Counter culture: Causes, extent and solutions of systematic bias in the analysis of behavioural counts
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Abstract
We often quantify a behaviour by counting the number of times it occurs within a specific, short observation period. Measuring behaviour in such a way is typically unavoidable but induces error. This error acts to systematically reduce effect sizes, including metrics of particular interest to behavioural and evolutionary ecologists such as R2, repeatability (intra-class correlation, ICC) and heritability. Through introducing a null model, the Poisson process, for modelling the frequency of behaviour, we give a mechanistic explanation of how this problem arises and demonstrate how it makes comparisons between studies and species problematic, because the magnitude of the error depends on how frequently the behaviour has been observed (e.g. as a function of the observation period) as well as how biologically variable the behaviour is. Importantly, the degree of error is predictable and so can be corrected for. Using the example of parental provisioning rate in birds, we assess the applicability of our null model for modelling the frequency of behaviour. We then review recent literature and demonstrate that the error is rarely accounted for in current analyses. We highlight the problems that arise from this and provide solutions. We further discuss the biological implications of deviations from our null model, and highlight the new avenues of research that they may provide. Adopting our recommendations into analyses of behavioural counts will improve the accuracy of estimated effect sizes and allow meaningful comparisons to be made between studies.
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[bookmark: _ilirbkysq8vg][bookmark: _Toc532997063]I. Introduction
Behaviour is frequently quantified by counting the number of times a specific event occurs within an observation period. This includes studies of parental care (e.g. number of feeding visits), social interactions such as allopreening/grooming or aggression (e.g. number of interactions) and mate choice (e.g. number of copulations, courtship behaviours). Typically, when behaviour is quantified in such a way, we do not observe the total time over which a behaviour takes place, and thus, all occurrences of the behaviour. Rather we sample a shorter time period in order to calculate a representative ‘rate’ at which the behaviour occurs. Take the example of parental provisioning behaviour in birds - although the nestling period may last 2 or more weeks, researchers typically record the feeding visits that occur in a shorter period of time, often in a 1 or 2 hour period (Murphy et al. 2015). Measuring behaviour in this way is often unavoidable for practical reasons, nevertheless we accept that there will be some error in the quantification of a behaviour. Intuitively we also know that the longer we observe a behaviour, the better the representation of that behaviour we will have (i.e. diminishing error with increasing sampling effort; see Lendvai et al. 2015; Morvai et al. 2016; Sánchez-Tójar et al. 2017; for empirical evidence of this).
 
As evolutionary and behavioural ecologists, we are interested in quantifying the total amount of variation that is due to differences between individuals and environments. We therefore frequently use metrics such as R2 (proportion of total variance explained by a particular model),repeatability (the proportion of total variance due to individual identity effects; also known as the intraclass correlation coefficient - ICC) or heritability (proportion of total variance due to additive genetic effects) or, more broadly, quantify standardised effect sizes (Nakagawa & Cuthill 2007, Nakagawa & Schielzeth 2010, 2013). However, commonly used methods for analysing variation in behavioural counts fail to distinguish between the contribution of biological variation and the introduced error relating to sampling effort. If we do not take this into account, then we will both systematically underestimate effect sizes, and limit our ability to compare such metrics between studies. Furthermore, the presence of this error acts to limit the predictive power of such behaviours on other traits.
 
Here, we outline a broad model for thinking about how our behavioural count data arise, which demonstrates the inevitability of systematic error in such data. We suggest a simple null model for describing these processes and discuss the problems associated with ignoring the stochasticity inherent in this data. Using the example of provisioning rate in birds, a frequently used, count-based measure of parental care, we show how behavioural counts fit our null model well. Through a literature review we show how widespread the problem of not accounting for this stochastic error is. Finally we present some solutions to this problem. Despite the large focus of this article on provisioning, all the theoretical and practical issues and solutions described here are directly relevant to other behaviours sampled by counting events in a restricted time window. 

[bookmark: _s5bsldyiwoz2][bookmark: _Toc532997064]II. Behaviour as a point process
When we analyse behavioural frequency, we are typically interested in estimating the underlying rate at which a behaviour occurs. Let us take a general example to describe our behavioural count data. Imagine that we want to understand the factors affecting the frequency (or rate) at which bees enter a nest. Here each arrival represents the behaviour of interest occurring. To do this, we watch the entrance to a nest for set observation periods. There will be many factors influencing when bees arrive at the nest, only a few of which we will realistically be able to quantify. As we are unable to describe the complex processes that leads to this behaviour, we can therefore model the arrival of these bees (or more generally the occurrence of behaviour), as a stochastic process. Note that we are not suggesting that the behaviour arises through a stochastic process, rather that we can describe it as a stochastic process; although the behaviour maybe completely deterministic, we do not have the information needed to model it in this way. We therefore need a model that describes the stochastic distribution of events through time. This is broadly known as a point process, a probabilistic model for describing points in some space, for example the distribution of points occurring on a straight line (or analogously as arrivals occurring through time; Figure 1). It is worth stressing the difference between behavioural counts (following point processes) and continuously expressed traits such as body size, which have an absolute value at any point in time. These two types of traits are intrinsically different and so require different statistical approaches to model.  

[bookmark: _jd90qhhbsvaz][bookmark: _Toc532997065](1) Introducing the Poisson process
By using counts of behaviour (from a sampling period) as a representative measure of that behaviour, we are making the assumption that there is an underlying rate which we capture during the observation. A commonly used example of a point process is the Poisson process (Daley & Vere-Jones 2003). In a Poisson process, the number of arrivals in a bounded region (i.e. observation period) follows a Poisson distribution and the number of points in two distinct bounded regions are sampled from independent Poisson distributions. This process has a single parameter, the arrival rate (defined as 1/ expected interval length) for a given period of time. As we want to understand the factors affecting the frequency at which bees enter a nest, it is this parameter that we are broadly interested in estimating (note that we never observe this rate directly, it is an underlying, latent property of this process).

