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1  | INTRODUC TION

Using well-defined and uniform terms is a key point in science. Yet, 
one of the main criticisms that can be made in the science of ecology 
is the poor definition of terms and concepts or inconstant use within 
its community (Herrando-Pérez et al., 2017; Kirk et al., 2018; Pickett 
et al., 2007). Many concepts do not yet have a consensual defini-
tion, and communication is therefore difficult. Furthermore, loosely 
defined concepts can cause not only an unstable expression of a sci-
entific concept, but can also result in inconsistencies within the con-
cept itself (e.g., Gosselin, 2001). This is why many articles have tried 
to highlight this problem and to establish precise definitions—that is 
“ecological niche” (Araújo & Guisan, 2006) or “ecological function” 
(Jax, 2005). However, the problem is not restricted to ecological 

concepts; it also concerns ecological domains (i.e., “ecological en-
gineering,” cf. Gosselin, 2008) or certain terms and concepts used 
in ecology and borrowed from other sciences. This is the case for 
mathematical terms as, for example, the notions of extinction or 
demographic stochasticity (clarified in Gosselin, 1997; Lebreton 
et al., 2007). Reflections on mathematical definitions make it possible 
to conceptualize possibilities not yet foreseen (e.g., the importance 
of dependence between individuals within demographic stochastic-
ity or uncertainty in Engen et al., 1998; McCarthy et al., 1994). In 
the present paper, we deal with the term “sigmoid” and propose a 
definition to overcome imprecision problems. Hereafter, we will call 
“sigmoid” the curve shape that can be represented by different func-
tions, and the “sigmoid class of functions,” the class that contains 
these functions.
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Abstract
Defining mathematical terms and objects is a constant issue in ecology; often defini-
tions are absent, erroneous, or imprecise. Through a bibliographic prospection, we 
show that this problem appears in macro-ecology (biogeography and community 
ecology) where the lack of definition for the sigmoid class of functions results in 
difficulties of interpretation and communication. In order to solve this problem and 
to help harmonize papers that use sigmoid functions in ecology, herein we propose 
a comprehensive definition of these mathematical objects. In addition, to facilitate 
their use, we classified the functions often used in the ecological literature, specify-
ing the constraints on the parameters for the function to be defined and the curve 
shape to be sigmoidal. Finally, we interpreted the different properties of the func-
tions induced by the definition through ecological hypotheses in order to support and 
explain the interest of such functions in ecology and more precisely in biogeography.

K E Y W O R D S

biogeography, curve fitting, sigmoid curve shape, species–area relationship, species–resource 
relationship

www.ecolevol.org
mailto:
https://orcid.org/0000-0003-2104-7046
https://orcid.org/0000-0002-5206-7560
https://orcid.org/0000-0001-7431-2881
https://orcid.org/0000-0003-3737-106X
http://creativecommons.org/licenses/by/4.0/
mailto:godeau.ugoline@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fece3.7016&domain=pdf&date_stamp=2020-11-23


2  |     GODEAU Et Al.

Ecologists often study relationships between two ecological 
variables (e.g., a biodiversity metric as a function of an environ-
mental variable/predictor). Although the most often considered 
form of these relationships is linear, nonlinear forms have also 
been used (power, exponential, etc.), including sigmoidal forms. 
In ecology, sigmoidal relationships are generally implicitly used in 
logistic regressions. However, in the field of macro-ecology and, 
in particular, in the study of species–area relationships (SARs), ex-
plicit sigmoidal forms occur fairly often. Indeed, a sigmoidal shape 
is very likely to emerge when species richness is related to the 
area in which the species were sampled (Preston, 1962). Many 
sigmoidal functions have been developed and used in a SAR con-
text; however, they can also be applied to the study of relation-
ships between biodiversity and a resource gradient other than 
available habitat area (species–resource relationships, or SReRs). 
Furthermore, the sigmoidal form of a relationship may prove use-
ful for decision-making in forest or conservation management. 
Indeed, certain characteristics of the curve can provide man-
agement targets like the inflection point or the upper asymptote 
(Ranius & Jonsson, 2007).

