1 Be prudent if it fits you well: male mate choice depends on male size in a Nephila spider

2 Pietro Pollo ${ }^{1}$, Danilo G. Muniz ${ }^{\mathbf{2}}$ \& Eduardo S. A. Santos ${ }^{1}$

$3{ }^{1}$ BECO Lab, Department of Zoology, Institute of Biosciences, University of São Paulo, São
4 Paulo, SP, 05508-090, Brazil
52^{2} LAGE Lab, Department of Ecology, Institute of Biosciences, University of São Paulo, São 6 Paulo, SP, 05508-090, Brazil

7 Abstract

8 Male preference for high-quality females is expected to evolve when male reproductive potential 9 is restricted. However, when there is competition among males, some models predict the 10 evolution of assortative male mate choice, in which good competitors choose high quality 11 females while poor competitors choose lower quality females to avoid competition. In Nephila 12 clavipes spiders, males have limited sperm supply and fight for access to females. Here, using

13 field experiments in which males could choose among two available females, we tested whether
14 female quality and male size (a proxy of fighting ability) influence male decisions in N. clavipes.

15 We found that males choose their mates based on female size and female recent pairing status
16 (whether the female was accompanied by a male before the experiment). Importantly, male mate
17 choice varied with male size, as large males preferred larger females that were recently unpaired,
18 medium-sized males showed no preference, and small males preferred smaller, recently paired
19 females. Because all females appear to attract males, we predict that variation on male mate

36 potential is constrained, if there is variation in female quality (i.e., some females provide more
37 fitness benefits than others to males), one would expect the evolution of male mate choice 38 [13,14].

40 produce [13,14]. In populations in which male mate choice occurs, males often choose females 41 based on their body size, as larger females typically possess more ova [6,13,15]. Moreover,

42 males may also use female social context as a mate choice criterion. For instance, the presence of 43 another male with a female could influence male mating decisions due to two main reasons [16].

44 First, in some mating systems a male accompanying a female may aggressively defend her from 45 other males, so that approaching an accompanied female would result in fighting with the 46 resident male, which may be energetically costly [17,18]. Second, even if a male manages to 47 access a recently accompanied female, he will probably face sperm competition, which can

51 Male mate choice is often associated with restricted male reproductive potential [13], 52 absence of male-male competition (e.g., [21]) and high female availability [22]. However, male 53 mate choice can occur even when male intra-sexual competition is strong (e.g., [23]). Theoretical 54 models predict that the occurrence of male-male competition is one of the mechanisms that can 55 generate variation in male mate choice [24-26]. By incorporating male-male competition, 56 theoretical models predict that good competitors would prefer high quality females, whereas bad 57 competitors would prefer low quality females [24-26]. In this scenario, bad competitors would 58 be performing prudent mate choice (sensu [25]), in which low-quality males actively choose to 59 mate with low-quality females as a mechanism to avoid competition with other males (e.g., [27]). 60 Here, we investigate mate choice by males of the golden silk orb-weaver spider Nephila 61 clavipes. In N. clavipes, adult males live on female webs and fight against male intruders to 62 monopolize access to the female [28]. Males of this species face high mating costs and severe 63 mate limitation for two main reasons. First, males suffer high mortality risk when traveling 64 between female webs [29,30], and second, males are strongly sperm limited because
spermatogenesis ceases after maturation [31,32]. Also, Nephila clavipes males show great variation in body size: within a population, one male can be 20 times heavier than other males (this study). Larger males possess higher fighting ability and are more effective in guarding a female [33]. Moreover, adult females in this species vary widely in body size, which is correlated with fecundity $[34,35]$. Females are also polyandrous, so that there is risk of sperm competition [29], a factor that should influence males' mating decisions. We expect N. clavipes males to perform male mate choice, because their reproductive potential is severely restricted and females vary in quality. Additionally, it is also possible that N. clavipes males vary in their choosiness according to body size, because there is male-male competition for access to females and male body size is correlated with their competitive ability.

