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Abstract. 16 

Introduction: Defining mathematical terms and objects is a constant issue in ecology; often 17 

definitions are absent, erroneous or imprecise.  18 

Lack of a clear definition: Through a bibliographic review, we show that this problem appears in 19 

macro-ecology (biogeography and community ecology) where the lack of definition for the 20 

sigmoid class of functions results in difficulties of interpretation and communication.  21 
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Proposal of a clear definition: In order to solve this problem and to help harmonize papers that use 22 

sigmoid functions in ecology, herein we propose a comprehensive definition of these mathematical 23 

objects. In addition, to facilitate their use, we classified the functions often used in the ecological 24 

literature, specifying the constraints on the parameters for the function to be defined and the curve 25 

shape to be sigmoidal.  26 

Ecological justifications: Finally, we interpreted the different properties of the functions induced 27 

by the definition through ecological considerations in order to support and explain the interest of 28 

such functions in macro-ecology.  29 
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MAIN TEXT. 33 

 34 

1. Introduction 35 

Using well-defined and uniform terms is a key point in science. Yet, one of the main criticisms 36 

that can be made in the science of ecology is the poor definition of terms and concepts or 37 

inconstant use within its community (Herrando-Pérez, Brook, & Bradshaw, 2017; Pickett, 38 

Kolasa, & Jones, 2007). Many concepts do not yet have a consensual definition, and 39 

communication is therefore difficult. Furthermore, loosely defined concepts can cause not only 40 

an unstable expression of a scientific concept, but can also result in inconsistencies within the 41 

concept itself (e.g. Gosselin 2001). This is why many articles have tried to highlight this problem 42 

and to establish precise definitions - i.e. “ecological niche” (Araújo & Guisan, 2006) or 43 

“ecological function” (Jax, 2005). However, the problem is not restricted to ecological concepts; 44 

it also concerns ecological domains (i.e. “ecological engineering”, cf. Gosselin, 2008) or certain 45 

terms and concepts used in ecology and borrowed from other sciences. This is the case for 46 

mathematical terms as, for example, the notions of extinction or demographic stochasticity 47 

(clarified in Gosselin, 1997 or Lebreton, Gosselin, & Niel, 2007). Reflections on mathematical 48 

definitions make it possible to conceptualize possibilities not yet foreseen (e.g. the importance of 49 

dependence between individuals within demographic stochasticity or uncertainty in McCarthy, 50 

Franklin, & Burgman, 1994). In the present paper, we deal with the term "sigmoid" and propose a 51 

definition to overcome imprecision problems. Hereafter, we will call “sigmoid” the curve shape 52 

that can be represented by different functions, and the “sigmoid class of functions”, the class that 53 

contains these functions.  54 
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Ecologists often study relationships between two ecological variables (e.g. a biodiversity metric 55 

as a function of an environmental variable/predictor). Although, the most often considered form 56 

of these relationships is linear, nonlinear forms have also been used (power, exponential etc.), 57 

including sigmoidal forms. In ecology, sigmoidal relationships are generally implicitly used in 58 

binomial regressions. However, in the field of macro-ecology and, in particular, in the study of 59 

species-area relationships (SARs), explicit sigmoidal forms occur fairly often. Indeed, a 60 

sigmoidal shape is very likely to emerge when species richness is related to the area in which the 61 

species were sampled (Preston, 1962). Many sigmoidal functions have been developed and used 62 

in a SAR context; however, they can also be applied to the study of relationships between 63 

biodiversity and a resource gradient other than available habitat area (species-resource 64 

relationships, or SReRs). Furthermore, the sigmoidal form of a relationship may prove useful for 65 

decision-making in forest or conservation management. Indeed, certain characteristics of the 66 

curve can provide management targets like the inflection point or the upper asymptote (Ranius & 67 

Jonsson, 2007). 68 

In recent years, numerous articles have been published which review the use of nonlinear 69 

functions, including sigmoids, in the field of biogeography and especially for SAR-type 70 

relationships (Dengler, 2009; Tjørve, 2003, 2009; Williams, Lamont, & Henstridge, 2009). 71 

Unfortunately, no clear definition of the term sigmoid was provided in these publications. 72 

