

The covariance between metabolic rate and behaviour varies across behaviours and thermal types: meta-analytic insights

Journal:	Biological Reviews
Manuscript ID	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Mathot, Kimberley; University of Alberta, Department of Biological Sciences Dingemanse, Niels; Ludwig Maximilian University of Munich , Biology Nakagawa, Shinichi; University of Otago, Department of Zoolgoy; University of Sheffield, Department of Animal & Plant Sciences
Keywords:	among-individual differences, animal personality, basal metabolic rate, resting metabolic rate, routine metabolic rate, standard metabolic rate, energetic constraints, energy management strategy

1		
2 3 4	1	The covariance between metabolic rate and behaviour varies across behaviours and thermal types:
5 6 7	2	meta-analytic insights
8 9	3	Kimberley J. Mathot ^{1,2} , Niels J. Dingemanse ³ and Shinichi Nakagawa ^{4,5}
10 11 12 13	4	
14 15	5	1. Canada Research Chair in Integrative Ecology, Department of Biological Sciences, University of Alberta,
16 17 18	6	CW405 Biological Sciences Building, T6G 2E9, Edmonton, Alberta, Canada.
19 20 21	7	2. NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht
22 23	8	University, 1790 AB, den Burg, Texel, The Netherlands
24 25 26	9	3. Behavioural Ecology, Department Biology II, Ludwig-Maximilians University of Munich, Grosshadener
27 28	10	Strasse 2, DE-82152, Planegg-Martinsried, Munich, Germany. Email: dingemanse@biologie.uni-
29 30 31	11	muenchen.de
32 33 34	12	4. Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences,
35 36	13	University of New South Wales, Sydney, New South Wales 2052, Australia. Email:
37 38 39	14	s.nakagawa@unsw.edu.au
40 41	15	5. Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street,
42 43 44	16	Darlinghurst, Sydney, New South Wales 2010, Australia
45 46 47	17	Author for correspondence current address. Phone: 780-248-1234. Fax: 780-492-9234. Email:
48 49	18	mathot@ualberta.ca
50 51 52	19	Authorship statement: KJM, NJD and SN conceived of the study. KJM performed the literature review
53 54	20	and extracted data estimates. SN assisted with data extractions and performed the meta-analysis. KJM
55 56	21	and SN co-wrote the paper. All co-authors contributed to revisions.
57 58 59 60		1

2		
3	22	Data accessibility statement: All data used for the analyses and all r-scripts are available from the Open
4 5	22	
6	23	Science Framework digital repository (DOI 10.17605/OSF.IO/GMVAB).
7		
8 9	24	Running title: Metabolism and behaviour: a meta-analysis
9 10		
11		
12		
13		
14 15		
16		
17		
18		
19 20		
20 21		
22		
23		
24 25		
25 26		
27		
28		
29		
30 31		
32		
33		
34		
35 36		
37		
38		
39		
40 41		
41		
43		
44		
45 46		
47		
48		
49 50		
50 51		
52		
53		
54		
55 56		
57		
58		2
59		
60		

Abstract

1 2 3 4 5 6 7 8 9 10 11 12 13 14	
 15 16 17 18 19 20 21 22 23 24 25 26 27 28 	
 29 30 31 32 33 34 35 36 37 38 39 40 41 42 	
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	
58 59 60	

	23	
	26	Energy metabolism has received much attention as a potential driver of repeatable among-individual
	27	differences in behaviour (animal personality). Several factors have been hypothesized to mediate this
	28	relationship. We performed a meta-analysis of >70 studies comprised of >8000 individuals reporting
	29	relationships between measures of maintenance metabolic rates (i.e., basal metabolic rate, resting
	30	metabolic rate, and standard metabolic rate) and behaviour. We evaluated support for three
	31	hypothesized mediators: 1) type of behaviour, 2) opportunities for energy re-allocation, and 3)
1	32	magnitude of energetic constraints. Relationships between measures of maintenance metabolic rate
	33	(MR) and behaviour are predicted to be strongest for behaviours with strong consequences for energy
•	34	turnover (acquisition or expenditure). Consistent with this, we found that behaviours with known
1	35	consequences for energy gain (e.g., foraging, dominance, boldness) or expenditure (e.g., maximum sprint
	36	speed, sustained running speed, maximum distance travelled, etc.) had strong positive correlations with
	37	MR, while behaviours with putatively weak and/or inconsistent associations with net energy gain or loss
	38	(e.g., exploration, activity, sociability) were not correlated with MR. Greater opportunities for energy
	39	reallocation are predicted to weaken relationships between MR and behaviour by creating alternative
	40	pathways to balance energy budgets . We tested this by contrasting relationships between MR and
	41	behaviour in ectotherms versus endotherms, as thermoregulation in endotherms creates additional
	42	opportunities for energy reallocation compared with ectotherms. As predicted, the relationship between
	43	behaviour and metabolic rate (MR) was stronger in ectotherms compared with endotherms. However,
	44	statistical analyses of heterogeneity among effect sizes from different species did not support energy re-
	45	allocation as the main driver of these differences. Finally, we tested whether conditions where animals
	46	face greater constraints in meeting their energy budgets (e.g., field versus lab, breeding versus non-
	47	breeding) increased the strength of relationship between MR and behaviour. We found that the
	48	relationship between MR and behaviour was unaffected by either of these modifiers. This meta-analysis
		3

provides two key insights. First, we observed positive relationships of similar magnitude between MR and behaviours that bring in net energy, and behaviours that cost net energy. This result is only consistent with a performance energy management model. Given that the studies included in our meta-analysis represent a wide range of taxa, this suggests that the performance model may be the most common model in general. Second, we found that behaviours with putatively weak or inconsistent consequences for net energy gain or expenditure (exploration, activity, sociability) show no relationship with MR. This provides the first systematic demonstration of the central importance of the ecological function of traits in mediating relationships between MR and behaviour. **Keywords:** among-individual differences, animal personality, basal metabolic rate, resting metabolic

rate, routine metabolic rate, standard metabolic rate, energetic constraints, energy management ία...

strategy

1			
2 3 4	60	Contents	
5 6	61	I. Introduction	. 6
7	62	(1) Does covariation between MR and behaviour depend on the type of behaviour?	. 7
8 9 10	63 64	(2) Do opportunities for alternative energy allocation decisions weaken relationships between MR ar behaviour?	
11 12	65	(3) Does energetic stress promote stronger relationships between metabolic rate and behaviour?	11
13 14	66	II. Methods	12
15	67	(1) Data collection and inclusion/exclusion criteria	12
16 17	68	(2) Data coding and calculation of effect sizes	15
18 19	69	(3) Meta-analysis and meta-regression analysis	16
20	70	(4) Publication bias analysis and sensitivity analysis	18
21 22	71	III. Results	19
23 24	72	IV. Discussion	21
25	73	(1) Covariation between MR and behaviour depends on the type of behaviour	21
26 27	74	(2) Relationships between MR and behaviour differ across thermal types	23
28 29	75	(3) No evidence that greater energetic stress strengthens relationships between MR and behaviour.	
30	76	(4) Energy management model inferences	
31 32	77	V. Conclusions	
33 34	78	VI. Acknowledgements	
35 36	79	VII. References	
36 37	80	VIII. Supporting information	
38 39	81		
40	01		
41 42	82		
43 44			
45			
46 47			
48			
49			
50			
51 52			
52 53			
54			
55			
56			
57			
58 59		5	

1 2	
3 4	
5 6	
7	
8 9	
10 11	
12 13	
14 15	
16 17	
18	
20	
21 22	
23 24	
25 26	
27 28	
29 30	
31 32	
33 34	
35	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 29 30 31 32 33 4 35 36 37 38	
39	
40 41	1
42 43	1
44 45	
46 47	1
48 49	1
50 51	1
52 53	
55 54 55	1
55 56 57	1
58	
59 60	

1

83 I. Introduction

84 The last decade has seen a surge of interest in understanding the causes and consequences of among-85 individual differences in behaviour (i.e. animal personality). The majority of adaptive explanations for 86 animal personality are based on state-dependence (Dingemanse & Wolf, 2010; Sih et al., 2015; Wolf & 87 Weissing, 2010), where state is broadly defined as any factor that influences the payoffs of a given 88 behavioural action (Houston & McNamara, 1999). State variables related to energy metabolism in 89 particular have been the subject of much attention in this burgeoning area of research (e.g., Biro et al., 90 2010; Careau & Garland, 2012; Careau et al., 2008; Houston, 2010; Mathot & Dall, 2013; Mathot & 91 Dingemanse, 2015; Wolf & McNamara, 2012), and the number of empirical studies investigating links 92 between metabolism and behaviour has grown dramatically in the last several years (reviewed in Biro & 93 Stamps, 2010; Careau & Garland, 2012; Mathot & Dingemanse, 2015; Niemelä & Dingemanse, 2018; 94 Royauté et al., 2018). 95 Several papers have called attention to the fact that relationships between measures of maintenance 96 MR (i.e., basal metabolic rate, resting metabolic rate, and standard metabolic rate) and behaviour are 97 likely mediated by interacting factors (Biro & Stamps, 2010; Careau & Garland, 2012; Careau et al., 2008; 98 Killen et al., 2013; Mathot & Dingemanse, 2015; Speakman et al., 2004). For example, the energy 99 management model of an organism (i.e., how maintenance MR covaries with total energy expenditure) .00 (Biro & Stamps, 2010; Careau & Garland, 2012; Careau et al., 2008; Mathot & Dingemanse, 2015; .01 Speakman et al., 2004), the type of behaviour (Biro & Stamps, 2010; Mathot & Dingemanse, 2015), the .02 extent to which there are alternative allocation opportunities (Careau & Garland, 2012; Mathot & .03 Dingemanse, 2015), and environmental stressors (Biro & Stamps, 2010; Killen et al., 2013) are all .04 expected to shape the relationships between MR and behaviour.

