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Abstract 17 
Understanding species-specific relationships with their environment is essential for ecology, 18 
biogeography, and conservation biology. Moreover, understanding how these relationships 19 
change with spatial scale is critical to mitigating potential threats to biodiversity. But methods 20 
which measure inter-specific variation in responses to environmental parameters, generalizable 21 
across multiple spatial scales, are lacking. We used broad-scale citizen science data, over a 22 
continental scale, integrated with remotely-sensed products, to produce a measure of response to 23 
urbanization for a given species at a continental-scale. We then compared these responses to 24 
modelled responses to urbanization at a local-scale, based on systematic sampling within a series 25 
of small cities. For 49 species which had sufficient data for modelling, we found a significant 26 
relationship (R2 = 0.51) between continental-scale urbanness and local-scale urbanness. Our 27 
results suggest that continental-scale responses are representative of small-scale responses to 28 
urbanization. We also found that relatively few citizen science observations (~250) are necessary 29 
for reliable estimates of continental-scale urban scores to predict local-scale response to 30 
urbanization. Our method of producing species-specific urban scores is robust and can be 31 
generalized to other taxa and other environmental variables with relative ease. 32 
 33 
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Background 36 
Understanding species-environment relationships [1] is a critical and unifying goal in ecology 37 
[2,3], biogeography [4,5], and conservation [6,7]. A thorough and generalized understanding of 38 
how species respond to their environment should translate to an increased ability to mitigate 39 
potential threats, ultimately preserving biodiversity [8,9]. Chief among these potential threats are 40 
anthropogenic changes [10,11], such as climate change [12], species invasions [13], and land use 41 
changes [14]. Yet the scale-dependence of species-environment relationships remains complex 42 
and unresolved [1]: for example, 10% of studies show biodiversity changes which switch 43 
directions across scales [15]. Empirical analyses are desperately needed to inform understanding 44 
of the patterns and mechanisms relating to scale-dependence of species-environment 45 
relationships [16]. 46 
 47 
Our current understanding of spatial-scale dependence of biodiversity responses to land-use is 48 
commonly derived from aggregated biodiversity metrics [17], including: species richness [18–49 
23], various measures of species diversity [24–28], or other functional groupings [29–32]. Even 50 
when assessing species-specific responses to environmental relationships, a general approach is 51 
to categorize species based on a priori knowledge in how they respond to a particular 52 
environmental parameter [33–40]. While this approach is analytically and conceptually simple, it 53 
assumes that species within groups respond equally [41,42], limiting our understanding of the 54 
complex mechanisms influencing how organisms respond to their environment. Characterizing 55 
how biodiversity responds to its environment should be species-specific [1,43–46]. 56 
 57 
This is particularly true for anthropogenic land use changes [47], such as urbanization [48,49]. 58 
By accounting for species-specific responses relative to one another, environmental planners can 59 
accordingly mitigate urbanization responses for the least urban-tolerant species. By 2030, 10% of 60 
the earth’s landmass is projected to be urbanized [50], making increasing urbanization — and its 61 
associated habitat loss, fragmentation, and degradation — a significant anthropogenic threat to 62 
the world’s biodiversity [51,52]. Much research has informed our understanding of the negative 63 
impacts of urbanization on biodiversity [34,53–55], but this understanding is still lacking unified 64 
theories across spatial scales, with repeatable and robust methods. 65 
 66 
A traditional hurdle in providing species-specific responses to their environment at various 67 
spatial scales has been the cost of data collection: it is expensive to collect voluminous amounts 68 
of data at the necessary spatial and temporal scales for generalizable inferences. This hurdle 69 
necessarily limits the spatial scale of a particular study as well as the number of species being 70 
investigated. Unsurprisingly, then, the majority of studies have been conducted at somewhat 71 
localized scales — predominantly characterizing intra-city responses [22,56–63]. This local 72 
understanding is directly applicable for greenspace management within cities, aimed at 73 
maintaining high levels of biodiversity [64–66]. But local-scale data are rarely available within a 74 
specific city, limiting environmental planners’ ability to make informed decisions. Fortunately, 75 
we now have access to broad-scale empirical datasets numbering millions of observations — 76 
generally collected through citizen science programs [67–69] — revolutionizing ecological and 77 
conservation research [70–72]. Simultaneously, the field of remote sensing is rapidly advancing 78 
[73], with increasing numbers of sensors, targeted missions for ecology [74–76], freely available 79 
data, and improved access to data analysis pipelines [77,78]. These biodiversity data, combined 80 
with remotely sensed data, are increasing our understanding of biodiversity responses to 81 



