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Abstract 1 

Understanding species-specific relationships with their environment is essential for ecology, 2 

biogeography, and conservation biology. Moreover, understanding how these relationships 3 

change with spatial scale is critical to mitigating potential threats to biodiversity. But methods 4 

which measure inter-specific variation in response to environmental parameters that are also 5 

generalizable across multiple spatial scales are scarce. We used broad-scale avian citizen science 6 

data, over continental Australia, integrated with remotely-sensed products, to produce a measure 7 

of urban-tolerance for a given species at a continental-scale. We then compared these urban-8 

tolerances to modelled responses to urbanization at a local-scale, based on systematic sampling 9 

within four small cities. For 49 species which had sufficient data for modelling, we found a 10 

significant relationship (R2= 0.51) between continental-scale urbanness and local-scale 11 

urbanness. We also found that relatively few citizen science observations (~250) are necessary 12 

for reliable estimates of continental-scale species-specific urban scores to predict local-scale 13 

response to urbanization. Our approach demonstrates the applicability of broad-scale citizen 14 

science data, contrasting both the spatial grain and extent of standard point-count surveys 15 

generally only conducted at small spatial scales. Continental-scale responses in Australia are 16 

representative of small-scale responses to urbanization among four small cities in Australia, 17 

suggesting that our method of producing species-specific urban scores is robust and may be 18 

generalized to other locations lacking appropriate data. 19 

 20 

Keywords: Australia; birds; citizen science; species-environment relationships; spatial scales; 21 

urbanization; urban ecology; eBird 22 
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Introduction 23 

Understanding species-environment relationships (Mertes and Jetz 2018) is a critical and 24 

unifying goal in ecology (Hutchinson 1953, Levin 1992), biogeography (Currie and Paquin 25 

1987, Hawkins et al. 2003), and conservation (Guisan et al. 2013, Duflot et al. 2018). A thorough 26 

and generalized understanding of how species respond to their environment should translate to 27 

an increased ability to mitigate potential threats, ultimately preserving biodiversity (Paterson et 28 

al. 2008, Tilman et al. 2017). Chief among these potential threats are anthropogenic changes 29 

(Tilman 1999, Hautier et al. 2015), such as climate change (Hampe and Petit 2005), species 30 

invasions (Ricciardi et al. 2017), and land use changes via urbanization (Vandewalle et al. 2010). 31 

Yet the scale-dependence of species-environment relationships remains complex and generally 32 

unresolved (Weins 1992, Pautasso 2007, Mertes and Jetz 2018): for example, 10% of studies 33 

show biodiversity changes which switch directions across scales (Chase et al. 2018). Empirical 34 

analyses are desperately needed to inform understanding of the patterns and mechanisms relating 35 

to scale-dependence of species-environment relationships (Hostetler 2001, Holland et al. 2004). 36 

 37 

Our current understanding of spatial-scale dependence of biodiversity responses to land-use is 38 

commonly derived from aggregated biodiversity metrics (Gotelli and Colwell 2001), including: 39 

species richness (Whittaker et al. 2001, Weibull et al. 2003, Diniz-Filho and Bini 2005, 40 

McKinney 2008, Concepción et al. 2016, Zellweger et al. 2016), various measures of species 41 

diversity (He et al. 1996, Meynard et al. 2011, Morlon et al. 2011, Roeselers et al. 2015, Salazar 42 

et al. 2016), or other functional groupings (Devictor et al. 2008, Clavel et al. 2011, Gámez-43 

Virués et al. 2015, Deguines et al. 2016). Even when assessing species-specific responses to 44 

environmental relationships, a general approach is to categorize species based on a priori 45 
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knowledge in how they respond to a particular environmental parameter, or use a simple measure 46 

of abundance from a limited spatial scale (McKinney 2002, 2006, Bonier et al. 2007, Kark et al. 47 

2007, Møller 2009, Pelletier et al. 2010, McDonnell and Hahs 2015, Geschke et al. 2018). While 48 

this approach is analytically and conceptually simple, it assumes that species within groups 49 

respond equally (Lepczyk et al. 2008, Evans et al. 2011), limiting our understanding of the 50 

complex mechanisms influencing how organisms respond to their environment. Characterizing 51 

how biodiversity responds to its environment should thus be species-specific (Cushman 2006, 52 

Ewers and Didham 2006, McGarigal et al. 2016, Yackulic and Ginsberg 2016, Vargas et al. 53 

2017, Mertes and Jetz 2018). 54 

 55 

Quantifying species-specific responses to environmental parameters is particularly important for 56 

anthropogenic land use changes (Suárez-Seoane et al. 2002), such as urbanization (Jokimäki 57 

1999, Fernandez-Juricic and Jokimäki 2001, Gehrt and Chelsvig 2004, Russo and Ancillotto 58 

2015). If environmental planners can appropriately identify and predict the species most at-risk 59 

of urbanization (i.e., the least urban-tolerant species), then environmental planners can attempt to 60 

mitigate the threats specific to these least-tolerant species (Hostetler 2001) – e.g., by installing 61 

nestboxes if hollow-nesting birds are most at-risk. Conversely, if environmental planners can 62 

appropriately identify the abundant (i.e., most urban-tolerant) species that may be harmful to 63 

other less urban-tolerant species, then steps can be taken to minimize the harm these species pose 64 

(e.g., by managing invasive species in urban environments). By 2030, 10% of the earth’s 65 

landmass is projected to be urbanized (Elmqvist et al. 2013), making increasing urbanization — 66 

and its associated habitat loss, fragmentation, and degradation — a significant anthropogenic 67 

threat to the world’s biodiversity (Elmqvist et al. 2016, Sanderson et al. 2018). Much research 68 
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has informed our understanding of the negative impacts of urbanization on biodiversity 69 

