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Abstract

Resident gut microbial communities (microbiomes) have profound impacts on the
ecology and evolution of multicellular life, shaping host physiology, behaviour, and 
community interactions. We are beginning to understand that ecological theories can be
applied to the interactions between hosts and their microbiomes. However, the 
ecological processes that govern host-microbiome interactions may be obscured by 
current experimental protocols that rely on highly controlled transplantation of 
microbiomes. We surveyed current studies that used gut microbiome transplants with 
non-human recipients, and categorized the 9 key experimental conditions that impact 
the ecological reality (EcoReality) of the transplant. Using these categories, we rated 
the EcoReality of all transplants and assessed the breadth of EcoReality in the 
microbiome transplant literature. Encouragingly, we found an increase in EcoReality 
over time, but EcoReality was still lacking in the host environment and in the state of the
recipient host microbiome. From this process, we have created a novel conceptual 
framework for future researchers to adapt as necessary to incorporate fundamental 
ecological processes in their transplant experiments and employ broader ranges of 
EcoReality.

A Quest for Ecological Reality

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

T.S. Eliot - Little Gidding (1) 

Far from passive passengers, resident microbial communities (microbiomes) are
integral  to  basic  biological  functioning  of  multicellular  life  and  challenge  notions  of
organismal  individuality.  This revelation,  ushered in by advances in  sequencing and
computing  technology,  is  grounded  in  a  growing  understanding  that  microbiomes
profoundly  shape  their  host’s  biology,  including  immunity  (2),  adiposity  (3),
thermogenesis (4), hormonal regulation (5), physiological development (6), memory (7),
and  behaviour  (8).  To  date,  biomedical  research  on  human  or  laboratory  rodent
microbiomes  has  been  instrumental  in  advancing  our  understanding  of  how  the
microbiome affects its host. However, there remains ample room for contributions by
comparative  animal  physiologists,  ecologists,  and  evolutionary  biologists  to  fill
knowledge gaps in our understanding of host-microbiome evolution and the interactions
which underlay these partnerships.
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Recently,  an  appreciation  of  how  the  intertwining  nature  of  host-microbiome
interactions has developed. Foster et al. (9) proposed four distinct frameworks for these
interactions: 1) ‘host control’, in which the host unilaterally governs the composition of
its  microbiome, 2) ‘symbiont control’, in which the microbiome shapes the global host
phenotype 3) ‘open ecosystem’, in which the host and microbiome do not interact, and
4) ‘ecosystem on a leash’, in which the host influences the microbiome by selecting
upon  microbial  function  rather  than  for  specific  microbial  taxa.  Regardless  of  the
interaction,  these  connections  can  be  so  intimate  that  some  researchers  (10,11)
proposed that a host and its associated microorganisms are a single biological entity, or
‘holobiont’,  and  the  unit  on  which  selection  acts.  Using  this  holobiont  perspective,
Alberdi et al. (12) posited that the microbial component of the holobiont, with its greater
mutability compared to the host genome, may be an important mechanism facilitating
host adaptation to rapid environmental change. This makes understanding the interplay
between  the  host  and  the  microbiome  important  from  both  a  fundamental  and  an
applied perspective.

Animal  microbiomes are  specious  communities,  and  thus are  shaped by  the
interactions between constituent microbes and processes at larger scales including the
host  itself,  which in  turn affect  host-microbiome interactions.  Environmental  filtering,
priority effects, random sampling, and dispersal limitation have been suggested as key
between community factors governing microbiome assembly (13,14). Furthermore from
a  metacommunity  perspective,  hosts  can  be  thought  of  as  habitat  patches,  and
therefore  microbial  dispersal  between  hosts  shape  microbiomes  too  (15,16).
Additionally, due to the short timescales associated with microbial turnover relative to
microbial  evolutionary rates,  evolutionary processes occur in tandem with ecological
processes  (17). Although there are clear differences in scale between macroecology
and  microbiomes  (16,18,19),  overall,  ecological  processes,  which  also  interact  with
evolutionary  processes,  shape  the  microbiome.  Thus  considering  the  ecological
conditions that microbiomes experience is critical for a complete understanding of host-
microbiome interactions.