The simplest Poisson process is the homogeneous Poisson process, which assumes that the arrival rate () is constant through time. Given the simplicity of this process, we believe that it is a highly suitable starting point or null model with which to model behavioural counts. It also has several useful properties, which we can compare with real data to assess the suitability of this model (see below). Firstly, it assumes that the probability of arrival is constant over time, meaning that the inter-arrival intervals within an observation will be exponentially distributed. Secondly, a Poisson process results in a predictable amount of variation in the number of visits observed across multiple observations; these counts follow a Poisson distribution, with mean (and variance) equal to the length of the observation period (t) divided by the mean interval length (or ). We will describe this mean as the expected arrival rate for an observation (c.f. de Villemereuil et al. 2016). In other words, for every observation there is an underlying arrival rate, but we observe this with a certain degree of (quantifiable) error caused by the stochastic nature of the process (Figure 2A). We will refer to this error as stochastic error. In the statistical literature, this would be referred to as aleatory uncertainty (Kiureghian & Ditlevsen 2009). This error is analogous to measurement error, with similar consequences (outlined below).

Now imagine that we want to compare different bee nests, as we might expect that they differ in the underlying rate at which bees arrive (due to factors such as their size, distance to food etc.). If all nests had the same arrival rate, then by watching them for the same observation period, the number of arrivals across these observations would be Poisson distributed (Figure 2A). In other words, we would still observe variation in the number of arrivals between observations of different nests, even if there was no variation in their underlying arrival rates (Figure 2A). If the expected arrival rates differ between nests (i.e. variation on the expected scale) the combined observations would be over-dispersed (i.e. more variation present than explained simply by the Poisson distribution; Figure 2B).

[bookmark: _Toc532997066](2) Diminishing stochastic error
As mentioned above, it seems intuitive that longer observations result in lower error (Lendvai et al. 2015, Morvai et al. 2016). As both the mean number of observed arrivals across all observations increases (for example through longer observations) and with greater variation in expected arrival rate, the amount of stochastic error, relative to total observed variance, diminishes. Let’s look more carefully at why this is the case.

Firstly, we know that variances (of independent variables) are additive. This means that the total observed variance () in a variable with stochastic error is equal to the sum of this error () and the variance in expected arrival rates (; Figure 4)
                                                        (1)
Secondly, the stochastic variance and variance in expected arrival rates do not scale in the same way. This is most easily demonstrated by thinking of variability in terms of the coefficient of variation (CV = , where is the standard deviation, and the mean of ), a dimensionless measure of variability. The variation in expected arrival rate, when measured as CV, remains constant as the mean number of observed arrivals increases. This is because the standard deviation scales directly with the mean (e.g. ). In other words, if the observation period was twice as long, all the expected arrival rates would double, as would their SD, whilst the CV (now ) remains the same (Figure 3A). In contrast, due to the nature of the Poisson distribution (i.e. the mean equals the variance), as the mean (number of arrivals) increases the Poisson distributed stochastic error becomes relatively less variable (i.e. CV decreases; ; Figure 3A). In other words, the additional stochastic error diminishes as our sampled number of arrivals becomes larger.

Knowing that  and that  we can rewrite equation 1 as:
                                                  (2)
We can now see that the variation due to stochastic error is equal to the mean, whilst the variation due to expected arrival rates is a function of both the expected CV (a constant) and the square of the mean. Therefore, as the mean number of observed visits increases, the variance in the expected arrival rate increases exponentially compared with stochastic error. This results in a rapid decrease in the observed CV and an increase in the proportion of observed variation due to variation in the expected arrival rate (Figures 3B, D). In other words, the amount of times we observe a behaviour directly effects the confidence we can have in quantifying the rate at which it occurs. Equally, the greater the amount of underlying, expected variation in arrival rate (i.e. expected CV; shown by different lines in Figures 3B, D), the lower the impact the stochastic error has and the more the observed variation reflects this expected variation in arrival rate (Figure 3D).

[bookmark: _q17u82olahaw][bookmark: _Toc532997067](3) Dynamic rates
A homogeneous Poisson process assumes that the rate at which a behaviour occurs is the same throughout the observation. It is, however, possible that individuals adjust their behaviour at a very fine scale (e.g. Johnstone et al. 2014; Schlicht et al. 2016), meaning that the expected rate changes during the observation. A changing arrival rate does not, however, violate the assumptions of a general Poisson process. Indeed, there exist models that allow the rate to be dynamic (e.g. inhomogenous Poisson processes; e.g. Heuer et al. 2010). For example, in a Cox point processes, a generalisation of the Poisson process, the arrival rate is also assumed to be stochastic, and modelled as a latent variable (Blackwell et al. 2016; see also Johnstone et al. 2014 for a related example in behavioural ecology). When not modelled, such dynamically changing behaviour will add further error to the estimation of the overall rate at which a behaviour occurs. Consequently, if the behaviour of interest is extremely dynamic, we would not expect to find anything we measure on a broad scale to correlate with it. However, many behaviours have been found to consistently differ between individuals, as shown in the recent flurry of studies on animal personality (Bell et al. 2009, Beekman & Jordan 2017), and are frequently found to vary among different environments. Such findings indicate that there is a consistent rate that can be measured over these time periods in many behaviours.