Despite the frequent use of sigmoidal functions, in most cases, there is no proper, accessible 73 

definition of what exactly is meant by a “sigmoidal” shape. Classically defined as an S-shape, the 74 

sigmoid may seem clear and that is the reason why it is so rarely defined. Yet, the precise 75 

characteristics of these curves are not formalized or made explicit. This absence of a clear 76 

definition results in a lack of harmonization between papers in ecology, and inconsistencies 77 
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between articles, or even within one and the same article can ensue. For example, although most 78 

definitions include the presence of an upper asymptote (e.g. Tjørve, 2003; Veech, 2000), 79 

Mashayekhi, MacPherson, & Gras (2014) define one of their functions (Persistance2) as 80 

sigmoidal though it does not have an upper asymptote; this contradicts the general idea of a 81 

sigmoid. There is therefore a need to more explicitly define the sigmoidal class of shapes. 82 

Our first goal is to assess the use of the term sigmoid in biogeography studies and highlight the 83 

lack of a clear definition. Then, we propose a definition of the term so that its use in the literature 84 

is harmonized and no longer confusing. Finally, we justify the definition in relation with 85 

ecological theory and we highlight the implications and advantages of this new definition. The 86 

two underlying questions are: what characteristics should sigmoid curves exhibit? What functions 87 

can be included in the sigmoid class? 88 

 89 

2. An obvious lack of a clear definition 90 

The word “sigmoid”, composed of “sigma” and “eidos” (sigmoeidḗs in ancient Greek), means 91 

something that has the form of the capital letter sigma (Σ). The term sigmoid is more generally 92 

defined as an S-shaped curve. Yet these descriptions, in addition to being vague, are not accurate 93 

since the form of an S (or a Σ) is impossible in mathematical curves described by functions. In 94 

fact, if we apply an S form to mathematical curves, we notice that we obtain two or three values 95 

of f(x) for one x, which is impossible according to the very definition of a function. Moreover, 96 

the representation of an S-shaped curve excludes forms that should logically be part of sigmoid 97 

curves such as decreasing sigmoid curves.  98 
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Given this intrinsic difficulty with the notion of sigmoid, we investigated how authors in ecology 99 

have used and define this term. We selected an ecological domain where sigmoid functions are 100 

often explicitly used to describe relationships: biogeography with species-area relationships 101 

(conventionally abbreviated as SARs) and species response to ecological gradients within 102 

species-resource relationships (abbreviated here as SReRs). 103 

In June 2017, we searched articles accessible via Scopus for a combination of keywords related 104 

to sigmoid curves and to the above-mentioned domains of ecology. In some papers, the term 105 

sigmoid is not mentioned even if sigmoidal functions are used. Our sigmoid keywords therefore 106 

covered a wide range of meanings: we searched for “sigmoid” OR “nonlinear” OR “logistic”. We 107 

combined these keywords with other keywords related to the targeted ecological aspect: “SAR” 108 

OR “species-area” OR “species-resource” or “biogeography”. 109 

Among the search results, we selected the papers where, according to the title and the abstract, 110 

the authors either used sigmoid functions or were interested in a sigmoidal form of relationship. 111 

The 36 selected papers (see Appendix S1 in Supporting Information for references) were sorted 112 

according to the three possibilities: (i) papers that did not use a sigmoid family term; (ii) papers 113 

that used a sigmoid family term but did not define it; and (iii) papers that either entirely or partly 114 

defined the sigmoid.  115 

As Table S1.1 (see Appendix S1 in Supporting Information) shows, sometimes authors use 116 

sigmoidal function without ever specifically referring to the sigmoid family (13.9 %), but this 117 

number may be underestimated due to the difficulty of finding such papers. Most of the time, the 118 

authors use a word from the sigmoid family to define their functions (“sigmoid” or “sigmoidal”), 119 

but they do not define what they mean by these terms (72.2 %). What is quite surprising is that 120 
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some authors create new sigmoid functions and state that their functions have a sigmoidal form, 121 

but they never evoke the characteristics implied by this form and included in their function (e.g. 122 

Kobayashi, 1976).  123 

Finally, only a few authors take the time to define a sigmoid (13.9%), but typically the definition 124 

is fragmented or the functions imprecisely characterized, thus giving the impression of an 125 

incomplete definition. Sometimes definitions can even be confusing or contradictory.  126 

