributed (σ2

stoc = 20). B) When there is variation in the expected rate
(for example, due to consistent differences between individuals; σ2

λ t > 0), every different rate is observed
with stochastic error, leading to an over-dispersed Poisson distribution on the observed scale.
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Figure 3. In data with Poisson distributed stochastic error, we expect to see certain patterns. Because the
coefficient of variation (CV) of Poisson distributed stochastic error (solid line) and expected arrival rate
(dotted line), change differently as the mean number of observed arrivals increases (A), we see that the
observed CV (solid line) decreases as the mean number of observed arrivals increases, according to the
variation in expected rates (B). In D) we can see this pattern in real provisioning data. As a result, the
proportion of total observed variation due to ‘biological’ variation in expected rates, should increase with
the mean number of observed arrivals (C). This proportion can be interpreted as either the maximum
repeatability or R2 when behavioural counts are analysed as a response variable or the maximum amount
of variation these counts can explain in another variable, when Poisson distributed stochastic error is not
accounted for. In E), we see this pattern arising in real provisioning data; repeatability (ICC) increases
with increasing observation period. D) and E) use data presented in Lendvai et al. (2015); the red line
shows the predictions from a non-linear model estimating CV and ICC, respectively, assuming an
underlying Poisson process, and dotted line the estimated CV and ICC from these models (see
Supplementary Material S2).
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Example Population
Arrival Rate = 10 visits/hour, Expected CV = 0.3, Repeatability (ICC) = 0.5

Total Variance

Study A - Observation period = 120 mins, Mean number of observed arrivals = 20

Observed
Variation

Assuming No
Stochastic Error

Correcting for
Stochastic Error

Estimated
ICC = 0.32

Estimated
ICC = 0.5

Study B - Observation period = 60 mins, Mean number of observed arrivals = 10

Observed
Variation

Assuming No
Stochastic Error

Correcting for
Stochastic Error

Estimated
ICC = 0.24

Estimated
ICC = 0.5

Study C - Observation period = 30 mins, Mean number of observed arrivals = 5

Observed
Variation

Assuming No
Stochastic Error

Correcting for
Stochastic Error

Estimated
ICC = 0.16

Estimated
ICC = 0.5

Total Observed Variance

‘Explainable’ Variation

Variance due to between individual differences

Stochastic error

Figure 4. Effect of not accounting for Poisson distributed stochastic error in analyses of behavioural
count data. Three studies of different observation periods in the same population will estimate different
effect sizes, when not accounting correctly for the presence of stochastic error.
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Figure 5. Distributions of the mean number of observed visits and proportion of observed variation due
to expected variation in provisioning rates, from provisioning data used in analyses presented in papers
published in 2015/16, and the relationship between them. Points show individual datasets, the size of the
points indicates the number of models that were run using this dataset. Grey points indicate data from
direct observation or video recordings, and red from automated data collection. Blue lines show median
values. Estimates for which the mean was greater than the variance, the proportion of observed variation
is displayed as 0.
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Figure 6. Results of simulations showing the effect of analysing behavioural count data with (red points)
and without (black points) accounting for Poisson error, as both response (A) and predictor (B), over
varying mean number of observed visits. A) and B) were simulated with an expected CV of 0.3; solid
lines show simulated R2, and dotted lines show predicted R2 when not taking in account Poisson error. C)
and D) show bias and precision, respectively, in R2 calculated from Poisson GLMM with provisioning
rate as a response variable, from simulations across varying means and expected CVs; is the simulated
value, and is the estimated value. Blue colours show low bias and low precision, respectively, and red
colours high bias and high precision. See Supplementary Material S5 for further details of the
simulations.
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