environmental change [79–81], especially at macro-ecological scales [82–84]. But in regards to 82 
urbanization, how well do macro-ecological responses correspond with local-scale responses? If 83 
species-specific responses at broad spatial scales sufficiently predict local-scale responses, then 84 
environmental planners can make predictions for their local fauna, based on continental 85 
generalizations. 86 
 87 
We assessed how bird species respond to urbanization across spatial scales, testing whether 88 
species-specific responses (i.e., changes in abundance relative to urbanization levels) to 89 
urbanization at a continental scale predict species-specific responses to urbanization at local 90 
scales. To do so, we integrated two disparate datasets: (1) continental-scale responses to 91 
urbanization based on globally available remotely-sensed data and (2) local-scale modelled 92 
responses to urbanization, derived from systematic sampling.  93 
 94 
Methods 95 
Continental species-specific responses to urbanization 96 
eBird [67,85–87] has > 600 million global observations and formed the data basis of the 97 
continental species-specific responses. eBird works by enlisting volunteer birdwatchers who 98 
submit bird observations in the form of ‘checklists’ — defined as a list of birds seen or heard in a 99 
specified area. An extensive network of regional volunteers [88] use their local expertise to 100 
provide filters for the submissions, limiting observations based on unexpected species or 101 
abundances of species. More detailed information on eBird protocols are provided in [86]. 102 
 103 
Species-specific scores 104 
We used continental eBird data to assign species-specific urban scores for each species in the 105 
analysis. This approach borrows from the longstanding theory behind urban adapters, avoiders, 106 
and exploiters [37,38], and works theoretically by assessing how a species responds to a 107 
continuous level of urbanization (Fig. 1). For example, an urban avoider would have a predicted 108 
distribution of observations with very few in or near high levels of urbanization (Fig. 1). Species-109 
specific scores were calculated by: (1) filtering eBird data, removing potential outliers, [83,89]; 110 
(2) assigning each eBird checklist’s spatiotemporal coordinates a continuous measure of 111 
urbanization, using VIIRS night-time lights [90] as a proxy for urbanization [91–93], via Google 112 
Earth Engine [77]; and (3) taking the median of a species’ distributional response to 113 
urbanization. For full details, and a published list of species-specific urban scores, see [94]. Note 114 
that exotic species were excluded from [94], but were included in this analysis. 115 
 116 
Local-scale species-specific responses to urbanization 117 
We conducted bird-surveys within the Greater Blue Mountains World Heritage Area (GBWHA), 118 
which is ~ 10,000 km2 and lies about 180 km from Sydney, Australia. Within a strip of linear 119 
conurbation, we designed transects through each of four cities (Fig. S1). Points were spaced ~ 120 
500 m apart on each transect. Woodford, Lawson, and Hazelbrook had 5 points each, while 121 
Katoomba (the largest city) had 9 points (Fig. S1). Between August 2017 and August 2018, 122 
transects were visited twice per month (N=576), and 5-min point-counts were conducted at each 123 
point, counting all birds seen or heard. Surveys were conducted on days with fine weather, and 124 
surveys were completed between sunrise and 5 hrs after sunrise. We visually estimated the 125 
degree of urbanization at each point as the percent impervious surface within a 250-m radius 126 
buffer surrounding that point, using recent aerial photography from Google Earth Pro [sensu 127 



