A future without stocking? The importance of

 harvest and river regulation for long-term population viability of migratory salmonidsChloé R. Nater*a, Marlene W. Stubberud ${ }^{\text {a }}$, Øystein Langangen ${ }^{\text {a }}$, Atle Rustadbakken ${ }^{\text {b }}$, S. Jannicke Moe ${ }^{\text {c }}$, Torbjørn Ergon ${ }^{\text {a }}$, L. Asbjørn Vøllestad ${ }^{\mathrm{a}}$ and Yngvild Vindenes ${ }^{\mathrm{a}}$
${ }^{a}$ Centre for Ecological and Evolutionary Synthesis (CEES),
Department of Biosciences, University of Oslo, Oslo, Norway ${ }^{\mathrm{b}}$ Norconsult AS, Hamar, Norway
${ }^{\text {c}}$ Norwegian Institute for Water Research (NIVA), Oslo, Norway

Running headline: Population viability without stocking

[^0]
Abstract

1. Humans are influencing animal and plant populations both directly (e.g. through harvest) and indirectly by altering environments. For many exploited species, stocking with captive-bred individuals is a common strategy to mitigate negative human impacts and sustain populations over time. However, accumulating knowledge of negative side effects of stocking calls for quantification of consequences and exploration of sustainable alternatives. 2. Evaluating alternative management strategies using quantitative models is central to conservation. Here, we investigate the effects of several management strategies on a population of landlocked, migratory brown trout (Salmo trutta) inhabiting a large lake and spawning in a dammed river. We assess the population level consequences of terminating a long-term stocking programme and evaluate whether the loss of artificial recruitment may be compensated by changes in harvest regulations and/or river habitat improvement. 3. We build an integral projection model (IPM) classifying individuals by body size, life history stage, and location relative to the hydropower dam and parameterised it with 50 years of individual-based data supplemented with literature values. We first analyse the model to assess size, structure, and relative importance of different mortality components across life stages and locations in trout populations with and without stocking. We then investigate potential responses of an unstocked population to management actions involving different sets of harvest rules, reductions in dam passage mortality, and improvements of spawning habitat below the dam.

4. Our model predicts a strong population decline of $12-21 \%$ per year in the absence of stocking. This decline is largely attributed to high harvest mortality, and drastic reductions in fishing pressure thus necessary to ensure population viability without stocking. Reducing mortality associated with passage of the hydropower dam and restoring spawning areas has only small positive effects on population growth. Nonetheless, these mitigation measures can contribute to population viability when combined with changes in harvest regulations.
5. Intensely harvested populations may rely heavily on the addition of captive-bred individuals, and our results indicate that premature termination of stocking programmes can be detrimental without compensatory mitigation measures such as harvest reductions and habitat improvements. It is therefore crucial to collect necessary data and assess the impacts of alternative management strategies using quantitative models prior to making decisions.

Keywords

dam, fishing, harvesting, hydropower, integral projection model, migratory salmonid, stocking, trout