In this study, we performed field experiments to investigate male mate choice in N. clavipes. In these experiments, we tested whether female quality and male fighting ability (i.e., size) influence the likelihood that a male would choose a given female. We have two alternative hypotheses. Because all males suffer high mating costs, our first hypothesis is that all males are equally choosy and select high quality females. However, considering the strong competition among males, our second hypothesis is that male mate choice varies according to male competitive ability, so that the most competitive males prefer high-quality females, whereas the least competitive males would prefer low-quality females, while males with average competitive ability would likely be non-choosy.

Material and methods

Female quality proxies and morphometric measurements

We use the term "female quality" to refer to the fitness output that a male gains when mating with a female. Thus, female quality can be influenced by both female phenotypic traits and the female's social context. Here, we evaluated female quality using two independent proxies: female body size and recent pairing status (i.e., if she had a male in her web prior to the mate choice experiment). Female body size is positively related to fecundity [34,35]. Consequently, female body size is positively related to female quality. Moreover, because body size does not change after maturation in this species, female body size represents an intrinsic and fixed component of female quality. On the other hand, female pairing status (whether a female is accompanied by a male or not) can vary throughout female adult life, as males come and go from females' webs. We assume that recently paired females were of lower quality, because from the point of view of an approaching male, a recently paired female represents two disadvantages: a possible fight with the resident male and a greater risk of sperm competition due to probable recent copulation. As males deposit their own silk on the female web, an approaching male may perceive chemical cues of the presence of a competitor male, even if the competitor is not there anymore [20].

To assess female body size, we photographed each female on the day of the beginning of each trial (a ruler was placed by the female for scale). We used these photographs to measure female cephalothorax width (mm) using the software ImageJ (US National Institutes of Health, Bethesda, MD, http://imagej.nih.gov/ij). We assessed female recent pairing status by recording whether there was at least one male on each female's web immediately before we started each trial. We note that the variable recent pairing status is different from reproductive status. We did not collect systematic data about each female's mating history, thus we cannot infer whether unpaired females were virgin. In fact, it is highly likely that all of the females used in our
experiments had already copulated at least once before the trials. Hence, what we classified as "recently unpaired females" did not have any male on their web on the day of the beginning of trials, but possibly copulated before. To estimate male fighting ability (positively related to male body size; [33]), we measured body mass of focal males that were used in our experiments using a digital scale (to the nearest 0.1 mg) on the day of the beginning of each experimental trial.

Male mate choice experiment

To investigate male mate choice in N. clavipes, we conducted a field experiment in which we allowed virgin adult males to choose between two females that differed in body size. Focal females could also differ regarding their recent pairing status. Females often build their webs intertwined to other female webs (i.e., aggregated webs; [38]), and we used these natural aggregations to conduct our trials. For each trial, we selected two females that had their webs close to one another and that shared at least one silk-thread. We individually marked these females on the dorsal side of their abdomen with water-based paint (Ziggs' Posterman markers) in order to identify them during the trial. We also removed any males that were on the webs prior to the beginning of the trials, so the males being tested (hereafter, focal males) would be in a scenario free of competition. However, because males deposit their own silk on the female web [20], we assume that focal males can detect the cues of previous males in the web.

Before we started each trial, we placed the focal male in a plastic container to carry him from the lab to the trial site. We initiated each trial by placing a wooden stick in the container so that the focal male could climb it, leading the male to an intersection of silk-threads connecting the webs of the two females. We evaluated male choice in two moments. We assessed the initial male choice by recording to which female the male moved towards within 15 minutes after the focal male reached the intersection of silk-threads (i.e., beginning of the experiment). Our total
sample size for the initial choice trials was 73 ; both focal females had the same recent pairing status in 51 trials, whereas focal females differed in recent pairing status in the remaining 22 trials. We only considered that a male made a choice when he moved at least 30 cm towards one of the females. We chose this distance arbitrarily because males would often stop moving and consequently would take a long time to reach a female web, especially in windy days. Our methodology is very similar to most investigations on male mate choice in spiders that are conducted in laboratory conditions and mainly evaluate male decisions at a single moment using female silk (e.g., [39-41]). However, because we conducted the experiment in the field, in which female web construction date was not manipulated, and to account for possible manipulation stress on focal males, we also decided to assess male choice at a posterior moment. Thus, on the following day (16 to 22 hours after the beginning of the trial), we observed the late male choice by noting which female the male was guarding. Our total sample size for the late choice trials was 30 ; both focal females had the same recent pairing status in 18 trials, whereas focal females differed in recent pairing status in the remaining 12 trials. The decrease in sample size (72 to 30 trials) is because we only considered late male choice trials as valid when both experimental females were present on the original trial site on their individual web and the webs were still connected to one another. Moreover, we excluded from our analyses trials in which nonexperimental males (i.e., other than the focal male) were present with any of the experimental females, as they could influence the focal male mating decisions.