Here, we performed a meta-analysis of existing studies to assess the overall support for a relationship
between MR and behaviour. In addition, we evaluated the importance of several of the factors that have

Biological Reviews

2	
3	
4	
5	
6	
_	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50 57	
58	
59	

60

been proposed to mediate these relationships: 1) the type of behaviour, 2) the opportunities for energy
re-allocation, and 3) the degree of energetic stress. Below, we detail the rationale and predictions for
each of these proposed mediators.

110 (1) Does covariation between MR and behaviour depend on the type of behaviour?

111 Assuming that variation in MR reflects variation in energy requirements, then to balance their energy 112 budgets, variation in MR can be logically expected to be associated with variation in either behaviours 113 that bring in net energy (e.g. foraging, food defense, foraging boldness), or cost net energy (e.g. 114 movement, mate defense, etc.) (Biro & Stamps, 2010; Careau & Garland, 2012; Careau et al., 2008; 115 Mathot & Dingemanse, 2015; Speakman et al., 2004). However, variation in MR inferred from measures 116 of oxygen consumption may not reflect true differences in energetic requirements if organisms differ in 117 their mitochondrial efficiency (i.e., the amount of adenosine triphosphate, ATP, generated per molecule 118 of oxygen consumed) (Salin et al., 2015). Although there is evidence for among-individual differences in 119 mitochondrial efficiency (reviewed in Salin et al., 2015), we do not address this here given that paucity of 120 studies simultaneously recording among-individual differences in MR, mitochondrial efficiency, and 121 behaviour.

122 Assuming variation in oxygen consumption does reflect variation in energy requirements, the direction 123 of the relationship between MR and behaviours that cost net energy depends on the energy 124 management model of the organism. Three energy management models have been described which 125 reflect three distinct relationships between MR and daily energy expenditure (DEE). Under the allocation 126 model (also called the compensation model), DEE does not vary as a function of MR (Careau & Garland, 127 2012; Careau et al., 2008; Mathot & Dingemanse, 2015). Thus, logically, variation in MR is not predicted 128 to be associated with variation in behaviours that bring in net energy (e.g., foraging) (Mathot & 129 Dingemanse, 2015). However, because organisms work with a fixed energy budget, high MR means a

1		
2 3 4	130	relatively smaller fraction of energy available for energetically costly behaviours (e.g., sustained sprint
5 6	131	speed) (Careau & Garland, 2012; Careau et al., 2008; Mathot & Dingemanse, 2015). Under the
7 8	132	independent model (also referred to as compensation model), the energy devoted to activity is
9 10 11	133	independent of MR, i.e., the amount of energy expended on activities above basic maintenance does not
12 13	134	vary with MR (Careau & Garland, 2012; Mathot & Dingemanse, 2015). However, this still has the
14 15	135	consequence that total energy required, DEE, does increase with increasing MR, and therefore, a positive
16 17	136	relationship is predicted between MR and behaviours such as foraging (Mathot & Dingemanse, 2015).
18 19 20	137	Finally, under the performance model (also referred to as increased intake), the capacity of an organism
21 22	138	to bring in energy is positively correlated with MR (Careau & Garland, 2012; Careau <i>et al.</i> , 2008; Mathot
23 24	139	& Dingemanse, 2015). Thus, organisms adopting a performance model would be predicted to have
25 26 27	140	higher expressions of both behaviours that bring in net energy, and behaviours that cost net energy.
27 28 29 30	141	Few studies directly assess the relationship between MR and DEE (but see Portugal et al., 2016), thus the
31 32	142	energy management model is typically an untested assumption (Mathot & Dingemanse, 2015). Assuming
33 34	143	that existing studies comprise a mix of study species that adopting each of the three potential energy
35 36	144	management models, we would predict that there should generally be stronger support for a positive
37 38	145	relationship between behaviours that are associated with increased intake rate or increased access to
39 40 41	146	resources (e.g. foraging, foraging boldness, foraging dominance) compared with behaviours that cost net
42 43	147	energy (e.g. courtship/mating, stress responses and performance measures such as maximum sprint
44 45	148	speed). This is because two of the three energy management models predict a positive relationship
46 47	149	between MR and resource acquisition (independent and performance models) while the third predicts
48 49 50	150	no relationship (allocation model). In contrast, only one of the three energy management models
51 52	151	predicts a positive relationship between MR and behaviours that consume net energy (performance
53 54	152	model), the others predict either no relationship (independent model), or a negative relationship
55 56	153	(allocation model).
57 58 59		8

Page 9 of 41

Biological Reviews

2 3 4	154	Notably, many studies investigating relationships between behaviour and metabolic rate quantify
5 6	155	behaviours for which the functional significance in terms of net energy gain/loss is unclear. For example,
7 8	156	exploration behaviour in novel environmental conditions and general activity, are two commonly
9 10 11	157	measured behaviours in studies of repeatable among-individual variation. Activity measures the speed
11 12 13	158	with which an organism moves through a familiar environment, and exploration is typically defined as
14 15	159	the speed with which an individual moves through a novel environment (Réale et al., 2007). Although the
16 17	160	expression of these behaviours undoubtedly involve energetic costs, they are often also assumed to
18 19	161	determine the rate with which organisms encounter resources. Thus, depending on the intensity of
20 21 22	162	activity and exploration and the extent to which they determine encounter rates with food, a high
23 24	163	expression of activity or exploration may be associated with large net energy costs, large net energy
25 26	164	gains, or anything in between (Biro & Stamps, 2010; Careau & Garland, 2012; Carter et al., 2013). Thus,
27 28	165	relationships between activity or exploration and MR will likely differ for different species, or under
29 30 31	166	different ecological contexts, therefore, overall relationships between MR and exploration or activity are
32 33	167	predicted to be weak or non-existent (Careau & Garland, 2012; Carter et al., 2013; Mathot &
34 35	168	Dingemanse, 2015). Similarly, it is unclear how sociability (the propensity to affiliate with congeners)
36 37	169	should influence net energy gain or loss. On the one hand, being more strongly affiliated with congeners
38 39 40	170	may decrease expected intake through resource competition. On the other hand, it may allow for
41 42	171	increased feeding rates if sociable animals can reduce their relative investment in vigilance due to
43 44	172	dilution or group vigilance effects. Thus, we do not predict a consistent net effect of sociability on energy
45 46	173	gain or energy loss, and therefore, predict either no or weak relationships between sociability and MR.
47 48 49	174	(2) Do opportunities for alternative energy allocation decisions weaken relationships between MR and
50		
51 52 53	175	behaviour?
55 55	176	Assuming that the energy management model of a study system is known, we can predict how metabolic
56 57	177	rate should covary with behaviours that facilitate net energy gain versus net energy loss in general.
58 59		9

1		
2 3 4	178	However, animals are able to allocate the energy available for such behaviours to a variety of different
5 6	179	behaviours (e.g. foraging, foraging boldness, food defense). The ability to allocate among multiple
7 8	180	behaviours means that even if metabolic rate is predicted to covary positively with behaviours that bring
9 10 11	181	in net energy, it need not covary positively with <i>all</i> behaviours that bring in net energy (Mathot &
11 12 13	182	Dingemanse, 2015). Opportunities to reallocate energy across different behaviours that have the same
14 15	183	net consequence for energy balance means that associations between MR and specific behaviours may
16 17	184	not match the relationship between MR and behaviours in general. Consider the following, very
18 19	185	simplified, example. In a system with an independent energy management model, higher MR is
20 21 22	186	predicted to be associated with greater expression of behaviours that bring in net energy (see Figure 1,
23 24	187	Mathot & Dingemanse, 2015). Imagine that an organism has the ability to allocate between just two
25 26	188	behaviours that bring in net energy; foraging boldness (green) or resource defense (blue). Note that
27 28	189	resource defense is only predicted to occur when organism experience net benefits from defense (i.e.,
29 30 31	190	the resource is economically defendable), thus, despite costs associated with territory defense, the
32 33	191	behaviour would still be associated with net energetic gains (Davies et al., 2012). In this simplified
34 35	192	scenario, alternative allocation decisions between these two behaviours may create scenarios where
36 37	193	both behaviours show the predicted positive correlation with MR (Figure 1a), or only one behaviour
38 39 40	194	shows the predicted relationship (i.e., resource defense, Figures 1b-c). Note that it is even possible for
40 41 42	195	specific behaviours (i.e., foraging boldness) to show relationships with MR that are opposite to the
43 44	196	predicted relationship for a given energy management model (in this case, the independent model), so
45 46	197	long as other behaviours (i.e., resource defense) are sufficiently upregulated to offset this (Figure 1c).
47 48 49	198	We test the idea that a greater number of alternative options for energy allocation will weaken the
50 51	199	strength of relationships between MR and behaviour by contrasting endotherms with ectotherms.
52 53	200	Thermoregulation introduces additional allocation opportunities for endotherms, for example, because
54 55	201	heat produced through activity can be used to offset thermoregulation costs (Careau & Garland, 2012;
56 57		
58 59		10

Biological Reviews

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
_/ 28	
20 29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
45 46	
45	
45 46	
45 46 47 48	
45 46 47 48 49	
45 46 47 48 49 50	
45 46 47 48 49 50 51	
45 46 47 48 49 50 51 52	
45 46 47 48 49 50 51 52 53	
45 46 47 48 49 50 51 52 53 54	
45 46 47 48 49 50 51 52 53 54 55	
45 46 47 48 49 50 51 52 53 53 55 55 56	
45 46 47 48 49 50 51 52 53 54 55	
45 46 47 48 49 50 51 52 53 53 55 55 56	

60

202 Careau et al., 2014; Humphries & Careau, 2011). Thus, we predict that the relationships between MR and 203 behaviour will be weaker in endotherms compared with ectotherms.

204 (3) Does energetic stress promote stronger relationships between metabolic rate and behaviour?