Much of  our  current  understanding of  host-microbiome interactions  has been
gleaned  through  microbiome  transplant  studies,  which  experimentally  translocate
microbial species or communities from donor hosts or external substrates to recipient
hosts. The outcomes of microbiome transplants are likely to be shaped by donor and
recipient  host  physiology  and  the  same  ecological  processes  (drift,  dispersal,
competition  etc.)  that  govern  macroscopic  ecosystems.  Although  transplants  have
proven  an  invaluable  and  widely  used  tool  for  experimentally  probing  the  host-
microbiome relationship with high precision, the ecological processes that govern host-
microbiome interactions in nature may be obscured by highly controlled transplantation
methodologies that are not ecologically realistic (which we term EcoReal, see Box 1 for
a full definition). For example, the use of germ-free recipients or cultured microbiomes in
transplants may restrict the opportunity for key ecological processes like competition
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and  dispersal  to  influence  the  resulting  microbiome  composition.  The  limitations  of
laboratory approaches lacking ecological consideration have long been recognized by
comparative  animal  physiologists  (20);  however,  blind-spots  in  our  understanding of
host-microbiome  interactions  introduced  by  transplantation  experiments  lacking
EcoReality has, until now, not been examined and remains an exciting potential avenue
for future work.

The recent explosion of studies conducting microbiome transplants allows us to
evaluate  whether  the  current  microbiome  transplant  literature  limits  or  removes
opportunities for ecological processes to influence study outcomes, and to highlight how
future  studies  can  address  any  fundamental  knowledge  gaps.  Here,  we  probe  the
current  EcoReality  of  microbiome  transplantation  studies,  not  unlike  Hanage’s  (21)
questioning  of  the  reality  and  applicability  of  biomedical  microbiome  studies.  We
investigated three key questions: 1) How EcoReal are the experimental conditions in the
current microbiome transplant literature? 2) Are experimental conditions increasing in
EcoReality over time? and 3) does the literature currently cover the full potential range
of  EcoReality?  Using  macro-ecological  theory,  we  categorized  microbiome
transplantations into different experimental conditions which can impact the EcoReality
of the transplant (Figure 1 and Box 2). Using this framework, we scored the EcoReality
of  microbiome  transplant  studies  that  used  non-human  recipients.  Overall,  the
EcoReality of the present microbiome transplant literature has increased over time, but
has been constrained by hosts bred and kept in lab conditions and with transplants into
germ-free  recipient  hosts.  Importantly,  we  provide  a  conceptual  framework,  as
illustrated in Figure 1, to emphasize the importance of considering ecological processes
in experimental design and to explore the wild frontiers of host-microbiome interactions.

Figure  1:  Conceptual  framework  of  all  the  experimental  conditions  in  a  microbial
transplant where EcoReality can vary. See Box 2 for explanations for each experimental
condition.
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Box 1. Key terms and definitions

Term Definition 

Transplant 
Instance

A transplant of a microbial strain or community from 
its native host or substrate to a different host 
population. A given study can involve multiple 
transplant instances, which are delineated based on
non-substitutability of host populations or of 
transplant parameters.

Experimental 
Conditions

A decision or step in a transplant instance where 
there is the potential for variation in ecological 
reality. 

Level of 
EcoReality 

The degree to which an experimental condition 
matches the conditions that a host-microbiome 
interaction would experience in a wild ecosystem. 
Each experimental condition possesses its own 
intrinsic EcoReality. Each transplant instance and 
article can also be assigned an EcoReality score.

Box 2. Ecological reasoning for each experimental conditions within a transplant

Experimental 
conditions

Reasoning

Taxon Match Organisms can become locally adapted to their environment 
(22). Local adaptation of a microbial species to its host may 
mean it is not adapted to hetero-specific hosts and performs 
poorly after transplantation.

Donor & Recipient 
Environment

The wider species pool from which a local environment gets its 
species from can influence community assembly and dynamics 
(23). Compared to field conditions, laboratory conditions likely 
possess smaller microbial pools, especially if laboratory 
conditions are sterile.

Donor & Recipient The local environment is an important filter in community 
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Physiology assembly and changes to this environment can affect species 
interactions (23). A host’s physiology is the de facto environment
of inhabitant microbes, and changes or dysregulation in the host
may disrupt associations between host and the microbes that 
persist under homeostatic physiological conditions.

Transplanted 
Microbiome

The interactions within an invading community, including 
predation or mutualism, can impact whether colonisation is 
successful or not (24). Thus, a full community microbiome 
transplantation may differ significantly from the transplantation of
a single microbe.