Over the years, numerous articles have been published which 
review the use of nonlinear functions, including sigmoids, in 
the field of biogeography and especially for SAR-type relation-
ships (Dengler, 2009; Tjørve, 2003, 2009; Williams et al., 2009). 
Unfortunately, no clear definition of the term sigmoid was provided 
in these publications.

Despite the frequent use of sigmoidal functions, in most cases, 
there is no proper, accessible definition of what exactly is meant by 
a “sigmoidal” shape. Classically defined as an S-shape, the sigmoid 
may seem clear and that is the reason why it is so rarely defined. 
Yet, the precise characteristics of these curves are not formalized or 
made explicit. This absence of a clear definition results in a lack of 
harmonization between papers in ecology, and inconsistencies be-
tween articles, or even within one and the same article can ensue. 
For example, although most definitions include the presence of 
an upper asymptote (Veech, 2000), some authors like Mashayekhi 
et al. (2014), Triantis et al. (2012), Simaiakis et al. (2012) or Tjørve 
(2009) define functions (Extended power 1, Extended power 2, and 
Persistence 2) as sigmoidal though they do not have an upper as-
ymptote; this contradicts the general idea of a sigmoid. The authors 
did not define the word sigmoid or explain what they meant under 
this designation in any way (with a definition, characteristics, or a 
reference) in their article. There is therefore a need to more explicitly 
define the sigmoidal class of shapes.

Our first goal was to assess the use of the term sigmoid in 
biogeography studies and highlight the lack of a clear definition. 
Then, we propose a definition of the term so that its use in the lit-
erature is harmonized and no longer confusing. Finally, we justify 
the definition in relation with ecological theory and we highlight 
the implications and advantages of this new definition. The two 
underlying questions are as follows: What characteristics should 
sigmoid curves exhibit? What functions can be included in the sig-
moid class?

2  | AN OBVIOUS L ACK OF A CLE AR 
DEFINITION

The word “sigmoid,” composed of “sigma” and “eidos” (sigmoeidḗs in 
ancient Greek), means something that has the form of the capital 
letter sigma (Σ). The term sigmoid is more generally defined as an 
S-shaped curve. Yet, these descriptions, in addition to being vague, 
are not accurate since the form of an S (or a Σ) is impossible in math-
ematical curves described by functions. In fact, if we apply an S form 
to mathematical curves, we notice that we obtain two or three val-
ues of f(x) for one x, which is impossible according to the very defini-
tion of a function (in its classical, usual definition in mathematical 
analysis). Moreover, the representation of an S-shaped curve ex-
cludes forms that should logically be part of sigmoid curves such as 
decreasing sigmoid curves.

Given this intrinsic difficulty with the notion of sigmoid, we in-
vestigated how authors in ecology have used and defined this term. 
Sigmoid curves are explicitly used to describe various phenomena 
studied in ecology like dose response, exposure response, stimulus 
response, density dependence, and species accumulation. We chose 
to focus on a part of these phenomena by restricting ourselves to 
the field of biogeography with species–area relationships (conven-
tionally abbreviated as SARs) and species response to ecological 
gradients within species–resource relationships (abbreviated here 
as SReRs).

In July 2020, we conducted a literature survey via the Web of 
Science, searching for articles released before 2020 in the category 
“Ecology,” with the following keywords: (“biogeography” OR “SAR” 
OR “species-area” OR “species area” OR “species-resource” OR “spe-
cies resource” OR “species response” OR “species-response”) AND 
(“nonlinear” OR “non-linear” OR “non linear” OR “sigmoid*” OR “lo-
gistic” OR “S-shape*” OR (“asymptot*” AND "inflection point") OR 
“density depend*” OR “density-depend*” OR “accumulation curve” 
OR “species accumulat*”).