(McKinney 2002, McDonald et al. 2008, Vimal et al. 2012, Huang et al. 2018). But the impacts 70 

of urbanization on biodiversity are inconsistent among cities and across spatial scales, sometimes 71 

with peaks of biodiversity at intermediate levels of urbanization (Chace and Walsh 2006, Batáry 72 

et al. 2018). Thus, understanding of biodiversity responses to urbanization is still lacking unified 73 

theories across spatial scales, with repeatable and robust methods, especially for species-specific 74 

measurements of response to urbanization. 75 

 76 

A traditional hurdle in providing species-specific responses to their environment at various 77 

spatial scales has been the cost of data collection: it is expensive to collect voluminous amounts 78 

of data at the necessary spatial and temporal scales for generalizable inferences. This hurdle 79 

necessarily limits the spatial scale of a particular study as well as the number of species being 80 

investigated. Unsurprisingly, then, the majority of studies have been conducted at somewhat 81 

localized scales — predominantly characterizing intra-city responses (Dickman 1987, Cornelis 82 

and Hermy 2004, Parsons et al. 2006, Bickford et al. 2010, Hedblom and Söderström 2010, 83 

Bates et al. 2011, Fontana et al. 2011, Lizée et al. 2012, Concepción et al. 2016), and broad 84 

multi-city analyses are rare in comparison (Clergeau et al. 2006a, 2006b, Morelli et al. 2016). 85 

This local understanding is directly applicable for greenspace management within cities, aimed 86 

at maintaining high levels of biodiversity (Borgström et al. 2006, Perring et al. 2015, Aronson et 87 

al. 2017). But local-scale data are rarely available within a specific city, limiting environmental 88 

planners’ ability to make informed decisions, highlighting the importance of local-scale data (or 89 

proxies) for urban planning and management. And a wide variety of studies investigate different 90 
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spatial extents and grains (Forman and Gordon 1986, Turner et al. 1989), with little unifying 91 

theory for informed decisions and generalizable patterns.  92 

 93 

Fortunately, we now have access to broad-scale empirical datasets numbering millions of 94 

observations — generally collected through citizen science programs (e.g., Sullivan et al. 2009, 95 

Prudic et al. 2017, Van Horn et al. 2018) — revolutionizing ecological and conservation research 96 

(Cooper et al. 2007, Silvertown 2009, Pocock et al. 2018). Simultaneously, the field of remote 97 

sensing is rapidly advancing (Kwok 2018), with increasing numbers of sensors, targeted 98 

missions for ecology (Wikelski et al. 2007, Bioucas-Dias et al. 2013, Jetz et al. 2016), freely 99 

available data, and improved access to data analysis pipelines (Gorelick et al. 2017, Murray et al. 100 

2018). These biodiversity data, combined with remotely sensed data, are increasing our 101 

understanding of biodiversity responses to environmental change (Pettorelli et al. 2014a, 2014b, 102 

2016), especially at macro-ecological scales (Hochachka and Fink 2012, La Sorte et al. 2014, 103 

Jokimäki et al. 2017, Horton et al. 2018), including bird responses to urbanization (Bino et al. 104 

2008). But in regards to urbanization, how well do macro-ecological responses correspond with 105 

local-scale responses? If species-specific responses at broad spatial scales sufficiently predict 106 

local-scale responses, then environmental planners can make predictions for their local fauna, 107 

based on continental generalizations derived from citizen science data. Importantly, however, the 108 

reliance on continental citizen science data needs to be robust, and the minimum number of 109 

citizen science observations to make robust generalizations needs to be quantified.  110 

 111 

We assessed how bird species respond to urbanization across spatial scales (i.e., based on a 112 

measure of urban-tolerance), testing whether species-specific responses (i.e., changes in relative 113 
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abundance across urbanization levels) to urbanization at a continental scale predict species-114 

specific responses to urbanization at local scales. To do so, we integrated two disparate datasets 115 

with different spatial extent and grain (Turner et al. 1989): (1) continental-scale species-specific 116 

responses to urbanization based on globally available remotely-sensed data and (2) local-scale 117 

responses to urbanization, derived from systematic sampling. The former relies on novel 118 

methods to assign species-specific continental urbanization responses in Australia, integrating 119 

broad-scale biodiversity data — collected through eBird (Sullivan et al. 2009, 2014, Wood et al. 120 

2011) — with remotely-sensed landcover maps of continuous measures of urbanization. The 121 

latter relies on modelled responses to urbanization derived from local-level bird surveys within 122 

four small cities in Australia. We then tested the relationship between these two differential 123 

measures of bird responses to urbanization. 124 

 125 

Methods 126 

Continental species-specific responses to urbanization 127 

eBird (Sullivan et al. 2009, 2014, Wood et al. 2011, Callaghan and Gawlik 2015), launched in 128 

2002 by the Cornell Lab of Ornithology, has > 600 million global observations and formed the 129 

data basis of the continental-scale species-specific responses. eBird works by enlisting volunteer 130 

birdwatchers who submit bird observations in the form of ‘checklists’ — defined as a list of birds 131 

seen or heard in a specified area. An extensive network of regional volunteers (Gilfedder et al. 132 

2018) use their local expertise to provide filters for the submissions, limiting observations based 133 

on unexpected species or abundances of species. If an observation trips a ‘filter’ then it is 134 

reviewed before inclusion in the database. More detailed information on eBird protocols are 135 
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provided in Sullivan et al. (2014). 136 

 137 

Species-specific scores 138 

We used continental eBird data to assign species-specific urban scores for each species in the 139 

analysis. This approach borrows from the longstanding theory behind urban adapters, avoiders, 140 

and exploiters (Blair 1996, McDonnell and Hahs 2015, Geschke et al. 2018), and works 141 

theoretically by assessing how a species responds to a continuous level of urbanization (Fig. 1). 142 

For example, an urban avoider would have a predicted distribution of observations where very 143 

few observations would be in or near high levels of urbanization, contrasting with an urban 144 

exploiter which would have a predicted distribution of observations largely skewed to higher 145 

levels of urbanization (Fig. 1). 146 

 147 

We first filtered all eBird data (version ebd_relFeb-2018) to include data between January 1st, 148 