[bookmark: _Toc532997068](4) Refractory periods and the non-independence of visits
A homogeneous Poisson process also assumes that, at any time point, the time to next arrival is independent of when the previous arrival occurred (i.e. the likelihood of an event occurring is constant over time). This is known as the Markov property, and results in an exponential distribution of inter-arrival intervals (with a modal interval of 0). Up until now we have been considering arrivals of bees at a nest, which are likely to be largely independent of each other. When considering the behaviour of a single individual, however, this may seem much more unrealistic. It is important to note that when considering this assumption of independence, it does not matter if we are watching an individual, a pair, a group or a set of unique individuals. The assumption of independence relates simply to whether the timing of one event affects the occurrence of the next event, and not to the individual that does the event (although the chance that the assumption of independence is violated may increase with fewer individuals).

Let us consider then, the arrival rate to the nest of an individual bee (rather than the overall arrival rate at the nest). As bees have to find food and return to the nest, the probability of this individual bee arriving at the nest is likely to be lower just after its last arrival occurred, meaning the probability of the bee arriving changes over time. This is known as a refractory period (i.e. a period in which a behaviour is unlikely to recur). A refractory period can be described in a point process with an additional parameter. As stated above, a Poisson process assumes that the inter-arrival intervals follow an exponential distribution, with a modal interval of 0. The exponential distribution is a special case of the gamma distribution, in which one of its two parameters, , is fixed to 1 (no refractory period). When >1, we have a point process with a refractory period.  describes the refractory period in terms of the expected interval length. The refractory period itself can be more intuitively thought of as the mode of the gamma distribution (see Supplementary Material S1). 
 
As the inter-arrival intervals no longer follow an exponential distribution when there is a refractory period, the number of arrivals in a given period of time would no longer follow a Poisson distribution, violating the assumptions of the Poisson process. A refractory period reduces the amount of stochastic error for a particular mean (i.e. underdispersion with respect to a Poisson distribution) in a predictable way, and so can be modelled using the additional  parameter to describe the relative extent of the refractory period (see Supplementary Material S1). Although a refractory period results in less stochastic error for given mean number of observations, it is important to note that the stochastic error will always be proportional to this mean, and so the relative amount of stochastic error will still diminish as longer observations are made, or with more biological variation. Furthermore, small refractory periods do not lead to substantial deviations away from a Poisson process.

 In behavioural data, there are several instances where such refractory periods may exist, for example, if an individual has to do something before the behaviour reoccurs. As in the example above, this might be seen in arrival or feeding rates, especially if foraging sites are located far away from the nests. Sexual behaviours are also likely to show such refractory periods; this is well studied in rats and humans for example (Levin 2009), and it is likely that there is a minimum interval between copulations in many other species. Quantification of refractory periods is therefore important, but to our knowledge has not yet been systematically done for any behavioural trait measured this way (at least in the context of behavioural ecology). The little quantitative information about the presence, and length, of refractory periods makes it very difficult to judge their impact, at least currently. 

[bookmark: _ti8lqbwk91b][bookmark: _Toc532997069](5) Embracing a null model
... there is no need to ask the question "Is the model true?". If "truth" is to be the "whole truth" the answer must be "No". The only question of interest is "Is the model illuminating and useful?"
George Box, 1979

Here we argue that a Poisson process is a good null model to describe the stochastic nature of behaviours sampled in specific periods of time (a type of point process) for the following 3 reasons. First, it is simple and tractable, and it allows us to account for how stochastic error predictably changes with sampling effort. We acknowledge that it may not be the perfect model for such behaviours in all circumstances (as discussed above). However, this is not the purpose of a null model. Currently, we have no clear null model, as generally we simply ignore the presence of this stochastic error (see literature review below), which is induced by the processes underlying behavioural count data. As we will discuss below, ignoring this stochastic error (the presence of which we believe to be undeniable, the form/extent of which can be the subject of debate) leads to systematic error in the analysis of behavioural counts. Second, deviation from this model gives us valuable information. We believe that assuming (and more importantly understanding) such a null model gives us insight into the processes underlying the data, whether deviations from this model occur, and if so what they may represent. Many fields have embraced null models (for example, the ideal-free distribution in behavioural ecology or the Hardy-Weinberg Equilibrium in population genetics), and it is standard practice to quantify deviation from these models. Finally, such a null model would force us to confront what assumptions we are making when analysing our behavioural count data.

[bookmark: _e39wbqd1txve][bookmark: _Toc532997070]III. Problems with ignoring stochastic error
[bookmark: _ayybpkf4qme7][bookmark: _Toc532997071](1) Analysing variation in behavioural counts
When stochastic error is not explicitly modelled, it is included in the residual, unexplained variation (Figure 4). This imposes an upper limit to the variance in, for example, arrival rate that can be explained (Figure 3D), because the stochastic error will always remain unexplained, unless explicitly accounted for (Figure 4; Nakagawa & Schielzeth 2013; Nakagawa et al. 2017a). To demonstrate this, let us return to our population of bee nests where, on the expected scale, the mean (±SD) arrival rate across nests is 10±3 arrivals/hour (i.e. an expected CV of 0.3), and 50% of this expected variation in arrival rate is due to consistent differences between nests (i.e. repeatability (ICC) on the expected scale = 0.5). Assuming that arrival rates in this population are well described by a Poisson process, a study that observed nests for 2 hours (Study A; Figure 4), would observe an average of 20±7.5 arrivals per observation and estimate a repeatability of 0.32, just over half of the actual repeatability. Not accounting for this stochastic error leads, therefore, to a general underestimation of underlying effect sizes.
 