We extracted a list of the articles resulting from this survey and 
calculated the proportion of articles in which authors used a sigmoid 
function or were interested in a sigmoidal form of relationship in a 
statistical model. In order to determine whether the article explicitly 
uses or discusses a sigmoid function, without having to read it in 
its entirety, we proceeded in three stages: (a) reading the abstract 
entirely or partially (in order to have an idea of the content of the 
article); (b) flying over the article in search of tables with functions, 
figures, or equations which would be sigmoidal and, if necessary, 
reading the associated paragraph and/or legend; (c) for articles 
where the PDF allowed it, searching for the keywords: "sigm," "lo-
gist," "non-linear," and "s-shape" (both written in different ways), as 
well as the other keywords that seemed relevant when reading the 
abstract (e.g., density dependence or species accumulation). If some 
articles using a sigmoid function have been able to pass through the 
mesh of the net with this method (in particular using a function other 
than logistic), it will be articles not using a “sigmoid” word to charac-
terize the relation described, thus, potentially biasing the results in 
favor of a larger proportion of articles using the word sigmoid. We 



     |  3GODEAU Et Al.

completed this list with 13 articles of our personal knowledge from 
the field of biogeography and using a sigmoid function, which did 
not emerge using the survey on the Web of Science. In order to rep-
resent how the authors define their sigmoid function, we recorded 
which words were used from the list of keywords provided above. 
Then, in order to identify the use and understanding of the specific 
term sigmoid by article authors, for the selected articles using a sig-
moid function, we classified them into four different categories as 
follows:

1. CATA: The authors do not use a term to define the function 
or the shape of the curve.

2. CATB: The authors only use an imprecise term to define the func-
tion or the shape of the curve (e.g., S-shape).

3. CATC: The authors use the name of the function (e.g., logistic), 
without referring to the sigmoid class/form.

4. CATD: The authors use a word from the “sigmoid” word family.

Finally, for articles using a word from the “sigmoid” word family 
(CATD), to report the proportion of articles incorporating a defini-
tion of this word, we have classified the articles in the following four 
subcategories:

1. subD1: The authors do not define “sigmoid”
2. subD2: The authors only cite a reference to define “sigmoid”
3. subD3: The authors partially define “sigmoid”
4. subD4: The authors clearly define “sigmoid”

The articles using logistic regression on binary data were more 
numerous than on nonbinary data (99 vs. 64) and very rarely 
acknowledge that the underlying function is of sigmoidal form 
(Figure S1). The classification in categories for all the articles re-
sulting from our bibliographic research (plus additions) seemed 
therefore to be strongly influenced by the 99 papers on binary 
data (Figure S2, Table S2). In the rest of the article, we analyzed 
in more detail the behavior of articles using sigmoid functions on 
nonbinary data (64 articles, Figure 1, Table S1). We also performed 
a GLM to explore whether the distribution in the different subcat-
egories of these 64 articles depended on the publication date, in 
other words, if we could observe a change in the authors' desire 
to define the word sigmoid over the years. The majority of the 
articles (61%) were using the word sigmoid (or any word of the 
same family) to describe the function used (CATD). Thirty-seven 
percent of the articles were only referring to the name of a sig-
moid function (CATC) and 2% used a very imprecise word to des-
ignate the function (CATB). There was no apparent change in the 
incorporation of a definition of sigmoid in the articles using the 
word sigmoid over the years (GLM: p-value = 0.593). Over the 39 
articles using the word sigmoid, only a few authors were taking 
the time to properly define what the word sigmoid was implying 
(subD4 = 5%). The vast majority did not define what they meant 
by sigmoid (subD1 = 64%). What was quite surprising was that 
some authors created new sigmoid functions and stated that their 

functions have a sigmoidal form, but they never evoke the charac-
teristics implied by this form and included in their function (e.g., 
Kobayashi, 1976). In other cases, some authors were partially de-
fining the notion (or formulating some characteristics associated 
with sigmoid function or shape—subD3 = 10%) or pointing to ref-
erences (subD2 = 12%) in order to help readers understand what 

F I G U R E  1   Distribution of the articles resulting from the 
survey of Web of Science (excluding articles on binary data), in 
the different described categories (a) and subcategories of the 
category D (b). The categories are defined as follows: CATB = the 
authors only use an imprecise term to define the function or the 
shape of the curve (e.g., S-shape); CATC = the authors use a precise 
term, for example, to name the function (e.g., logistics), without 
referring to the sigmoid class/form; CATD = the authors use a word 
of the same family word as “sigmoid”; subD1 = the authors do not 
define sigmoid; subD2 = the authors only cite a reference to define 
sigmoid; subD3 = the authors partially define sigmoid; subD4 = the 
authors clearly define sigmoid
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they meant by sigmoid. However, these definitions were incom-
plete, or fragmented, as well as the definitions contained in the 
cited references. Unclear definition, or imprecisely characterized 
functions, can lead to confusion or conflicting conceptions for the 
reader.