Statistical analysis of male mate choice experiment

We investigated whether male mate choice in N. clavipes depends on female cephalothorax width, female recent pairing status and male body mass by testing two alternative predictions. We used male body mass as a continuous variable in all of our analyses. However,
we use categorical terms of this continuum (i.e., high, medium, and low body mass males) simply as a way to better explain our predictions. Our first prediction is that all males, regardless of body mass, due to their high mating costs will pair preferentially with recently unpaired females with wider cephalothorax. Alternatively, our second prediction is that male body mass influences male mate choice in a way that high body mass males pair preferentially with recently unpaired females with wider cephalothorax, medium body mass males are unselective regarding female cephalothorax width and recently pairing status, and low body mass males pair preferentially with recently paired females with narrower cephalothorax (the opposite choice of heavy males). The reasoning being that as male body mass increases, so does male capacity to monopolize their mates by fighting off intruders, leading to exclusive paternity with a female.

We tested these predictions using a modified version of the model proposed by [42], which is a statistical model of comparative mate choice (i.e., it assumes that the choosing individuals perform their decisions by comparing at least two available options). The response variable of the model was the identity of the chosen female, and the predictors included characteristics of focal males and of the females available in each trial. Therefore, we built our statistical model based on three main assumptions: (1) that males performed choice by comparing the two available females; (2) that males can assess female size and recent pairing status; and (3) that pairing decisions can be influenced by the traits of the available females and male selectivity, whereas male selectivity can be influenced by male traits. We included two female traits in the model: cephalothorax width (continuous) and pairing status (categorical: recently paired or recently unpaired, see details in the "Female quality proxies and morphometric measurements" section above). Hence, the preferences of a male are represented by two selectivity values: S_{l}, selectivity for female cephalothorax width; and S_{2}, selectivity for female
recent pairing status. Positive S_{l} values represent preference for females with wider cephalothorax, while negative values represent preference towards females with narrower cephalothorax. Similarly, positive S_{2} values represent preference towards previously unpaired females, whereas negative S_{2} values represent preference for previously paired females. In both cases, a value of zero represents no male choice.

Given that we hypothesized that male body size could influence their pairing decisions, we assumed that both S_{1} and S_{2} were functions of male body mass. Additionally, although we had no reasons to expect differences in male choosiness between years, we added the season in which each trial was conducted as a predictor in the models to control for this potential source of variation (parameters C and F below). Given all that, we calculated S_{I} and S_{2} values for each male with the following equations:

$$
\begin{aligned}
& S_{1(i)}=A+B * m_{(i)}+C * y_{(i)} \text { (Eq. 1) } \\
& S_{2(i)}=D+E * m_{(i)}+F * y_{(i)} \text { (Eq. 2) }
\end{aligned}
$$

Where $m_{(i)}$ is the mass of male i and $y_{(i)}$ is the season in which the trial was conducted, and A, B, C, D, E, and F are the model parameters (that we needed to fit). Given these selectivity values, the probability $P_{(i, j)}$ that a male i will choose female j, in a trial with females j and k, is a function of $S_{1(i)}, S_{2(i)}$ and the values of female cephalothorax width f, and female recent pairing status g of both females. The probability $\mathrm{P}_{(i, j)}$ was calculated as follows:

$$
P_{(i, j)}=\frac{\exp \left(S_{1(i)} * f_{(j)}+S_{2(i)} * g_{(j)}\right)}{\exp \left(S_{1(i)} * f_{(j)}+S_{2(i)} * g_{(j)}\right)+\exp \left(S_{1(i)} * f_{(k)}+S_{2(i)} * g_{(k)}\right)} \text { (Eq. 3) }
$$

Whereas the probability that the male will choose female k is calculated as $P_{(i, k)}=1-P_{(i, j)}$.