Different studies will also vary in the mean number of observed arrivals and/or the underlying variation in expected arrival rates, through having different observation periods, or simply because of intrinsic differences among populations. As the proportion of total variance due to stochastic error is dependent on both of these factors (Figure 3D), metrics that relies on the estimation of total variance (e.g. standardised effect sizes, ICC and R2) are not comparable between studies, when not accounting for this changing stochastic error. Imagine that two more studies (Studies B and C) are performed in the population described above, but with shorter observation periods (60 and 30 mins, respectively), averaging 10 and 5 arrivals per observation. As a different amount of stochastic error was observed in both cases, the resulting repeatabilities would be much lower still, 0.24 and 0.16 respectively (Figure 4). Effects sizes, therefore, may differ between studies due to both the intrinsic characteristics of the population and the sampling effort. Note that these calculations assume of an underlying Poisson process. If, for example, the refractory period was to differ between different studies then, without accounting the differing form of stochastic error, the results would also not be comparable. 
 
[bookmark: _1awlu1uu5ann][bookmark: _Toc532997072](2) The low predictive power of behaviour
Behavioural count data typically correlates poorly with other variables. However, because of the potentially large proportion of observed variation that is due to stochastic error, the observed number of events is constrained in how much variation in another trait it can explain (Figures 2C, 3, 5B). For example, arrival rate estimated from a short observation period will correlate poorly with the underlying arrival rate, due to this stochastic error (Lendvai et al. 2015, Morvai et al. 2016). Consequently, this measure may explain little variation in another variable - even if it actually has had a strong effect. Moreover, stochastic error in one predictor variable can have a large effect on the parameter estimates of other covariates in the model, as the covariance between different parameters is not properly estimated, creating potentially spurious relationships between predictor variables and the response variable (Freckleton 2011). Note that these effects are a general consequence of any kind of measurement error in predictor variables, but will be particularly pronounced with the level of error seen in count data. 

[bookmark: _cyh5b4hkfwec][bookmark: _Toc532997073]IV. Is a Poisson process a good description of behaviour?
Up until now we have been focussing on a general example whilst arguing that a Poisson process represents a suitable descriptive model for behavioural count data. Now we will take a frequently used behavioural count - provisioning rate - to demonstrate the utility of this model and highlight the extent of the problems caused by not taking such stochastic error into account. Offspring provisioning rate (measured as the number of feeding visits within a certain unit of time) is often used as a quantitative assessment of parental investment in birds and analyses of provisioning rate have contributed a considerable amount to our understanding of parental care (e.g. Harrison et al. 2009). As a Poisson process makes certain assumptions, we can compare the patterns we see in observed data with those we expect from a Poisson process, to assess how good a model this is for describing our data. There are 3 important patterns which can emerge.

Firstly, a Poisson process assumes that visits to the nest are independent from each other, in others words there is no refractory period. Note that the assumption of independence is not violated by our watching the same individual, rather referring to the probability of a visit occurring depending on when the last visit occurred. Although this is perhaps the most obvious way in which provisioning rate could violate the assumptions of a Poisson process, at the moment, there is little evidence that substantial refractory periods exist for provisioning rate. For example, distributions of inter-visit intervals that appear close to exponential (as expected from a Poisson process) have been observed in several species (Great tit - Johnstone et al. 2014; Acorn Woodpecker - Figure 3 in Koenig & Walters 2016; Red Winged Blackbird - Figure 2 in Westneat et al. 2013; Pied Flycatcher - Figure S1 in Westneat et al. 2017; Chestnut-crowned Babbler - Savage et al 2017). Furthermore, many studies analyse per nest visit rates (i.e. with two or more parents/carers), in which case refractory periods are likely to be extremely low.

Secondly, from a Poisson process we would expect Poisson distributed error. With additional factors influencing provisioning rate (due to individual, brood or environmental characteristics), we would see additional variation (i.e. overdispersion with respect to a Poisson distribution; Figure 2) and so the variance in the number of observed visits between observations would be greater than the mean. Observing overdispersion does not necessarily mean that the stochastic error is Poisson distributed; we could still observe more variation than expected in a Poisson distribution, if for example the stochastic error was lower (due to a refractory period) and biological variation greater. The variance being more than or equal to the mean is rather a minimum requirement for Poisson distributed error to exist. Consistent underdispersion with respect to a Poisson distribution across population level estimates of variation, on the other hand, would indicate that the error was not Poisson distributed, violating the assumptions of our null model. As shown below (see Literature review), overdispersion is consistently found across studies and species in provisioning rate, which is consistent with our model of a Poisson process and additional between observation variation in expected provisioning rates.

Finally, we would expect to see a dramatic decrease in the relative variability of provisioning data with an increase in the mean number of observed visits. Using recently published data (Lendvai et al. 2015), we can see this systematic decrease in CV with increasing observation time (Figure 3C; see Supplementary Material S2 for further details), in accordance with theoretical predictions. Concurrently we would also expect that metrics such as repeatability would increase with the mean number of observed visits. Again, we can show this effect empirically using the data of Lendvai et al. (2015). By calculating the repeatability of provisioning rate over different time periods (and not correcting for this stochastic error), we indeed find that repeatability dramatically increases with observation period (i.e. with mean number of observed visits; Figure 3E, Supplementary Material S2), in line with expectations from a Poisson process.

Together this evidence demonstrates that provisioning data has a high level of stochastic error, the magnitude of which is in line with that predicted by a Poisson process. Therefore, a Poisson process seems a highly suitable model for provisioning rate. We should stress, however, that the validity of these assumptions should be assessed on a behaviour and study specific basis.

[bookmark: _d0o4xdnx23az][bookmark: _Toc532997074]V. Assessing the size of the problem - Literature Review
Recent work has suggested that only a small amount of variation in provisioning rate is generally explained by individual, brood or environmental characteristics (Williams 2012, Williams & Fowler 2015), a trend that is commonly found across behavioural traits (e.g. low repeatabilities; Bell et al. 2011, Wolak et al. 2012). It has also been suggested that provisioning rate often has little or no detectable effects on offspring phenotype (e.g. fledgling size, survival etc; Schwagmeyer and Mock 2008, Williams 2012, Williams & Fowler 2015), bringing into question its utility as an indicator of parental investment. However, such conclusions may arise from failing to account for the presence of stochastic error.