For instance, Preston (1962) proposed a descriptive definition 
of the shape of the sigmoid curve, which gives us an idea of the 
form but without specifying its properties: “it began at a low slope, 
steepened considerably, and then became less steep.” Tjørve (2003, 
2009), on the other hand, does not give a definition of the sigmoid 
curve, but does mention some of its characteristics when describing 
the functions he considers in his study. In Tjørve's papers (), the char-
acteristics common to all sigmoid functions include: (a) the presence 
of an upper asymptote, (b) a lower j-shape (probably implying a lower 
asymptote), and (c) the presence of an inflection point. Tjørve (2003, 
2009) also mentions two characteristics which vary among different 
sigmoid functions: symmetry around the inflection point, which may 
or may not exist; and the positions of the inflection point and of the 
asymptote.

Furthermore, in addition to being incomplete, these "definitions" 
may present other problems that impede understanding. This is 
the case when mathematical terms characterizing a mathematical 
object, here the sigmoid curve, are incorrectly used. For example, 
some authors erroneously define their sigmoid functions as “convex” 
(Gentile & Argano, 2005; Tjørve, 2003,2009). Indeed, in mathemat-
ics, a curve (or function) is “convex” (or having an overproportional 
increase) if, for any two points A and B of the curve, the segment [AB] 
is entirely situated above the curve. Conversely, a concave function 
is the opposite of a convex function (f is concave if and only if −f is 
convex). A concave (or having an underproportional increase) curve 
(or function) is therefore a curve for which, for any two points A and 
B of the curve, the segment [AB] lies entirely below the curve. Yet, 
some studies make no distinction between the two curves and use 
“convex” for both convex and concave forms (Tjørve, 2012), then dis-
tinguish them with the mentions “downward” or “upward.” Usually, 
given the properties attributed to the curves defined as convex, the 
term concave, rather than convex, is clearly the correct term. For ex-
ample, what Tjørve (2009) described as a "constantly decelerating" 
convex curve is actually concave, and what he defined as a "J-shape" 
would correspond to the convex part of the sigmoid curve. This error 
is common since convex and concave shapes are often respectively 
described as a hump and a hollow (from the definition of a convex 
set), which can lead to confusion. Therefore, though the study is 
very interesting, the discourse is blurred by terms that are confusing 
(as also pointed out by Dengler, 2009). Consequently, we suggest 
using mathematical definitions and terms, so that all researchers will 
refer to the same definition of sigmoid curves.

If one moves away from the literature in ecology, we find that 
few definitions are easily accessible even in statistical literature. Hill 
and Lewicki (2006) propose one such definition in their glossary: 
A sigmoid function is “an S-shape curve, with a near-linear central 
response and saturating limits” (p. 724). This definition, which in-
cludes the notion of an S-shape discussed above, makes it possible 

to understand the general shape and to accept different forms, but 
they are not necessarily very clear on which forms are included or 
excluded when we speak of a sigmoid, and the properties of the 
functions are not precise. Menon et al. (1996) also start by defin-
ing the sigmoid curves as S-shaped; then, the authors define two 
subclasses of sigmoids: (a) simple sigmoids are “odd, asymptotically 
bounded, completely monotone functions in one variable,” and (b) 
hyperbolic sigmoids are “a proper subset of simple sigmoids and a 
natural generalization of the hyperbolic tangent.” Although detailed, 
notably when characterizing certain functions, the two defined 
classes do not integrate all the possible sigmoidal forms; for example, 
“odd” excludes asymmetric curves and curves that do not intersect 
the origin.