The model parameters can be interpreted as follows. On equation 1 , the intercept A represents general male choice regarding female cephalothorax width, in which positive values represent higher general male choice for females with wider cephalothorax. Whereas, the slope B represents how male choice for wider female cephalothorax increases with male body mass, in which positive values represent greater preference intensity for wider female cephalothorax as male body mass increases. Similarly, in equation 2, the intercept D represents general male choice regarding female recent pairing status, in which positive values represent higher preference for recently unpaired females. The slope E represents how male choice for recently unpaired females increases with male body mass, in which positive values represent greater preference intensity for recently unpaired females as male body mass increases. The relationship between our alternative predictions and the values of these parameters is summarized in Table 1. Our analysis allowed coefficient values that would represent additional scenarios, not included in the predictions. For example, it would be possible to find that all males do prefer females with wider cephalothorax and that greater male body mass increases selectivity. However, we did not have a priori theoretical reasons to expect these other possibilities.

Table 1. Summary of the predictions investigated in this study and their relationship with model parameter values. Columns two, three, and four represent male selectivity regarding female cephalothorax width and female recent pairing status according to male body mass. Positive selectivity represents preference for recently unpaired females with wider cephalothorax, zero selectivity represents no preference and negative selectivity represents preference for recently paired females with narrower cephalothorax. The fifth and sixth columns represent the expected values of model parameters according to each alternative prediction (see text for details).

Prediction	Selectivity of high body mass males	Selectivity of medium body mass males	Selectivity of small body mass males	Coefficients \boldsymbol{A} and \boldsymbol{D}	Coefficients \boldsymbol{B} and \boldsymbol{E}
$1-$ all males equally choosy $2-$ variable male mate choice	Positive	Positive	Positive	Positive	Zero

251 Markov-Chain Monte-Carlo (MCMC) using a Bayesian framework in the software R 3.4.1 [44] 252 using the package rstan [45]. Prior to model fitting we standardized all continuous predictor variables, coefficients can be interpreted as estimates of effect size. We considered coefficients 262 to be different than zero when 95% credible intervals ($95 \% \mathrm{CI}$) did not overlap zero.

263
 Results

264 In all trials, focal males successfully chose one of the two females available within 15 minutes.
265 On average, males took 2.36 ± 3.16 minutes (mean $\pm \mathrm{SD}$) to make this initial decision,
266 depositing their own silk where they went. In the initial male mate choice trials, we found little

267 2).

281 Figure 1. Results of the multinomial model investigating initial male mate choice (i.e., which 282 female thread the experimental male climbed) in Nephila clavipes. Points and segments represent

283 mean estimated parameter value and 95% credible interval. See details about what each
284 parameter represents in the Statistical analysis of male mate choice experiment section.

287 Figure 2. Results of the multinomial model to investigate late male mate choice (i.e., which 288 female the focal male was guarding after 16 to 22 hours of the beginning of the experiment) in 289 Nephila clavipes. Points and segments represent mean estimated parameter value and 95% 290 credible interval. Stars highlight the model parameters for which the 95% credible interval did 291 not overlap zero. See details about what each parameter represents in the Statistical analysis of male mate choice experiment section.

301 increases. The probability that medium body mass males (dashed line) will pair with the focal
302 female does not depend on focal female cephalothorax width and is always 50% (random). We
used coefficient values in which 95% credible interval did not overlap zero in the late male mate choice model to estimate the predicted values displayed in this figure.