How much of a problem these issues present depends largely on both the sampling effort employed in such studies, how variable this effort is among studies, and whether or not the presence of stochastic error is accounted for. In order to ascertain the breadth of the problems outlined above, we conducted a review of papers analysing provisioning rate (measured as the number of visits), published in 2015/16 (see Supplementary Material S3 for further information). We found 81 studies of 64 species that fitted our criteria, containing 427 analyses of provisioning rate (343 as a response and 84 as a predictor). For 350 analyses we could extract the mean number of observed visits for the data used in the analysis, which was typically low (median = 8.41, Figure 5). For 301 analyses we were also able to extract a standard deviation of provisioning rate, and so calculate expected CV. For 34 of these analyses, it was not possible to calculate expected CV, and so it was assumed to be 0 (Supplementary Material S5). Expected CV ranged from 0 to 1.234 (median=0.449).
 
Using the expected CV and mean number of observed visits for each sample, we were able to calculate proportion of observed variation in provisioning rate that is due to expected, biological, variation (see Supplementary Material S3). Across these estimates, the median proportion was 0.627 (Figure 5). This represents the maximum effect size (e.g. R2 or ICC) that can be estimated from this data, if sampling error is not accounted for (i.e. if the true ICC was 1 the estimated ICC would be 0.627, and if the true ICC were 0.5, then the estimated ICC would be 0.3135 etc.). Of the 427 analyses, only 7% modelled the stochastic error by assuming a Poisson error distribution (see below, note no other corrections were used), when provisioning rate was analysed as a response variable, whilst no study accounted for stochastic error when modelling provisioning rate as a predictor variable. Effect sizes from these studies are therefore consistently, and often substantially, underestimated. Repeatabilities, for example, would be underestimated on average by 37%, as would the effect of provisioning rate on other variables such as chick mass or survival. Moreover, because of the large variation in this proportion among studies (range: 0 - 0.982), interpretation of, and comparison amongst, effect size estimates from these studies is not meaningful, as any differences may simply be due to methodology, rather than to biological differences. More generally, no study on the repeatability of provisioning behaviour has accounted for (i.e. removed) this sampling error (see Khwaja et al. 2017 for summary of studies), suggesting that these estimates are underestimations, and that the comparison among these studies may be problematic. Note that we have assumed in these calculations that this stochastic error is Poisson-distributed. As discussed above, this may not be the case. However, this review still demonstrates how wide ranging the current underestimation of effect size is. Furthermore, as refractory periods may vary between studies, not accounting for the stochastic error makes comparison between studies extremely problematic.

[bookmark: _1cu8b2w39ce2][bookmark: _Toc532997075]VI. Analytical Solutions
[bookmark: _8g0uds4t77lv][bookmark: _Toc532997076](1) Directly modelling stochastic error
In the majority of analyses (80% in our review), behavioural counts are analysed as a response variable. Stochastic error can be accounted for in such analyses by using a generalised linear mixed model (GLMM) framework, specifying a Poisson error distribution (for a detailed discussion see Bolker et al. 2009). Broadly GLMMs account for distribution specific variance (i.e. the Poisson distributed stochastic error) seen on the observed level, and transform the data from the expected scale onto the ‘latent’ scale, using a ‘link’ function (in this case typically the log function). The data is normally distributed on the latent scale, fulfilling linear model assumptions (see Nakagawa & Schielzeth 2010 and de Villemereuil et al. 2016 for a helpful breakdown of these models). We present examples in the Supplementary Material (S6).
 
By using GLMMs, the stochastic variation is specifically modelled, and ICC and R2 estimates can be made with or without the Poisson distributed stochastic error (i.e. by including it or not in the calculation of total variance; Figure 4). Traditionally R2 and ICC are calculated on the observed scale (i.e. including stochastic error; Nakagawa & Schielzeth 2010, 2013). However, the overriding utility of this has recently been discussed, and it has been suggested that under some circumstances it is more appropriate to measure such metrics on the expected scale (i.e without stochastic error; see de Villemereuil et al. 2016 for a discussion of this in the context of heritability). In the case of variables such as provisioning rate (that are sampled in a fixed period of time), we would argue that these metrics should be estimated without the inclusion of this stochastic error in the estimation of total variance (Figure 4), as this is dependent on the sampling effort, and so the metrics are more biologically meaningful on the expected rather than the observed scale. Note that in some cases the actual behavioural count, rather than the rate, is more relevant to a researcher’s question, for example correlating the total number of feeds within a time period with the mass change of chicks within that same time period. In this case, it would not be appropriate to account for the stochastic error (i.e. by following the methods proposed in Nakagawa & Schielzeth 2010, 2013, see also Nakagawa et al. 2017), as the number of feeds rather than the underlying rate would be the variable of interest.
 
Typically, provisioning rate has been analysed assuming a Gaussian error distribution (i.e. in linear (mixed) models (L(M)Ms); 77% of analyses in our review). The implicit assumption in these analyses is that all the variance can be explained i.e. that there is no stochastic error that will always remain unexplained (Nakagawa & Schielzeth 2013; Nakagawa et al. 2017a, Figure 4). There has been much recent debate about the relative merits of using Gaussian or Poisson error distributions to model count data (O’Hara & Kotze 2010, Ives, 2015, Warton et al. 2016). Here we emphasise that this stochastic error needs to be accounted for (which is possible using either method; see Supplementary Material S6). Our recommendation for GLMMs is therefore specifically based on the explicit estimation of stochastic error in these models, leading to an output that is more intuitive and easier to deal with. Using LMMs to estimate effect sizes, and post hoc removing stochastic error, can also result in estimates that are not bounded by 0 and 1 (the limits of ICC and R2). Gaussian distributions are also unbounded, suggesting that observations below 0 are possible. A common alternative is to assume a log-Gaussian distribution (i.e. through log-transformation of counts). Although this is bounded above 0, 0 is not a value that can exist, whilst being a possible value for observed data (O’Hara and Kotze, 2010).