To sum up, very few definitions of sigmoid functions are available 
in the ecological literature, and they are usually vague, or based on 
only certain characteristics, or can even contain errors. Therefore, 
it seems clear that the lack of a time-honored definition, or the use 
of unstable definitions, can lead to difficulties in producing stud-
ies and articles. This is particularly true for bibliographic research 
and for young researchers and students (PhD or Masters students) 
who are still forging their knowledge (Herrando-Pérez et al., 2017). 
It can also sometimes distort communication among collaborators. 
For example, within our own research group, differences of wording 
regarding the properties of different curves have surfaced, with mis-
understandings of what is meant by “convex” and “concave.”

The shape of the curve must be well integrated during its use in 
order to properly interpret the results. As put forward by Fattorini 
et al. (2012), Medellín and Soberón (1999) used a sigmoid model on 
their data, and then, in order to ensure fit with a logarithmic model, 
they chose to exclude some of the data corresponding to the first 
part of the sigmoid curve (where the slope is smaller). In this spe-
cific case, removing the beginning of the gradient results in a poor 
estimation of the variation of the slope along the gradient. In that 
respect, Fattorini et al. (2012) point out that Medellín and Soberón 
(1999) should not have manipulated the data and should have re-
tained a model that fits the entire dataset, the data represented by 
the first part of the curve being just as important from an ecological 
point of view as the data represented by the rest of the curve. In 
fact, the first part of the curve could reflect various ecological mech-
anisms that deserve to be studied such as—to name but two: sam-
pling problems or biological functions in action (i.e., another limiting 
factor, exclusions). Through this example, it becomes obvious that if 
the sigmoid curve shape and its implications are not acknowledged 
or defined well enough in the mind of the ecologist, he may end up 
missing important patterns or making wrong assumptions.

3  | PROPOSAL OF A CLE AR DEFINITION

Although the definition on Wikipedia is globally correct (Wikipedia, 
no date), this website cannot be used as a reference since the page 
can be modified at any time, making the definition unstable. We 
have therefore decided to propose a definition, which is stable, 
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understandable for ecologists, and as complete as possible (includ-
ing as many cases as possible) in this paper. For this purpose, we first 
looked at the characteristics of the functions used in the literature.

Ultimately, a sigmoid curve is a curve described by a real-valued, 
univariate function (a function f of a unique real-valued variable x 
that takes real values y = f(x)), defined over the whole set of real 
numbers, and which is continuous, infinitely differentiable, mono-
tonic (always either increases or decreases), has at least one inflec-
tion point and is bounded on the Y-axis. The term “inflection point” 
refers to the point where the curve shifts in convexity: from con-
vex to concave or vice versa. The change in slope is continuous and 
should therefore be distinguished from the term “breakpoint” used 
by ecologists, which, although we did not find a precise mathemat-
ical definition, seems to refer to a noncontinuous function (e.g., in 
change point models, Muggeo, 2003; Quandt, 1958).

Consequently to the description given above, a sigmoid curve 
has the following inherent characteristics: (a) has an upper and a 
lower asymptote if (x) varies over the set of real numbers; (b) can 
increase (starting with the lower asymptote and finishing with the 
upper asymptote, with a positive slope between them, Figure 1,2.a) 

or decrease (starting with the upper asymptote and finishing with the 
lower asymptote, with a negative slope between them, Figure 1,2.b); 
and (c) can be symmetrical or not around the inflection point or 
points (Figure 1,2.c).

We extend the definition given above to two other cases where 
the explanatory variable (x) is defined on the set of real positive 
numbers (x ≥ 0) and (a) f(x) is a function of (x) over the entire set of 
real numbers and has a sigmoid curve, or (b) the above definition for 
the sigmoid curve applies to f(x) as a function of (x ≥ 0) except for the 
requirement that f(x) is defined over the entire set of real numbers. 
Indeed, in island biogeography, the function never occurs with nega-
tive x-values (since area cannot be negative). In this case, the sigmoid 
curve has only one of the two asymptotes. Further note that the 
sampled gradient may not include the inflection point or result in a 
function that comes close to the asymptote(s) and therefore may not 
give a full sigmoidal curve shape on the sampled gradient, the func-
tion nevertheless belonging to the class of sigmoid functions (e.g., 
Godeau et al., 2020; Tjørve, 2009). Even after extension, however, 
our definition does not include the case where (x) is bounded on 
both sides and therefore possesses neither of the two asymptotes 