205 Environmental stressors can alter the relationship between MR and behaviour, though the direction of 206 the effect may differ for different types of stressors (Killen et al., 2013). However, the rationale for 207 relationships between MR and behaviour is based in part on the assumption that balancing one's energy 208 budget is challenging. Environmental stressors that create greater challenges for organisms in terms of 209 balancing their energy budgets (e.g., reduced food availability, breeding), are expected to strengthen the 210 relationships between MR and behaviour (Mathot & Dingemanse, 2015; Ricklefs & Wikelski, 2002). We 211 test this prediction in two ways: 1) by testing for an effect of reproductive status (reproductive versus 212 non-reproductive), and 2) by testing for an effect of captivity (free-living versus wild-caught captive 213 animal versus lab-reared captive animal). We assume that animals face greater challenges in balancing 214 their energy budgets during reproduction due to increased energetic costs (e.g., production of offspring, 215 parental care). For animals that engage in parental care, reproduction may also decrease time available 216 for self-feeding, and thereby further challenge animals to balance their energy budgets. Consequently, 217 we predicted that the strength of the relationship between MR and behaviour would be greater in 218 reproductive versus non-reproductive animals. We also assume that free-living animals face greater 219 challenges in balancing their energy budgets compared with captive animals, because captive animals 220 are typically provided with predictable, ad libitum, access to food. Therefore, we predicted that 221 relationships between MR and behaviour would be stronger in free-living animals compared with lab-222 reared animals. We also distinguished wild-caught animals that were tested in captivity, as they may be 223 expected to be intermediate to free-living and lab-reared animals depending on the time-scale across 224 which animals adjust to ad-libitum food conditions in captivity.

1		
2 3 4 5	225	
6 7	226	II. Methods
8 9 10	227	(1) Data collection and inclusion/exclusion criteria
11 12	228	We followed the steps outlined in the Preferred Reporting Items for Systematic Reviews and Meta-
13 14 15	229	Analyses (PRISMA) protocol (Moher et al., 2009) for our meta-analysis as closely as possible, as
15 16 17	230	recommended by Nakagawa and Poulin (2012). We performed a literature search using two online
18 19	231	databases; Scopus (subject area: Life Sciences) and Web of Science. We included all available years up to
20 21	232	August 2016 (when the search was last updated). We had both behavioural and metabolism search
22 23 24	233	terms. The behavioural search terms used were: behavio*, "coping strategy", "coping style", personality,
24 25 26	234	and temperament. The metabolism search terms were: "basal metabolic rate", BMR, "resting metabolic
27 28	235	rate", RMR, "standard metabolic rate", SMR and "routine metabolic rate". We searched for articles
29 30	236	including these terms in the "Topic" field. Articles had to include at least one of the behavioural search
31 32 33	237	terms and one of the metabolism search terms. Our meta-analysis was focused on non-human animals
33 34 35	238	thus, to eliminate human studies, we additionally excluded articles that had any of the following terms in
36 37 38	239	the Topic field: child*, infant, baby, patient, women, men, student, person, elderly, boy or girl.
39 40	240	We performed the initial literature search on 30 June 2014, and later updated the search on 24 August
41 42	241	2016. The second search was restricted to articles published after 2013 to reduce the number of
43 44 45	242	references duplicated from the initial search. These literature searches produced a total of 2614 unique
46 47	243	references. These references were screened by reading the titles and abstract to assess their relevance
48 49 50	244	to the meta-analyses. We selected studies according the following five criteria:
51 52	245	(1) The study had to include one of the following measures of metabolic rate: resting metabolic rate,
53 54	246	standard metabolic rate, basal metabolic rate, routine metabolic rate. We excluded studies that only
55 56 57	247	reported metabolic rates in active animals (except in fish, because water must flow over the gills for fish
58 59		12

Biological Reviews

2	
_	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20 27	
27 28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	

60

to respire), such as summit metabolic rate, daily energy expenditure, sustained metabolic rate, etc. This
was to reduce the extent to which the measured MR was confounded with behaviour.

(2) The behaviour had to be measured outside of the MR measurements. For example, activity during
MR was not considered a valid behaviour. Again, this was to avoid scenarios where the MR measure and
behaviour were confounded.

(3) The study had to present a correlation between the appropriate measure of MR and a behaviour, or
present statistics that allowed for the correlation to be estimated indirectly. Thus, studies which only
presented categorical data on MR or behaviour were not included with the exception of studies
investigating links between dominance and MR. This is because dominance is not an individual trait, but
a relative trait, thus paired comparisons of MR rate in relation to dominance status (categorical:
dominant or subordinate) were also included.

259 (4) The correlation provided had to be either a raw (un-partitioned) phenotypic correlation or an among-260 individual correlation. We did not consider within-individual correlations (not the targeted hierarchical 261 level) or genetic correlations. Although genetic correlations represent the relevant hierarchical level (i.e., 262 among-individual), there were insufficient studies providing such estimates (N = 2 studies, Careau et al., 263 2011; Mathot et al., 2013) to allow us to compare the effects sizes of genetic correlations with either 264 among-individual or un-partitioned phenotypic correlations. One of these studies was nonetheless 265 included in the meta-analysis as it additionally provided estimates of raw un-partitioned phenotypic 266 correlations (Careau et al., 2011). One study (Gifford et al., 2014) presented both among-individual and 267 un-partitioned phenotypic correlations for two behavioural traits (foraging and exploration). Both types 268 of correlations were included in the meta-analysis and coded appropriately. The resultant non-269 independence was accounted for by additionally assigning a group ID to estimates derived from the 270 same sample of individuals.

1	
2 3 4	271
5 6	272
7 8	273
9 10 11	274
12 13	275
14 15 16	276
17 18	277
19 20	278
21 22 22	279
23 24 25	280
26 27	281
28 29 30	282
31 32	283
33 34 35	284
35 36 37	285
38 39	286
40 41	287
42 43	288
44 45 46	289
47 48	290
49 50	291
51 52	292
53 54 55	293
55 56 57	294
58 59	
60	

271	(5) The study had to provide sufficient information to allow for sample size, estimated effect size via
272	descriptive or inferential statistics, and uncertainty to be extracted. In some cases, the study did not
273	directly report the relevant information, but the information could be extracted from data provided in
274	the supplementary material, from the published data set, or from data presented in figures.
275	These selection criteria resulted in a list of 71 papers and 5 published datasets that were appropriate for
276	our meta-analysis (ESM Table S1). Studies that did not fulfill our selection criteria are listed in the
277	electronic supplementary material (ESM Table S2) along with the reason for their exclusion. When the
278	relevant data was presented in figures, we extracted the data using WebPlotDigitizer 3.8
279	(<u>http://arohatgi.info/WebPlotDigitizer/</u>). The 76 sources (71 articles and 5 published data sets) for
280	relevant effect size estimates produced a total of 163 estimates from 48 species (Table 1). The full
281	PRISMA flow chart is provided in Figure 2.
282	Our meta-analysis was intended to focus on among-individual correlations between MR and behaviour.
283	We nonetheless included studies that reported both among-individual correlations and raw (i.e., un-
284	partitioned phenotypic) correlations. Raw correlations represent a mix of within- and among-individual
285	correlations and may not accurately reflect the correlation structure at the level of interest (in our case,
286	among-individual) when within- and among-individual correlations are qualitatively different (e.g.,
287	positive versus negative) (Dingemanse <i>et al.</i> , 2012). We tested whether estimates derived from among-
288	
200	individual (N = 41 estimates) versus phenotypic correlations (N = 122 estimates) differed and found no
289	individual (N = 41 estimates) versus phenotypic correlations (N = 122 estimates) differed and found no support for a difference. Importantly, the estimated difference was close to zero (the contrast between
289	support for a difference. Importantly, the estimated difference was close to zero (the contrast between
289 290	support for a difference. Importantly, the estimated difference was close to zero (the contrast between the two: $\beta_{[difference in Zr]} = 0.003$, 95% confidence interval, CI = [-0.165, 0.170]; see the section ' <i>Meta</i> -
289 290 291	support for a difference. Importantly, the estimated difference was close to zero (the contrast between the two: $\beta_{[difference in Zr]} = 0.003$, 95% confidence interval, CI = [-0.165, 0.170]; see the section ' <i>Meta-analysis and meta-regression analysis</i> ' below for the details of the statistical model). This suggests that in

1	
2	
3	
4	
5	
6	
7	
8	
ð	
9	
10	
11	
12 13 14 15	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22 23	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
50	

295 A previous meta-analysis found that within-individual correlations between state and behaviour were 296 significantly weaker than among-individual correlations (Niemelä & Dingemanse, 2018). However, when 297 considering only correlations between MR and behaviour, the contrast between among- and within-298 individual correlations were not significantly different (P. Niemelä, personal comment). Further, based 299 on the strong support for lack of difference between phenotypic and among-individual correlations in 300 the present dataset, we did not treat among-individual correlations and un-partitioned phenotypic 301 correlations separately in any subsequent analyses.