It is worth noting that the parameter estimates themselves (i.e. estimates of intercepts, slopes and variance components) should not change between the different models (log-normal and Poisson). These effect sizes only differ when standardised by total variance (which is how metrics are typically compared between studies). In studies of repeatability, we therefore also advocate reporting CVB - coefficient of between individual variation (Holtman et al. 2017). CVB reflects a mean-standardised measure of the amount of between individual variation. It is independent of the method of analysis and the degree of stochastic error and so can readily be compared between studies, regardless of sampling effort. It is analogous to CVA (the coefficient of additive genetic variation; Houle 1992), which was proposed to address similar issues of comparing additive genetic variation between studies. Both CVA and CVB were first proposed in the context of Gaussian traits, and their derivation for other distributions is more complex. Recently, Villemereuil et al. (2016) derived a formulation of CVA for non-Gaussian traits, which holds also for CVB. From a Poisson GLMM, CVB is, rather unintuitively, equal to the standard deviation of the between individual effects on the latent scale. A demonstration of the calculation of CVB is presented in Supplementary Material S6.

The resulting Poisson GLMMs are highly likely to be overdispersed, as it is unlikely that a given set of predictors will explain all underlying variation. To account for this (additive) overdispersion, models should be run as mixed models, including an observation level random effect (Hinde 1982). The estimate of variance from this observation level random effect can be used as the estimate for overdispersion (non-distribution specific) variance, analogous to the residual variance of a linear model. Note that some software (e.g. MCMCglmm; Hadfield 2010) explicitly does this by default. It is also possible to model such overdispersion in other ways, e.g. by assuming a negative binomial error distribution. This can be parameterised as a Poisson-gamma mixture distribution (rather than the Poisson-log normal mixture typically used in Poisson GLMMs).

Our assumption here is that the stochastic error is Poisson distributed, which may not be the case if, for example, substantial refractory periods exist. The reduction in stochastic error due to such refractory periods is also predictable, and can be modelled with a Tweedie distribution (see Supplementary Material S1; alternatively, the intervals between behaviours can be modelled, which we dicussed further below). Note that, with or without a refractory period, current methods still act to systematically underestimate effect sizes, as they do not account for stochastic error. It should also be noted that when refractory periods are small, assuming Poisson distributed error results in less bias than assuming no stochastic error (see Supplementary material S1). The choice that researchers make in how to calculate effect sizes (i.e. whether to remove stochastic error, and if so the magnitude of that error) should be clearly defined in studies, allowing assessment and future recalculation of relevant effect sizes.
 
Figure 6 demonstrates the effect of using different methods in the estimation of R2 on simulated data (Supplementary Material S5). In Figure 6A, we can see that by not correcting for this stochastic error (using linear models; black dots), R2 would increase as the mean number of observed visits increases and would be systematically underestimated, as is seen in real provisioning data (Figure 3E). Accounting for this error using Poisson GLMMs, results in (predominantly) unbiased estimates of R2 (except at low expected CV and mean number of observed visits; Figure 6C). The precision of these models is also affected by both the expected CV and the mean number of observed visits, with precision increasing as they both increase (Figure 6D).
 
[bookmark: _allkger9cbao][bookmark: _Toc532997077](2) Behavioural counts as predictors - Measurement error models
Although stochastic error can easily be modelled when behavioural counts are the response variables, commonly used statistical software do not allow for the inclusion of error in predictor variables (linear models, for example, assume that there is no error in the predictors). Indeed, no analysis (out of 84) in our literature review accounted for this stochastic error when provisioning rate was used as a predictor variable. In order to model this error, we can use a class of models, known as measurement error or ‘error in variable’ models, that allow error in the predictor variables to be specified. These models are, however, complex to implement at present, although can readily be created in software such as Stan (Carpenter et al. 2017). Measurement error models act very similarly to GLMMs, by creating a latent variable (i.e. expected provisioning rate) which is then used as a predictor in the main model. Variation in observation time between different observations can therefore easily be accounted for, as can variables that may differ between observations. For example, if a researcher wanted to analyse the effect of provisioning rate on chick mass at fledging, but provisioning rate had been measured at different brood ages or in different environmental conditions at different nests, this variation could easily be accounted for. In Supplementary Material S6 we present a practical example of such models in Stan.
 
In Figure 6B we demonstrate the effect of not correcting for this stochastic error when using behavioural rate as a predictor variable (black dots); as the mean number of observed visits increases, the predictive power of the behaviour increases, but is systematically downwardly biased. Measurement error models (red dots) account well for this Poisson error, but as with GLMMs, their precision is low when the mean number of observed visits is low.
 