F I G U R E  2   Some possible forms of sigmoids and inverse sigmoids. (a) Simple logistic function, (b) decreasing sigmoid, (c) asymmetric 
increasing sigmoid, and (d) increasing inverse sigmoid



6  |     GODEAU Et Al.

(He & Legendre, 2002). Note that f(x) as a function of (x) can have 
a sigmoidal form without f(x) as a function of log(x) or f(exp(x)) as a 
function of (x) being sigmoidal too, and vice versa.

The class of sigmoid functions includes the functions which, for 
the given parameters, meet the above definition. The same function 
may or may not belong to the sigmoid class depending on the value 
of its parameters (as also notified by Gao & Perry, 2016; Triantis 
et al., 2012). To return to a previous example, the Chapman-Richards 
function belongs to the sigmoid class if c > 1. For other values of c, 
the function does not belong to the sigmoid class. This characteristic 
leads to a flexibility of the functions (giving curves which can be sig-
moid, convex, concave, or linear) which is under-appreciated.

The sigmoid class can be divided into two subclasses: (a) sim-
ple sigmoids, containing the functions that give curve shapes with 
a single inflection point, and (b) multiple sigmoids containing func-
tions that give curve shapes with several inflection points (i.e., a 
double sigmoid could fit the phenomenon described in Figure 6 in 
Lomolino, 2000). There must always be an odd number of inflection 
points in order to keep the two asymptotes on the Y-axis.

Based on the definition of the sigmoid class that we propose 
above, we inventoried the classical SAR or SReR functions selected 
from the prospect we conducted that belong to the simple sigmoid 
class, at least for some parameter values (see Table 1). We also de-
scribed their characteristics, placing special emphasis on the con-
straints imposed on the parameter values or explanatory variable 
to ensure that the function is mathematically defined, is suitable 
in macro-ecology, and does indeed have a sigmoidal form. We also 
provide the coordinates of the inflection point, so that readers 
can distinguish between functions that are sigmoidal only when 
the whole set of real values for the explanatory variable is consid-
ered (i.e., functions with a negative abscissa value of the inflection 
point) and those that are sigmoidal even when the abscissa values 
are positive. Having a well-established definition of the sigmoid 
curve and understanding the constraints imposed on the parame-
ter values of the functions, which produce sigmoid curves allow us 
to better apprehend under which conditions a sigmoid function is 
adapted when one wishes to apply it to a dataset. For example, the 
Chapman-Richards function is defined only for (x ≥ 0) and the curve 
obtained will only be of sigmoid shape when (c > 1) (see Table 1). 
Another, more extreme, example combines these two limitations: 
the persistence 2 function. In fact, this function is sigmoid only if 
(x > 0), (b = 0), and (c > 0).

Threshold functions—functions with a constant value 
below a threshold and another constant value above it (Toms & 
Villard, 2015)—are a class of functions that can be close to sigmoid 
functions (especially to limits of sigmoid functions when the maxi-
mum slope of the function tends to infinity) but that are no included 
in the sigmoid class because they are not continuous and not in-
finitely differentiable, and thus make it difficult to define an inflec-
tion point as classically done with the second derivative. Another 
class of functions that is close to the sigmoid class is the class of in-
verse sigmoid functions. These are bounded on the X-axis and do not 

have an asymptote over the Y-axis (Figure 1,2.d). These functions 
have no biological reality in SReR and SAR and are not members of 
the sigmoid class as we define it. Other curves defined as sigmoid 
by some authors do not meet the requirements of our definition 
either, for example, “sigmoid curves […] free of upper asymptotes” 
(Tjørve, 2012).

