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Abstract: 15 

1. Applied ecological research is increasingly inspired by the Open Science movement. 16 

However, new challenges about how we define our science when biodiversity data is 17 

being shared and re-used are not solved. Among these challenges is the risk associated 18 

with blurring the distinction between research that mainly seeks to explore patterns with 19 

no a-priori articulated hypotheses (exploratory research), and research that explicitly 20 

tests a-priori formulated hypotheses (confirmatory research).  21 

2. A rapid screening of a random selection of peer-reviewed articles suggests that neither 22 

experimental protocols nor hypothesis-testing sensu stricto are common in applied 23 

ecological research. In addition, most experiments are carried out on small spatial scales, 24 

which contrast with current global policy needs and research trends towards addressing 25 

large spatial and temporal scales. This latter trend make it unfeasible for policy to rely 26 

mainly on insights gained from experimental research.  27 

3. To solve fundamental local, regional and global societal challenges, we need both 28 

exploratory and confirmatory research, and the fundamental (but different) role that 29 

hypothesis-testing and prediction play in applied ecological research should be 30 

revaluated.    31 

4. A clearer distinction between exploratory and confirmatory research could be facilitated 32 

by allocating journal sections to different types of research; embracing new tools offered 33 

by the open science era, such as pre-registration of hypothesis; establishing new systems 34 

where post-hoc hypotheses emerging through exploration can also be registered for later 35 

testing; and more broad adoption of causal inference methods that foster more 36 
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structured testing of hypotheses about causal mechanisms from observational 37 

biodiversity data.  38 

5. Synthesis and applications. To gain the full benefits from the open science era, 39 

researchers, funding bodies and journal editors should explicitly consider incentives that 40 

encourage openness about methods and approaches, as well as value the full plurality of 41 

scientific approaches needed to address questions in conservation science.   42 

 43 

  44 
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1. Rigorous science in applied ecology 45 

As a response to the global biodiversity loss, conservation science and applied ecological 46 

research focus on describing patterns of biodiversity change, isolating the factors causing 47 

this change, and ultimately suggesting management solutions (Kareiva & Marvier 2012). 48 

Because biodiversity loss and ecosystem transformations are causing major challenges to 49 

present and future human societies (IPBES 2019), the rigor of the science that underpins 50 

policy and management decisions is decisive to the wellbeing of future generations of 51 

humans and the fate of our planet’s biodiversity. Following some high-profile publications 52 

pointing towards a reproducibility crisis in fields such as psychology (Nosek & Collaboration 53 

2015) and social sciences (Camerer et al. 2018), there is currently much focus in scholarly 54 

publications on the repeatability and reproducibility of scientific results (see e.g. the news 55 

feature in Nature by Baker 2016). Applied ecological research is not immune to these 56 

challenges, but so far the discussion has not been high on the agenda within this field. One 57 

key aspect of the discussion about scientific rigor (Nosek et al. 2018) is a revaluation of the 58 

distinction between research that mainly seeks to explore patterns in the data (hereafter 59 

exploratory research) and research that tests scientific hypotheses that are clearly stated 60 

before the study is conducted (hereafter confirmatory research).  61 

In the philosophy of science, this distinction has been extensively discussed, and following 62 

the classical paper by Platt (1964) on strong inference the importance of confirmatory 63 

research has been long appreciated. Also within conservation science and applied ecology, 64 

several authors (including Caughley 1994; Betini, Avgar & Fryxell 2017; Sells et al. 2018) have 65 

called for more formal use of confirmatory research and application of the strong inference 66 

paradigm (sensu Platt 1964). However, a rapid screening of a sample from the applied 67 
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ecological literature (Box 1) suggests that most researchers within the field do not follow the 68 

strong inference paradigm (Platt 1964; Sells et al. 2018), nor do they rely on clearly stated a-69 

priori hypotheses that are tested with empirical data.  70 

Here, we discuss how both exploratory and confirmatory research is needed in applied 71 

