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Abstract 15 

Biodiversity data are fundamental for macroecological studies. Recent efforts on gathering 16 

global data have not been sufficient to surpass biases and gaps. This incompleteness has serious 17 

consequences on conservation and ecological understanding, therefore it is of major importance 18 

to map, quantify and describe these flaws. In this paper we aimed to assess inventory 19 

incompleteness for the Atlantic Rainforest, concerning amphibians, birds, mammals and reptiles. 20 

We also investigate if some environmental variables are correlated to biodiversity knowledge. 21 

Our results suggest that this biome is not well known, with clusters of quality information near 22 

big conservation centres. Environmental variables commonly referred to as indicators of species 23 

richness were not correlated to inventory completeness, but when only well-sampled units were 24 

analysed, mammals’ rarefaction slopes could be considered correlated with potential 25 

evapotranspiration. Impacted regions which are underexplored need urgent investments in 26 

sampling efforts so we can know the real biodiversity of this biome and efficiently measure 27 

environmental impacts. 28 

 29 
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Introduction 32 

Information about life diversity and distribution is a fundamental tool for understanding 33 

evolutionary and ecological processes (Graham et al. 2004; Rocchini et al. 2011; Jetz et al. 2012; 34 

Ladle and Hortal 2013; Meyer et al. 2015). Since the 19th century, naturalists, taxonomists and, 35 

more recently, citizen scientists have been collecting global biodiversity information, resulting in 36 

the current knowledge of  species’ distribution on the planet (Humboldt et al. 1850; Hawkins 37 

2001; Willig et al. 2003; Chase 2012). Museum data has been stored in electronic catalogues at 38 

slow pace since the 1970’s and more recently has been connected through web-based initiatives, 39 

improving biodiversity data gathering (Graham et al. 2004). As a result, we now have big 40 

databases such as Global Biodiversity Information Facility (GBIF; http://www.gbif.org/) and 41 

Map of Life (https://mol.org/) providing accessible and extensive information on biodiversity, 42 

compiling museum, survey and observation data (Graham et al. 2004; Jetz et al. 2012; Beck et al. 43 

2013). However, despite these recent efforts, our knowledge on species diversity and distribution 44 

is still biased and full of gaps due to the complex nature of these information (Brown and 45 

Lomolino 1998; Whittaker et al. 2005). These shortfalls have been recently revised (Hortal et al. 46 

2015) and there are growing evidence that they can compromise ecological, evolutionary and 47 

conservation analyses (IUCN 2012; Ladle and Hortal 2013; Ficetola et al. 2014; Hortal et al. 48 

2015). 49 

The wallacean shortfall (the lack of information about species real distribution) is present 50 

in every spatial and temporal scales (Whittaker et al. 2005; Hortal 2008; Hortal et al. 2015) and 51 

is a consequence of a myriad of biological, environmental and social factors. Characteristics of 52 

the species (such as crypsis, its natural history and behaviour), political borders and topography, 53 

for example, can lead to biases in biodiversity surveys and form gaps in information. On the 54 
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other hand, clustered information also can lead to biased surveys, since researchers may prefer to 55 

assess places knowingly species-rich or that are undergoing a process of ecological change 56 

(Boakes et al. 2010; Ahrends et al. 2011; Rocchini et al. 2011; Yang et al. 2014). Information 57 

gaps may also be a consequence of data quality decay in space (e.g., when we extrapolate the 58 

distribution of a species based on polygons or species distribution models) and time (due to 59 

taxonomic reviews, climate change, land use, habitat loss, extinction and migration) (Ladle and 60 

Hortal 2013). Therefore, the measurement of geographical variation of biodiversity on the planet 61 

(represented by distribution maps) has an error associated that must be assessed (Hortal 2008; 62 