Preston (1962) proposed a descriptive definition of the shape of the sigmoid curve, which gives 127 

us an idea of the form but without specifying its properties: “it began at a low slope, steepened 128 

considerably, and then became less steep”. 129 

Tjørve (2003; 2009) does not give a complete definition of the sigmoid curve, but does mention 130 

some of its characteristics when describing the functions he considers in his study. In Tjørve’s 131 

papers (2003; 2009), the characteristics common to all sigmoid functions include: (i) the presence 132 

of an upper asymptote; (ii) a lower j-shape (probably implying a lower asymptote); and (iii) the 133 

presence of an inflection point. Tjørve (2003; 2009) also mentions two characteristics which vary 134 

among different sigmoid functions: symmetry around the inflection point, which may or may not 135 

exist; and the positions of the inflection point and of the asymptote. 136 

Furthermore, in addition to being incomplete, these "definitions" may present other problems that 137 

impede understanding. This is the case when mathematical terms characterizing a mathematical 138 

object, here the sigmoid curve, are incorrectly used. For example, some authors erroneously 139 

define their sigmoid functions as “convex” (e.g. Gentile & Argano, 2005; Tjørve, 2003, 2009). 140 

Indeed, in mathematics, a curve/function is “convex” if, for any two points A and B of the curve, 141 

the segment [AB] is entirely situated above the curve. Conversely, a concave function is the 142 
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opposite of a convex function (f is concave if and only if –f is convex). A concave curve is 143 

therefore a curve for which, for any two points A and B of the curve, the segment [AB] lies 144 

entirely below the curve. Yet, some studies make no distinction between the two curves and use 145 

“convex” for both convex and concave forms (Tjørve 2012), then distinguish them with the 146 

mentions “downward” or “upward”. Usually, given the properties attributed to the curves defined 147 

as convex, the term concave, rather than convex, is clearly the correct term. For example, what 148 

Tjørve (2009) described as a "constantly decelerating" convex curve is actually concave, and 149 

what he defined as a "J-shape" would correspond to the convex part of the sigmoid curve. This 150 

error is common since convex and concave shapes are often respectively described as a hump and 151 

a hollow (from the definition of a convex set), which can lead to confusion. Therefore, though the 152 

study is very interesting, the discourse is blurred by terms that are confusing (as also pointed out 153 

by Dengler, 2009). Consequently, we suggest using mathematical definitions and terms, so that 154 

all researchers will refer to the same definition of sigmoid curves.  155 

If one moves away from the literature in ecology, we find that few definitions are easily 156 

accessible even in statistical literature. Hill and Lewicki (2006) propose one such definition in 157 

their glossary: a sigmoid function is “an S-shape curve, with a near-linear central response and 158 

saturating limits” (p724). This definition, which includes the notion of an S-shape discussed 159 

above, make it possible to understand the general shape and to accept different forms, but they 160 

are not necessarily very clear on which forms are included or excluded when we speak of a 161 

sigmoid, and the properties of the functions are not precise. Menon, Mehrotra, Mohan, & Ranka 162 

(1996) also start by defining the sigmoid curves as S-shaped; then the authors define two sub-163 

classes of sigmoids: (i) simple sigmoids are “odd, asymptotically bounded, completely monotone 164 

functions in one variable”; and (ii) hyperbolic sigmoids are “a proper subset of simple sigmoids 165 
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and a natural generalization of the hyperbolic tangent”. Although detailed, notably when 166 

characterizing certain functions, they seem to have forgotten to mention the monotonic character 167 

that such a function should have. Moreover, the two defined classes do not integrate all the 168 

possible sigmoidal forms; for example, “odd” excludes asymmetric curves and curves that do not 169 

intersect the origin. Finally, concerning definitions easily accessible to the general public, 170 

dictionaries are not of much better help since, for example, the French dictionary Le Petit Robert 171 

defines a sigmoid as a "sinuous curve with two waves of growth separated by a point of 172 

inflection" (translated from French), a very confusing definition (“Le Petit Robert : Sigmoïde,” 173 

2017).  174 

To sum up, very few definitions of sigmoid functions are available in the ecological literature, 175 

and they are usually vague, or based on only certain characteristics, or can even contain errors. 176 