Transplant Method Species have different dispersal abilities (25) and local 
environments filter species from the wider species pool (26). 
Active transplantations may circumvent differing dispersal 
abilities of microbial species and may undermine host filtering of 
the microbial community. Furthermore, active transplant 
methods can stress the host thereby changing host physiology 
and disrupting endogenous microbial communities (27).

Recipient Pre-
transplanted 
Microbiome

High species diversity in a community is predicted to reduce 
niche opportunities and to increase invasion resistance (24). 
Germ free or antibiotically perturbed recipients are likely to have 
lower invasion resistance than recipients with intact 
microbiomes.

Housing conditions Dispersal between patches is an integral ecological process 
which can maintain stable populations or can rescue extirpated 
populations (23,28). Recipient host cohabitation allows for 
further transmissions of the microbiome.

Lay of the land

Literature Search
We conducted a directed review of the existing literature on gut microbiome 

transplants, finishing on October 26th 2018. We conducted our literature search in three
stages. First, to gauge the extent of the current literature, we did a preliminary search of
gut microbiome transplant studies using both Google Scholar and Web of Science 
(University of Guelph subscription). Based on this preliminary search, we conducted a 
more methodical search using both Google Scholar and Web of Science. Search terms 
can be found in the Supporting Information (SI) section of Greyson-Gaito et al. (29). We 
then sought additional publications through “forward snowballing” (i.e. searching the 
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citations of papers already collected) using the Web of Science citations tool. We 
retained only those studies that conducted at least one gut microbiome transplant into a 
non-human recipient organism. To ensure our findings were generalizable to ecological 
and evolutionary frameworks across a broad range of taxa and ecosystems, we 
excluded studies focused on a single human disease, such as C. difficile. 

Literature Evaluation
For each study that met our criteria, we determined the number of transplant 

instances, which we defined as the transfer of a microbial strain or community from its 
native host or substrate to a different host population. (see Box 1). We used transplant 
instances as our unit of focus because many studies contained multiple transplant 
instances which sometimes differed substantially in EcoReality (e.g. Seedorf et al. (30)).
For studies that had sequential transplants (i.e., transplant from donor to a first 
recipient, which then was the donor for a second recipient, e.g. Seedorf et al. (30)), we 
used only the first phase of the transplant experiment. 

We identified nine key experimental conditions in a transplant where variation in 
EcoReality might substantially affect the outcome of the experiment: host taxonomic 
match, donor environment, donor physiology, transplanted microbiome, transplant 
method, recipient microbiome, recipient environment, recipient physiology, and housing 
conditions of the recipient (see Box 2). Each experimental condition was given an 
ordinal data scale (see SI in Greyson-Gaito et al. (29)) based on the range of observed 
and possible levels for that condition, with one always representing the lowest level of 
EcoReality. For each transplant instance, we characterized the level of EcoReality in 
each of the 9 experimental conditions. EcoReality scoring for each transplant instance 
was conducted by two of the co-authors (separate pairs randomized per paper) to 
ensure consistent evaluation methods. 

To determine the overall standardized EcoReality score of a transplant instance, 
we divided each score by its corresponding maximum potential EcoReality score and 
then added the scaled scores for each experimental condition. Thus all experimental 
conditions were equally weighted in the overall calculation of standardized EcoReality. 
We gave each article an overall EcoReality score using the average of its transplant 
instances’ EcoReality scores.

The literature is dominated by studies using lab-reared, inbred rodent models for 
biomedical research, the ecology, physiology and genetics heavily modified from wild-
type rodents in ways that may affect our understanding of host-microbiome interactions 
(for example Newman et al. (20)). Thus, we separated lab rodents from other animals in
our results for each experimental condition. 

Literature EcoReality patterns
Our literature search returned 53 articles that met our criteria for inclusion. These

articles ranged from having one to 13 transplant instances with an average of 2.85 
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transplant instances per article and a total of 151 from all articles. There was a clear 
shift over time in the number of articles using microbiome transplants. Notably, there 
were 20 articles in the first 10 years of our search period in comparison to almost 40 
articles during 2015-2018 (SI Figure 1, (29)). This increase coincided with a switch from 
mainly lab rodent studies to a more diverse group of donor hosts (Figure 2A, around 
2013), and later also to more diverse recipient hosts (Figure 2B, around 2016).