Sammendrag

1. Mennesker påvirker dyre- og plantepopulasjoner direkte (for eksempel via jakt og høsting) og indirekte via habitatendringer. For å begrense skadelige effekter av menneskelig påvirkning i høstede populasjoner, er det en vanlig strategi å sette ut oppdrettede individer. Det er viktig å kvantifisere konsekvensene av, og å utforske bærekraftige alternativer til oppdrett og utsetting, ettersom at det potensielt kan ha negative konsekvenser.
2. I naturvern er det sentralt å bruke kvantitative modeller for å evaluere forskjellige forvaltningsstrategier. I denne studien undersøker vi effektene av ulike forvaltningsstrategier for en populasjon av ørret (Salmo trutta) som holder til i en stor innsjø og gyter i en regulert elv. Vi ser på effekten av å stoppe et storstilt og langvarig utsettingsprogram av settefisk, og om tapet av den kunstige rekrutteringen kan kompenseres med andre tiltak som endringer i fiskeregler og/eller forbedring av elvehabitatet.
3. Vi utvikler en «integral projection model» (IPM) som klassifiserer individer basert på kroppsstørrelsen, livshistoriestadium, og hvor de befinner seg i forhold til demningen i elva, og tilpasser den med 50 år med individbasert data og litteraturverdier. Vi analyserer modellen både med og uten settefisk, og finner størrelsesstruktur og den relative viktigheten av forskjellige dødsårsaker i ulike livshistoriestadier og lokasjoner. Deretter ser vi på hvordan en populasjon uten tilførsel av settefisk kan bli påvirket av forvaltningstiltak som nye fiskeregler, reduksjon av dødelighet forbundet med passering av demningen, og forbedring av gyteområdene nedenfor demningen.
4. Modellen vår beregner at populasjonen vil reduseres med $12-21 \%$ årlig hvis utslipp av settefisk opphører. Den sterke nedgangen skyldes først og fremst en høy fiskedødelighet og en drastisk reduksjon i fiske er derfor nødvendig for å bevare \emptyset rretpopulasjonen uten settefisk. Redusert dødelighet forbundet med passering av demningen og forbedring av gyteområdene nedenfor demningen, har kun små positive effekter på populasjonen. Men sammen med endringer i fiskereglene, kan de to tiltakene bidra til en bærekraftig populasjon.
5. Sterkt høstede populasjoner kan være helt avhengige av en kontinuerlig tilførsel av oppdrettede individer, og våre resultater tilsier at uten kompenserende tiltak som for eksempel redusert fisketrykk og habitatforbedringer, kan en fremskyndet oppheving av et utsettingsprogram ha negative konsekvenser. Det er derfor viktig å samle inn nødvendige data og bruke kvantitative modeller for å vurdere konsekvensene av alternative forvaltningsstrategier før man tar en endelig avgjørelse.

Introduction

Human activities can have profound direct and indirect impacts on animal and plant populations (Hobbs \& Huenneke 1992, Albuquerque et al. 2018). Direct impacts such as hunting, fishing, and forestry may alter the structure and viability of wild populations by imposing additional mortality on all or a selection of individuals (Reynolds et al. 2001). Indirect impacts are more diverse and encompass ecosystem alterations such as habitat destruction (Andren 1994) and climate change (Parmesan 2006). As human impacts have become key features of most contemporary ecosystems (Sanderson et al. 2002), quantifying their consequences for long-term population growth and persistence is crucial for management and conservation.

Stocking (or supplementation) programmes entail releasing captive-bred individuals into wild populations and are commonly used to counteract negative impacts of human disturbance, particularly in exploited populations (Laikre et al. 2010). Captive-bred individuals profit from elevated survival whilst in captivity, and their addition to natural populations effectively increases recruitment, leading to larger population sizes (Paquet et al. 2011). Populations reduced to critically low numbers have been saved from the brink of extinction by supplementation (Tallmon et al. 2004, Hostetler et al. 2013), and long-term stocking programmes may be able to ensure the persistence of heavily exploited populations even if they have lost their capacity to reproduce naturally (e.g. through loss of recruitment habitat, Rogers et al. 2010, Ziegler et al. 2017, Johnston et al. 2018).

However, stocking programmes may have considerable adverse side effects, particularly
regarding the genetic integrity of wild populations (Laikre et al. 2010, Allendorf et al. 2013). For example, the introduction of captive-bred individuals can lead to loss of genetic variation through increased levels of inbreeding and breakdown of local adaptations in the wild population. These effects may be alleviated if the parents of stocked individuals originate from the wild population, but even then will genetic diversity decrease as a few parents will have disproportionately large contributions to the next generation (Ryman \& Laikre 1991, Hansen et al. 2000). Furthermore, even a single generation of breeding in captivity may result in changes in gene expression that are passed on to offspring in wild populations (Christie et al. 2016), and the introgression of hatchery genotypes may even make populations more vulnerable to environmental stressors such as climate warming (McGinnity et al. 2009).

Large-scale stocking programmes are common for economically valuable fish species such as salmonids (Laikre et al. 2010, Aas et al. 2018). Historically, many salmonid hatcheries and stocking programmes were established as political responses to demands for stable or increased harvest yields (Naish et al. 2007), and their potential effectiveness and risks were rarely assessed prior to implementation (Rogers et al. 2010). Despite stocking representing but one of at least three distinct management actions for maintaining harvested fish populations, possible alternatives were often not considered either (Arlinghaus et al. 2016). The two main alternatives to stocking are 1) reducing fishing mortality through harvest regulations and 2) increasing natural production through improving and/or restoring the wild populations' habitat. The relative effectiveness of each management strategy depends on the wild population's reproductive capacity, the state of the habitat, and the total extent
of harvest (Rogers et al. 2010, Laikre et al. 2010, Arlinghaus et al. 2016).
At the core of optimising management of harvested populations lies the quantitative analysis of population dynamics and the assessment of the relative importance of underlying mechanisms (Lorenzen 2005). While the ultimate goal of stocking, habitat restoration, and harvest regulation pertains to the population level, management interventions in practice affect individuals. Exploring the potential outcomes of management thus requires understanding effects on individual's vital rates, and how these translate into population dynamics (Williams et al. 2002). Moreover, individual responses - and their importance for population-level pattterns - often vary depending on factors such as developmental stage, age, and body size, and structured population models are necessary to account for that (Caswell 2001).