Therefore, it seems clear that the lack of a time-honored definition, or the use of unstable 177 

definitions, can lead to difficulties in producing studies and articles. This is particularly true for 178 

bibliographic research and for young researchers and students (PhD or Masters students) who are 179 

still forging their knowledge (Herrando-Pérez et al., 2017). It can also sometimes distort 180 

communication among collaborators. For example, within our own research group, differences of 181 

wording regarding the properties of different curves have surfaced, with misunderstandings of 182 

what is meant by “convex” and “concave”.  183 

 184 

3. Proposal of a clear definition 185 

Although the definition on Wikipedia is globally correct (“Wikipedia - Sigmoid function” n.d.), 186 

this website cannot be used as a reference since the page can be modified at any time, making the 187 

definition unstable. We have therefore decided to propose a definition, which is stable, 188 
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understandable for ecologists, and as complete as possible (including as many cases as possible) 189 

in this paper. For this purpose, we first looked at the characteristics of the functions used in the 190 

literature (cf. Table 1). 191 

Ultimately, a sigmoid curve is a curve described by a real-valued, univariate function (a function 192 

f of a unique real-valued variable x that takes real values y=f(x)), defined over the whole set of 193 

real numbers, and which is continuous, infinitely differentiable, monotonic (always either 194 

increases or decreases),  has at least one inflection point and is bounded on the Y-axis. The term 195 

“inflection point” refers to the point where the curve shifts in convexity: from convex to concave 196 

or vice versa. The change in slope is continuous and should therefore be distinguished from the 197 

term “breakpoint” used by ecologists, which, although we did not find a precise mathematical 198 

definition, seems to refer to a non-continuous function (e.g. in change point models, Muggeo, 199 

2003; Quandt, 1958).  200 

Its inherent features imply that the sigmoid curve: (i) has an upper and a lower asymptote if (x) 201 

varies over the set of real numbers; (ii) can increase (starting with the lower asymptote and 202 

finishing with the upper asymptote, with a positive slope between them) or decrease (starting 203 

with the upper asymptote and finishing with the lower asymptote, with a negative slope between 204 

them, Fig. 1.b); and (iii) can be symmetrical or not around the inflection point or points (Fig. 1.c). 205 

We extend the definition given above to two other cases where the explanatory variable (x) is 206 

defined on the set of real positive numbers (x≥0) and: (i) f(x) is a function of (x) over the entire 207 

set of real numbers and has a sigmoid curve; or (ii) the above definition for the sigmoid curve 208 

applies to f(x) as a function of (x≥0) except for the requirement that f(x) defined over the entire 209 

set of real numbers. Indeed, in island biogeography, the function never occurs with negative x-210 

values (since area cannot be negative). In this case, the sigmoid curve has only one of the two 211 
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asymptotes. Even after extension, however, our definition does not include the case where (x) is 212 

bounded on both sides and therefore possesses neither of the two asymptotes (see He & 213 

Legendre, 2002). Note that f(x) as a function of (x) can have a sigmoidal form without f(x) as a 214 

function of log(x) or f(exp(x)) as a function of (x) being true, and vice versa.  215 

The class of sigmoid functions includes the functions which, for the given parameters, meet the 216 

above definition. The same function may or may not belong to the sigmoid class depending on 217 

the value of its parameters. To return to a previous example, the Chapman-Richards function 218 

belongs to the sigmoid class if c>1. For other values of c, the function does not belong to the 219 

sigmoid class. 220 

The sigmoid class can be divided into two sub-classes: (i) simple sigmoids, containing the 221 

functions that give curve shapes with a single inflection point, and (ii) multiple sigmoids 222 

containing functions that give curve shapes with several inflection points (i.e. a double sigmoid 223 

could fit the phenomenon described in Figure 6 in Lomolino, 2000). There must always be an 224 

odd number of inflection points in order to keep the two asymptotes on the Y-axis. 225 

Based on the definition of the sigmoid class that we propose above, we inventoried the classical 226 