302 (2) Data coding and calculation of effect sizes

303 We collected and transformed relevant study results into the standardised effect statistic, Fisher's z-304 transformation statistic (Zr); Zr (a transformation of correlation) was chosen because we were interested 305 in the relationship between two variables, metabolism and behaviour (c.f. Nakagawa et al., 2017). 306 Behaviours were grouped into nine broad categories and were always coded such that higher values 307 represented higher expression of behaviours associated with greater energy expenditure and/or 308 acquisition (see ESM Table S3 for behaviours and definitions). Thus, effect size estimates obtained for 309 relationships between MR and behaviours such as latency scores (e.g., latency to resume feeding) were 310 multiplied by -1 so that positive estimates indicated that higher MR was associated with higher 311 expression of behaviours that bring in net energy (resuming feeding). For behaviours that we presumed 312 to have weak or inconsistent relationships with energy turnover (activity, exploration, sociability), data 313 were coded such that higher values indicated higher expression of those traits. 314 Following recommendations from Noble et al. (2017) we preferentially collected descriptive statistics 315 (e.g. correlations, group means, standard deviations and standard errors) over inferential statistics (t, F,

316 χ^2 , U and p). Both descriptive and inferential statistics were transformed using formulas found in the

317 following references (Krishnamoorthy, 2006; Lipsey & Wilson, 2001; Nakagawa & Cuthill, 2007) and using

15

1 2	
3	3
4 5	3
6 7	J
8 9	3
10	3
12	3
13 14 15	3
16 17	3
18 19	3
20 21	3
22 23	3
24 25 26	3
27 28	
29 30	3
31 32	3
33 34	3
35 36	- - -
37 38	5
39 40	3
41 42	3
43 44	3
45 46	3
47 48	3
49 50	3
51 52	
53 54	3
55 56	3
57 58	
59 60	
00	

1

18 an effect size determination program (Wilson, 2001). Note that we only retained effect sizes from inferential statistics when directions could be determined (e.g., F, χ^2 , and p do not have directional 319 20 information), and directions of effect sizes were adjusted in a way that all positive effect sizes meant 321 strong correlations between metabolism and behaviour that either bring in or consume net energy (see 322 above). For the calculation of Zr's sampling variance, we use the number of independent subjects (i.e. 23 1/(i-3); i = the number of subjects). For phenotypic correlations, this provides a more conservative 24 estimate of sampling variance compared with using the total number of observations. We also collected 25 more information for each data point for use as moderators to explain potential heterogeneity and bias 326 in the data (e.g., species information, ectothermic vs. endothermic, types of behaviour, publication year). 327 The details of these potential moderators are summarized in the published dataset

28 (https://osf.io/gmvab/).

329 (3) Meta-analysis and meta-regression analysis

30 We employed phylogenetic multilevel meta-analysis (PMMA) to control the effect of phylogeny and 31 other types of non-independence (Hadfield & Nakagawa, 2010; Nakagawa & Santos, 2012). We used the 32 function, rma.mv from the R package, metafor (Viechtbauer, 2010). A PMMA requires a phylogenetic 33 tree so we constructed a tree using the R package rotl (Michonneau et al., 2016) which uses the Open 34 Tree of Life data (Hinchliff et al., 2015). The resulting phylogenetic tree did not have tree branch length 35 estimates. Therefore, we used the function compute.brlen, in the R package ape (Paradis et al., 2004) to 36 estimate branch lengths. With this function, we used the method of Grafen (1989), setting the power to 37 1, to create an ultrametric tree closely imitating the Brownian motion model of evolution. We used this 38 ultrametric tree for PMMA by converting it to a correlation matrix (using the vcv function from ape). 39 We first constructed a meta-analytic model (only with the intercept) with four random factors: 1) species

- identity (a non-phylogenetic component of species), 2) phylogeny (a phylogenetic component of
 - 16

Biological Reviews

2	
~	
ر ۸	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 9 20 21 22 23 26 27 28 9 30 1	
24	
25	
25	
20	
27	
28	
29	
30	
- X	
33	
רר	
34 35 36 37	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
F O	

60

341 species), 3) group (i.e., unique set of individuals because the same individuals could be used to estimate 342 multiple relationships between MR and behaviour) and 4) observation (effect size) level random effect 343 (equivalent to the residual term in a normal linear model). The species term captures the similarities of 344 effect sizes within the same species, while the phylogenetic term represents the similarity due to 345 common ancestors (Hadfield & Nakagawa, 2010). For a meta-analysis, the quantification of variance not due to sampling errors, known as heterogeneity or l^2 (Higgins & Thompson, 2002). We calculated the 346 multilevel-model version of heterogeneity, which quantify I^2 for each random effect as well as the total 347 348 heterogeneity, following Nakagawa and Santos (2012). 349 We then created a set of meta-regression models, which address our three main questions (see

350 Introduction). The first model added nine behavioural types (activity, boldness, courtship, dominance, 351 exploration, foraging, performance, sociability, and stress response) as a categorical moderator to the 352 meta-analytic model above (see ESM Table S3 for definitions). The second model had the thermal types 353 (endotherms and ectotherms) as a moderator along with an extra random factor, behavioural types 354 (because the first model showed that this categorical variable was important; we also note that the same 355 random-factor structure was used for the model comparing among-individual and phenotypic 356 correlations, above). We also created meta-analytic models for endotherms and ectotherms separately to quantify heterogeneity for both thermal types (total l^2 and l^2 for the four different random terms). 357 358 Finally, we tested the effects of the breeding statuses (breeding versus non-breeding) and the testing 359 conditions (free-living, wild-caught and tested in captivity, captive reared and tested) by constructing 360 two separate models with the same random factors as the second model. For meta-regression models, we calculated R^2 as the marginal R^2 in mixed models described in Nakagawa and Schielzeth (2013); in 361 meta-analysis, R² consisted of variance accounted for after taking away sampling error. Complete details 362 363 of meta-analytic and meta-regression models are available through the Open Science Framework

364 repository (R-markdown file along with our data set: DOI 10.17605/OSF.IO/GMVAB; web address:
365 https://osf.io/gmvab/).

366 (4) Publication bias analysis and sensitivity analysis

In the past, meta-analyses often identified temporal tends of declining effect size over time, known as the time-lag effect (Jennions & Møller, 2002; Trikalinos & Ioannidis, 2006). We tested this as a part of our publication bias analysis, by including the publication year as a moderator; we created a uni-moderator model with only the publication year as a moderator (along with the five random factors as described above) and a full model with publication year, thermal type, breeding status, and place of origin/testing conditions fitted as fixed effects. The analysis of the time-lag effect showed an important effect of the publication year (see below). Thus, we decided to add a set of sensitivity analyses where we repeated the analysis using meta-analyses and meta-regression with the data since 2007, because this represented the year with a marked increase in the number of studies per year that met the criteria for inclusion in our meta-analysis and because the time trend was not significant after 2007 (see Results for further details). Publication bias analysis often includes Egger regression tests along with funnel plots (Egger et al., 1997) and trim-and-fill tests (Duval & Tweedie, 2000a; Duval & Tweedie, 2000b). However, multilevel (non-independent) data are not amenable to these methods in their original forms. We applied these two

381 methods to the meta-analytic residuals, which consist of the effect-size level effects (equivalent to

anormal residuals) and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals) and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals) and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals) and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals) and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals) and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals
 anormal residuals and sampling errors (sensu Nakagawa & Santos, 2012). The meta-analytic residuals

Page 19 of 41

Biological Reviews

1 2	
3	38
4 5	38
6 7	38
8 9 10	38
10 11 12	38
13 14	39
15 16	39
17 18 19	39
20 21	39
22 23	39
24 25	39
26 27 28	20
28 29	39
30 31	39
32 33	39
34 35	39
36 37 38	4(
30 39 40	4(
41 42	4(
43 44	4(
45 46	4(
47 48	4(
49 50 51	4(
52 53	4(
54 55	4(
56	
57 58	
59 60	

385	III. Results
386	Overall, a phylogenetic multilevel meta-analytic model revealed that MR and behaviour were
387	significantly and moderately correlated (β_0 = 0.261, 95% confidence interval, CI = [0.053, 0,469]; Table 1
388	and Figure 3A). However, the observed total heterogeneity was high ($\underline{l}^2_{[total]}$ = 93.00%), implying that this
389	correlation was contingent upon moderators; this set the stage for our meta-regression models (see
390	Table 2). Notably, approximately 21% of variation in the data were explained by phylogeny (Table 2). The
391	first meta-regression model showed that the type of behaviour accounted around 20% of the variation
392	(R^2 = 19.06%), with boldness, dominance, foraging and stress showing moderate to large, significant
393	correlations with metabolic rate, MR (Figure 3A), while activity, exploration and sociability showed little
394	or zero correlation with MR. Though not significant, courtship and performance showed moderate
395	correlations with MR (complete contrasts among the behaviour types are in the ESM, Figure S1).
396	The second meta-regression on the thermal types showed that the mean effect for ectotherms was
397	significant and moderate ($\beta_{\text{[ectotherm]}}$ = 0.301, 95% CI = [0.102, 0.500]), and that for endotherms the effect
398	was non-significant and weak ($\beta_{endotherm}$ = 0.151, 95% CI = [-0.076, 0.378]; Figure 4; also see Figure S2),
399	although the contrast between the two was not significant ($\beta_{\text{[contrast]}}$ = -0.150, 95% CI = [-0.355, 0.056],
400	$Q_{M[df=68]}$ = 2.031, p = 0.15; R^2 = 3.88%; Figure 4). The separate meta-analytic models mirrored the results
401	from the meta-regression, apart from the mean effect for endotherms being significant ($\beta_{\text{[ectotherm]}}$ =
402	0.297, 95% IC = [0.0445, 0.548]; Figure 3B; $\beta_{\text{[endotherm]}}$ = 0.101, 95% CI = [0.033, 0.200]; Table 1, Figure 3C).
403	In the corresponding meta-regression models incorporating the different behaviour types, we found
404	similar patterns observed in the meta-regression model with all data, but the patterns were, in general,
405	stronger for ectotherms and weaker for endotherms than for all species together (compare panels A, B
406	and C in Figure 3). The magnitude of heterogeneity was high for both meta-analytic models ($l^2_{[total]}$ =
407	94.16% for ectotherms and $l_{\text{[total]}}^2$ = 81.22% for endotherms). Notably, much of heterogeneity in the
408	ectotherm data came from the phylogenetic and non-phylogenetic effects of species ($l^2_{[phylogeny]}$ = 18.20%

2	
2	
4	
5	
6	
7	
8	
9	
10	
11 12 13 14 15 16	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24 25 26	
26	
27	
28	
20 29	
30	
21	
31 32	
32 33	
33 24	
34 35 36	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
57 58	
58 59	
60	