[95]; Fig. S2]. The percent impervious surface was used as it is a direct measure of urbanization, 128 
and generally readily available at local-scales for urban planners, whereas VIIRS night-time 129 
lights is at 500-m resolution, not generally applicable at a small-scale. 130 
 131 
In order to extract species-specific responses to urbanization at a local scale, we modelled the 132 
number of observations of a species against the percent impervious area at each survey point. We 133 
fitted Generalized Linear Mixed Models [96] with a Poisson distribution, where the random 134 
effect was transect (i.e., city). This model was separately fitted to each species, and the 135 
regression coefficient for the impervious surface area predictor for a given species was taken as 136 
the species-specific response to urbanization at a local scale. Only species with a minimum of 10 137 
observations were considered for the GLMMs, ensuring that models would converge. Models 138 
were fit using the ‘glmer’ function from the lme4 package [97]. 139 
 140 
Regression of continental and local-scale urban measures 141 
We observed a total of 94 species on our local-scale bird surveys (Appendix S1). Fifty-one 142 
species had > 10 observations (Appendix S1) and were thus considered for GLMMs. After initial 143 
modelling, two species were further eliminated from analyses (Pilotbird and White-eared 144 
Honeyeater; Appendix S2). Thus, 49 species were regressed against their log-transformed 145 
continental urban scores, using the ‘lm’ function in R. 146 
 147 
Assessing necessary number of citizen science observations for reliable estimates 148 
We re-ran our linear model, multiple times (N=100), each with different numbers of samples 149 
used to calculate continental-scale urban scores (i.e., the median of the distributional response to 150 
night-time lights). We re-calculated the urban scores based on the use of 10 to 1000 randomly 151 
sampled eBird observations, by increments of 10. All analyses were performed within the R 152 
statistical environment [98], and relied heavily on the tidyverse workflow [99].  153 
 154 
Results 155 
A total of 94 species were observed on our local-level transects (Appendix S1). The species that 156 
was most likely to be associated with urbanization at the local-scale was Rock Pigeon (parameter 157 
estimate: 0.14), while the species least likely to be associated with urbanization was Rufous 158 
Whistler (parameter estimate: -0.88; Fig. S3). 159 
 160 
Rock Pigeon had the highest continental-scale urban score (12.49) while Red-capped Robin had 161 
the lowest continental-scale urban score (0.047). Of the 49 species included in analyses, the 162 
mean urban score was 2.37 ± 2.81 (Fig. S4). Thus, Rock Pigeon had both the highest local-urban 163 
score and continental-urban score, while Superb Lyrebird had the lowest local-urban score and 164 
the second lowest continental-urban score (cf. Fig. S5 and Fig. S6). 165 
 166 
Continental urban scores significantly predicted (t=6.95, df=47, p < 0.001) the localized urban 167 
scores with an R2 of 0.51, and the relationship was even stronger (t=8.93, df=47, p < 0.001, 168 
R2=0.63) when the model was weighted by the standard error of the local-scale urban scores’ 169 
parameter estimates, to reduce distortion by species with small sample sizes. Even without this 170 
correction, the relationship appears to be robust to the number of underlying samples per species 171 
used to calculate the continental urban score. Indeed, of 100 different models, based on sample 172 