SAR or SReR functions selected from the review we conducted that belong to the simple sigmoid 227 

class, at least for some parameter values (cf. Table 1). We also described their characteristics, 228 

placing special emphasis on the constraints imposed on the parameter values or explanatory 229 

variable to ensure that the function is mathematically defined, is suitable in macro-ecology and 230 

does indeed have a sigmoidal form. We also provide the coordinates of the inflexion point, so 231 

that readers can distinguish between functions that are sigmoidal only when the whole set of real 232 

values for the explanatory variable is considered (i.e. functions with a negative abscissa value of 233 

the inflexion point) and those that are sigmoidal even when the abscissa values are positive. 234 
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 235 

Another class of functions that is close to the sigmoid class is the class of inverse sigmoid 236 

functions. These are bounded on the X-axis and do not have an asymptote over the Y-axis (Fig. 237 

1.d). These functions have no biological reality in SReR and SAR and are not members of the 238 

sigmoid class as we define it. Other curves defined as sigmoid by some authors do not meet the 239 

requirements of our definition either, for example, “sigmoid curves […] free of upper 240 

asymptotes” (Tjørve, 2012).  241 

 242 

  243 
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Table 1: Some characteristics of sigmoidal functions present in the SAR and SReR literature (see Appendix S1 in Supporting 244 

Information for references). 245 

 Formula Constraints on 

parameters to be 

defined and relevant to 

macro-ecology 

Further 

constraints 

required to be in 

the sigmoid 

class 

Inflection point Symmetry around 

the inflexion point 

Lower 

asymptote 

Intersects 

origin 

Direction of the 

relationship 

Common 

logistic 

f(x) = a/(1 + exp(-

b*x + c)) 

a>0 / x=c/b 

y=a/2 

In other terms y=50% of the 

upper asymptote 

Point symmetry  Zero No Increasing (if 

b>0) or 

decreasing (if 

b<0) 

Gompertz f(x) = a*exp(-exp(-

b*x+c)) 

a>0 / x=c/b 

y=exp(-1)*a 

In other terms y=36.8% of 

the upper asymptote 

Asymmetric Zero No Increasing (if 

b>0) or 

decreasing (if b 

<0) 

Extreme value f(x) = a*(1-exp(-

exp(b*x+c))) 

a>0 / x=-c/b 

y=[1-exp(-1)]*a  

In other terms 

 y=63.2% of the upper 

asymptote 

Asymmetric  Zero No Increasing (if b 

>0) or decreasing 

(if b<0) 

Champan-

Richards 

f(x) = a*(1-exp(-

b*x))^c 

a>0, x≥0, c>0, b>0 c>1 x= log(c)/b 

y= a*(1-1/c)^c) 

Asymmetric / (irrelevant 

since x is non-

negative) 

Yes Only increasing 
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Cumulative 

Weibull 

distribution 

f(x) = a*(1-exp(-

b*(x^c))) 

a>0, b>0, x≥0 c<0 or c>1 x=((c-1)/(b*c))^(1/c) 

y=a*(1-exp(-1+1/c)) 

Asymmetric / (irrelevant 

since x is non-

negative) 

Yes (if c>0) Increasing (if 

c>0) or 

decreasing (if 

c<0) 

Morgan-

Mercer-Flodin 

(MMF) 

f(x) = 

a*(x^c)/(b+(x^c)) 

a>0, b>0, x≥0 (with 

f(0)=a if c<0 to be 

continuous) 

c>1 or c<(-1) x=((c-1)*b/(c+1))^(1/c) 

y=a*(1/2-1/(2*c)) 

Asymmetric / (irrelevant 

since x is non-

negative) 

Yes Increasing (if 

c>0) or 

decreasing (if 

c<0) 

Cumulative 

beta-P 

distribution 

f(x) = a*(1-

(1+(x/c)^d)^(-b)) 

a>0, x≥0, c>0, b>0 d>1 or d<(-1/b) x=c*((-d+1)/(-b*d-1))^(1/d) 

y=a*(1-(1+(-d+1)/(-b*d-

1))^(-b)) 

Asymmetric / (irrelevant 

since x is non-

negative) 

Yes (if 

increasing, 

d>0) 

Increasing  (if 

d>0) or 

decreasing (if 

d<0) 