1

409	and $I^2_{[species]} = 44.52\%$, respectively) whereas there was virtually zero variation resulting from phylogeny
410	or species in the endotherm data (Table 2). In our final meta-regression models, in contrast to our
411	predictions, we did not find significant effects of the breeding status ($Q_{M[df=2]}$ = 1.047, p = 0.592; R^2 =
412	0.70%) or testing conditions (i.e., free-living, wild-caught and tested in captivity, captive reared and
413	tested) ($Q_{M[df=2]} = 0.592$, $p = 0.744$, $R^2 = 0.45\%$; Figure 4; Figure S2).
414	We found a time-lag effect in our data set: there was a significant trend of decreasing effect size with
415	publication year ($\beta_{\text{[year]}}$ = -0.0132, 95% IC = [-0.0250, -0.0015]; $Q_{M[df=1]}$ = 4.8644, p = 0.027; R^2 = 4.62%;
416	Figure 5). As a sensitivity analysis, we repeated the main analyses (the analyses shown in Figure 3 and
417	Table 2) using only data points published from 2007 onwards, because 2007 was the year in which the
418	number of studies on this topic showed a sharp increase and because the time trend was not significant
419	after 2007 ($\beta_{[year]} = 0.0123$, 95% IC = -0.0185, 0.0431); $Q_{M[df=1]} = 0.610$, $p = 0.434$; see Figure 5 & Figure
420	S3). The results of these analyses were quantitatively very similar to the original analyses (see ESM
421	Figure S4, Table S4 & Table S5). An Egger's regression test on the meta-analytic residuals from our full
422	model suggested no evidence for funnel asymmetry ($\underline{t}_{[df=161]} = 0.225$, $p = 0.822$). However, a visual
423	inspection of the funnel plot showed some hint of asymmetry (Figure 6) and this was corroborated by
424	the results from a trim-and-fill test. The trim-and-fill test indicated that seven data points were
425	potentially missing ($p = 0.0039$ for the hypothesis for no missing data points). The meta-analytic mean
426	incorporating these seven filled points was -0.022 (95% CI = [-0.066, 0.022]; Figure 6B). This result means
427	we could have overestimate the meta-analytic mean in the original model by 0.022, but this amount is
428	negligible (see Figure 3 and Table 2). Taken together, we conclude that our results are robust against
429	publication bias.

1		
2 3	430	
4 5	431	IV. Discussion
6 7	432	We used meta-analyses to test for general relationships between MR and behaviour, as well as the
8 9	433	importance of several putative modifiers of the relationship. We demonstrate the importance of two
10 11 12	434	moderators of the magnitude of the relationship between MR and behaviour; the type of behaviour, and
12 13 14	435	the thermal type of the organism (endotherm versus ectotherm). However, we did not find any support
15 16	436	for the notion that conditions that impose greater energetic stress on organisms (breeding versus non-
17 18	437	breeding or captive vs. free-living), strengthen the relationship between MR and behaviour.
19 20 21	438	Unexpectedly, despite identifying several important moderators for the relationship between MR and
22 23	439	behaviour, we found support for an overall relationship between MR and behaviour even when not
24 25	440	accounting for any moderators. We discuss the implications of these findings for understanding the
26 27 28	441	functional significance MR and its relationship with behaviour.
29 30 31	442	(1) Covariation between MR and behaviour depends on the type of behaviour
32 33	443	Several recent conceptual papers have highlighted the fact that both the magnitude and direction of the
34 35	444	relationship between MR and behaviour are likely to be influenced by several moderators (Careau &
36 37	445	Garland, 2012; Killen et al., 2013; Mathot & Dingemanse, 2015). For example, the strength of the
38 39 40	446	relationship should differ for different types of behaviour. In particular, behaviours associated with net
41 42	447	energy expenditure or net energy gain are expected to have the strongest functional linkage with MR
43 44	448	(Biro & Stamps, 2010; Careau & Garland, 2012; Mathot & Dingemanse, 2015). Our results support this
45 46	449	prediction. Behaviours that cost net energy or brought in net energy were positively correlated with MR,
47 48 49	450	consistent with a performance energy management model.
49 50 51 52	451	The strongest relationship between MR and behaviour was found for stress response (response to
53 54	452	human handling), a putatively energetically costly trait (Koolhaas et al., 2011; Manzur et al., 2014).
55 56	453	Higher metabolic rates were associated with quicker escape latencies from observers, greater struggle
57 58 59 60		21

 rates and higher breath rates. There was also a moderately strong, albeit non-significant, correlation between 'performance' traits (e.g., maximum sprint speed, maximum sustained activity, etc.), which are also energetically demanding behaviours. Although courtship behaviour is often assumed to be energetically costly, we found a weak and non-significant relationship between MR and courtship/mating behaviours. However, our analysis of courtship behaviour was based on only three studies (Figure 3); two studies of calling rates, and one study of copulation duration. This is not a comprehensive sample of courtship behaviours. Given that the relationship between courtship behaviours and net energy expenditure may vary for different types of courtship behaviours and as a function of both the intensity and duration of the behaviour (Clark, 2012), the number of existing studies (N = 3), is insufficient to draw strong conclusions at this time. We also found moderate to strong and significant correlations between MR and each of the traits assumed to be associated with net energy gain (dominance, boldness, foraging). Animals with higher MR were more dominant (i.e., had priority access to food), bolder (i.e., resumed feeding more quickly after a disturbance), and foraged more intensively. In contrast, there was little or no support for significantly positive correlations between MR and behaviours with unknown or putatively weak and/or inconsistent relationships with net energy gain or net energy expenditure. As predicted, there was no support for a relationship between sociability and MR. Although the sociability estimate was derived from only three studies, the point estimate lies at zero, as predicted. There was also no support for a relationship between MR and either activity or exploration. Activity and exploration are two commonly measured behaviours in animal personality research; both provide some measure of the movement behaviour of animals, and so may be assumed to involve some net energetic costs. However, these movements can range from very low (e.g., periodic slow walking) to very high gross energetic costs (e.g., continuous running, flying). Further, these behaviours are assumed to increase encounter rates with resources. Thus, the net consequences of

1		
2 3 4	478	these behaviours could range from high net energetic costs to high net gains. Thus, the lack of
5 6	479	correlation between MR and exploration/activity is not surprising (Mathot & Dingemanse, 2015), and
7 8	480	further substantiates recent criticism of the use of standardized behavioural assays in animal personality
9 10	481	research without careful consideration of the functional significance of the traits being studied (Carter et
11 12	482	al., 2013). We are not suggesting that exploration and activity are not associated with net energetic costs
13 14 15	483	or gains, but rather that the relationship likely differs in different organisms or under different conditions
16 17	484	(Carter et al., 2013; Mathot et al., 2012). The consequences of greater activity or exploration on net
18 19	485	energy expenditure or gain should not remain untested assumptions in studies aimed at understanding
20 21	486	functional linkages between metabolism and behaviour, but should be evaluated directly if we are to
22 23	487	better understand why they are (or are not) associated with MR.
24 25		
26 27	488	(2) Relationships between MR and behaviour differ across thermal types
28 29	489	We also tested the idea that greater opportunities for energy (re-)allocation (Humphries & Careau, 2011)
30 31 32	490	could obscure relationships between MR and behaviour (Careau & Garland, 2012; Mathot &
33 34	491	Dingemanse, 2015) by contrasting ectotherms with endotherms. Because endotherms can offset
35 36	492	thermoregulation costs by substituting heat produced through activity (Careau & Garland, 2012;
37 38	493	Humphries & Careau, 2011), we predicted that endotherms would show weaker relationships between
39 40	494	MR and behaviour compared with ectotherms. Although our meta-analysis confirmed this prediction, we
41 42 43	495	suggest that thermal substitution alone cannot account for this observed differences. Within
43 44 45	496	endotherms, opportunities for heat substitution vary both taxonomically and allometrically (Humphries
46 47	497	& Careau, 2011). Thus, if heat substitution was a primary reason for a weaker relationship between MR
48 49	498	and behaviours in endotherms, we would expect to observe strong phylogenetic- or species-related
50 51	499	heterogeneity. However, this was not the case. In fact, the proportion of heterogeneity associated with
52 53	500	phylogeny and species in endotherms was close to zero (Table 2). Thus, although the strength of the
54 55 56		
56 57 58		23
59 60		23

relationships between MR and behaviour appear to differ for endotherms and ectotherms, the mechanism underlying this variation is unclear.

(3) No evidence that greater energetic stress strengthens relationships between MR and behaviour The rationale for predicting relationships between MR and behaviour hinges on the assumption that animals face constraints in balancing their energy budgets. We tested whether conditions that create greater energetic stress for organisms (reduced access to food and reproduction) strengthen the relationship between MR and behaviour but found no support for this. There was no support for differences in mean effect sizes for breeding versus non-breeding animals, nor for contrasts between studies in captive versus free-living organisms (which we assume covaries with access to resource, as captive studies typically provide ad libitum access to food) (Figure 4, Figure S2). The lack of an effect of breeding status may reflect that breeding does not actually impose greater challenges on organisms in terms of balancing their energy budgets. This could occur if animals adjust their metabolic profiles during breeding, for example, supressing resting MR to offset energetic costs associated with breeding behaviour (Welcker et al., 2015), if increased energetic costs of breeding are easily offset by increased food availability, or if breeders represent non-random sample of the populations (i.e., animals that are the least energetically stressed). We also found little effect of captivity on the strength of the relationship between MR and behaviour, despite the fact that food availability and predictability are almost always higher under captive

compared with free-living conditions. Animals with increased access to food for prolonged periods may exhibit metabolic adjustments (e.g., increased metabolic rate under increased food availability, Mueller & Diamond, 2001), such that energetic constraints are similar in the field versus the lab. However, there

were also no differences between wild-caught animals tested in captivity shortly after capture and either

free-living or lab-reared animals. Thus, although some studies have found that increased energetic

- constraints strengthen the relationship between MR and behaviour (e.g., Killen et al., 2011), our analyses