Figure 2: Number of transplant instances over time where the donor or recipient animal 
was either a lab rodent (mouse or rat) or another animal.

The transplant conditions Donor and Recipient Physiology had the highest 
EcoReality with average scores of 1.8 out of 2 (Figure 3C & H). Taxon match (score 1.6 
out of 2, Figure 3A), transplanted microbiome (score 2.5 out of 3, Figure 3D), transplant 
method (score 1.7 out of 2, Figure 3E), and housing condition (score 1.5 out of 2, Figure
3I) were moderately EcoReal. Donor environment (score 2.4 out of 5, Figure 3B), 
recipient environment (score 1.6 out of 5, Figure 3G), and recipient microbiome (score 
1.8 out of 3, Figure 3F) had the lowest EcoReality. Breaking EcoReality into recipient 
lab rodents and other animals, we see that active transplant methods were used more 
for lab rodents and passive transplant methods were used more for other animals 
(Figure 3E). Interestingly, there were more other animals than lab rodents who were 
germ-free (Figure 3F). This pattern was driven by bees (19 out of 83 transplant 
instances from five articles) and zebrafish (14 out of 83 transplant instances from two 
articles). Overall, most transplants were performed with matching wild-type, non-
diseased donor and recipient hosts using passive transplant methods and with a 
mixture of individual and cohousing of recipient hosts. However, transplants were 
mostly in lab conditions with germ-free recipient hosts.
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Figure 3: Number of transplant instances in each experimental condition, separated into
whether the recipient animal was a lab rodent or another animal. The X-axis is the level 
of EcoReality, with 1 always the lowest EcoReality. The levels are explained in our 
Supporting Information on GitHub (29).

Finally, we found that studies did increase in average standardized EcoReality 
scores in recent years (Figure 4). While this improved the breadth of EcoReality studied,
the maximum EcoReality score was still below the theoretical maximal average 
standardized EcoReality score of 9 possible with our methodology.

Figure 4:  Average standardized EcoReality score for each article. Each point is for a 
single article. The blue line is the line of best fit from a least squares regression. The 
grey zone identifies the zone of EcoReality that is studied in the literature, and the 
yellow “Here be Dragons” zone is bound at the top by the theoretical maximum average 
standardized EcoReality score of 9.
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Here Be Dragons! 
   
Traditionally disparate, the disciplines of ecology, evolution, and physiology are 

being integrated in the burgeoning field of microbiome research. However, the potential 
this field holds can only be met with a rich understanding of how each of these 
disciplines contributes to the interactions between host and microbiome. By surveying 
the state of the literature on microbiome transplant experiments and identifying gaps in 
ecological reality (i.e., EcoReality, Box 1), we are taking a critical step in ensuring that 
our understanding of host-microbiome interactions includes the various ecological 
processes that are known to shape traditional ecological systems.

Our evaluation of the microbiome transplantation literature revealed both 
broadening EcoReality in experimental procedures and some key knowledge gaps that 
will need to be addressed. Encouragingly, transplants often used wild-type non-
diseased donors as well as a mixture of individual and cohabitation housing conditions. 
Furthermore, there was a sharp increase in taxonomic diversity of both donor and 
recipient hosts, and where non-lab rodent animals were used, passive transplantation 
methods predominated. Although average EcoReality of microbiome transplant studies 
has been increasing over time, most studies have used sterile lab conditions where the 
recipient hosts were either germ free or antibiotically perturbed, highlighting two areas 
where EcoReality can be increased. If we are to understand the ecological and 
evolutionary processes at work in host-microbiome interactions, exploring the largely 
uncharted space of EcoReal experimental conditions is essential.