sizes from 10 to 1000 there was little differentiation in the underlying relationship (Fig. 2a), and 173 
the R2 for these models quickly leveled off after ~ 250 observations (Fig. 2b). 174 
 175 
Discussion 176 
Urbanization will continue to impact biodiversity in a multitude of ways [51], and understanding 177 
species-specific responses to urbanization [48] is essential to mitigate threats to native fauna 178 
[100], especially those most at-risk. Indeed, much research has investigated which biological and 179 
ecological traits are associated with urban-adapted birds in an attempt to identify those species 180 
most at-risk [36,42,94,101]. We provide significant methodological enhancements to these 181 
approaches, serving as a foundation for future studies to investigate the ecological and 182 
conservation validity of how biodiversity responds to urbanization. This method moves past the 183 
traditional notion of characterizing species based on known responses to urbanization [36,38], 184 
instead relying on continuous measures of inter-specific variation, although we note that species 185 
can indeed be clustered into those which respond to urbanization positively, negatively, and 186 
show mixed responses (e.g., Fig. 1). The difference, however, is that these characterizations are 187 
informed, incorporating inter-specific variation. Furthermore, we found that a relatively small 188 
number of broad-scale observations (~250) are needed to provide reasonable estimates of local-189 
scale responses to urbanization, highlighting the potential applications of broad-scale citizen 190 
science data. 191 
 192 
There is the temptation to ‘think big’, and address macroecological questions, given we are in the 193 
midst of a ‘big-data’ revolution in ecology [102,103]. We acknowledge that these data are 194 
rapidly expanding our ability to monitor biodiversity at global scales [104–107]. But many 195 
policy-relevant decisions happen at local scales, and the utility of these data needs to be 196 
empirically grounded in local-relevance [87,108]. Adaptive governance systems, supporting 197 
practical management at local-scales are necessary for environmental planners to sufficiently 198 
mitigate the impacts of urbanization on biodiversity [64]. At the same time, local-decisions 199 
should be grounded at several spatial scales [64], accounting for diverse biodiversity responses. 200 
Often, however, such data are unavailable for environmental planners. Our results provide 201 
empirical evidence that continental-scale data reflects local-scale relevance, albeit within one 202 
localized study region, suggesting that urbanization is a unifying environmental process, 203 
whereby species respond similarly at local and global scales [1, 15]. More work is necessary to 204 
understand the scale-dependence at intermediate spatial scales, but we provide an approach 205 
which relies on citizen science data and is generalizable across taxa and environmental 206 
parameters. 207 
 208 
Our novel approach highlights some further potential opportunities for future research.  209 

 Although we focus on responses to urbanization, our approach can be applied to other 210 
environmental factors (e.g., tree-cover, water-cover). 211 

 These data have the ability to move beyond species-specific measures to community-212 
level measures of response to urbanization. 213 

 Although we focus on measuring inter-specific variation, this approach could be used to 214 
measure intra-specific variation, by subsampling different spatial populations of a species 215 
[109]. 216 



 Here, we us large amounts of data to provide a ‘snapshot’ of how birds are responding to 217 
urbanization. But many species change their responses through time (intra- and inter-218 
annually), showing localized adaptations [110,111]. As the underlying citizen science 219 
data grows, this approach should be able to measure species-specific responses to 220 
urbanization through time. 221 

Citizen science data is radically shaping the spatial and temporal scale with which ecological 222 
questions are being answered [112,113], and this is particularly true within urban areas [70,114]. 223 
We do not suggest that systematic sampling should be replaced with citizen science data, but 224 
rather, that they can complement one another, providing generalized understanding [115]. 225 
Nevertheless, methods such as the one we validated here will be essential to track biodiversity 226 
responses to urbanization into the Anthropocene. 227 
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Figures 519 

 520 

Figure 1. The theoretical expected distributions for the three types of commonly assigned 521 
responses to urbanization: urban avoider, urban adapter, and urban exploiter. Also, showing three 522 
species’ distributions in response to night-time lights based on their eBird data observations, 523 
demonstrating an ‘example’ species for each of these theoretical distributions. 524 