Discussion

In this study, we tested whether female quality and male fighting ability (i.e., body size) would influence male pairing decisions in the golden silk orb-weaver spider Nephila clavipes. Using field experiments, we found little evidence that, on a first moment (i.e., when males are first exposed to silk threads of different female webs), males exert mate choice. However, after a period of a few hours, we found evidence that males express mate choice based on their own fighting ability in an assortative manner. For instance, large males were more likely to guard the larger female among those available. Also, when females differed in their recent pairing status, large males preferred to guard the female that had not been paired to other male recently. Small males, on the other hand, were more likely to guard the smaller female, and also, when given an option, preferred a previously paired female to the one that was not recently guarded by other male. Medium-sized males, however, guarded females randomly regarding female size and female previous pairing status. Therefore, our results indicate that there is variation in male mate choice with small males showing preference patterns opposite to the large males, while mediumsized males showed no mating preferences.

Our experimental design allowed us to investigate whether male mate choice for female traits occurred shortly after males encountered a pair of females or whether males need more time to access females once they encounter them. We found differences in male mate choice along the duration of trials, in which males were initially indifferent to the female traits we evaluated, but later expressed mate choice depending on their own size. Males of many spider
species can access female information through silk strands produced by females (reviewed in [39]). For instance, [40] found, with laboratory experiments, that N. clavipes males can distinguish females that are closer to oviposition using only cues present in female silk. However, because we conducted our experiments in the field, males might have been subjected to naturally occurring confounding factors that are absent in laboratory experiments. For example, as we did not have information on when females built their webs, it is possible that males chose more recently weaved threads due to their fresher chemical cues. Furthermore, because females occasionally take over webs from other females (P.P. pers. obs.), silk components may not be reliable cues to inform the quality of a resident female. Therefore, N. clavipes males may need time to evaluate female quality in a natural situation by gathering information on female quality from vibrational cues or from cuticular pheromones [47]. This may explain why we found male mate choice only after males approached females and had time to collect more information on their quality. Generally, animals gather information on mate quality using multisensory cues [48], but several mate choice investigations allow only one sensory input information to focal individuals (e.g., insects: [49]; fish: [50]). Thus, our findings highlight the importance of using experimental designs that assess choice in more than one moment and that allow males to receive multisensory female cues in a proper time frame.

Traditional mate choice literature predicts that when individuals express mate preference, they should invariably choose high quality mates [51]. Yet, empirical studies that found intrapopulation variation on mate choice have been accumulating [52]. Among several factors that may promote mate choice variation, theoretical models (e.g., [24-26]) identified that intrasexual competition may be a critical influence on male mate choice variation. Here, we found that N. clavipes males differ in the direction and intensity of their mate choice according to their own
size. Only large males behaved according to what is generally predicted by the traditional mate choice literature: these males chose larger females that had not been recently paired. Whereas small males preferred smaller females that had been recently paired to other males. Why should these less competitive males choose lower quality females? If males invariably choose to copulate with high quality females, these females would probably mate multiply, and males would probably share the paternity of the eggs. Consequently, the advantage of copulating with high quality females over low quality ones would be reduced. Thus, mate choice for higher quality females is only advantageous if the choosing male can effectively guard the female and increase his likelihood of siring most of her offspring. In N. clavipes, guarding efficiency is positively related to male size [33]. Therefore, the larger the male, the greater is the likelihood that he receives the benefits of mating with a high quality female.

Nephila clavipes males can guard only one female at a time, which means that lower quality females would become available as large males are busy guarding high quality females. Thus, the most profitable tactic for small males may be to choose lower quality females, as a way to avoid competition with other males (i.e., prudent mate choice; [25]). This rationale is supported by theoretical models that explore the influence of male competitive ability on male mate choice, which usually focus on the extremes of male phenotypes using two male categories (e.g., high/low quality in [24]; large/small in [25]; high/low competitive ability in [26]). Our results on the choice expressed by males of extremes sizes (large/small) match the assortative choice predicted by these theoretical studies under certain parameters. However, these models do not clarify what is expected of average competitors. Here, we found that N. clavipes mediumsized males are unselective regarding female quality. Following the rationale that competitive ability determines whether males prefer or avoid high-quality females, medium-sized males
stand in the middle. That is, because medium-sized males are displaced by half of their competitors, they may gain the advantages of pairing with high-quality females sometimes, but not frequently enough to promote preference nor rarely enough to promote avoidance to these females. On the other hand, it would be interesting to explore whether males express consistent preference for a particular female phenotype. This is because our findings that medium-sized males are not selective towards female body size could also be explained by individual variation among medium-sized males. Overall, our results match precisely the results of a theoretical study on mutual mate choice in a scenario in which females are weakly sperm limited, female mating costs are low and male mating costs are high (see Figure 2 in [53]). Surprisingly, [53] did not consider pre-copulatory aggression explicitly in their model, revealing that our findings may also be justified with other features, such as sperm competition.