Note that models II and III in Huisman, Olff & Fresco (1993), denoted as f(x)=M*(1/(1+exp(a+b*x))) and 246 

f(x)=M*(1/(1+exp(a+b*x)))*(1/(1+exp(c))), are particular cases of the Common Logistic Function with, respectively, parameter (a) 247 

not estimated, and with parameter (a) estimated but with a given maximum value. The Archibald Logistic Function, denoted as 248 

f(x)=a/(b+c^x), is equivalent to the Common Logistic Function with (b), (c) and (a) in the Common Logistic Function, respectively 249 

equal to (-log(c)), (-log(b)), (a/b) in the Archibald Logistic Function. The He-Legendre Function, denoted as f(x)=a/(b+(x^(-c))), is 250 

equivalent to the Morgan-Mercer-Flodin Function with (a) and (b) of the MMF respectively equal to (a/b) and(1/b) in the He-251 

Legendre Function. The type III Holling function, denoted as f(x)=ax²/(b² + x²), is equivalent to the MMF, with (c) and (b) in the MMF 252 

respectively equal to (2) and (b^2) in the Holling III Function. 253 

 254 
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 255 

Figure 1: Some possible forms of sigmoids and inverse sigmoids. (a) Simple logistic function, (b) 256 

decreasing sigmoid, (c) asymmetric increasing sigmoid, and (d) increasing inverse sigmoid. 257 

 258 

 259 

 260 

 261 

4. Ecological justifications and implications of sigmoid curve characteristics 262 

Although some characteristics of the sigmoid definition are justified mainly by mathematical 263 

considerations, many can be related to ecological hypotheses or considerations. First, the 264 
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presence of an inflection point can be related to the following statement by Lomolino (2000) 265 

when he describes the phenomenon underlying the use of sigmoid curves in SARs: “with richness 266 

remaining relatively low and apparently independent of area for the smaller islands, increasing 267 

rapidly to rise through an inflection point for islands of intermediate size, and then asymptotically 268 

approaching, or leveling off at the richness of the species pool for the largest islands”. Of course, 269 

many other fields of ecology are interested in models that can depict such phenomena (e.g. 270 

ecophysiology; Paine et al., 2012). Another field where sigmoid curves could be useful is the 271 

field of ecosystem functioning-biodiversity relationships, where curves adopting such patterns 272 

seem frequent (Cardinale et al., 2012). The continuity and differentiability of the curve are related 273 

to the existence of an inflection point, and allow us to clearly relate the curve to a mathematical 274 

function, that is, to speak of the convexity or concavity of the curve. Continuity and 275 

differentiability also allow us to formulate hypotheses not only on the mean value of the response 276 

variable, but also on the speed (first derivative) or acceleration (second derivative) of the 277 

relationship between the response variable and the gradient being studied.   278 

The pattern depicted by Lomolino for SARs might have led us to define sigmoid curves only as 279 

increasing curves. Yet we expect that in some areas of ecology, the reversed situation might 280 

occur and that such patterns would indeed fall into the domain of the sigmoid curve. For 281 

example, a decreasing sigmoid was considered in species-isolation relationships by Hachich et al. 282 

(2015). More generally in ecology, the decreasing sigmoidal curve can be used in the case where 283 

the gradient studied has a negative effect on the response variable (e.g. Morante-Filho, Faria, 284 

Mariano-Neto, & Rhodes, 2015). 285 

Second, the existence of asymptotes is also very much related to considerations from ecology. 286 

The upper asymptote, implying a threshold above which the mean of the response variable (y) 287 
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cannot go, theoretically reflects the Liebig law of the minimum in ecophysiology and ecology 288 

(Austin, 2007; Paris, 1992). In this case, the limiting factor would first be the predictor studied, 289 

and an increase in this limiting factor would lead to an increase in the explained variable. Then, 290 

upon reaching the asymptote, the predictor would not be limiting anymore but rather another, 291 

unmeasured, environmental factor would be involved, which prevents the explained variable 292 

from increasing any further. Inversely, the presence of a lower asymptote implies that the mean 293 

of the response variable cannot be lower than this asymptote. The existence of such an asymptote 294 

can often be related to the conjunction of the monotonic relationship and of the nature of the 295 

variable itself: when the variable is non-negative, the values of the mean cannot be below zero. In 296 

studies focusing on the response of a single species, the lower asymptote is therefore usually zero 297 