In the present study we develop a size-structured integral projection model (IPM, Ellner \& Rees 2006) to investigate the effects of stocking, harvest, and river regulation on a population of landlocked, migratory brown trout (Salmo trutta). Many populations of large brown trout in Norway have declined over the last decades due to over-exploitation, hydropower production in spawning rivers, and habitat degradation (Museth et al. 2018). The study population has been subject to a large-scale compensatory stocking programme for over half a century, but concerns regarding negative impacts of hatchery supplementation have received more attention recently. While appropriate data for quantifying genetic effects of the stocking programme are not available, management authorities have recently suggested terminating the stocking programme to prevent further potential losses in genetic diversity. Here, we use the IPM parameterised with data collected over 50 years to 1) assess population viability in the absence of stocking, 2) investigate the relative importance of different mortality components across the entire life cycle, and 3) explore to what degree changes in harvest regulations, reductions in dam passage mortality, and/or restoration of spawning- and recruitment areas compromised by hydropower production could compensate for the loss of captive-bred individuals.

Materials and methods

STUDY SYSTEM AND DATA

The study population of brown trout, commonly referred to as "Hunder trout", inhabits Lake Mjøsa and its main inlet river, Gudbrandsdalslågen, in Eastern Norway. Despite being landlocked, Hunder trout closely resemble migratory sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) in terms of body size and life history (Aass et al. 1989, Figure 1). Adult Hunder trout spawn in the river in fall, and the eggs overwinter in loose gravel and hatch the following spring. Newly hatched trout spend 3-5 years in the river as juveniles before smolting and migrating downriver into the lake at an average length of 250 mm . After 2-3 years of piscivorous diet resulting in fast growth in the lake, they mature at an average length of 630 mm and migrate back up the river to spawn. Following the first spawning run, mature fish alternate between spawning and resting years, resulting in a biennial spawning cycle.

Due to a hydropower dam constructed in the river in the 1960s, the Hunder trout's spawning and recruitment areas are clearly divided into an upriver section (above the dam), accessible for spawning trout via a fish ladder, and a downriver section (below the dam). The latter has restricted water flow and availability of suitable spawning sites, which may severely limit reproductive success and recruitment (Kraabøl 2006). To compensate for expected adverse effects of the dam on production and harvest yield, a large-scale stocking programme was initiated immediately following dam construction (Aass 1993). After an inital experimental phase (1960s and 1970s, the stocking strategy was standardised in 1984. Since then, 20,000-40,000 2-year
old smolts with an average size of $200-240 \mathrm{~mm}$ have been released annually in several locations in the river (up- and downriver of the dam) and the lake. Stocked fish have constituted up to $\sim 60 \%$ of the spawning population in more recent years (Moe et al. 2019).

The Hunder trout population has been monitored extensively between 1966 and 2016. During this period, all adult trout ascending the fish ladder at the Hunderfossen dam were captured and individually marked. Marked trout were recaptured and reported both in the fish ladder during later spawning runs and by fishers following harvest. The resulting mark-recapture-recovery data spans 51 years and close to 15,000 individuals. For around 8,000 of these individuals, additional individual-level data on growth histories and life history schedules (smolting and spawning events) has been obtained through sclerochronological analysis of scales collected in the fish ladder at marking. For detailed descriptions of data sets and sampling protocols see Aass et al. (2017) and Moe et al. (2019).

To supplement the long-term data sets, we collected a limited amount of individual-based data on fecundity during the spawning seasons of 2017 and 2018. Female trout were captured in the fish ladder, kept in pools until ready to spawn, and subsequently hand-stripped. For a total of 15 females (6 in 2017, 9 in 2018) we then measured body length and calculated the total number of eggs based on egg-weight estimates from three sub-samples of the total batch.