4  | ECOLOGIC AL JUSTIFIC ATIONS AND 
IMPLIC ATIONS OF SIGMOID CURVE 
CHAR AC TERISTIC S

Although some characteristics of the sigmoid definition are justi-
fied mainly by mathematical considerations, many can be related to 
ecological hypotheses or considerations. First, the presence of an 
inflection point represents the tipping point between the beginning 
and the end of the gradient. At the beginning of the gradient the 
more X increases, the more the advantage conferred by X is impor-
tant. At the end of the gradient the advantage conferred by X al-
lows less and less to overcome other limitations. In SARs, the use of 
sigmoid curves with this inflection point is justified by the following 
statement by Lomolino (2000): “with richness remaining relatively 
low and apparently independent of area for the smaller islands, 
increasing rapidly to rise through an inflection point for islands of 
intermediate size, and then asymptotically approaching, or leveling 
off at the richness of the species pool for the largest islands.” Many 
other fields of ecology are interested in models that can depict such 
a pattern (e.g., ecophysiology: Paine et al., 2012). Continuity and dif-
ferentiability would allow us to formulate hypotheses not only on 
the mean value of the response variable, but also on the speed (first 
derivative) or acceleration (second derivative) of the relationship be-
tween the response variable and the gradient being studied, which 
however has not been done so far. The pattern depicted by Lomolino 
for SARs might have led us to define sigmoid curves only as increas-
ing curves. Yet, we expect that in some areas of ecology the reversed 
situation might occur and that such patterns would indeed fall into 
the domain of the sigmoid curve. For example, still in biogeography, a 
decreasing sigmoid was considered in species–isolation relationships 
(Hachich et al., 2015). More generally in ecology, the decreasing sig-
moidal curve can be used in the case where the gradient studied 
has a negative effect on the response variable (e.g., Morante-Filho 
et al., 2015).

Second, the existence of asymptotes is also very much related 
to considerations from ecology. The upper asymptote, implying a 
threshold above which the mean of the response variable (y) can-
not go, theoretically reflects the Liebig law of the minimum in eco-
physiology and ecology (Austin, 2007; Paris, 1992). In this case, the 
studied predictor would be the first limiting factor, and an increase 
in this limiting factor would lead to an increase in the explained vari-
able. Then, upon reaching the asymptote, the predictor would no 
longer be limiting; instead, another unmeasured environmental fac-
tor would take over, though its influence would be insufficient to 
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make the explained variable increase any further. More particularly 
in the study of SAR, as species richness increases with area and de-
creases with geographical isolation, an upper asymptote can emerge 
at very large areas when the number of species equals the number 
of potential species in the regional species pool. This number can be 
obtained into smaller areas, when immigration increases (Kadmon & 
Allouche, 2007; MacArthur & Wilson, 1967).

Inversely, the presence of a lower asymptote implies that the mean 
of the response variable cannot be lower than this asymptote. The ex-
istence and value of such an asymptote can often be related to the 
conjunction of the monotonic relationship, the nature of the variable 
considered, and the nature of the system under study. In studies focus-
ing on the response of a single species, the lower asymptote is there-
fore usually zero (e.g., Huisman et al., 1993). However, when studying 
community response, often a lack of resources does not necessarily 
imply a total loss of species richness (e.g., when studying a system 
where species are mobile). In such cases, a logistic function where f(x) 
is a function of log(x), whose lower asymptote is necessarily located at 
zero (y = 0) and is not actually adapted (Godeau et al., 2020).

The third component of our definition is asymmetry of the curve. 
Symmetric sigmoid curves, like the common logistic function, are 
widely used, but more for their ease of modeling than for their un-
derlying ecological theory. In Generalized Linear Models (GLMs), 
both common link functions (logit and probit) imply symmetrical sig-
moid shape through their inverse. However, for bell-shaped curves, 
Austin (1976) stated: “there is no a priori reason to assume that or-
ganisms' responses should follow such a symmetrical curve,” and 
it is very likely that this remark is also true for the sigmoid curves. 
Diverse phenomena can explain asymmetrical curves (Austin, 1990; 
Austin & Gaywood, 1994 for phyto-ecology) and theoretically sup-
ported asymmetry can also appear with sigmoidal curves (e.g., Lim 
et al., 1998). Thus, there is a third canonical link function for GLMs 
(the complementary log-log function) which allows asymmetry 
through its inverse, and which can be derived from assumptions re-
garding, for example, survival rates, which is asymmetric.