We found that the smaller the male, the greater is the probability that he chooses females that were recently being guarded by another male. It is possible that choosing recently paired females is a mechanism that decreases the risk of being displaced by larger males (in addition to preferring small females). Males using this strategy would copulate mostly with non-virgin females, and therefore would share the paternity of the offspring. This choice for recently paired females could indicate that smaller males tend to employ a sneaking tactic, in which the male stays on the periphery of a guarded female's web and attempts to copulate unnoticed by the guarding male [28]. In this scenario, smaller males would be interpreting the cues of male presence as a sign that the female is currently being guarded, and would be choosing to be sneakers rather than guardians. Although we do not know how successful this strategy can be, small males appear to get less attention from guarding males when compared to large males (P.P. pers. obs.). In any case, males are apparently employing different mating tactics depending on
their own body size. Here, we only observed their pairing decisions, but males of different fighting abilities may also differ in tactics regarding female search, sperm allocation, and mate guarding tactics. Small males may compensate the lower quality of their partners by being more promiscuous. If that is the case, we would expect that male size is also (i) negatively related to movement between female webs, as a strategy to copulate with more females, and (ii) negatively related to investment in each female, in terms of sperm allocation and mate-guarding time.

Our results show that males similarly consider female size and female social context when choosing their mates. The combination of these two variables makes it difficult to estimate female quality in certain scenarios (e.g., a recently paired large female may be of similar quality to a not recently paired small female). Hence, a simple assortative pairing pattern by body size alone may not necessarily occur in natural conditions. Furthermore, our results indicate that all females, regardless of size, are able to attract males to mate, although it seems that they attract more males of a particular fighting ability than randomly expected. Thus, even though male mate choice can generate sexual selection on females and even favor the evolution of female sexual ornaments (e.g., [54]), variation in male mate choice may attenuate sexual selection on females, especially if some males perform prudent mate choice. Therefore, scenarios of variable male mate choice may be common, but hard to detect. Detection of variation in male mate choice is made difficult by two main reasons: (1) it generates weak or no sexual selection on females and (2) it requires specific experimental and statistical protocols (as the ones we employed here). We argue that variation in male mate choice may be relatively common, as theory predicts that it will evolve in populations in which mating is costly for males and there is strong intrasexual competition among males [24-26]. These conditions occur in N. clavipes, and may also be met by other species in which males cannot monopolize groups of females, so that these males are

424 Acknowledgements

425 We thank Paulo E. C. Peixoto and Vinícius M. Caldart for feedback on the manuscript. We are 426 thankful for comments and discussion on the development of this project by Glauco Machado, 427 Cristiane H. Millán and Gustavo Requena. We also thank Clare C. Rittschof and Shakira 428 Quiñones for tips on Nephila handling and maintenance in the lab.

429

430 Funding

431 This study was supported by National Geographic Society (\#WW-083ER-17), Brazil's 432 Coordination of Superior Level Staff Improvement (CAPES; Finance Code 001) and Brazil's 433 National Council for Scientific and Technological Development (CNPq).