Rocchini et al. 2011; Ladle and Hortal 2013; Yang et al. 2013). 63 

The acknowledgement of error in biodiversity information is of major importance. The 64 

underestimation of species distribution can have consequences in conservation planning, since 65 

range restriction is a classification criterion of species in risk of extinction (IUCN 2012; Ladle 66 

and Hortal 2013; Ficetola et al. 2014; Hortal et al. 2015). Furthermore, bias can influence and 67 

even reverse ecogeographical patterns, leading us to associate certain factors to species richness 68 

when they are only proxies for sampling quality (Ficetola et al. 2014). It has been recommended 69 

to include maps of ignorance in the results or to map data quality and use only well sampled 70 

locations on analyses (Hortal 2008; Ladle and Hortal 2013; Ficetola et al. 2014; Yang et al. 71 

2014). Once researchers are aware of the error in their data sets, they can try to correct or 72 

diminish it and better analyse the results. This practice, in addition to guide future researches, 73 

produces more reliable results, since the exact measure of uncertainty clarifies how explicative 74 

an inference can be. 75 

 There is a growing interest in biodiversity data biases in literature (see Boakes et al. 2010; 76 

Yang et al. 2013; Sousa-Baena et al. 2014). Nevertheless, studies mapping South American 77 
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under-sampled sites are relatively few. This is worrying especially for the Atlantic Forest since it 78 

is an important biodiversity and socio-climatic hotspot (Scarano and Ceotto 2015). Human 79 

activities and the growth of urban centres have reduced its original area to only 8% (Galindo-80 

Leal and Câmara 2003; Scarano and Ceotto 2015), resulting in substantial loss of habitat. 81 

Conservation units can decelerate this process, but their implementation need good biodiversity 82 

data. The Atlantic Rainforest is also a good model for ecological and evolutionary research 83 

because of its large latitudinal and altitudinal range, high endemicity, variation in temperature 84 

and precipitation, and historical connexion with other biomes (Silva and Casteleti 2003; Ribeiro 85 

et al. 2009; Batalha-Filho et al. 2013). Furthermore, its natural resilience allows the persistence 86 

of biodiversity and it hosts 1-8% of the world’s total species (Silva and Casteleti 2003). 87 

Therefore, biodiversity data biases must be studied in the Atlantic Forest in order to provide 88 

good quality inputs for all of these applications and guide new surveys. 89 

 Given that the Atlantic Rainforest is a biodiversity hotspot, with a high rate of 90 

deforestation, it becomes urgent to describe and map the digital accessible knowledge gaps in 91 

this ecorregion. Here we aim to map and quantify these gaps with occurrence data of terrestrial 92 

vertebrates, and to identify environmental variables that may be related to these shortfalls (mean 93 

annual temperature, altitudinal range, potential evapotranspiration and vegetation). We expect 94 

that regions with high environmental heterogeneity and productivity would attract more 95 

researchers because of their relationship with high biodiversity. 96 

Methods 97 

The inventory completeness of Atlantic Rainforest fauna was analyzed for amphibians, 98 

birds, mammals and reptiles. We used occurrence data from the Global Biodiversity Information 99 

Facility (GBIF.org), which was downloaded in March 20
th

 2018 by classes’ names, using 100 
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geometric filtering and excluding fossil records. We excluded records dated before 1900 and 101 

marine animals, as well as incomplete taxonomic identifications (when the taxon was not 102 

monospecific). We also merged infraspecific taxa to species level. After that, we checked 103 

scientific names for validity using the “taxize” R package (Chamberlain and Szöcs 2013; 104 

Chamberlain et al. 2014), based on Catalogue of Life (http://www.catalogueoflife.org/), National 105 

Center for Biotechnology Information Taxonomy Database 106 

(http://www.ncbi.nlm.nih.gov/taxonomy), AmphibiaWeb (http://amphibiaweb.org/), Avibase 107 

(http://avibase.bsc-eoc.org/), Handbook of the Birds of the World Alive (http://www.hbw.com/), 108 

Mammal Species of the World (3
rd

 edition, 109 

http://vertebrates.si.edu/msw/mswcfapp/msw/index.cfm) and The Reptile Database 110 

(http://reptile-database.reptarium.cz/). We filtered the remaining occurrence points by the 111 

Atlantic Rainforest domain sensu Olson et al., 2001 (Olson et al. 2001) (Fig. 01) and then 112 

assessed species richness and number of occurrences for grid cells of 60 arc-minutes (110km at 113 