ecological research, and how both scientists, journal editors and funders should assist in the 72 

task of extracting the maximum value from different scientific approaches without blurring 73 

the distinction between exploration and confirmation.  74 

 75 

1.1 A mature research community should value both exploration and 76 

confirmation  77 

One consequence of the “Open Science” movement (Nosek et al. 2015) is the focus on open 78 

sharing of research data (Wilkinson et al. 2016). Increasing accessibility to data allows 79 

researchers to apply an ever-widening range of models to data for exploratory science. This 80 

contrast with the pleas for more widespread adoption of confirmatory research, where 81 

hypotheses are described a-priori and then carefully tested based on empirical data 82 

collected specifically for that purpose (Caughley 1994; Houlahan et al. 2017). We agree with 83 

the plea for more formal testing of scientific hypotheses in applied ecological research, but 84 

would also like to highlight the fundamental role that descriptive studies documenting the 85 

state of local or global biodiversity, or the natural history of species has for conservation 86 

science (Beissinger & Peery 2007; Pereira et al. 2013). Exploratory research could also 87 

generate new hypothesis that could formally be tested later. Moreover, a movement 88 

towards more planetary scale assessments, such as those carried out by the 89 

Intergovernmental Panel on Biodiversity and Ecosystem Services (IPBES), makes it unfeasible 90 
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for policy to rely mainly on insights gained from experimental research (Mazor et al. 2018; 91 

Box 1). Our rapid screening of the literature indeed suggests that large-scale studies often 92 

have a large impact, at least if measured through citation rates (Box 1). 93 

Nevertheless, to avoid an ever-growing list of un-tested hypothesis emerging from 94 

exploratory research, we must also revaluate the fundamental (but different) role that 95 

hypothesis-testing and prediction play in applied ecological research (Houlahan et al. 2017). 96 

Only by testing a-priori articulated hypothesis can we robustly retain or reject the potential 97 

of a scientific hypothesis to describe natural phenomena. Unfortunately, researchers do not 98 

always follow this approach, and surveys have revealed a number of questionable research 99 

practices (Ioannidis et al. 2014; Fraser et al. 2018). Such practices include “harking” 100 

(Hypothesis After Results Are Known), where ad-hoc postdictions are presented as if they 101 

were already planned before the study was conducted, and “p-hacking” where researchers 102 

carelessly search for significant associations in the data (and often present them as if they 103 

were from a-priori hypotheses). Recent surveys suggest that they might be common also 104 

among ecologists and evolutionary biologists (Fraser et al. 2018). Without more frequent use 105 

of true hypothesis-testing, we risk that confirmation bias will result in overly self-confident 106 

‘storytelling’ (Sells et al. 2018). Basing management actions on such research may lead to 107 

costly mis-management. 108 

  109 

1.2 Novel ways to test ecological theories 110 

Our brief survey of the literature (Box 1) (see also Betini, Avgar & Fryxell 2017; Sells et al. 111 

2018) suggest that most research does not conform to strict hypothesis-testing. However, in 112 

the open science era, there are ample possibilities to increase the use and impact of 113 
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confirmatory research, by more widely embracing new tools, methods, and increased data 114 

availability.  115 

Strict experiments in applied ecology (Box 1) are generally conducted at small spatial scales 116 

(although there are some notable exceptions, e.g. Krebs, Boutin & Boonstra 1995; Wiik et al. 117 

2019). This contrasts the fact that many ecological and policy processes operate at far larger 118 

scales (Estes et al. 2018). Better utilization of large-scale unreplicated natural experiments 119 

could improve understanding of causal relationships in ecological systems (Barley & 120 

Meeuwig 2017), especially the impacts of rare and extreme events (e.g. Gaillard et al. 2003). 121 