References

435 1. Parker GA, Pizzari T. 2015 Sexual selection: the logical imperative. In Current
continuously searching for new mates, or in mating systems in which males can guard a single female at a time. Such non-territorial mating systems are less studied than territorial ones, but are the most common among animals [55]. Therefore, future studies employing an experimental protocol similar to ours may discover that variation in male mate choice is very common in natural populations. perspectives on sexual selection (ed T Hoquet), pp. 119-164. Amsterdam: Springer, Dordrecht. (doi:10.1007/978-94-017-9585-2_7)
2. Dewsbury DA. 2005 The Darwin-Bateman paradigm in historical context. Integr. Comp. Biol. 45, 831-837. (doi:10.1093/icb/45.5.831)
3. Tang-Martinez Z, Ryder TB. 2005 The problem with paradigms: Bateman's worldview as a case study. Integr. Comp. Biol. 45, 821-830. (doi:10.1093/icb/45.5.821)
4. Tang-Martinez Z. 2016 Rethinking Bateman's principles: challenging persistent myths of sexually reluctant females and promiscuous males. J. Sex Res. 53, 532-559.
(doi:10.1080/00224499.2016.1150938)
5. Dewsbury DA. 1982 Ejaculate cost and male choice. Am. Nat. 119, 601-610. (doi:10.2307/2461181)
6. Wedell N, Gage MJG, Parker GA. 2002 Sperm competition, male prudence and spermlimited females. Trends Ecol. Evol. 17, 313-320. (doi:10.1016/S0169-5347(02)02533-8)
7. Perry JC, Sirot L, Wigby S. 2013 The seminal symphony: how to compose an ejaculate. Trends Ecol. Evol. 28, 414-422. (doi:10.1016/j.tree.2013.03.005)
8. Kasumovic MM, Bruce MJ, Herberstein ME, Andrade MCB. 2007 Risky mate search and mate preference in the golden orb-web spider (Nephila plumipes). Behav. Ecol. 18, 189195. (doi:10.1093/beheco/ar1072)
9. Lane JE, Boutin S, Speakman JR, Humphries MM. 2010 Energetic costs of male reproduction in a scramble competition mating system. J. Anim. Ecol. 79, 27-34. (doi:10.1111/j.1365-2656.2009.01592.x)
10. Berglund A, Rosenqvist G, Svensson I. 1989 Reproductive success of females limited by males in two pipefish species. Am. Nat. 133, 506-516. (doi:10.1086/284932)
11. Cratsley CK, Rooney JA, Lewis SM. 2003 Limits to nuptial gift production by male fireflies, Photinus ignitus. J. Insect Behav. 16, 361-370. (doi:10.1023/A:1024876009281)
12. Andrade MCB. 1996 Sexual selection for male sacrifice in the Australian redback spider. Science 271, 70-72. (doi:10.1126/science.271.5245.70)
13. Bonduriansky R. 2001 The evolution of male mate choice in insects: a synthesis of ideas and evidence. Biol. Rev. 76, 305-339. (doi:10.1017/s1464793101005693)
14. Edward DA, Chapman T. 2011 The evolution and significance of male mate choice. Trends Ecol. Evol. 26, 647-654. (doi:10.1016/j.tree.2011.07.012)
15. Arnaud L, Haubruge E. 1999 Mating behaviour and male mate choice in Tribolium castaneum (Coleoptera, Tenebrionidae). Behaviour 136, 67-77. (doi:10.1163/156853999500677)
16. Mautz BS, Jennions MD. 2011 The effect of competitor presence and relative competitive ability on male mate choice. Behav. Ecol. 22, 769-775. (doi:10.1093/beheco/arr048)
17. Austad BYSN. 1983 A game theoretical interpretation of male combat in the bowl and doily spider (Frontinella pyramitela). Anim. Behav. 31, 59-73. (doi:10.1016/S0003-