Equator) (Fig. 2), which we used for calculating inventory completeness. 114 

Two approaches were used to evaluate inventory completeness on Atlantic Forest: the 115 

species accumulation curve for the whole region followed by the analysis of its final 10% slope 116 

(Yang et al. 2013), and a rarefaction method for each sampling unit (SU), also assessing the 117 

sample slope. The species accumulation curve is a sample-based method for assessing sampling 118 

effort and estimate species richness (Colwell and Coddington 1994; Gotelli and Colwell 2001). 119 

This approach was performed with the method ‘exact’ of the function ‘specaccum’ and the final 120 

10% slopes were extracted with function ‘specslope’ in the R package VEGAN (Oksanen et al. 121 

2015). The output of this function was analysed according to Yang et al. (Yang et al. 2013) and 122 

slopes > 0.05 were considered as indicators of inventory incompleteness (Fig. 3). Rarefaction 123 
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curve is an individual-based method that represents the sampling effort needed to reach total 124 

estimated richness within an area (Gotelli and Colwell 2001). The ‘rarefy’ and ‘rareslope’ 125 

functions calculate the rarefaction and slopes of each SU, both operating in the same package 126 

abovementioned. 127 

 128 

Figure 1 – The Atlantic Rainforest sensu Olson et al. 2001 and its main conserved areas 129 

(Serra do Mar and Iguazu). 130 

Additionally, we investigated if four environmental variables were correlated with 131 

inventory completeness. These variables were chosen based on previous studies indicating their 132 

influence on data bias or if they are commonly mentioned as proxies for species richness (Currie 133 
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1991; Sánchez-Fernández et al. 2008; Toranza and Arim 2010; Martin et al. 2012; Ficetola et al. 134 

2014; Vasconcelos et al. 2014; Yang et al. 2014). We used annual mean temperature and 135 

altitudinal range downloaded from WorldClim (Hijmans et al. 2005; http://www.worldclim.org/; 136 

resolution 10’), potential evapotranspiration (PET) data from the Consortium for Spatial 137 

Information  of the Consultative Group for International Agricultural Research (Trabucco and 138 

Zomer 2009; http://www.cgiar-csi.org/; resolution 30”), and Normalized Difference Vegetation 139 

Index (NDVI) from NASA's Earth Observatory Group (Stockli 2015). These last two variables 140 

and temperature represent ecosystems’ energy income, while altitudinal range represents 141 

topographical and, therefore, habitat homogeneity. All variables were also rescaled to 60 arc-142 

minutes resolution grids. 143 

We performed Pearson’s correlation tests between the final 10% of each class’s slopes 144 

(extracted from the ‘rareslope’ function) and environmental variables, both for the whole study 145 

area and only for the sample units considered well sampled. This procedure was repeated for 146 

total observations and the rarefaction slope considering total species richness.  Statistical 147 

analyses were performed using the computing environment R 3.4.0 (R Development Core Team 148 

2017). 149 

Results 150 

 The terrestrial vertebrate biodiversity of the Atlantic Rainforest is not well known, 151 

according to our results. All the species accumulation curves had a final slope higher than 0.8 152 

(Table 1), indicating that the biome is still sub-sampled according to GBIF. After data processing 153 

and cleaning, the database comprised 143 sampling units and 169472 records, 85.2% of which 154 

was from bird occurrences. Mammalian, amphibian and reptile classes represented 7.71%, 6.27% 155 

and 0.81% of the records. The same pattern was identified for species richness: from 17875 156 
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species, 84.7% were birds, 5.3% were mammals, 6.7% were amphibians and 3.2% were reptiles. 157 

Both total occurrences (Fig. 2A) and total species richness (Fig. 2B) were clustered in 158 

southeastern Brazil (Serra do Mar) and northeastern Argentina (Iguazu). 159 

 160 

Figure 2 – Distribution of sampling effort (A) and total species richness (B) for the four 161 

groups. 162 

  163 
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Table 1- Inventory completeness for all the Atlantic Rainforest. Slopes close to 1 164 

characterizes a growing curve, which indicates that much sampling effort is still needed to 165 

reach the actual richness. Slopes close to 0 indicate that the species accumulation curve 166 

reached its asymptote and the probability of finding new species is low (Yang et al. 2013). 167 