Page 25 of 41

1 2		
2 3 4	525	suggest that this may not generally true. Although unexpected, this result is also promising in that it
5 6	526	implies that the results from studies investigating links between MR and behaviour in the lab can be
7 8 9	527	generalizable to free-living organisms.
10 11 12	528	(4) Energy management model inferences
12 13 14	529	The energy management model of the organism is believed to be critical in shaping both the magnitude
15 16	530	and direction of relationships between MR and behaviour (Careau & Garland, 2012; Mathot &
17 18	531	Dingemanse, 2015). Predicted correlations between MR and specific behaviours are contingent on the
19 20 21	532	energy management strategy, with positive, negative and zero correlations all possible depending on the
21 22 23	533	type of behaviour being considered, and the energy management strategy. Alternative energy
24 25	534	management models do not always make exclusive predictions (e.g., both the independent model and
26 27	535	the performance model predict positive correlations between behaviours that bring in net energy and
28 29	536	MR). Further, where relationships are predicted between MR and a class of behaviours such as
30 31 32	537	behaviours that bring in net energy, the relationship need not exist for every type of behaviour that
32 33 34	538	brings in net energy, but may be present for only a subset of them. Thus, in an earlier opinion (Mathot &
35 36	539	Dingemanse, 2015), we pointed out that a single estimate of the relationship between MR and a single
37 38	540	behaviour provides weak inference. In this meta-analytical review, by combining estimates from multiple
39 40 41	541	studies and explicitly taking into account the support for relationships between MR and different types
42 43	542	of behaviours, we can establish the overall support for the alternative energy management strategies
44 45	543	across all published studies.
46 47	544	We found support for an overall positive relationship between MR and behaviour. This is consistent with
48 49		
50 51	545	a previous meta-analysis focused exclusively on among-individual correlations between state (including
52 53	546	MR measures) and behaviour (Niemelä & Dingemanse, 2018). More specifically, we found the strongest
54 55	547	support for positive relationship between MR and behaviours that bring in net energy or cost net energy,
56 57 58	548	with no support for relationships between MR and behaviours with putatively weak or inconsistent 25
59 60		

consequences for energy gain/expenditure. Further, effect sizes were comparable for behaviours that bring in net energy and behaviours that cost net energy. The performance model is the only one to predict similar effects for both types of behaviour, suggesting that our sample of studies is comprised primarily of organisms with a performance energy management model. As this meta-analysis includes a taxonomically diverse set of organism, this suggests that the performance model may be most common. In a recent paper, Portugal et al. (2016) compiled estimates of MR and daily energy expenditure in 7 birds and 4 mammals to evaluate support for alternative energy management models. Although they observed heterogeneity in estimates across species, a meta-analysis of the reported slopes reveals that the best supported model is in fact the performance model (see ESM Text S1), as the overall slope of the relationship between MR and DEE is > 1 (β = 1.11, 95% CI = 1.00, 1.22). Finally, we assessed evidence for publication biases in the studies compiled for this meta-analysis using several tests (e.g., Egger's regression and trim-and-fill tests). Overall, the evidence for publication bias distorting our main results was weak (see Figure 6). However, our time-lag analysis revealed two notable patterns (Figure 5). First, the number of studies published per year increased dramatically from 2007 onwards, and second, there was a significant trend towards decrease effect sizes estimates over time. We propose that both of these patterns may be explained by the rapid growth of the field of animal personality research in the last two decades. A major aim of the field of animal personality research is to understand the factors that promote consistent among-individual differences in behaviour, with several influential papers proposing links between among-individual differences in MR and behaviour around this time (Biro & Stamps, 2008; Biro & Stamps, 2010; Careau et al., 2008). The second consequence of the boom of animal personality studies is that there was a shift in the types of behaviours studied. In particular, there was a rapid increase in the number of studies using standardized assays of exploration and activity behaviour, two of the behaviours revealed by our current analyses to exhibit no relationship with MR.

1		
2		
3 4	573	
5		
6	574	V. Conclusions
7		
8 9	575	(1) The likelihood of any overarching relationship between MR and behaviour has been questioned given
) 10		
11	576	that such relationships are likely to be shaped by a variety of factors (Careau & Garland, 2012; Killen et
12		
13 14	577	al., 2013; Mathot & Dingemanse, 2015). Our current analysis identified two important moderators; the
14		
16	578	thermal type of the organism, and the type of behaviour.
17		
18	579	(2) Relationships between MR and behaviour were in the same direction for endotherms and ectotherms
19 20		
21	580	(positive relationship between MR and behaviours that either bring in or cost net energy), but the
22		
23	581	strength of the relationship was weaker in endotherms compared with ectotherms.
24 25		
26	582	(3) We also found that the types of behaviours that showed the strongest (positive) associations with MR
27		
28	583	were behaviours with clear consequences for net energy expenditure (e.g., maximum sprint speed,
29 30		
31	584	sustained running speed, maximum distance travelled, etc.) or gain (e.g., foraging, dominance, boldness).
32		
33	585	(4) In contrast, common behavioural assays used in animal personality research (exploration and activity)
34 35		
36	586	which have unknown or putatively weak consequences for net energy cost or gain showed no
37		
38	587	relationship with MR.
39 40		
41	588	(5) Taken together, the results of our meta-analysis highlight the importance of studying behaviours that
42		
43	589	are functionally relevant in the context of the research question.
44 45		
46	500	
47	590	
48	591	VI. Acknowledgements
49 50	592	We wish to thank Jan Wijmenga for assisting with the literature review and locating references (while
51		
52	593	funded by an MPG grant to NJD) and Renate Alton for assisting in locating references. NJD was funded by
53		
54 55	594	the Max Planck Society, KJM was funded by an NSERC postdoctoral fellowship and Veni Fellowship
56		
57		
58 50		27
59 60		

1 2		
2 3 4	595	(no.863.14.021) from the Netherlands Organisation for Scientific Research (NWO, Netherlands
5 6 7	596	Organisation for Scientific Research). SN was supported by a Future Fellowship (FT130100268).
8 9	597	
10 11 12	598	VII. References
13 14	599	BIRO P. A., BECKMANN, C. & STAMPS, J. A. (2010). Small within-day increases in temperature affects boldness
15 16	600	and alters personality in coral reef fish. Proceedings of the Royal Society B 277, 71-77.
17 18	601	BIRO P. A. & STAMPS, J. A. (2008). Are animal personality traits linked to life-history productivity? Trends in
19 20 21	602	Ecology & Evolution 23, 361-368.
21 22 23	603	BIRO P. A. & STAMPS, J. A. (2010). Do consistent individual differences in metabolic rate promote
24 25	604	consistent individual differences in behavior? <i>Trends in Ecology & Evolution</i> 25 , 653-659.
26 27	605	CAREAU V. & GARLAND, T. (2012). Performance, personality, and energetics: Correlation, causation and
28 29 30	606	mechanism. Physiological and Biochemical Zoology 85, 543-571.
31 32	607	CAREAU V., KILLEN, S. S. & METCALFE, N. B. (2014). Adding fuel to the "fire of life": energy budgets aross
33 34	608	levels of variation in ectotherms and endotherms. In Integrative Organismal Biology (ed. L. B.
35 36	609	Martin and C. K. Ghalambor). Wiley Scientific.
37 38 39	610	CAREAU V., THOMAS, D., PELLETIER, F., TURKI, L., LANDRY, F., GARANT, D. & RÉALE, D. (2011). Genetic correlation
40 41	611	between resting metabolic rate and exploratory behaviour in deer mice (Peromyscus
42 43	612	maniculatus). Journal of Evolutionary Biology 24, 2153-2163.
44 45	613	CAREAU V., THOMAS, D. K., HUMPHRIES, M. M. & RÉALE, D. (2008). Energy metabolism and animal personality.
46 47 48	614	<i>Oikos</i> 117, 641-653.
48 49 50	615	CARTER A. J., FEENEY, W. E., MARSHALL, H. H., COWLISHAW, G. & HEINSOHN, R. (2013). Animal personality: what
51 52	616	are behavioural ecologists measuring? <i>Biological Reviews</i> 88, 465-475.
53 54	617	CLARK C. J. (2012). The role of power versus energy in courtship: what is the 'energetic cost' of a courtship
56	618	display? Animal Behaviour 84, 269-277.
58 59		28
53 54 55 56 57 58		display? Animal Behaviour 84, 269-277.

1		
2 3 4	619	DAVIES N. B., KREB, J. R. & WEST, S. A. (2012). An introduction to behavioural ecology. John Wiley & Sons,
5 6	620	Oxford.
7 8	621	DINGEMANSE N. J., DOCHTERMANN, N. A. & NAKAGAWA, S. (2012). Defining behavioural syndromes and the
9 10 11	622	role of 'syndrome deviation' in understanding their evolution. Behavioral Ecology and
12 13	623	Sociobiology 66, 1543-1548.
14 15	624	DINGEMANSE N. J. & WOLF, M. (2010). Recent models for adaptive personality differences: a review.
16 17	625	Philosophical Transactions of the Royal Society B 365, 3947-3958.
18 19 20	626	DUVAL S. & TWEEDIE, R. (2000a). A Nonparametric "Trim and Fill" Method of Accounting for Publication
20 21 22	627	Bias in Meta-Analysis. Journal of the American Statistical Association 95, 89-98.
23 24	628	DUVAL S. & TWEEDIE, R. (2000b). Trim and Fill: A Simple Funnel-Plot–Based Method of Testing and
25 26	629	Adjusting for Publication Bias in Meta-Analysis. Biometrics 56, 455-463.
27 28	630	Egger M., Smith, G. D., Schneider, M. & Minder, C. (1997). Bias in meta-analysis detected by a simple,
29 30 31	631	graphical test. BMJ 315, 629-634.
32 33	632	GIFFORD M. E., CLAY, T. A. & CAREAU, V. (2014). Individual (Co)variation in standard metabolic rate, feeding
34 35	633	rate, and exploratory behvior in wild-caught semiaquatic salamanders. Physiological and
36 37	634	Biochemical Zoology 87, 384-396.
38 39 40	635	GRAFEN A. (1989). The Phylogenetic Regression. Philosophical Transactions of the Royal Society of London.
40 41 42	636	Series B, Biological Sciences 326, 119-157.
43 44	637	HADFIELD J. D. & NAKAGAWA, S. (2010). General quantitative genetic methods for comparative biology:
45 46	638	phylogenies, taxonomies and multi-trait models for continuous and categorical characters.
47 48	639	Journal of Evolutionary Biology 23, 494-508.
49 50 51	640	HIGGINS J. P. T. & THOMPSON, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in
52 53	641	Medicine 21, 1539-1558.
54 55	642	HINCHLIFF C. E., SMITH, S. A., ALLMAN, J. F., BURLEIGH, J. G., CHAUDHARY, R., COGHILL, L. M., CRANDALL, K. A., DENG,
56 57 58 59	643	J., Drew, B. T., Gazis, R., Gude, K., Hibbett, D. S., Katz, L. A., Laughinghouse, H. D., McTavish, E. J., 29