475
18. Kelly CD. 2006 Fighting for harems: assessment strategies during male e male contests in the sexually dimorphic Wellington tree weta. Anim. Behav. 72, 727-736. (doi:10.1016/j.anbehav.2006.02.007)
19. Schwagmeyer PL, Parker GA. 1990 Male mate choice as predicted by sperm competition in thirteen-lined ground squirrels. Nature 348, 62-64. (doi:10.1038/348062a0)
20. Schneider JM, Lucass C, Brandler W, Fromhage L. 2011 Spider males adjust mate choice but not sperm allocation to cues of a rival. Ethology 117, 970-978. (doi:10.1111/j.14390310.2011.01960.x)
21. Gwynne DT. 1981 Sexual difference theory: mormon crickets show role reversal in mate choice. Science 213, 779-780. (doi:10.1126/science.213.4509.779)
22. Dougherty LR, Shuker DM. 2015 The effect of experimental design on the measurement of mate choice: a meta-analysis. Behav. Ecol. 26, 311-319. (doi:10.1093/beheco/aru125)
23. Bel-Venner MC, Dray S, Allainé D, Menu F, Venner S. 2008 Unexpected male choosiness for mates in a spider. Proc. R. Soc. B Biol. Sci. 275, 77-82. (doi:10.1098/rspb.2007.1278)
24. Fawcett TW, Johnstone RA. 2003 Mate choice in the face of costly competition. Behav. Ecol. 14, 771-779. (doi:10.1093/beheco/arg075)

507 31. Christenson TE. 1989 Sperm depletion in the orb-weaving spider Nephila clavipes
32. Michalik P, Rittschof CC. 2011 A comparative analysis of the morphology and evolution
of permanent sperm depletion in spiders. PLoS One 6, e16014. (doi:10.1371/journal.pone.0016014)
33. Constant N, Valbuena D, Rittschof CC. 2011 Male contest investment changes with male body size but not female quality in the spider Nephila clavipes. Behav. Processes 87, 218223. (doi:10.1016/j.beproc.2011.04.003)
34. Head G. 1995 Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (class Araneae). Evolution 49, 776-781. (doi:10.2307/2410330)
35. Honěk A. 1993 Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483-492. (doi:10.2307/3544943)
36. Christenson TE, Cohn J. 1988 Male advantage for egg fertilization in the golden orbweaving spider (Nephila clavipes). J. Comp. Psychol. 102, 312-318. (doi:10.1037/07357036.102.4.312)
37. Brown SG. 1985 Mating behavior of the golden-orb-weaving spider, Nephila clavipes: II. Sperm capacitation, sperm competition, and fecundity. J. Comp. Psychol. 99, 167-175. (doi:10.1037/0735-7036.99.2.167)
38. Robinson MH, Mirick H. 1971 The predatory behavior of the golden-web spider Nephila clavipes (Araneae: Araneidae). Psyche (Stuttg) 78, 123-139. (doi:10.1155/1971/57182)
45. Stan Development Team. 2018 RStan: the R interface to Stan.
39. Gaskett AC. 2007 Spider sex pheromones: emission, reception, structures, and functions. Biol. Rev. 82, 27-48. (doi:10.1111/j.1469-185X.2006.00002.x)
40. Rittschof CC. 2011 Mortality risk affects mating decisions in the spider Nephila clavipes. Behav. Ecol. 22, 350-357. (doi:10.1093/beheco/arq222)
41. Schneider JM, Zimmer SM, Gatz AL, Sauerland K. 2016 Context- and state-dependent male mate choice in a sexually cannibalistic spider. Ethology 122, 257-266. (doi:10.1111/ eth.12466)
42. Muniz DG, Santos ESA, Guimarães PR, Nakagawa S, Machado G. 2017 A multinomial network method for the analysis of mate choice and assortative mating in spatially structured populations. Methods Ecol. Evol. 8, 1321-1331. (doi:10.1111/2041210X.12798)
43. Carpenter B et al. 2017 Stan: a probabilistic programming language. J. Stat. Softw. 76, 132. (doi:10.18637/jss.v076.i01)
44. R Core Team. 2017 R: a language and environment for statistical computing.
46. Gelman A. 2008 Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865-2873. (doi:10.1002/sim.3107)

545 47. Robinson MH. 1982 Courtship and mating behavior in spiders. Annu. Rev. Entomol. 27,
55. Herberstein ME, Painting CJ, Holwell GI. 2017 Scramble competition polygyny in
terrestrial arthropods. In Advances in the study of behavior (eds M Naguib, J Podos, LW Simmons, L Barrett, SD Healy, M Zuk), pp. 237-295. Cambridge, Massachusetts: Elsevier. (doi:10.1016/bs.asb.2017.01.001)