More generally, the overall shape of the sigmoid curve is well justi-
fied in a wide variety of cases (as for example Type II model to identify 
habitat thresholds in Yin et al., 2017; or sigmoidal curves for biodi-
versity–ecosystem functioning relationships in Maureaud et al., 2020). 
However, a sigmoid curve can take several forms (in particular con-
cerning the position of the inflection point), depending on the function 
used and the value of its parameters, it is important to also dwell on 
this aspect when adjusting to the data (e.g., Vrána et al., 2019).

5  | CONCLUSION AND PERSPEC TIVES

Our literature prospection points out the lack of a clear, stable, 
universally accepted definition of the sigmoid class of functions in 
ecology. Some aspects of sigmoid curves are typically ignored (sym-
metry, direction of the relation, etc.). We also found cases of misuse 
of convexity to define a curve or a function.

As Jeremy Fox stated “words are imprecise, and so purely verbal 
models and verbal arguments often are ambiguous or even invalid, 
even if apparently supported by empirical data (like Elton's verbal 
arguments about why diversity and complexity beget stability). 
Mathematics has the virtue of forcing precise definitions of terms, 
precise and complete specification of assumptions, and rigorous der-
ivation of conclusions” (Fox, 2011). It is therefore unfortunate to ac-
cept vague verbal definitions (such as “S-shape” or “J-shape”) when 
one is using a term derived from mathematics.

That is why we have proposed a definition that we hope will 
allow for better harmonization of what is meant by the term “sig-
moid” when describing a curve or a function. In addition to clearly 
formulating the concept, our definition allows various functions 
to be united under the same banner (sigmoid class, presented in 
Table 1). This definition also excludes some functions that were pre-
viously considered to belong to the sigmoid family and which, in our 
opinion, should not be defined as such (sigmoid without an upper 
asymptote or inverse sigmoid).

Having clear definitions makes it possible to more clearly reflect 
on the underlying concepts and theories implied by the functions 
available, and to visualize the most appropriate form of curve to 
adopt according to the ecological context. After defining and re-
flecting on the lower asymptote and asymmetry, the researcher 
naturally questions the choice of link function in the context of lo-
gistic regressions. Classically, users of such tools choose canonical 
link functions such as the logit or the probit function. The inverse of 
these two functions, on which the regression relies, belong to the 
sigmoid class but they are symmetric around the inflection point 
and they have prespecified minimum and maximum asymptotes (0.0 
and 1.0, respectively). However, the inherent properties of such link 
functions could have strong ecological limitations, which would re-
strict their use in some cases. For example, having a maximum of 
1.0 (meaning almost sure presence) along the gradient does not re-
flect biological situations where, even if local habitat conditions are 
optimal for the organism, the organism could be absent (e.g., due to 
dispersal limitation inside a metapopulation; Hanski & Gilpin, 1997). 
Thus, a more flexible use of the sigmoid function in these logistic 
regressions can prove to be of great use (Godeau and Gosselin, 
Eide et al., 2012; In prep.). Along the same lines, sigmoid and lo-
gistic functions are sometimes confused with each other, whereas 
the latter is nothing more than a particular type of sigmoid (e.g., 
Hunsicker et al., 2015). Such confusion may prevent researchers 
from considering other families of functions that fall into the sig-
moid class without being logistic.

In other papers, we aim to develop a sigmoid function that in-
corporates the characteristics retained in this paper: first in an SReR 
context (Godeau et al., 2020) and second in binomial logistic re-
gressions. Such development of the sigmoid class might be of more 
general use in ecology, for example, by broadening the scope of pos-
sibilities in binomial logistic regressions.

Finally, we hope that in future papers, authors who define a new 
sigmoid function, or use an already existing one, will take the time 
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to specify the properties of the function and to clearly mention their 
implications and/or justifications in ecological terms.
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