SIZE-STRUCTURED POPULATION MODEL

Based on the Hunder trout life cycle (Figure 1), we built an integral projection model (IPM) structured by both life stage (representing life history stage and spawning status) and body size (length, in mm). The model is female-based and density-independent, and assumes that each year begins right after the trout have begun their spawning migration and entered the river in late summer. The transitions from life stages i in the current year t to life stages j in the next year $t+1$ are described by a projection matrix consisting of size-structured transition kernels $K_{i j}$:
stage $i(t)$

where x is the initial size prior to the growth season of the current year (t) and x^{\prime} is the next size reached at the end of the current year's growth season (and therefore also the initial size for the next year $t+1$). The indicator variables u and d denote the location of juveniles and spawners as up- or downriver of the dam, respectively. We also use z when referring to either location.
$K_{S p J}\left(x^{\prime}, x, u\right)$ and $K_{S p J}\left(x^{\prime}, x, d\right)$ are the reproduction kernels upriver and downriver of the dam respectively, and consist of the fecundity of a female of size $x(F(x))$, multiplied by 0.5 to represent only female offspring, the location-specific early survival $\left(S_{0, z}\right)$ from egg to 1-year-old, and an offspring size distribution at age 1 independent of the mother's size $\left(f\left(x^{\prime}\right)\right)$. The production of offspring of size x^{\prime} in location z by females of size x is thus described as

$$
\begin{equation*}
K_{S_{p} J}\left(x^{\prime}, x, z\right)=0.5 F(x) S_{0, z} f\left(x^{\prime}\right) \tag{2}
\end{equation*}
$$

All other kernels consist of survival and growth components, as well as pre- and/or post-growth transition components (Table 1). For example, the kernel for the transition from subadult to upriver spawner is defined as

$$
\begin{equation*}
K_{S S_{p}}\left(x^{\prime}, x, u\right)=S_{s}(x) P_{m a t}(x) g_{L}\left(x^{\prime}, x\right) P_{L}\left(x^{\prime}\right) \tag{3}
\end{equation*}
$$

To become an upriver spawner within a year starting in late summer, a subadult individual first survives $\left(S_{s}(x)\right)$ and matures $\left(P_{\text {mat }}(x)\right.$, pre-growth stage transition) depending on its current body size x. It then grows from size x to size x^{\prime} before the next late summer census $\left(g_{L}\left(x^{\prime}, x\right)\right)$, and subsequently uses the fish ladder depending on its newly attained size $x^{\prime}\left(P_{L}\left(x^{\prime}\right)\right.$, post-growth stage transition). All kernels and kernel components are defined in Tables 1 and 2. Survival probabilities are expressed in terms of time-averaged mortality hazard rates (Ergon et al. 2018), and estimation of vital rate functions is described in Appendix S2.

Using the kernel components of the projection matrix (1), the general IPM is
formulated by integrating over all sizes (Ellner \& Rees 2006):

$$
\begin{equation*}
n_{i}\left(x^{\prime}, t+1\right)=\sum_{j=1}^{\Omega} \int_{L}^{U} K_{j i}\left(x^{\prime}, x\right) n_{j}(x, t) d x \tag{4}
\end{equation*}
$$

where $n_{j}(x, t)$ is the density of individuals of size x in life stage j at time t, Ω is the number of life stages, and L and U are the lower and upper size limits, respectively.

Here, we first build the IPM projection kernel for a size range from $L=0$ to $U=1300 \mathrm{~mm}$ and let all vital rate functions represent averaged environmental conditions (see Appendix S2, section S2.2). We then discretise the kernel by dividing the size range into 300 bins of 4.33 mm (an adequate resolution to obtain accurate results from our model). The resulting stage-by-size bin projection matrix forms the basis for all subsequent analyses.