2010 and February 28th, 2018. This corresponded to the richest period of eBird data and 149 

minimizes undue leverage of mismatch between changes in eBird observations and urbanization 150 

values. The majority of these data corresponds to the period of local-level sampling (see below), 151 

as most eBird data are contributed from the recent past. We further filtered the entire suite of 152 

eBird data to the best quality lists (e.g., La Sorte et al. 2014, Callaghan et al. 2017), removing 153 

potential outliers such as extraordinary long eBird checklists or eBird checklists which travelled 154 

long distances, as these checklists are most likely to introduce undue leverage on the results (e.g., 155 

include species in an area that was recorded from a great distance away). This was done by 156 

including only complete eBird checklists — where the observer recorded all birds heard and/or 157 

seen — from mainland Australia, which followed the travelling, random, stationary, area, or 158 
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BirdLife Australia protocols. We also filtered these checklists to those which recorded birds 159 

between 5-240 minutes and travelled less than 5 km or less than 500 Ha area searches (La Sorte 160 

et al. 2014, Callaghan et al. 2017, 2019b, Johnston et al. 2018), minimizing the chance that 161 

outliers would be included in the analyses. All checklists shared among multiple observers were 162 

randomly subsampled (i.e., one checklist was randomly selected), and all seabirds were omitted 163 

from the potential suite of species. Only species with a minimum of 100 observations were 164 

considered for assignment of continental-scale urban scores. Based on visual interpretation and 165 

our understanding of Australian birds, the data showed that species with < 100 observations had 166 

large variability in response to urban environments. However, when considering the species 167 

recorded at the local-scale (N=94; see below), the mean number of observations for continental-168 

scale assignment was 32,642 ± 32,846 (sd). All but three species (Spotted Quail-Thrush, 169 

Pilotbird, Beautiful Firetail) in our analysis had > 1000 continental eBird observations (Table 170 

S1), and these were removed from analyses because they did not meet the minimum local-scale 171 

observation threshold (see below). Following filtering, each eBird checklist was assigned a 172 

measure of urbanization — on a continuous scale. This was done by taking the average radiance 173 

of night-time lights within a 5 km buffer of each checklist. A buffer was used to minimize any 174 

bias in eBird sampling protocols (e.g., mis-placement of eBird checklists by participants, and to 175 

account for travelling checklists throughout an area) and the size of the buffer has no discernible 176 

influence on the relative urban-score differences among species (Callaghan et al. 2019a). We 177 

used the VIIRS night-time lights (Elvidge et al. 2017) as a proxy for urbanization because it is 178 

correlated positively with impervious surface cover and human population density (Pandey et al. 179 

2013, Zhang and Seto 2013, Stathakis et al. 2015) and because of its global availability and ease 180 

of use with Google Earth Engine (Gorelick et al. 2017). For each buffer, raw radiance values 181 
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were used — after filtering of the data to minimize the influence of fires, degraded data and other 182 

light source contamination (Elvidge et al. 2017) — between 2013-2017 and the average raw 183 

radiance value was taken as an annual composite. This approach of assigning urban scores shows 184 

strong agreements with other measures of urbanization such as human population density 185 

(Callaghan et al. 2019a, 2019b). Each species’ observations then corresponded to a different 186 

distribution of VIIRS night-time lights (Fig. 1), and we defined the median of this distribution as 187 

a species-specific urban-tolerance score. For more methodological details, and a published list of 188 

species-specific urban scores, see Callaghan et al. (2019a, 2019b).  189 

 190 

Local-scale species-specific responses to urbanization 191 

We conducted bird-surveys within the Greater Blue Mountains World Heritage Area (GBWHA), 192 

which is ~ 10,000 km2 and lies about 180 km from Sydney, New South Wales, Australia. Within 193 

a strip of linear conurbation, we designed transects through each of four cities within this 194 

conurbation (Fig. S1). Points (N=24) were spaced ~ 500 m apart on each transect to ensure 195 

independence of sampling points. Woodford (population ~ 2,500), Lawson (population ~ 2,600), 196 

and Hazelbrook (population ~ 5,000) had 5 points each, while Katoomba (population ~ 8,000) 197 

had 9 points (Fig. S1). Between August 2017 and August 2018, transects were visited twice per 198 

month (N=576), and 5-min point-counts were conducted at each point, with all birds heard or 199 

seen counted within a 250-m radius. Surveys were only conducted on days with fine weather 200 

(i.e., no rain and minimal wind), and surveys were completed between sunrise and 5 hrs after 201 

sunrise. Transects (i.e., order of points visited) as well as order of transects were randomized so 202 

that the same transect was not being conducted first every month. We visually estimated the 203 

degree of urbanization at each point as the percent impervious surface within a 250-m radius 204 
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buffer surrounding that point, using recent aerial photography from Google Earth Pro (sensu 205 

Blair 1996; Fig. S2) — a commonly employed approach within small-scale urbanization studies. 206 

The percent impervious surface was chosen as it is a direct measure of urbanization, and 207 

generally readily available at local-scales for urban planners, whereas VIIRS night-time lights is 208 

at 500-m resolution, not generally applicable at a small-scale. Hence, our approach compared 209 

different spatial grains, albeit measuring the same environmental response in urbanization. 210 

 211 

We extracted species-specific responses to urbanization at a local scale, using a modelling 212 

approach and generated parameter estimates for each species, that were treated as the ‘local-scale 213 

urbanness’. The response variable in our models was the total number of presences (i.e., if a 214 

species occurred in a 5 min sampling event) for each point (N=24) — i.e., the number of 215 

presences for a species at a given sampling point. The total number of presences possible was 24, 216 

given each survey point was sampled 24 times. The response variable was ‘zero-filled’, 217 

accounting for complete absences of a given species at a given point, and each species thus had a 218 

total sample size of 24 observations which were modelled. This response variable was modelled 219 

against the percent impervious area at each survey point (N=24). We fitted Generalized Linear 220 