1 2										
2 3 4	644	MIDFORD, P. E., OWEN, C. L., REE, R. H., REES, J. A., SOLTIS, D. E., WILLIAMS, T. & CRANSTON, K. A. (2015).								
5 6	645	Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proceedings of the								
7 8	646	National Academy of Sciences 112, 12764-12769.								
9 10 11	647	HOUSTON A. I. (2010). Evolutionary models of metabolism, behaviour and personality. Philosophical								
12 13	648	Transactions of the Royal Society B 365, 3969-3975.								
14 15	649	HOUSTON A. I. & MCNAMARA, J. M. (1999). Models of adaptive behaviour: an approach based on state.								
16 17	650	Cambridge University Press, Cambridge.								
18 19 20	651	HUMPHRIES M. M. & CAREAU, V. (2011). Heat for Nothing or Activity for Free? Evidence and Implications of								
20 21 22	652	Activity-Thermoregulatory Heat Substitution. Integrative and Comparative Biology 51, 419-431.								
23 24	653	JENNIONS M. D. & MØLLER, A. P. (2002). Relationships fade with time: a meta-analysis of temporal trends in								
25 26	654	publication in ecology and evolution. Proceedings of the Royal Society of London. Series B:								
27 28	655	Biological Sciences 269, 43-48.								
29 30 31	656	KILLEN S. S., MARRAS, S. & MCKENZIE, D. J. (2011). Fuel, fasting, fear: routine metabolic rate and food								
32 33	657	deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass.								
34 35	658	Journal of Animal Ecology 80, 1024-1033.								
36 37	659	KILLEN S. S., MARRAS, S., METCALFE, N. B., MCKENZIE, D. J. & DOMENICI, P. (2013). Environmental stressors alter								
38 39 40	660	relationships between physiology and behaviour. Trends in Ecology & Evolution 28, 651-658.								
40 41 42	661	Koolhaas J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flugge, G., Korte, S. M., Meerlo, P., Murison,								
43 44	662	R., Olivier, B., Palanza, P., Richter-Levin, G., Sgoifo, A., Steimer, T., Stiedl, O., van Dijk, G., Wohr, M.								
45 46	663	& FUCHS, E. (2011). Stress revisited: A critical evaluation of the stress concept. Neuroscience and								
47 48	664	biobehavioral reviews 35, 1291-1301.								
49 50 51	665	KRISHNAMOORTHY K. (2006). Handbook of statistical distributions with applications. Chapmand and Hall,								
52 53	666	Boca Raton, FL.								
54 55	667	LIPSEY M. W. & WILSON, D. B. (2001). Practical meta-analysis. Sage, Thousand Oaks, CA.								
56 57										
58 59 60		30								

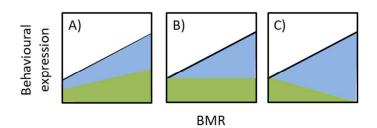
2		
2 3 4	668	Manzur T., VIDAL, F., PANTOJA, J. F., FERNÁNDEZ, M. & NAVARRETE, S. A. (2014). Behavioral and physiological
5 6	669	responses of limpet prey to a seastar predator and their transmission to basal trophic levels.
7 8	670	Journal of Animal Ecology 83, 923-933.
9 10	671	MATHOT K. J. & DALL, S. R. X. (2013). Metabolic rates can drive individual differences in information and
11 12 13	672	insurance use under the risk of starvation. American Naturalist 182, 611-620.
13 14 15	673	MATHOT K. J. & DINGEMANSE, N. J. (2015). Behaviour and energetics: unrequited needs and new directions.
16 17	674	Trends in Ecology & Evolution 30 , 199-206.
18 19	675	Mathot K. J., Martin, K., Kempenaers, B. & Forstmeier, W. (2013). Basal metabolic rate can evolve
20 21	676	independently of morphological and behavioural traits. <i>Heredity</i> 111, 175-181.
22 23 24	677	MATHOT K. J., WRIGHT, J., KEMPENAERS, B. & DINGEMANSE, N. J. (2012). Adaptive strategies for managing
24 25 26	678	uncertainty may explain personality-related differences in behavioural plasticity. Oikos 121,
27 28	679	1009-1020.
29 30	680	MICHONNEAU F., BROWN, J. W. & WINTER, D. (2016). rotl, an R package to interact with the Open Tree of Life
31 32	681	data. PeerJ Preprints 4, e1471v3.
33 34 35	682	MOHER D., LIBERATI, A., TETZLAFF, J., ALTMAN, D. G. & THE, P. G. (2009). Preferred Reporting Items for
36 37	683	Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Medicine 6, e1000097.
38 39	684	MUELLER P. & DIAMOND, J. (2001). Metabolic rate and environmental productivity: well-provisioned
40 41	685	animals evolved to run and idle fast. Proceedings of the National Academy of Science 98, 12550-
42 43 44	686	12554.
44 45 46	687	NAKAGAWA S. & CUTHILL, I. C. (2007). Effect size, confidence interval and statistical significance: a practical
47 48	688	guide for biologists. <i>Biological Reviews</i> 82, 591-605.
49 50	689	NAKAGAWA S., NOBLE, D. W. A., SENIOR, A. M. & LAGISZ, M. (2017). Meta-evaluation of meta-analysis: ten
51 52	690	appraisal questions for biologists. BMC Biology 15, 18.
53 54 55	691	NAKAGAWA S. & POULIN, R. (2012). Meta-analytic insights into evolutionary ecology: an introduction and
55 56 57	692	synthesis. <i>Evolutionary Ecology</i> 26, 1085-1099.
58 59		31
60		

1 2		
2 3 4	693	NAKAGAWA S. & SANTOS, E. S. A. (2012). Methodological issues and advances in biological meta-analysis.
5 6	694	Evolutionary Ecology 26, 1253-1274.
7 8	695	NAKAGAWA S. & SCHIELZETH, H. (2013). A general and simple method for obtaining R2 from generalized
9 10 11	696	linear mixed-effects models. <i>Methods in Ecology and Evolution</i> 4 , 133-142.
12 13	697	NIEMELÄ P. T. & DINGEMANSE, N. J. (2018). Meta-analysis reveals weak associations between intrinsic state
14 15	698	and personality. Proceedings of the Royal Society B: Biological Sciences 285.
16 17	699	NOBLE D. A., LAGISZ, M., O'DEA, R. & NAKAGAWA, S. (2017). Non-independence and sensitivity analyses in
18 19 20	700	ecological and evolutionary meta-analyses. <i>Molecular Ecology</i> 26 , 2410-2425.
20 21 22	701	PARADIS E., CLAUDE, J. & STRIMMER, K. (2004). APE: analyses of phylogenetics and evolution in R language.
23 24	702	Bioinformatics 20, 289-290.
25 26	703	Portugal S. J., Green, J. A., Halsey, L. G., Arnold, W., Careau, V., Dann, P., Frappell, P. B., Grémillet, D.,
27 28 29	704	HANDRICH, Y., MARTIN, G. R., RUF, T., GUILLEMETTE, M. M. & BUTLER, P. J. (2016). Associations between
30 31	705	resting, activity, and daily metabolic rate in free-living endotherms: No universal rule in birds and
32 33	706	mammals. Physiological and Biochemical Zoology 89, 251-261.
34 35	707	RÉALE D., READER, S. M., SOL, D., MCDOUGALL, P. T. & DINGEMANSE, N. J. (2007). Integrating animal
36 37 28	708	temperament within ecology and evolution. <i>Biological Review</i> 82, 291-318.
38 39 40	709	RICKLEFS R. E. & WIKELSKI, M. (2002). The physiology/life-history nexus. Trends in Ecology & Evolution 17,
41 42	710	462-469.
43 44	711	ROYAUTÉ R., BERDAL, M. A., GARRISON, C. & DOCHTERMANN, N. A. (2018). Paceless life? A meta-analysis of the
45 46	712	"Pace-of-Life syndrome". Behavioral Ecology and Sociobiology 72, 64.
47 48 49	713	SALIN K., AUER, S. K., REY, B., SELMAN, C. & METCALFE, N. B. (2015). Variation in the link between oxygen
50 51	714	consumption and ATP production, and its relevance for animal performance. Proceedings of the
52 53 54 55 56	715	Royal Society B 282 .
57 58 59 60		32