Such natural experiments provide researchers with the opportunity for a real-world test of a 122 

hypothesis, and can be seen as “conceptual” replications where different systems and 123 

approaches are used to test the same theory.  A complementary approach is to integrate 124 

findings from small-scale manipulative experiments into analysis of large scale observational 125 

data (Kotta et al. 2019). Such integration will necessitate closer collaboration between 126 

ecologists working at different spatial scales, and between experimentalists and modellers 127 

(Heuschele et al. 2017). The increased availability of hierarchical statistical models that 128 

integrate data from disparate sources has high potential to facilitate such an integration 129 

(Isaac et al. 2019). In the new era of open science, large amounts of data from both field 130 

surveys and experiments are now becoming available, widening the range of opportunities 131 

for data integration.  132 

Given our reliance on observational data, more insight into causal processes could be gained 133 

by more widely applying novel statistical methods that seek to strengthen a causality 134 

inference from observational data (Law et al. 2017). Causal inference approaches force 135 

researchers to think more deeply about the direct and indirect relationships of variables in 136 
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their study systems (Ferraro, Sanchirico & Smith 2019). These approaches include controlling 137 

for confounding factors by matching (to control observable confounders) and use of panel 138 

data and synthetic controls to control for unobservable confounders, as well as instrumental 139 

variables to eliminate unobservable confounders (reviewed by Law et al. 2017). Time-series 140 

observational data are particularly useful because they are unidirectional - cause must 141 

precede effect (Dornelas et al. 2013) and approaches such as convergent cross mapping are 142 

designed to test for causal effects (Sugihara et al. 2012) 143 

Insights into causality should not be seen as a “one-off” test, and an accumulation of 144 

knowledge through replication is fundamental for a robust knowledge base. Triangulation - 145 

whereby several approaches are formally applied to the same problem - is therefore useful 146 

for assessing the reliability of causal claims (Munafo & Smith 2018). In general, a wider 147 

adoption of systematic reviews and other structured evidence synthesis methods would 148 

allow more robust assessment of the evidence base (Pullin & Stewart 2006). In the open 149 

science era, evidence synthesis can increasingly be based on open data rather than on 150 

published effect sizes (Culina et al. 2018).  151 

 152 

1.3 Journals, editors, and reviewers should assist in the change 153 

Journal editors play an important role in facilitating scientific rigor of the studies that 154 

underpin real-life management decisions. This could further strengthened by creating new 155 

incentives for more honest and open reporting from the research process. We acknowledge 156 

that many of these processes are already starting to happen across the ecosystem of 157 

journals.  158 
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Pre-registration of research hypothesis has been advocated (Nosek et al. 2018), partly to 159 

distinguish between exploration and confirmation research. In the open science era, studies 160 

are increasingly based on pre-existing data, including data that have been previously 161 

analysed and with results published in scientific journals. This should not discourage a priori 162 

hypothesis development and pre-registration (Nosek et al. 2018). Journal editors should 163 

increasingly facilitate this shift by applying a model where authors declare their study design 164 

and identify at which stage in the process they developed their hypothesis (e.g. before or 165 

after data collection, before or after results were known). This could include a link to the 166 

pre-registered hypothesis (e.g. hosted on Open Science Framework (www.osf.io)), and 167 

potentially an associated “open science badge” (Kidwell et al. 2016) as a sign of an open 168 

research practice.  169 

We also encourage journal editors to more actively encourage fair valuation of empirical 170 

case studies that mainly describe and document the state and trend of biodiversity. To 171 

accommodate this, more journals could explicitly allocate different sections to different 172 

types of studies (exploratory, methods, confirmatory/hypothesis testing etc). This will make 173 

the publication process more transparent and facilitate more honest reporting of how the 174 

study was performed, potentially reducing the incentives for harking. 175 

Finally, we propose (as a counterpart to pre-registration of hypotheses) a model where 176 

hypotheses rising from exploratory research could also be registered so that they are readily 177 

available for testing in subsequent studies. Given the rise of global databases and 178 

repositories, such a model could make it feasible to track hypotheses to their source, and 179 

fair attribution of credit to those that originally proposed the hypothesis. It would also 180 

http://www.osf.io/
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provide a clearer link between exploratory (hypothesis generating) and confirmatory 181 