Mixed Models (GLMMs; Bolker et al. 2009) with a Poisson distribution, where the random 221 

effect was transect (i.e., city). This model was separately fitted to each species, and the 222 

regression coefficient for the impervious surface area predictor for a given species was taken as 223 

the species-specific response to urbanization at a local scale. Only species with a minimum of 10 224 

presences across all surveys (out of a possible 576) were considered for the GLMMs, ensuring 225 

that models would converge. Although species in the study region can show some seasonal 226 

movement, this was not included in our models to minimize over-fitting, given the sample size of 227 
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the number of points (N=24). Additionally, many of the seasonal species were excluded from 228 

analyses based on our cut-off for minimum of nonzero observations (i.e., many of the possible 229 

migrants were only recorded <10 times). Our initial exploration considered negative binomial 230 

model distributions, but AIC was consistently lower for Poisson than negative binomial, and 231 

more species failed to converge regardless of differing theta parameter estimations in the glmer 232 

fitting procedure (i.e., only 44 species would have been included in final comparisons). Thus, we 233 

specified our models with Poisson distributions to maximize the number of species which could 234 

be compared with continental-scale species-specific urban scores. But the results using negative 235 

binomial and Poisson distributions were similar when comparing the modelling approaches. We 236 

also explored the modelling results when only including species which were detected within 100-237 

m of the survey point, and the results were similar when including all species detected within 238 

250-m radius of the survey point. Models were fit using the ‘glmer’ function from the lme4 239 

package (Bates et al. 2015). 240 

 241 

Regression of continental and local-scale urban measures 242 

We observed a total of 94 species on our local-scale bird surveys (Table S1). Fifty-one species 243 

had > 10 presences across all surveys (Table S1) and were thus considered for GLMMs. After 244 

initial modelling, two species were further eliminated from analyses as their estimates from the 245 

GLMM were outliers when compared with the rest of the dataset (Pilotbird and White-eared 246 

Honeyeater; Appendix S1), likely resulting from a small sample size. Thus, 49 species were used 247 

in our regression of continental and local-scale urban tolerance measures, with their continental-248 

scale species-specific urban scores being log-transformed. Models were fitted using the ‘lm’ 249 

function in R. We fitted this model first without any weighting, and then re-fitted the model by 250 
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weighting the model by the standard error of the local-scale urban scores’ parameter estimates. 251 

This gave more weigh to the model based on the confidence (i.e., standard error of model fits) of 252 

the GLMMs, and provided us with a more robust approach to test the relationship between 253 

continental and local-scale urban tolerance measures. 254 

 255 

Assessing necessary number of citizen science observations for reliable estimates 256 

We re-ran our linear model, multiple times, calculated with different numbers of samples used to 257 

calculate continental-scale species-specific urban scores (i.e., the median of the distributional 258 

response to night-time lights), in order to assess the number of citizen science observations 259 

necessary for reliable estimates. We re-calculated the urban scores based on the use of 10 to 260 

1000 randomly sampled eBird observations, by increments of 10. For each of these different sets 261 

of urban scores (N=100), we again regressed the log-transformed variables against the static 262 

local-scale responses. 263 

 264 

Results 265 

A total of 94 species were observed on our local-level transects (Table S1). The species that was 266 

most likely to be associated with urbanization at the local-scale was Rock Pigeon (parameter 267 

estimate: 0.14), while the species least likely to be associated with urbanization at a local-scale 268 

was Rufous Whistler (parameter estimate: -0.08; Fig. S3; full model results, including 269 

significance of GLMMs can be found in Table S2). Of the 94 potential species, Rock Pigeon had 270 

the highest continental-scale species-specific urban score (12.49) while Red-capped Robin had 271 

the lowest continental-scale species-specific urban score (0.047). Of the 49 species included in 272 

analyses, the mean urban score was 2.37 ± 2.81 (Fig. S4). Thus, Rock Pigeon had both the 273 
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highest local-urban score and continental-urban species-specific score showing some qualitative 274 

agreement between the two approaches. Similarly, Superb Lyrebird had the second lowest local-275 

urban score and the lowest continental-urban species-specific score (cf. Fig. S5 and Fig. S6). 276 

Some species (e.g., Crested Pigeon, Spotted Pardalote, New Holland Honeyeater) had relatively 277 

high continental-scale urban scores (i.e., ranked in the top 50%) but were still negatively 278 

associated with urbanization at the local-scale. Conversely, some species (e.g., Gray Butcherbird, 279 

Satin Bowerbird) had relatively low continental-scale urban scores (i.e., ranked in the bottom 280 

50%) but were positively associated with urbanization at the local scale (cf. Fig. S5 and Fig. S6). 281 

 282 

Continental species-specific urban scores significantly predicted (t=6.95, df=47, p < 0.001) the 283 

localized urban scores with an R2 of 0.51, and the relationship was even stronger (t=8.93, df=47, 284 

p < 0.001, R2 = 0.63) when the model was weighted by the standard error of the local-scale urban 285 

scores’ parameter estimates, to reduce distortion by species with small sample sizes. Even 286 

without this correction, the relationship appears to be robust to the number of underlying samples 287 

per species used to calculate the continental urban score. Indeed, of 100 different models, based 288 

on sample sizes for continental-scale urban scores from 10 to 1000 there was little differentiation 289 

in the underlying relationship (Fig. 2a), and the R2 for these models leveled off after ~ 250 290 

observations (Fig. 2b). 291 

 292 

Discussion 293 

We demonstrated a novel empirical relationship between continental-scale urbanness of birds in 294 