 525 

Figure 2. a) Regression of log-transformed continental-scale urbanness versus local-scale 526 
urbanness for 49 species. Standard error is shown for local-scale urbanness as the standard error 527 
retreived from each Generalized Linear Model, whereas standard error for the continental-scale 528 
urbanness are boot-strapped standard error estimates for the median of a species’ response to 529 
urbanization. Each gray model fit shows a model fit for 100 different models, each with 10-1000 530 
data points (by 10) used to calculate the continental-scale urbanness. The red line of best fit 531 
shows the linear model results, using all available observations for each species. b) R 2 for each 532 
of the 100 different linear models fitted, using 10-1000 data points to calculate the continental-533 
scale urban scores. 534 



Appendix S1. A table of the 94 species observed in the Blue Mountains and the total number of observations for each species. Also included is 

the number of continental observations, from eBird, used to assign continental-scale urban scores. Only species with > 10 local records were 

considered for analysis, and 2 were removed as outliers (Appendix S2). 

Species Number of local observations Number of continental observations Included in regression 

Eastern Spinebill 412 27990 Yes 

Red Wattlebird 390 84046 Yes 

Sulphur-crested Cockatoo 383 80030 Yes 

Pied Currawong 291 65858 Yes 

Crimson Rosella 269 45991 Yes 

Australian Magpie 229 158615 Yes 

Yellow-faced Honeyeater 210 35557 Yes 

White-throated Treecreeper 179 28238 Yes 

Spotted Pardalote 117 36944 Yes 

Rainbow Lorikeet 111 117290 Yes 

Brown Thornbill 108 48114 Yes 

Satin Bowerbird 108 12580 Yes 

Gray Butcherbird 104 59384 Yes 

Australian King-Parrot 103 22845 Yes 

New Holland Honeyeater 96 39402 Yes 

Gray Fantail 93 77707 Yes 

Common Myna 74 62497 Yes 

Silver-eye 70 58159 Yes 

Rock Pigeon 66 29618 Yes 

Australian Raven 65 53001 Yes 

Rufous Whistler 59 38256 Yes 

Eastern Yellow Robin 52 35185 Yes 

Gray Shrikethrush 49 50951 Yes 

Eurasian Blackbird 48 43878 Yes 



White-naped Honeyeater 48 9612 Yes 

Striated Thornbill 44 11878 Yes 

Eastern Whipbird 42 29452 Yes 

Laughing Kookaburra 41 70107 Yes 

White-browed Scrubwren 40 43541 Yes 

Fan-tailed Cuckoo 38 15908 Yes 

Pacific Koel 36 15357 Yes 

House Sparrow 35 36193 Yes 

Superb Lyrebird 34 4247 Yes 

Lewin's Honeyeater 33 35617 Yes 

Yellow-tailed Black-Cockatoo 33 13862 Yes 

Golden Whistler 29 31744 Yes 

Little Wattlebird 23 28734 Yes 

Black-faced Cuckooshrike 19 55254 Yes 

Galah 19 80009 Yes 

Crested Pigeon 18 69964 Yes 

Superb Fairywren 17 86836 Yes 

Noisy Miner 16 89821 Yes 

Welcome Swallow 15 109006 Yes 

Magpie-lark 14 131621 Yes 

White-eared Honeyeater 14 9179 No 

Noisy Friarbird 13 25532 Yes 

Red-whiskered Bulbul 13 4524 Yes 

Scarlet Myzomela 13 14387 Yes 

Masked Lapwing 12 80029 Yes 

Mistletoebird 11 25640 Yes 

Pilotbird 11 749 No 

Channel-billed Cuckoo 10 9686 Yes 



Gang-gang Cockatoo 9 5248 No 

Leaden Flycatcher 9 13615 No 

Tree Martin 8 18471 No 

Variegated Fairywren 8 15152 No 

Wonga Pigeon 8 7094 No 

Red-browed Treecreeper 7 1286 No 

Sacred Kingfisher 7 25194 No 

Brown-headed Honeyeater 6 7435 No 

Little Corella 6 30860 No 

Shining Bronze-Cuckoo 6 9331 No 

Brown Cuckoo-Dove 5 10589 No 

Red-browed Firetail 5 33456 No 

Brown Gerygone 4 9410 No 

Common Cicadabird 4 6728 No 

Maned Duck 4 56221 No 

Scarlet Robin 4 7211 No 

Crescent Honeyeater 3 3293 No 

Crested Shrike-tit 3 3933 No 

Olive-backed Oriole 3 22539 No 