(hypothesis testing) research.     182 

2. Outlook 183 

We should value the complimentary and important contributions of both exploratory and 184 

confirmatory studies, but be much clearer about the differences between them. In the open 185 

science era (Nosek et al. 2015), where more and more research is based on pre-existing (and 186 

often open) data, and where large-scale studies are needed to address key conservation 187 

policy challenges, a simple plea to follow the strong inference paradigm (Platt 1964) might 188 

not be sufficient. However, current incentives that promote the presentation of studies that 189 

are, by design and conduct, exploratory as if they were confirmatory is a disservice to 190 

scientific progress and a delay in solving real-world problems. The open science era has 191 

already radically improved the reproducibility of research; however, we argue that a cultural 192 

shift, involving researchers, journals, and funding bodies, is still needed towards full 193 

transparency and valuation of the plurality of research methods.   194 

 195 

  196 
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Box 1: Hypotheses and experiments in applied ecology 314 

To gain a rapid insight into the current state of affairs in the scientific literature in applied 315 

ecology, we randomly sampled 159 papers published in eight journals covering conservation 316 

biology, applied ecology and wildlife management. We only included studies from terrestrial 317 

ecology, that were data-driven (i.e. not reviews or pure simulation studies), that presented 318 

the results from at least one statistical test, that presented original data or data from 319 

literature surveys, and focused on aspects of applied ecology relevant for biodiversity 320 

management and conservation. Based on these studies we assessed how often i) one or 321 

more clearly stated hypotheses were presented in the introduction, ii) multiple competing 322 

hypothesis were presented, and, iii) how often strict experimental designs were applied. In 323 

addition, we extracted the number of citations registered by Web of Science. A more 324 

comprehensive description of the inclusion criteria and data extraction procedures can be 325 

found in Appendix S1. 326 

Based on our sample of research papers, it seems that clearly stating a research hypothesis 327 

in the introduction is surprisingly rare in the literature (Fig 1a). Overall, only about 19% of 328 

the studies presented clear hypotheses, whereas about 26% presented what we term 329 

“implied hypotheses” or “partly”, where the hypothesis could be inferred from the text but 330 

was not presented clearly. After removing articles mainly focusing on methods development, 331 

the corresponding proportions were 23% (explicit hypotheses) and 28% (implicit 332 

hypotheses), respectively. Presenting multiple competing hypothesis, as described in the 333 

original presentation of the strong inference paradigm (Platt 1964) is even rarer, and only 334 

visible in 2 of the studies we reviewed. 335 

Another hallmark of science is the use of well planned, randomized and replicated 336 

experimental manipulation to test for causal relationships (Platt 1964; Caughley 1994). 337 

Based on our review, however, the use of full experimental designs are rare, and only 12% of 338 

the studies we reviewed were based on randomized controlled experimental designs. In 339 

addition, 15% of the studies in our sample included Before-After-Control-Impact (BACI) or 340 

Quasi-experimental protocols. The majority of the randomized controlled experiments were 341 

performed on a local spatial scale (Fig 1b), although a few studies presented landscape scale 342 
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experiments. In our sample, local scale studies in general received less attention in the 343 

literature compared to studies spanning larges spatial scales when measured in terms of 344 

citation rates (Fig 1b). 345 

 346 

Figure Legends 347 

Figure 1. In a) the proportion of articles that reported clear hypotheses, implied or partly indicated 348 

hypotheses that were tested, and articles that did not present hypotheses. In b) the proportion of 349 

articles that used experimental, quasi-experimental/BACI or no experimental designs are matched 350 

with the corresponding spatial scales of the studies. The size of the circles indicates the number of 351 

studies. The colour key indicates citation rates (mean annual number of citations since the year of 352 

publication).    353 

  354 
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