Australia and local-scale urbanness among four small cities, relying on > 3 million citizen 295 

science bird observations combined with intensive local-scale bird surveys, highlighting the 296 
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potential applications of broad-scale citizen science data. We found that a relatively small 297 

number of citizen science observations (~250) are needed to provide reasonable estimates of 298 

local-scale responses to urbanization. This approach highlights that continental-scale data may be 299 

a sufficient proxy throughout regional cities to help guide urban planning and development – 300 

even when these cities lack the appropriate citizen science data. For example, urban planners in 301 

developing cities can look at the continental ranking of species’ urban tolerance and sufficiently 302 

design cities that provide habitat and resources for those species most at risk (i.e., providing 303 

artificial hollows for hollow-nesting birds or ensuring urban grasslands for at-risk granivorous 304 

species). Concomitantly, urban planners can mitigate risks from the most harmful species (i.e., 305 

despotic species which likely have the highest urban-tolerance scores). 306 

 307 

Urbanization will continue to impact biodiversity in a multitude of ways (Elmqvist et al. 2016), 308 

and understanding species-specific responses to urbanization (Gehrt and Chelsvig 2004) is 309 

essential to understand how to best mitigate the threats to native fauna most at-risk of 310 

urbanization (Møller 2010). Indeed, much research has investigated which biological and 311 

ecological traits are associated with urban-adapted birds in an attempt to identify those species 312 

most at-risk (Kark et al. 2007, Croci et al. 2008, Evans et al. 2011, Callaghan et al. 2019b). We 313 

provide significant methodological enhancements to these approaches, serving as a foundation 314 

for future studies to investigate the ecological and conservation validity of how biodiversity 315 

responds to urbanization across spatial scales (Hostetler and Holling 2000, Clergeau et al. 316 

2006b). This method moves past the traditional notion of characterizing species based on known 317 

responses to urbanization (Kark et al. 2007, Geschke et al. 2018), and instead relies on 318 

continuous measures of inter-specific variation, although we note that species can indeed be 319 
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clustered into those which respond to urbanization positively, negatively, and show mixed 320 

responses (e.g., Fig. 1). The difference, however, is that these characterizations are informed, 321 

incorporating inter-specific variation.  322 

 323 

There is currently the temptation to ‘think big’, and address macroecological questions, given we 324 

are in the midst of a ‘big-data’ revolution in ecology (Hampton et al. 2013, Soranno and Schimel 325 

2014). Simultaneously, advances in sensor-based data collection (e.g., satellite remote sensing) 326 

are increasing environmental monitoring efforts, and an increased commitment to collating and 327 

sharing spatially explicit biodiversity records (i.e., point observation data; Turner et al. 2015) for 328 

a range of taxa are increasing our understanding of biodiversity at spatial scales unimaginable 329 

mere decades ago. We acknowledge that these data are rapidly expanding our ability to monitor 330 

biodiversity at global scales (Chandler et al. 2017, McKinley et al. 2017, Vihervaara et al. 2017). 331 

But many policy-relevant decisions (e.g., urban development and planning) happen at local 332 

scales, and the utility of these data needs to be empirically grounded in local-relevance (e.g., 333 

Callaghan and Gawlik 2015, Sullivan et al. 2017). Adaptive governance systems, supporting 334 

practical management at local-scales are necessary for environmental planners to sufficiently 335 

mitigate the impacts of urbanization on biodiversity (Borgström et al. 2006). At the same time, 336 

local-decisions should be grounded at several spatial scales (Borgström et al. 2006), accounting 337 

for the diverse biodiversity responses. Often, however, such data generalizable among spatial 338 

scales are unavailable for environmental planners. Our results provide empirical evidence that 339 

continental-scale data reflects local-scale relevance, albeit within one localized study site. These 340 

species-specific urban scores have the ability to move beyond species-specific measures to 341 

community-level measures of response to urbanization (Callaghan et al. 2019a). And this 342 
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community-level index can be tracked through time (among years) in response to restoration 343 

and/or degradation of urban greenspaces, highlighting the success or failures of restoration 344 

projects, for instance. Our results provide a ‘ranking’ of urban-tolerance that urban planners can 345 

use — in combination with local natural history — to successfully plan urban development that 346 

benefits species which are particularly susceptible to urbanization (i.e., that have low 347 

continental-scale urban-tolerance scores). An example would be actively incorporating 348 

grasslands in urban planning at a local-scale, providing habitat specifically for granivores 349 

(Callaghan et al. 2019a, 2019b). Importantly, such community-level indices can be calculated 350 

using citizen science data, potentially allowing for long-term monitoring of urban greenspaces in 351 

urban areas. Although we investigated local-scale impacts within small cities, we predict that 352 

similar empirical patterns would likely emerge for local-scale impacts within medium and large-353 

sized cities. This is because we would expect continental-scale patterns to be most different from 354 

local-scale patterns in smaller cities because the likelihood of urbanization impacting species-355 

specific responses along an urbanization gradient is likely to be more easily detected in medium 356 

and small-size cities. 357 

 358 

This methodological approach of assessing species-specific urbanness of birds based on 359 

continental citizen science data is in its infancy, and we highlight here some potential 360 

opportunities for future research. First, and foremost, this approach may be applicable across 361 

other taxa (e.g., butterflies, dragonflies, mammals), reliant mainly on spatial coordinates of a 362 

large number of sightings – increasingly available via broad scale citizen science data (Chandler 363 

et al. 2017). Second, although our analysis is focused on species-specific responses to 364 

urbanization, we highlight that the broad-scale assignment of a species-specific response to its 365 
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environment may be repeated with other environmental factors (e.g., tree-cover, water-cover), 366 

albeit these responses will be inter-correlated. This approach could use remotely-sensed 367 

landcover products — other than urbanization — to assign species-specific responses. But 368 

species’ responses to other environmental factors should also be tested across spatial scales. 369 

Third, although we focused on measuring inter-specific variation, this approach may be able to 370 

be used to measure intra-specific variation, informing how local populations are adapting to 371 

anthropogenic change (e.g., González-Oreja 2011). For example, some species did not conform 372 

to the general results (e.g., New Holland Honeyeater, Spotted Pardalote, Galah) which is likely 373 

explained by intra-specific variation in their continental population with some populations being 374 

more ‘urban’ than other populations, which may not necessarily manifest in a specific location 375 

(i.e., our local-scale study site). Fourth, we currently use large amounts of data to provide a 376 