[bookmark: _cmgk65l2qy9d][bookmark: _Toc532997078](3) Modelling number rather than rate
In many studies the observation periods vary. This is frequently corrected for by scaling the observed number of events to create a rate (e.g. visits/hour). In the provisioning literature, many studies also correct for brood size when calculating provisioning rate (e.g. visits/hour/chick). Indeed, only 29% of studies in our literature review analysed their data as a count rather than a rate. However, when modelling count data, the raw number of observed events should be used, as transformations will create several problems. Firstly, because of the way the mean, stochastic error and expected variance scale (discussed above), by transforming the data the correct amount of Poisson variance cannot be directly estimated (Figure 4). Once the number of observed arrivals is transformed to a different scale (e.g. the number of arrivals is standardised to arrivals/hour), the mean no longer represents the stochastic variance. For example, if the 20±7.5 arrivals observed in study A from figure 4 (120 mins), is transformed to 10±3.75 arrivals/hour, the expected CV (i.e. the amount of biological variation) is calculated as 0.2 (instead of 0.3), as we are overestimating the amount of Poisson sampling error. Conversely. the 5±2.7 arrivals in observations from study C (30 mins) when transformed becomes 10±5.4 arrivals/hour, with an expected CV of 0.438. Therefore, depending on the direction of the scaling (i.e. making the mean smaller or larger), this would lead to the respective over- or underestimation of Poisson variance, and so a corresponding over- or underestimation of effect sizes (see also Supplementary Materials S5 and S6). Instead, variation in observation time can be accounted for by using a Poisson ‘exposure’ model (Gelman & Hill 2007), by including log observation period as an offset (a covariate with the slope fixed to 1). Similarly, brood size should be corrected for by including it as a covariate in the GLMM. Correcting provisioning rate for brood size (e.g. using visits/hour/chick) incurs further problems associated with the use of ratios, as the relationship between brood size and provisioning rate is often not linear (Raubenheimer 1997, Nakagawa et al. 2017b), and spurious correlations are created when brood size is included as a covariate in addition to being corrected for in the response variable (Kronmal 1993).
 
[bookmark: _Toc532997079](4) Modelling intervals rather than counts
Given some of the problems outlined above, it may seem more appealing to model the intervals between behaviours rather than the count of the behaviours. Modelling intervals instead of counts is not a solution in itself, however. Clearly, there is an advantage to analysing intervals when auxiliary interval level data exists (such as environmental variables measured at the level of the interval), as this provides an opportunity to start to understand what processes contribute to the apparent stochastic nature of these intervals. However, auxiliary data are typically collected on the level of the observation and not the interval, which does not give more information to the analysis than analysing counts. Without interval-level data, the mean interval length for an observation is essentially the variable of interested, and this is clearly a simple re-parametrisation of the counts (mean interval length = observation period / count). As discussed above, we know that the intervals within an observation will show a high level of stochastic error (they will be exponentially distributed under the Poisson process model). They can be treated as repeated measurements, where the within observation variation in intervals represents the stochastic error. 

Given our extensive discussion above, we would encourage the use of a gamma distribution when modelling behavioural intervals. This approach also allows a population level  to be estimated, and so some of the assumptions of a Poisson process directly assessed. An interesting extension to this, would be to model whether both the refractory period and the return rate vary between observations and further whether they systematically differ between individuals or environments. 

[bookmark: _fl5o4ewxzwg7][bookmark: _Toc532997080]VII. Determining sampling effort
Researchers frequently consider sample size when planning studies. In this case, that would typically refer to the total number of observations. However, as we have shown, the number of events that are observed within each observation is also important. How then should we determine the best strategy for collecting such data?
 
Readers may wonder why we do not simply recommend extremely short observation periods, given that we can correct for the additional stochastic error that is induced by this method. It is important to note, however, that when observing a low mean number of events, precision of model parameter estimates is low, and bias (under certain conditions) is high (Figure 6). This is because when the mean number of observed visits is low, the estimation of the residual, unexplained biological variation is poor. As the variance is so dominated by stochastic error, small random fluctuations in the mean (induced by sampling error) have disproportionately large effects on the estimation of residual variance and can even lead to the mean being larger than the observed variance, implying that there is no variation in expected rates. We can see this pattern in both simulated data and in data from the literature review (Supplementary Material S5 and Figure S3). Moreover, this is likely why we see an upward bias in effect size occur in the Poisson models, as the residual (i.e. expected) variance is underestimated.

We should therefore seek to collect data under the conditions which minimise such effects. Ideally data would be collected in a fully automated way, meaning that all (or a large proportion of) events would be recorded, and the stochastic error across observations would be negligible. However, this is overly idealistic in most situations, as setting up such systems involves a large amount of time and money, and requires a high proportion of the population to be tagged to be effective. Thus, we advise using existing data (or a pilot study) to estimate a suitable observation period (see Supplementary Material S5 for how to calculate expected CV). This is not a one size fits all situation - an appropriate observation period will differ among study systems, according to the mean rate and variability of the behaviour. The emphasis, therefore, should be on the optimal mean number of observed events rather than optimal observation period, as it is the former that will directly determine the proportion of stochastic error. Our simulations show that an average of 20 events per observation minimises bias and maximises precision (but note that the results may vary according to parameters such as the simulated R2). We recognise that longer observations may limit the number of observations that can be made, although researchers can use tools such as planned missing data designs (Noble & Nakagawa 2018) to offset this cost.

Finally, it is worth noting that our calculations are made on the assumption that a Poisson process is the most suitable model for the behavioural count data in question, which may not be the case (see above). However, regardless of the exact form of the stochastic error, extending observation periods will act to reduce this error, and make comparisons between studies more meaningful. 