(e.g. Huisman et al., 1993). However, when studying community response, often a lack of a 298 

resources does not necessarily imply a total loss of species richness (for example, when species 299 

are mobile). In such cases, a logistic function where f(x) is a function of log(x), whose lower 300 

asymptote is located at zero (y = 0), is not actually adapted (Godeau et al. In Prep.). 301 

The third component of our definition is asymmetry of the curve. Symmetric sigmoid curves, like 302 

the logistic function, are widely used, but more for their ease of modelling than for their 303 

underlying ecological theory. Indeed, for bell-shaped curves, Austin (1976) stated: “there is no a 304 

priori reason to assume that organisms' responses should follow such a symmetrical curve”. 305 

Different phenomena can explain asymmetrical curves (Austin 1990 and Austin & Gaywood 306 

1994 for phyto-ecology) and theoretically supported asymmetry can also appear with sigmoidal 307 

curves (plants with differing initial and final rates of injury in response to temperature stress; c.f. 308 

Lim, Arora, & Townsend, 1998). 309 

 310 
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Having clear definitions makes it possible to more clearly reflect on the underlying concepts and 311 

theories implied by the functions available, and to visualize the most appropriate form of curve to 312 

adopt according to the ecological context.  After defining and reflecting on the lower asymptote 313 

and asymmetry, the researcher naturally questions the choice of link function in the context of 314 

binomial logistic regressions. Classically, users of such tools choose canonical link functions 315 

such as the logit or the probit function. These two functions belong to the sigmoid class but they 316 

are symmetric around the inflection point and they have pre-specified minimum and maximum 317 

asymptotes (respectively 0.0 and 1.0). However, the inherent properties of such link functions 318 

could have strong ecological limitations, which would restrict their use in some cases. For 319 

example, having a maximum of 1.0 (meaning almost sure presence) along the gradient does not 320 

reflect biological situations where, even if local habitat conditions are optimal for the organism, 321 

the organism could be absent (e.g. due to dispersal limitation inside a metapopulation; Hanski & 322 

Gilpin, 1997). Along the same lines, sigmoid and logistic functions are sometimes confused with 323 

each other, whereas the latter is nothing more than a particular type of sigmoid (e.g. Hunsicker et 324 

al., 2015). Such confusion may prevent researchers from considering other families of functions 325 

that fall into the sigmoid class without being logistic. 326 

More generally, the shape of the curve must be well integrated in order to properly interpret the 327 

results. As put forward by Fattorini, Maurizi, & Giulio (2012), Medellín & Soberón (1999) used 328 

a sigmoid model on their data, and then, in order to ensure fit with a logarithmic model, they 329 

chose to exclude some of the data corresponding to the first part of the sigmoid curve (where the 330 

slope is smaller). Fattorini, Maurizi, & Giulio (2012) point out that Medellín & Soberón (1999) 331 

should not have manipulated the data and should have retained a model that fit the entire dataset, 332 

the data represented by the first part of the curve being just as important from an ecological point 333 
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of view as the data represented by the rest of the curve. In fact, the first part of the curve could 334 

reflect various ecological mechanisms that deserve to be studied such as – to name but two – 335 

sampling problems or biological functions in action (i.e. limiting factors, exclusions, etc.). 336 

Through this example, it becomes obvious that, if the sigmoid curve shape and its implications 337 

are not acknowledged or defined well enough in the mind of the ecologist, he or she may end up 338 

missing important patterns or making wrong assumptions. 339 

 340 

Having a well-established definition of the sigmoid curve and understanding the constraints 341 

imposed on the parameter values of the functions which produce sigmoid curves allow us to 342 

better apprehend under which conditions a sigmoid function is adapted when one wishes to apply 343 

it to a dataset. For example, in the case of the Chapman-Richards function, the curve obtained 344 

will be of sigmoid shape only when (c>1). For values of (c) that do not satisfy this condition, the 345 

curve will not be of sigmoid shape. A related issue concerns the constraints imposed on the 346 

values of (x), which are most often unstated. To keep the same example, the Chapman-Richards 347 

function is not defined for (x<0) (cf. Table 1); the function is therefore not relevant in cases 348 

where a sigmoidal form of relationship is applied to a dataset where (x) can be negative (e.g. 349 

where (x) is a temperature in degrees Celsius or a single latent resource axis). Another, more 350 

extreme, example combines these two limitations: the persistence2 function. In fact, this function 351 

is sigmoid only if (x>0), (b=0) and (c>0). 352 

 353 



20 
 

5. Conclusion and perspectives 354 

Our literature review points out the lack of a clear, stable, universally accepted definition of the 355 

sigmoid class of functions in ecology. Some aspects of sigmoid curves are typically ignored 356 