‘snapshot’ of how birds are currently responding to urbanization. But many species change their 377 

responses through time (i.e., among years and seasons), showing localized adaptations (Evans et 378 

al. 2009, Martin et al. 2010, Yackulic and Ginsberg 2016). This approach should be able to 379 

measure species-specific responses to urbanization through decadal responses. This approach 380 

should also be adopted to regions where the fauna has differing migration strategies, thereby 381 

assessing species-specific responses to urbanization intra-annually. 382 

 383 

Citizen science data are radically shaping the spatial and temporal scale with which ecological 384 

questions are being answered (Dickinson et al. 2012, Kobori et al. 2016), and this is particularly 385 

true within urban areas (Cooper et al. 2007, Callaghan et al. 2018). However, there are a number 386 

of biases associated with citizen science data, including spatial and temporal sampling biases 387 

(Uychiaoco et al. 2005, Belt and Krausman 2012, Boakes et al. 2010) with data 388 
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disproportionately skewed towards urban areas (Kelling et al. 2015). Detection probability also 389 

varies among species and between habitats (e.g., urban versus rural habitats), potentially limiting 390 

the ability to draw inferences to poorly sampled species and habitats. For example, in our study, 391 

we predominantly looked at common species, and our results may be only applicable to common 392 

species, with more research necessary to understand how our results translate to uncommon and 393 

rare species. This study was conducted in Australia — an area with relatively large amounts of 394 

citizen science data — and our results may not be generalizable or applicable to other parts of the 395 

world with less data (La Sorte and Somveille 2019) — and this should be tested in the future. 396 

But with the global increase in such data (Chandler et al. 2017), we are hopeful that our approach 397 

will be applicable to historically poorly sampled parts of the world (e.g., tropics, developing 398 

countries). Given these biases, we do not suggest that systematic sampling should be replaced 399 

with citizen science data, but rather, that they can complement one another to provide a more 400 

generalized understanding in biodiversity research (Bayraktarov et al. 2019). Nevertheless, 401 

methods such as the one we introduce here will likely be essential to track biodiversity responses 402 

to urbanization into the Anthropocene. 403 

 404 

 405 
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Figure Legends 688 

 689 

Figure 1. The theoretical expected distributions for the three types of commonly assigned 690 

responses to urbanization: urban avoider, urban adapter, and urban exploiter. Also, showing three 691 

species’ distributions in response to night-time lights based on their continental eBird data 692 

observations, demonstrating an ‘example’ species for each of these theoretical distributions. The 693 

y-axis represents the density of observations that occur along the urbanization level. The real 694 

data was based on responses to VIIRS night-time lights, where radiance is on the x-axis, but this 695 

urbanization level could be a number of other metrics. 696 
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 697 

Figure 2. a) Continental-scale urbanness (x-axis) is the median of a species’ distribution of all 698 

continental eBird observations in response to VIIRS night-time lights, presented on a log-scale: 699 

greater values equate to greater urban-tolerance (see Figure S6). Local-scale urbanness (y-axis) 700 

is the parameter estimate from a modelled relationship between number of presences at a survey 701 
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point and the estimated percent impervious surface area at that survey point: positive values 702 

represent a positive response to urbanization and negative values represent a negative response to 703 

urbanization (see Figure S5). This regression of log-transformed continental-scale urbanness 704 

versus local-scale urbanness is shown for 49 species. Standard error is shown for local-scale 705 

urbanness as the standard error retrieved from each Generalized Linear Model, whereas standard 706 

error for the continental-scale urbanness are boot-strapped standard error estimates for the 707 

median of a species’ response to urbanization. Each gray model fit shows a model fit for 100 708 

different models, each with 10-1000 data points (by 10) used to calculate the continental-scale 709 

urbanness. The red line of best fit shows the linear model results, using all available observations 710 

for each species. An interactive version of this figure is available here. b) R2 for each of the 100 711 

different linear models fitted, using 10-1000 data points to calculate the continental-scale urban 712 

scores. The red line shows the overall R2 (0.51) while the blue line represents a smoothed 713 

response fitted through the different linear models fitted with the shaded gray area representing 714 

the standard error of this model fit. 715 

 716 

https://cornwell-lab-unsw.github.io/birdurbannessgradients/local_cont_urbanness.html


Table A1. A table of the 94 species observed in the Blue Mountains and the total number of observations for each species. Also included is 

the number of continental observations, from eBird, used to assign continental-scale urban scores. Only species with > 10 local records were 

considered for analysis, and 2 were removed as outliers (Appendix S2). 

Species Scientific Name 
Number of local 

observations 

Number of continental 

observations 

Included in 

regression 

Eastern Spinebill Acanthorhynchus tenuirostris 412 27990 Yes 

Red Wattlebird Anthochaera carunculata 390 84046 Yes 

Sulphur-crested Cockatoo Cacatua galerita 383 80030 Yes 

Pied Currawong Strepera graculina 291 65858 Yes 

Crimson Rosella Platycercus elegans 269 45991 Yes 

Australian Magpie Gymnorhina tibicen 229 158615 Yes 

Yellow-faced Honeyeater Caligavis chrysops 210 35557 Yes 

White-throated Treecreeper Cormobates leucophaea 179 28238 Yes 

Spotted Pardalote Pardalotus punctatus 117 36944 Yes 

Rainbow Lorikeet Trichoglossus haematodus 111 117290 Yes 

Brown Thornbill Acanthiza pusilla 108 48114 Yes 

Satin Bowerbird Ptilonorhynchus violaceus 108 12580 Yes 

Gray Butcherbird Cracticus torquatus 104 59384 Yes 

Australian King-Parrot Alisterus scapularis 103 22845 Yes 

New Holland Honeyeater Phylidonyris novaehollandiae 96 39402 Yes 

Gray Fantail Rhipidura albiscapa 93 77707 Yes 

Common Myna Acridotheres tristis 74 62497 Yes 

Silver-eye Zosterops lateralis 70 58159 Yes 

Rock Pigeon Columba livia 66 29618 Yes 

Australian Raven Corvus coronoides 65 53001 Yes 

Rufous Whistler Pachycephala rufiventris 59 38256 Yes 

Eastern Yellow Robin Eopsaltria australis 52 35185 Yes 

Gray Shrikethrush Colluricincla harmonica 49 50951 Yes 
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Eurasian Blackbird Turdus merula 48 43878 Yes 