[bookmark: _y9qhj7tj7wov][bookmark: _Toc532997081]VIII. A cautionary note on other measures of behaviour
Whilst the literature review presented here focused on studies that specifically measured and analysed counts of provisioning, there were many studies in our original search that analysed variables that are derived from visit rate, such as the amount of food brought to the nest or proportion of visits made by each sex. These metrics will equally be affected by the problems caused by stochastic error, as they depend on visit rate for their quantification, and therefore the stochastic error associated with visit rate is propagated to these other variables. We, therefore, would urge a similar word of warning in the use of any measures derived from short observations of behaviour. The kind of stochastic error we describe here applies not only to counts, but to any quantification of behaviour sampled in a short period of time. These problems can be resolved through careful thought about which distribution to use in the analysis, and the assumptions that a distribution has. For example, the amount of food brought to the nest might be well described by compound Poisson or Tweedie distributions (see Thompson 1984 for an example with rainfall data)

[bookmark: _hnoxmixj5fvd][bookmark: _Toc532997082]IX. Conclusions
1. Stochastic error arises when measuring behaviour by counting the frequency of events in a sample period. By not taking this error into account, we limit both the variation in these behaviours that we can explain and the utility of these variables as predictors of other traits – making comparisons between studies problematic. 
2. Using the null model of a Poisson process to describe this stochastic error, we can demonstrate it arises in a predictable manner, allowing researchers to account for it, using established statistical methods. Whether, and how far real behaviour count data deviates from this model is not well understood. Future work should seek to address this, as it will give a better biological understanding of the respective behaviour.
3. Using the example of provisioning rate, we demonstrate the suitability of the Poisson process as a null model. However, through a literature review we show that by far the majority of studies of provisioning rate do not account for this stochastic error, and with low mean number of observations per study, the amount of stochastic error is high. Whilst recent work may be correct in asserting that provisioning rate is not an accurate descriptor of parental investment (Williams 2012, Williams and Fowler 2015), the methods that are currently employed to assess this are insufficient to draw this conclusion. Therefore, although we welcome further investigation of the different ways parents invest in their offspring (e.g. size / quantity / quality of prey), we suggest that we should not yet rule out the possibility that provisioning rate itself, when properly measured, is an adequate description of postnatal parental investment. The use of longer observations and correct statistical analysis will aid us in these endeavours.
4. Finally, given the inevitability and predictable nature of this stochastic error, we should endeavour to quantify and account for it when analysing behavioural count data, as well as taking steps to minimise it where possible. Behavioural ecology is a discipline already fraught with relatively small effect sizes, and low power to detect them; we do ourselves a disservice by adding more error into the equation.
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[image: Macintosh HD:Users:joelpick:Dropbox:0_postdoc:8_PR repeat:shared:submission4:PR_fig1.pdf]Figure 1: Behaviour can be described as points occurring on a straight line, in other words as a point process. Nest observations are simulated using a Poisson process with the same arrival rate to demonstrate the variation that may arise through observations of different nests with the same arrival rate. The red dotted lines demonstrate the effect of shortening observation periods on the variation between observations.

[image: Macintosh HD:Users:joelpick:Dropbox:0_postdoc:8_PR repeat:shared:submission4:PR_fig2.pdf]Figure 2: Visualisation of Poisson distributed stochastic error. A) if all observations are the same length and have the same expected rate, the number of visits across all observations would be Poisson distributed. B) When there is variation in the expected rate (for example, due to consistent differences between individuals), every different rate is observed with stochastic error, leading to an over-dispersed Poisson distribution on the observed scale.

[image: Macintosh HD:Users:joelpick:Dropbox:0_postdoc:8_PR repeat:shared:submission4:PR_fig3.pdf]Figure 3: In data with Poisson distributed stochastic error, we expect to see certain patterns. Because the coefficient of variation (CV) of Poisson distributed stochastic error (solid line) and expected arrival rate (dotted line), change differently as the mean number of observed arrivals increases (A), we see that the observed CV (solid line) decreases as the mean number of observed arrivals increases, according to the variation in expected rates (dotted lines). In C) we can see this pattern in real provisioning data. As a result, the proportion of total observed variation due to ‘biological’ variation in expected rates, should increase with the mean number of observed arrivals (D). This proportion can be interpreted as either the maximum repeatability or R2 when behavioural counts are analysed as a response variable or the maximum amount of variation these counts can explain in another variable, when Poisson distributed stochastic error is not accounted for. In E), we see this pattern arising in real provisioning data; repeatability (ICC) increases with increasing observation period. C) and E) use data presented in Lendvai et al. 2015; the red line shows the predictions from a non-linear model estimating CV and ICC, respectively, assuming an underlying Poisson process, and dotted line the estimated CV and ICC from these models (see Supplementary Material S2).



[bookmark: _GoBack][image: Macintosh HD:Users:joelpick:Dropbox:0_postdoc:8_PR repeat:shared:submission4:PR_fig4.pdf]Figure 4:  Effect of not accounting for Poisson distributed stochastic error in analyses of behavioural count data. Three studies of different observation periods in the same population will estimate different effect sizes, when not accounting correctly for the presence of stochastic error.

[image: Macintosh HD:Users:joelpick:Dropbox:0_postdoc:8_PR repeat:shared:submission4:PR_fig5.pdf]Figure 5: Distributions of the mean number of observed visits and proportion of observed variation due to expected variation in provisioning rates, from provisioning data used in analyses presented in papers published in 2015/16, and the relationship between them. Points show individual datasets, the size of the points indicates the number of models that were run using this dataset. Grey points indicate data from direct observation or video recordings, and red from automated data collection. Blue lines show median values. Estimates for which the mean was greater than the variance, the proportion of observed variation is displayed as 0

[image: Macintosh HD:Users:joelpick:Dropbox:0_postdoc:8_PR repeat:shared:submission4:PR_fig6.pdf]Figure 6: Results of simulations showing the effect of analysing behavioural count data with (red points) and without (black points) accounting for Poisson error, as both response (A) and predictor (B), over varying mean number of observed visits. A) and B) were simulated with an expected CV of 0.3; solid lines show simulated R2, and dotted lines show predicted R2 when not taking in account Poisson error. C) and D) show bias and precision, respectively, in R2 calculated from Poisson GLMM with provisioning rate as a response variable, from simulations across varying means and expected CVs; is the simulated value, and is the estimated value. Blue colours show low bias and low precision, respectively, and red colours high bias and high precision. See Supplementary Material S5 for further details of the simulations.
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