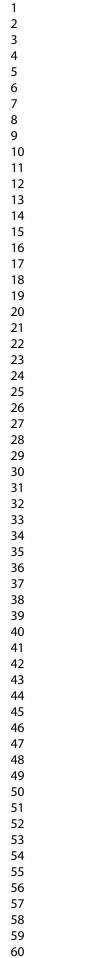
2										
3 4	716	SIH A., MATHOT, K. J., MOIRÓN, M., MONTIGLIO, PO., WOLF, M. & DINGEMANSE, N. J. (2015). Animal								
5 6	717	personality and state-behaviour feedbacks: a review and guide for empiricists. Trends in Ecology								
7 8 9	718	& Evolution 30, 50-60.								
10 11	719	SPEAKMAN J. R., KRÓL, E. & JOHNSON, M. S. (2004). The functional significance of individual variation in basal								
12 13	720	metabolic rate. <i>Physiological and Biochemical Zoology</i> 77, 900-915.								
14 15	721	TRIKALINOS T. A. & IOANNIDIS, J. P. A. (2006). Assessing the Evolution of Effect Sizes over Time. In Publication								
16 17 18	722	Bias in Meta-Analysis, pp. 241-259. John Wiley & Sons, Ltd.								
19 20	723	VIECHTBAUER W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical								
21 22	724	Software 36, 1-48.								
23 24	725	WELCKER J., SPEAKMAN, J. R., ELLIOTT, K. H., HATCH, S. A. & KITAYSKY, A. S. (2015). Resting and daily energy								
25 26 27	726	expenditures during reproduction are adjusted in opposite directions in free-living birds.								
27 28 29	727	Functional Ecology 29, 250-258.								
30 31	728	WILSON D. B. (2001). Effect size determination program, University of Maryland, College Park.								
32 33	729	WOLF M. & MCNAMARA, J. M. (2012). On the evolution of personalities via frequency-dependent selection.								
34 35 36	730	American Naturalist 179, 679-692.								
37 38	731	WOLF M. & WEISSING, F. J. (2010). An explanatory framework for adaptive personality differences.								
39 40	732	Philosophical Transactions of the Royal Society B 365, 3959-3968.								
41 42 43	733									
44 45	704									
45 46	734	VIII. Supporting information								
47 48 49	735	Additional supporting information may be found in the online version of this article.								
50 51										
52										
53										
54 55										
56										
57										
58		33								
59 60										

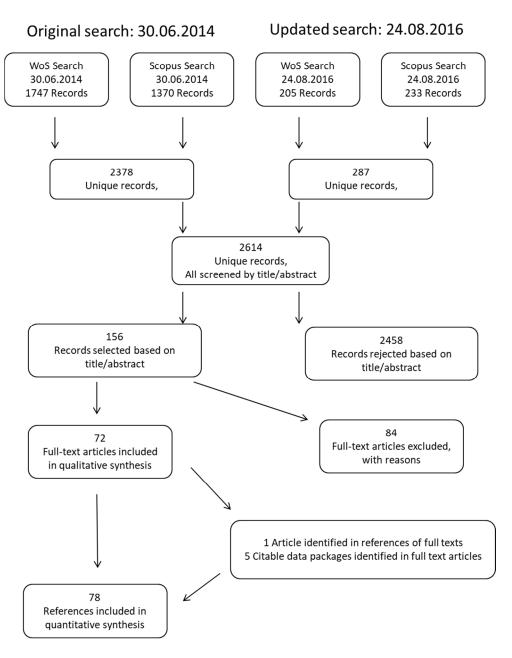
 Table 1: Summaries and results from phylogenetic multilevel meta-analyses of the overall data set, and the data set separated for ectotherms and

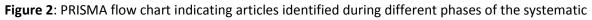
 endotherms. Note that the number of individuals ($N_{[individuals]}$) represents the sum of individuals making up each effect size estimate, not the total

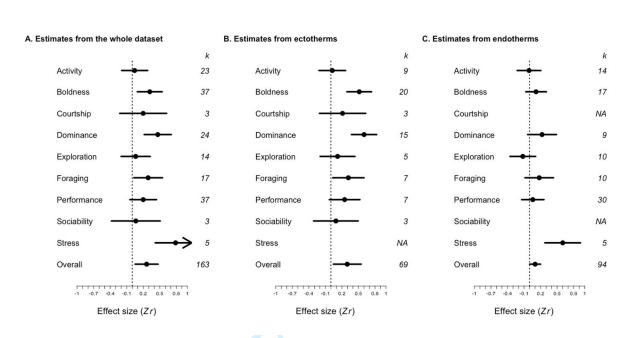

 number of unique individuals (which is over 8000 for the whole data set). This non-independence is accounted for in our analyses (see the text). LCI

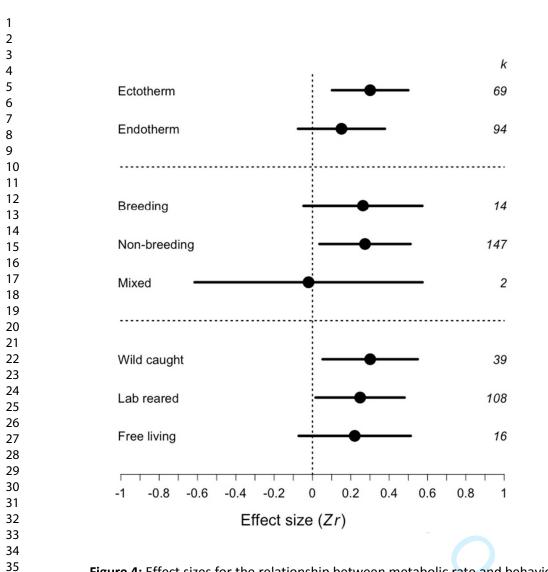
 and UCI denotes the lower and upper confidence limits, respectively, for 95% confidence intervals.

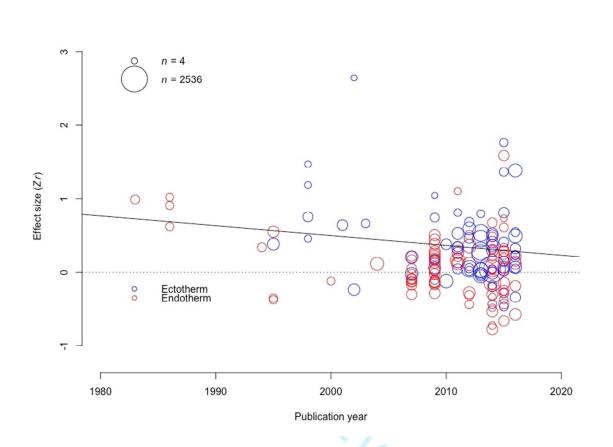

Data	$N_{[individuals]}$	N _[effect sizes]	N _[groups]	N _[species]	Estimate	SE	z value	<i>p</i> value	LCI	UCI
Overall	11849	163	87	48	0.261	0.106	2.459	0.014	0.053	0.469
Ectotherm	7539	69	47	28	0.297	0.128	2.314	0.021	0.045	0.548
Endotherm	4310	94	40	20	0.101	0.050	2.026	0.043	0.003	0.199


Table 2: Total heterogeneities (l^2 , which can vary between 0 and 1) and heterogeneities at each hierarchical level (fitted as random effects; see the text) for meta-analytic models with phylogeny for the overall dataset, and separated for ectotherms and endotherms.


	Data	I ² [species]	/² [phylogeny]	I ² [group]	<pre>/² [effect size]</pre>	I ² [total]	
-	Overall	0.138	0.209	0.068	0.517	0.930	
	Ectotherm	0.445	0.182	<0.001	0.311	0.942	
	Endotherm	<0.001	<0.001	0.186	0.626	0.812	
					35		


Figure 1: Illustration of how opportunities to allocate among alternative options can create scenarios where the relationship between specific behaviours and MR do not match the more general predictions for the energy management model. Consider an example where an organism can express two behaviours that both have net positive effects on energy intake: foraging boldness (green) or resource defense (blue). The total expression of each behaviour is indicated by their area under the black line. In a) expression of both behaviours increases with increasing MR (i.e., the area occupied by both green and blue increases from left to right across the x-axis), matching the more general prediction. However, in b) only one behaviour shows the predicted relationship with MR (blue, but not green), and in c) one behaviour shows the predicted relationship (blue) while the other behaviour shows the opposite relationship to the one predicted (green).




review.

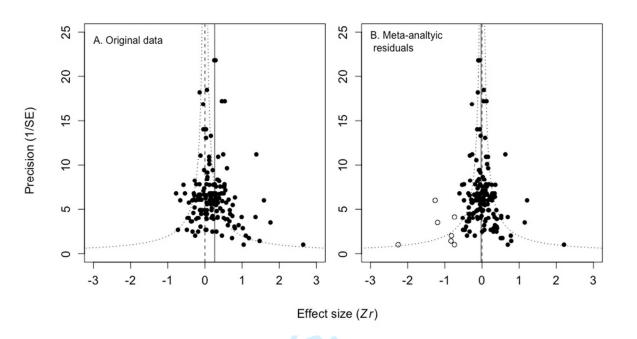

Figure 3: Effect sizes for the relationship between metabolic rate and behaviour separated for different types of behaviours, including an overall estimate (bottom). Panel (A) combines the full data set, panel (B) presents estimates from ectotherms, and panel (C) presents estimates from endotherms. Circles denote point estimates, whiskers denote 95% confidence intervals (the arrow tip indicates the end point is beyond the scale), and *k* is the number of effect sizes (NA = not available; see Table 1). Note that estimates derived from identical data (e.g., stress behaviours in panel A and panel C) may not be identical because model structures differed for each analysis.

Figure 4: Effect sizes for the relationship between metabolic rate and behaviour for three potential moderators: thermal type of the organism (ectotherm or endotherm), breeding context (breeding, non-breeding, or mixed/unspecified), and testing condition (wild-caught animals tested in the lab, lab-reared animals tested in the lab, free-living animals tested under natural conditions). Circles denote point estimates, whiskers denote 95% confidence intervals and *k* is the number of effect sizes.

Figure 5: A bubble plot showing a time-lag effect characterised by effect sizes as a function of publication year. After the first study (for an endotherm) in the early 80's, the number of studies remains sparse until 2007, when there is a notable increase in the number of studies for both ectoterms and endotherms (see the text). The size of the circle represents the sample size (on a linear scale), with the largest circle representing the sample size of 2536 animals and the smallest circle representing a sample size of 4 animals.

Figure 6: Funnels plots showing effect size and its precision which is the inverse of the square-root of the sampling variance (or standard error, which is the standard deviation of the estimate/effect size). Panel (A) shows the original (raw) data and the meta-analytic mean (the solid vertical line), but note that the original data, which has a non-independent data structure is not appropriate for assessment of funnel asymmetry. Panel (B) shows the meta-analytic residuals (see the text) and data points added by a trim-and-fill test (empty dots) along with the meta-analytic mean (note that the meta-analytic residuals have a mean of zero).