White-naped Honeyeater Melithreptus lunatus 48 9612 Yes 

Striated Thornbill Acanthiza lineata 44 11878 Yes 

Eastern Whipbird Psophodes olivaceus 42 29452 Yes 

Laughing Kookaburra Dacelo novaeguineae 41 70107 Yes 

White-browed Scrubwren Sericornis frontalis 40 43541 Yes 

Fan-tailed Cuckoo Cacomantis flabelliformis 38 15908 Yes 

Pacific Koel Eudynamys orientalis 36 15357 Yes 

House Sparrow Passer domesticus 35 36193 Yes 

Superb Lyrebird Menura novaehollandiae 34 4247 Yes 

Lewin's Honeyeater Meliphaga lewinii 33 35617 Yes 

Yellow-tailed Black-Cockatoo Calyptorhynchus funereus 33 13862 Yes 

Golden Whistler Pachycephala pectoralis 29 31744 Yes 

Little Wattlebird Anthochaera chrysoptera 23 28734 Yes 

Black-faced Cuckooshrike Coracina novaehollandiae 19 55254 Yes 

Galah Eolophus roseicapilla 19 80009 Yes 

Crested Pigeon Ocyphaps lophotes 18 69964 Yes 

Superb Fairywren Malurus cyaneus 17 86836 Yes 

Noisy Miner Manorina melanocephala 16 89821 Yes 

Welcome Swallow Hirundo neoxena 15 109006 Yes 

Magpie-lark Grallina cyanoleuca 14 131621 Yes 

White-eared Honeyeater Nesoptilotis leucotis 14 9179 No 

Noisy Friarbird Philemon corniculatus 13 25532 Yes 

Red-whiskered Bulbul Pycnonotus jocosus 13 4524 Yes 

Scarlet Myzomela Myzomela sanguinolenta 13 14387 Yes 

Masked Lapwing Vanellus miles 12 80029 Yes 

Mistletoebird Dicaeum hirundinaceum 11 25640 Yes 

Pilotbird Pycnoptilus floccosus 11 749 No 



Channel-billed Cuckoo Scythrops novaehollandiae 10 9686 Yes 

Gang-gang Cockatoo Callocephalon fimbriatum 9 5248 No 

Leaden Flycatcher Myiagra rubecula 9 13615 No 

Tree Martin Petrochelidon nigricans 8 18471 No 

Variegated Fairywren Malurus lamberti 8 15152 No 

Wonga Pigeon Leucosarcia melanoleuca 8 7094 No 

Red-browed Treecreeper Climacteris erythrops 7 1286 No 

Sacred Kingfisher Todiramphus sanctus 7 25194 No 

Brown-headed Honeyeater Melithreptus brevirostris 6 7435 No 

Little Corella Cacatua sanguinea 6 30860 No 

Shining Bronze-Cuckoo Chrysococcyx lucidus 6 9331 No 

Brown Cuckoo-Dove Macropygia phasianella 5 10589 No 

Red-browed Firetail Neochmia temporalis 5 33456 No 

Brown Gerygone Gerygone mouki 4 9410 No 

Common Cicadabird Edolisoma tenuirostre 4 6728 No 

Maned Duck Chenonetta jubata 4 56221 No 

Scarlet Robin Petroica boodang 4 7211 No 

Crescent Honeyeater Phylidonyris pyrrhopterus 3 3293 No 

Crested Shrike-tit Falcunculus frontatus 3 3933 No 

Olive-backed Oriole Oriolus sagittatus 3 22539 No 

Striated Pardalote Pardalotus striatus 3 44295 No 

Wedge-tailed Eagle Aquila audax 3 11006 No 

Australian Owlet-nightjar Aegotheles cristatus 2 2836 No 

Black-faced Monarch Monarcha melanopsis 2 6181 No 

European Starling Sturnus vulgaris 2 53070 No 

Long-billed Corella Cacatua tenuirostris 2 10453 No 

White-throated Needletail Hirundapus caudacutus 2 3515 No 

Beautiful Firetail Stagonopleura bella 1 906 No 



Brown Goshawk Accipiter fasciatus 1 9918 No 

Buff-rumped Thornbill Acanthiza reguloides 1 7033 No 

Collared Sparrowhawk Accipiter cirrocephalus 1 4270 No 

Common Bronzewing Phaps chalcoptera 1 15076 No 

Fuscous Honeyeater Ptilotula fusca 1 4085 No 

Horsfield's Bronze-Cuckoo Chrysococcyx basalis 1 8035 No 

Little Lorikeet Glossopsitta pusilla 1 4865 No 

Peregrine Falcon Falco peregrinus 1 2960 No 

Red-capped Robin Petroica goodenovii 1 4299 No 

Rufous Fantail Rhipidura rufifrons 1 10113 No 

Spotted Quail-thrush Cinclosoma punctatum 1 423 No 

Varied Sittella Daphoenositta chrysoptera 1 4854 No 

White-headed Pigeon Columba leucomela 1 4069 No 

Willie-wagtail Rhipidura leucophrys 1 106114 No 

Yellow Thornbill Acanthiza nana 1 12237 No 



Derivation A1. Methods used to identify and eliminate outliers from analyses. Outliers 
were for species which had poor model-fit at the local-scale, and only considered species at 

the local-scale, based on GLMM model fits. 

1.) Investigated relationship between all 51 species’ parameter estimates and their 

continental-scores – 51 species had > 10 observations, meeting our a priori cut-off for 

modelling consideration. 
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2.) Then investigated the outliers, using a histogram of their standard error for the 51 

species included in the analysis. 



3.) Then identified any species which were greater than 0.95 outlier, using the ‘scores’ 

function from the outliers package in R. This identified one species which was an 

outlier – Pilotbird. We then re-plotted the histrogram. 



4.) We repeated step 3 and found that there was one individual outlier still present, 

obvious from the histogram. Thus, we removed White-eared Honeyeater from the 

analysis. We were then satisfied with the statistical spread of standard errors 

associated with GLMMs. 