(symmetry, direction of the relation, etc.). We also found cases of misuse of convexity to define a 357 

curve or a function. 358 

As Jeremy Fox stated “words are imprecise, and so purely verbal models and verbal arguments 359 

often are ambiguous or even invalid, even if apparently supported by empirical data (like Elton’s 360 

verbal arguments about why diversity and complexity beget stability). Mathematics has the virtue 361 

of forcing precise definitions of terms, precise and complete specification of assumptions, and 362 

rigorous derivation of conclusions” (Fox, 2011). It is therefore unfortunate to accept vague verbal 363 

definitions (such as “S-shape” or “J-shape”) when one is using a term derived from mathematics. 364 

That is why we have proposed a definition that we hope will allow for better harmonization of 365 

what is meant by the term “sigmoid” when describing a curve or a function. In addition to clearly 366 

formulating the concept, our definition allows various functions to be united under the same 367 

banner (sigmoid class, presented in Table 1). This definition also excludes some functions that 368 

were previously considered to belong to the sigmoid family and which, in our opinion, should not 369 

be defined as such (sigmoid without an upper asymptote or inverse-sigmoid). 370 

This new definition will quite naturally reveal the lack of some other functional shapes to fully 371 

represent the sigmoid class. In a future paper, we aim to develop a sigmoid function that 372 

incorporates the characteristics retained in this paper and is applicable to an SReR context. Such 373 

development of the sigmoid class might be of more general use in ecology, e.g. by broadening 374 

the scope of possibilities in binomial logistic regressions.  375 
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Finally, we hope that in future papers, authors who define a new sigmoid function, or use an 376 

already existing one, will take the time to specify the properties of the function and to clearly 377 

mention their implications and/or justifications in ecological terms.  378 
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SUPPORTING INFORMATION. 483 

  484 

Table S1.1: Papers in the SARs and SReRs domains that use functions with a sigmoidal form or 485 

that discuss about sigmoidal relationships, with precision about their use of a term. 486 

Article reference 

Use "sigmoid" or "sigmoidal" 

word in the article 

Define or describe sigmoid 

Bolgovics et al. 2016 YES NO 

Boomsma et al. 1987 YES NO 

Burbidge et al. 1996 NO NO 

Connor & McCoy 2001 YES NO 

Dengler 2009 YES NO 

Fattorini 2006a YES NO 

Fattorini 2006b YES NO 

Fattorini et al. 2012 YES NO 

Gao et al. 2016 YES NO 

Gentile et al. 2005 YES NO 

Hachich et al. 2015 NO NO 

He & Lengendre 1996 NO NO 

He & Lengendre 2002 YES NO 

Huisman et al. 1993 NO NO 

Kilburn 1963 YES NO 

Kobayashi 1976 YES NO 
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Lomolino 2000a YES NO 

Mashayekhi et al. 2014 YES NO 

Monteil et al. 2004 YES NO 

Natuhara and Imai 1999 YES NO 

Oksanen & Michin 2002 NO NO 

Panitsa et al. 2006 YES NO 

Preston 1962 YES YES 

Simaiakis et al. 2012 YES NO 

Stiles et al. 2007 YES PARTLY 

Tjørve 2003 YES YES 

Tjørve 2009 YES YES 

Tjørve 2012  YES NO 

Tjørve and Tjørve 2011 YES NO 

Tjørve and Turner 2009 YES NO 

Tjørve et al. 2008 YES NO 

Triantis et al. 2012 YES NO 

Turner & Tjorve 2005 YES NO 

Veech 2000 YES PARTLY 

Williams 1995 YES NO 

Williams et al. 2009 YES NO 

Total number : 36 Number of YES : 31 Number of YES or PARTLY : 5 

“NO” in the second column is for papers that did not use a sigmoid family term. “YES” in the 487 

second column and “NO” in the third is for papers that used a sigmoid family term but did not 488 
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