Richness 

Slopes of the last 10% of the 

rarefaction curves 

Total 0.995 

Amphibians 0.992 

Birds 0.998 

Mammals 0.790 

Reptiles 0.924 
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Rarefaction slopes for each SU corresponding to total records varied from 0 to 0.99, with 168 

a median of 0.19. Only 31.47% of the Atlantic Rainforest could be considered well sampled 169 

according to the threshold of 0.05 applied by Yang et al. (2013) (Fig. 3). When each class was 170 

assessed separately, the amount of well sampled SU varied from 6.99% for birds to 0% for every 171 

other class. 172 

 173 

Figure 3 – Map of inventory completeness for the Atlantic Rainforest. Only sampling units 174 

with slopes between 0 and 0.05 are considered well sampled. 175 

 There was no significant association between corrected variables either using all the 176 

knowledge of the whole biome or only the well known regions. However, the mammalian 177 
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inventory completeness was significantly correlated to potential evapotranspiration (R = - 0.3, p 178 

= 0.048) (Table 3). There was little difference in the environmental characteristics of the SU 179 

when only the well sampled cells were analysed (Fig. 04). Nevertheless, all variables means 180 

were lower in these regions, except for the terrain roughness index, which was slightly higher at 181 

well sampled units (Table 04). 182 

  183 

Table 3 – Pearson’s correlation coefficient (R) between environmental variables, species 184 

richness and slopes of the rarefaction curve for all vertebrates and for each class, both in 185 

the whole study area and only in the sample units considered well sampled (slope<=0.05). 186 

All correlations were statistically significant (p<0.01). There are empty cells when there are 187 

no well sampled units for that class. 188 

All cells 

 

Total 

observations 

Slopes 

Total richness Amphibians Birds Mammals Reptiles 

PET 0.20 0.05 0.12 0.14 -0.26 0.10 

NDVI 0.27 -0.03 0.25 -0.04 -0.18 0.22 

Temp. -0.22 0.19 0.24 -0.27 -0.34 -0.04 

Topog. 0.09 -0.18 -0.37 -0.29 0.35 0.20 
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Only well-sampled cells 

PET 0.24 -0.19 - 0.12 - - 

NDVI 0.28 -0.02 - -0.49 - - 

Temp. -0.18 -0.14 - 0.08 - - 

Topog. 0.04 0.38 - -0.49 - - 

 189 
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 190 

Figure 4 – Frequency distribution of temperature (A), topography (B), NDVI (C) and PET 191 

(D) values on well sampled units. Means are represented by dashed lines, while medians are 192 

solid lines. 193 

 194 

 195 
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Table 4 – Differences in variables means between all cells and only well sampled units 196 

(WSU). 197 

Variable All cells (mean) WSU (mean) 

T-test 

t df p 

Temperature 20.036 19.990 12.517 950620 <0.01 

Altitude 40.999 41.484 -12.039 950270 <0.01 

NDVI 201.406 201.213 2.0753 949620 0.038 

PET 1393.420 1390.767 11.584 950650 <0.01 

 198 

Discussion 199 

 200 

There is a natural tendency for natural history studies being made at knowingly 201 

biodiverse locations. A study with the Brazilian flora aimed to identify sites with insufficient 202 

sampling in order to guide future survey efforts. They used a Brazilian database, speciesLink 203 

(http://www.splink.org.br/) and metrics of inventory completeness as described by Colwell & 204 

Coddington (Colwell and Coddington 1994). Well preserved sites close to important research 205 

centres were pointed as well-sampled: three of the highest scores in inventory completeness are 206 

located in the Atlantic Rainforest (Sousa-Baena et al. 2014). This may be the case of our data. 207 

Well-known SU are located in areas with a few large or several small protected areas, such as the 208 