Table A2. The results of the modelled relationships of the local-scale responses to urbanization, for the 49 species included in the final 

analysis. Bolded p-values represent significance at the α=0.05 level. 

Species Parameter estimate Standard error Statistic p-value Deviance Continental urban score 

Australian King-Parrot 0.005 0.005 1.039 0.299 49.236 1.217 

Australian Magpie 0.011 0.003 3.804 0.000 106.265 2.807 

Australian Raven -0.005 0.006 -0.733 0.463 28.513 2.607 

Black-faced Cuckooshrike -0.035 0.015 -2.383 0.017 30.899 1.193 

Brown Thornbill -0.037 0.006 -5.902 0.000 22.951 0.903 

Common Myna 0.033 0.007 4.562 0.000 37.714 9.588 

Crested Pigeon -0.001 0.010 -0.100 0.920 35.677 4.471 

Crimson Rosella 0.000 0.003 0.069 0.945 42.610 0.761 

Eastern Spinebill -0.015 0.003 -4.603 0.000 39.544 0.784 

Eastern Whipbird -0.059 0.014 -4.068 0.000 37.225 0.319 

Eastern Yellow Robin -0.049 0.010 -4.902 0.000 20.013 0.224 

Eurasian Blackbird 0.043 0.011 3.919 0.000 35.554 6.489 

Fan-tailed Cuckoo -0.023 0.009 -2.631 0.009 34.617 0.269 

Galah 0.027 0.014 1.994 0.046 24.625 1.217 

Golden Whistler -0.072 0.020 -3.553 0.000 19.413 0.377 

Gray Butcherbird 0.003 0.004 0.812 0.417 104.344 5.178 

Gray Fantail -0.027 0.006 -4.597 0.000 22.647 0.663 

Gray Shrikethrush -0.054 0.011 -4.791 0.000 37.411 0.223 

House Sparrow 0.040 0.010 4.067 0.000 20.147 3.771 

Laughing Kookaburra 0.004 0.009 0.431 0.666 38.574 0.879 

Lewin's Honeyeater -0.011 0.011 -1.025 0.305 33.769 0.377 

Little Wattlebird 0.010 0.004 2.236 0.025 22.663 2.882 

Magpie-lark 0.021 0.011 1.965 0.049 36.199 4.189 

Masked Lapwing 0.010 0.013 0.781 0.435 39.177 1.635 

Mistletoebird -0.053 0.023 -2.318 0.020 16.692 0.256 



New Holland Honeyeater -0.054 0.008 -6.587 0.000 50.585 1.369 

Noisy Friarbird -0.035 0.021 -1.716 0.086 11.444 0.688 

Noisy Miner 0.014 0.013 1.091 0.275 44.768 7.661 

Pacific Koel 0.015 0.008 2.017 0.044 27.592 3.575 

Pied Currawong 0.007 0.003 2.355 0.019 55.863 4.232 

Rainbow Lorikeet 0.032 0.007 4.429 0.000 63.526 6.489 

Red Wattlebird 0.011 0.003 3.150 0.002 101.945 6.636 

Red-whiskered Bulbul 0.065 0.026 2.516 0.012 20.904 7.431 

Rock Pigeon 0.145 0.022 6.542 0.000 8.875 12.490 

Rufous Whistler -0.083 0.017 -4.830 0.000 19.095 0.224 

Satin Bowerbird 0.020 0.006 3.346 0.001 68.313 0.134 

Scarlet Myzomela -0.034 0.016 -2.114 0.034 28.946 0.499 

Silver-eye -0.007 0.007 -0.955 0.339 39.141 1.564 

Spotted Pardalote -0.022 0.005 -4.444 0.000 25.003 1.585 

Striated Thornbill -0.024 0.008 -3.014 0.003 34.102 0.247 

Sulphur-crested Cockatoo 0.018 0.004 4.553 0.000 71.695 2.401 

Superb Fairywren 0.029 0.017 1.706 0.088 21.647 1.227 

Superb Lyrebird -0.072 0.021 -3.382 0.001 17.221 0.088 

Welcome Swallow 0.060 0.021 2.858 0.004 9.857 2.107 

White-browed Scrubwren -0.051 0.012 -4.171 0.000 37.141 1.260 

White-naped Honeyeater -0.023 0.009 -2.384 0.017 26.121 0.121 

White-throated Treecreeper -0.055 0.006 -8.702 0.000 47.739 0.138 

Yellow-faced Honeyeater -0.027 0.005 -5.176 0.000 28.974 0.321 

Yellow-tailed Black-Cockatoo 0.007 0.009 0.789 0.430 30.263 0.275 



Figure A1. A map of the study area, located in the Blue Mountain World Heritage area, ~ 

180 km west of Sydney, New South Wales, Australia. 



Figure A2. An example of how urbanization was calculated at a given point, showing the 

Lawson transect. The percent impervious surface was estimated within a 250 m buffer, and is 

shown in the gray boxes for each of the transect points. The circle on the right is an enlarged 

version of point C from the Lawson Transect. 



Figure A3. Histogram of the parameter estimates from Generalized Linear Models fitted for 

each species, representing the local-scale response to urbanization. Species with a parameter 

estimate > 0 are responding positively to urbanization, while species with a parameter 

estimate < 0 are responding negatively to urbanization. Model results, including p-values, can 

be found in Table S2. 



Figure A4. Histogram of the continental-urban scores for the 94 species (a) and for the 49 

species included in the analysis (b). The urban-scores are measures of a species-specific 

distributional response to VIIRS night-time lights, gleaned from eBird data (Callaghan et al. 

2019). 



Figure A5. The 49 species included in the study, ranked by their local-scale urban score 

(i.e., GLMM parameter estimate). Values on the right (light blue) are positively associated 

with urbanization while values on the left (dark blue) are negatively associated with 

urbanization. 



Figure A6. The 49 species included in the study, ranked by their continental-scale 

urban scores, showing the species most associated with urbanization (Rock Pigeon) to 

the least (Superb Lyrebird). Compare with Figure S5. 
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