Striated Pardalote 3 44295 No 

Wedge-tailed Eagle 3 11006 No 

Australian Owlet-nightjar 2 2836 No 

Black-faced Monarch 2 6181 No 

European Starling 2 53070 No 

Long-billed Corella 2 10453 No 

White-throated Needletail 2 3515 No 

Beautiful Firetail 1 906 No 

Brown Goshawk 1 9918 No 



Buff-rumped Thornbill 1 7033 No 

Collared Sparrowhawk 1 4270 No 

Common Bronzewing 1 15076 No 

Fuscous Honeyeater 1 4085 No 

Horsfield's Bronze-Cuckoo 1 8035 No 

Little Lorikeet 1 4865 No 

Peregrine Falcon 1 2960 No 

Red-capped Robin 1 4299 No 

Rufous Fantail 1 10113 No 

Spotted Quail-thrush 1 423 No 

Varied Sittella 1 4854 No 

White-headed Pigeon 1 4069 No 

Willie-wagtail 1 106114 No 

Yellow Thornbill 1 12237 No 

 



Appendix S2. Methods used to identify and eliminate outliers from analyses. Outliers were 

for species which had poor model-fit at the local-scale, and only considered species at the 

local-scale, based on GLMM model fits. 

 

1.) Investigated relationship between all 51 species’ parameter estimates and their 

continental-scores – 51 species had > 10 observations, meeting our a priori cut-off for 

modelling consideration. 

 

 



 

2.) Then investigated the outliers, using a histogram of their standard error for the 51 

species included in the analysis. 

 

 

 



 

3.) Then identified any species which were greater than 0.95 outlier, using the ‘scores’ 

function from the outliers package in R. This identified one species which was an 

outlier – Pilotbird. We then re-plotted the histrogram. 

 

 

 



4.) We repeated step 3 and found that there was one individual outlier still present, 

obvious from the histogram. Thus, we removed White-eared Honeyeater from the 

analysis. We were then satisfied with the statistical spread of standard errors 

associated with GLMMs. 

 

 



 

Figure S1. A map of the study area, located in the Blue Mountain World Heritage area, ~ 180 

km west of Sydney, New South Wales, Australia. 

 



 

 

Figure S2. An example of how urbanization was calculated at a given point, showing the 

Lawson transect. The percent impervious surface was estimated within a 250 m buffer, and is 

shown in the gray boxes for each of the transect points. The circle on the right is an enlarged 

version of point C from the Lawson Transect. 

 



 

 

Figure S3. Histogram of the parameter estimates from Generalized Linear Models fitted for 

each species, representing the local-scale response to urbanization. Species with a parameter 

estimate > 0 are responding positively to urbanization, while species with a parameter 

estimate < 0 are responding negatively to urbanization. 

 



 

Figure S4. Histogram of the continental-urban scores for the 94 species (a) and for the 49 

species included in the analysis (b). The urban-scores are measures of a species-specific 

distributional response to VIIRS night-time lights, gleaned from eBird data (Callaghan et al. 

2019). 

 



 

Figure S5. The 49 species included in the study, ranked by their local-scale urban score (i.e., 

GLMM parameter estimate). Values on the right (light blue) are positively associated with 

urbanization while values on the left (dark blue) are negatively associated with urbanization. 

 

 



 

Figure S6. The 49 species included in the study, ranked by their continental-scale urban 

scores, showing the species most associated with urbanization (Rock Pigeon) to the least 

(Superb Lyrebird). Compare with Figure S5. 


	urbanness_scales_pre-print
	Supplementary information
	Appendix S1
	Appendix S2
	Supp_figures