The current literature lacks EcoReality most often in two key areas: host 
environment and the state of the recipient microbiome. Although the environment of the 
donor hosts was on average more EcoReal than the environment of the recipient hosts, 
in general, the EcoReality of the donor and recipient host’s environments was low. Most
studies that we evaluated used laboratory settings which excludes the chance for hosts 
to encounter the broader microbial species pool in the environment (16,23). Laboratory 
conditions can also either increase or decrease conspecific interactions relative to what 
would be observed in nature, thus affecting the dispersal of microbes between hosts 
(16). Furthermore, there are likely feedbacks between the host and its microbiome that 
can impact diet and habitat choice, further obscuring natural conditions with laboratory 
conditions (16).  The second key area lacking EcoReality is the state of the recipient 
microbiome where most recipient hosts were germ free. Although some animals 
naturally start out with germ free gastrointestinal tracts  (e.g., newly eclosed worker 
bees (31)) or do not have a resident microbiome (32),  most animal species host 
substantial microbial communities (33). Germ-free gastrointestinal tracts may lack key 
biotic processes such as predation and competition, which are important filters in classic
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ecological communities that act to mediate incoming species (34). Classic ecological 
theory would predict that a microbial species or community may colonise a germ free 
gut successfully where they would never have been able to under natural conditions 
(24). Overall, neglecting natural environments and intact recipient microbiomes risks 
constraining the fundamental processes that impact host-microbiome interactions, 
suggesting that we are sampling a sliver of the total range of host-microbiome 
interactions which occur in free-living systems.

Given that we may understand only a small subset of possible host-microbiome 
interactions, curbing the expectations of the efficacy of microbiome applications to 
ecological adaptation and conservation might be prudent. Due to the large effects of the
microbiome on its host and its mutability, Alberdi et al. (23) argued that the microbiome 
could act as an additional axis of ecological adaptation for hosts. If the microbiome does
act as an additional axis, conserving microbial diversity and using bioaugmentation tools
(probiotic therapy and transplantation of microbiomes) would then be critical tools for 
animal conservation (35). However, we caution that experimental protocols which lack 
EcoReality might lead us to overestimate the capacity for microbiome variation to shape
host phenotypes in nature by biasing our understanding of the host-microbiome 
relationship towards models of symbiont control (Foster et al. (9)). We suspect that a full
reckoning of the spectrum of EcoReality in microbiome transplant studies would 
uncover more examples of nuanced host-microbiome interactions, including the 
‘ecosystem on a leash’ type interactions. These nuanced interactions may or may not 
include the large microbiome effects which underpin the ecological adaptation and 
conservation arguments above. Consequently, we assert that a consideration of 
EcoReality is required in the design and interpretation of every study that explores how 
the host-microbiome relationship impacts ecological adaptation and conservation. 

 
 

To be clear, we are not advocating for moving entirely out of the lab; laboratory 
studies offer a critical point of comparison and can play a key role in identifying host-
microbiome systems that might be worth pursuing in a wilder but more logistically 
challenging contexts. Nevertheless, we advocate for increasing the range of 
experimental conditions and crossing our present frontier into highly EcoReal 
experimental conditions with a variety of animal species. We could prescribe specific 
changes to transplant procedures, but we could not possibly cover all permutations of 
microbiome transplant studies here. Therefore, we urge researchers to use and adapt 
our conceptual breakdown (Figure 1) in their own systems to help identify where 
EcoReality can and cannot be increased and, where appropriate, consider how 
constrained EcoReality may be impacting their conclusions. Likewise, we encourage 
researchers to report the methodological details pertaining to each experimental 
condition we have identified. Some recommendations are to use wild caught animals 
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and where possible allow them to roam freely, or failing that, house them in outdoor 
enclosures. These experiments should also seek to use recipient animals with intact 
microbiomes, rather than germ-free recipients. When germ-free recipients are of the 
greatest utility, researchers could consider the EcoReality of these hosts, for example, 
developing a germ-free mouse model more closely aligned with the phylogenetic history
of the donors. Finally, the current literature has scratched the surface of recipient and 
donor host taxa, and so we suggest identifying and filling in major phylogenetic gaps in 
the tree of life. Other research fields have undergone a similar stage of self-reflection, 
identifying key issues and biases, which then precipitated new conceptual frameworks 
and methodologies (36). We hope that our critiques and conceptual framework will 
precipitate such a self-reflection stage in the host-microbiome research field.

Microbiome research has excited biologists because it spans disciplines and 
promises to help advance both pure and applied biology. Our objective here--to survey 
the extent of EcoReality in the microbiome transplant literature and identify key areas 
lacking EcoReality--is not unlike a fact finding mission expanding the map of our 
understanding of host-microbiome interactions. We recommend a full, extended journey
into the wilds to round out the literature’s coverage of the landscape of possible 
EcoReality. Charting all territories, from highly controlled lab studies to free-ranging 
remote organisms, is necessary to fully comprehend the interplay between microbiomes
and their hosts. 
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