Iguazu (Argentina-Brazil) and Serra do Mar region (Brazil) (Fig. 1; Fig. 03). Additionally, our 209 

analyses indicated that potential evapotranspiration (PET) and the normalized difference 210 

vegetation index (NDVI) can explain 20-27% of the variation in records frequency, but they 211 

explain almost nothing in the variation in species richness (Tab. 3). This reinforces our 212 
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hypothesis that highly known and predictably biodiverse areas (based on environmental 213 

variables, such as preserved vegetation) are being frequently visited, but biodiverse sites with 214 

little vegetation may have been ignored. There are also indications that researchers are choosing 215 

places that do not represent the Atlantic Rainforest’s environmental variability (Tab. 4).  . Some 216 

social variables which also characterize these mentioned regions, such as the number of research 217 

centres, accessibility and infrastructure, can also help explain these biases (Ficetola et al. 2014; 218 

Yang et al. 2014). 219 

Sampling bias can have serious consequences in conservation and ecological 220 

understanding. For instance, a study with the diverse Chinese flora tried to quantify inventory 221 

incompleteness and evaluate the influence of database biases in ecological analyses. They found 222 

that 91% of Chinese counties do not have complete inventories and this affected the explicative 223 

power of predictive environmental variables (Yang et al. 2013). 224 

However, this “feedback” causes a practical paradox: a well studied site may highlight a 225 

certain area if it is recognized as biodiverse; subsequently, protected areas typically attract more 226 

research while undersampled sites are ignored by funding projects (Ahrends et al. 2011; Boakes 227 

et al. 2016). Some protected areas achieved that status because of other several reasons to protect 228 

a site, such as its natural beauty, its cultural value, its geological conformation or its importance 229 

to the ecosystem (Margules and Pressey 2000; Yang et al. 2014). Nevertheless, even when 230 

reserves aim to protect things other than species, they may create an opportune place for 231 

biodiversity research. 232 

Local or private data sources could add important information and allow a more precise 233 

representation for the Atlantic Rainforest. There are important independent national databases in 234 

Brazil that could add substantial information to the global biodiversity knowledge, such as 235 
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speciesLink and “Portal da Biodiversidade” (https://portaldabiodiversidade.icmbio.gov.br). On 236 

the other hand, the process of transferring data from natural history collections to online 237 

databases is naturally slow and is not a solidified activity yet because it requires trained 238 

technicians and infrastructure (Sousa-Baena et al. 2014). Also, there is a growing overlap 239 

between local and global databases, which leads us to think that, in the near future, researchers 240 

will take a “shortcut” and feed global databases directly. 241 

There is a major need for sampling effort in non-protected sites, with intense human 242 

activities. The inventory completeness tended to be lower in sites knowingly fragmented, such as 243 

the Brazil’s Northeast and central region (Fig. 3). These are regions highly explored by the 244 

tourism industry and farmers, with neglected environmental policy. The assessment of 245 

biodiversity in those places is important in order to accurately measure human impact on nature. 246 

As highlighted by Martin et al., a great amount of ecological knowledge is based on a narrow 247 

variety of ecosystems, since researchers tend to study only well preserved sites (Martin et al. 248 

2012; Boakes et al. 2016). These biases surely difficult our perception of patterns and real 249 

impacts (Ficetola et al. 2014). 250 

Conclusion 251 

 The Atlantic Rainforest fauna is not well known by the scientific community. Our 252 

analyses suggest that the current digital accessible knowledge is insufficient about its 253 

biodiversity and there is a bias towards two remarkable areas: Iguazu and Serra do Mar, which 254 

are known for their protected areas. 255 

 We could not indicate an environmental variable that would be related to this bias. Social 256 

variables might explain better this trend, once well sampled sites are located close to populated 257 

areas and research centres, in addition to the conservation actions aforementioned. 258 
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Despite the flaws of GBIF data, it still is one of the best tools available for 259 

macroecological studies. A reasonable practice would be use more than one data source when 260 

feasible. The user must be aware of its incompleteness and profoundly analyse its errors, 261 

especially when dealing with species distribution modelling. On the other hand, users are also 262 

responsible for furnishing good quality, open access data. The expectation is that this 263 

incompleteness will be soon bypassed. 264 

 265 
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