SCENARIOS AND ANALYSES

Impact of the dam on reproduction

Potential reductions in recruitment below the dam (due to less available/suitable spawning areas) are important to consider when assessing population viability. In lack of empirical estimates of reproductive success above and below the dam, we adopted an explorative approach in which we introduced a "below-dam penalty" on early (= egg to 1-year-old) mortality downriver of the dam $\left(m_{0, d}\right)$. Specifically, we ran all of the following analyses for three scenarios: 1) no penalty ($m_{0, d}=m_{0, u}$), 2) 50% higher early mortality below the dam $\left(m_{0, d}=1.5 \times m_{0, u}\right.$, hereafter "moderate

$$
\begin{align*}
& K_{H S}\left(x^{\prime}, x, u\right)=S_{d a m}(x) g_{L}\left(x^{\prime}, x\right) \tag{5a}\\
& K_{H S}\left(x^{\prime}, x, d\right)=g_{L}\left(x^{\prime}, x\right) \tag{5b}
\end{align*}
$$

The next year's size distribution of subadults is then given by

$$
\begin{align*}
n_{S}\left(x^{\prime}, t+1\right) & =\sum_{j=1}^{\Omega} \int_{L}^{U} K_{j S}\left(x^{\prime}, x\right) n_{j}(x, t) d x+ \\
& \int_{L}^{U} K_{H S}\left(x^{\prime}, x, u\right) n_{H}(x, u, t) d x+\int_{L}^{U} K_{H S}\left(x^{\prime}, x, d\right) n_{H}(x, d, t) d x \tag{6}
\end{align*}
$$

The first argument on the right-hand side of equation (6) represents all wild-born juveniles smolting and becoming subadults, while the second and third argument are the subadults that were released from the hatchery up- and downriver of the dam respectively. We calculated the mean annual number of stocked smolt of size x released in location $z\left(n_{H}(x, z, t)\right)$ from annual smolt release reports (1984-2017, see Appendix S4 for details). For projecting the population under stocking, we further split the IPM into separate projection matrices for wild-born and stocked individuals, each of which used origin-specific prediction functions for harvest mortality, adult background mortality, lake growth, maturation probability, and ladder usage probability.

Using this extended model, we were able to simulate the consequences of terminating the stocking programme on population dynamics. We did this by first projecting the population with stocking for 200 years (starting from the stable size-by-stage distribution, Figure S1.1), and then continued the projection for another 200 years without stocking.

Sensitivity to mortality components

We evaluated the sensitivity of population metrics (M) to changes in the different mortality components. For M, we chose asymptotic population growth rate λ for scenarios without stocking (the dominant right eigenvalue of the projection matrix, Caswell 2001) and equilibrium population size after 200 projection steps for scenarios with stocking. We calculated sensitivities using a perturbation approach: we added a small number $a\left(=1 e^{-5}\right)$ to one mortality hazard rate at a time, built the projection matrix (1) with the perturbed hazard rate, extracted the metric under perturbation $\left(M_{\text {pert }}\right)$, and compared it to the metric without perturbation ($M_{\text {orig }}$). We then calculated sensitivity of M to the mortality hazard rate in question as $\frac{M_{\text {pert }}-M_{\text {orig }}}{a}$. Analogously, we calculated elasticities (= proportional sensitivities) as $\frac{M_{\text {pert }}-M_{\text {orig }}}{a M}$ after multiplying mortality hazard rates by $1+a$.

For stocked and unstocked populations, we separated the sensitivities to mortality hazard rates of up- and downriver juveniles and spawners to evaluate how the dam affected contributions. For stocked populations, we further distinguished the mortality components of stocked versus wild-born individuals.

Mitigation measures in the absence of stocking

Termination of stocking results in a loss of artificial recruitment and other mitigation measures may be necessary to compensate for this. As a first step towards evaluating the potential of compensatory mitigation measures, we explored the effect of four different harvest strategies: 1) no harvest ($m^{H}=0$), 2) minimum size limit protecting small individuals ($m^{H}=0$ for $x<500 \mathrm{~mm}$), 3) maximum size limit
protecting large individuals ($m^{H}=0$ for $x>700 \mathrm{~mm}$), and 4) harvest slot regulation to protect both small and large individuals ($m^{H}=0$ for $500<x<700 \mathrm{~mm}$). We evaluated the viability of the trout population under these four strategies by looking at responses of λ and long-term projections after stocking is terminated.

Next, we explored the population response to decreases in total harvest mortality (all sizes) ranging from 0 to 100% reduction in combination with a second type of mitigation measure: reducing the dam mortality of smolts and/or adult spawners on their downriver migration. For the dam mortality of smolts we compared an unperturbed scenario (no change in $m_{d a m}$) to a scenario where all smolts survived dam passage $\left(m_{\text {dam }}=0\right)$. For upriver spawners, we used a different approach since dam mortality is not an explicit parameter in our population model but contained in the estimate of adult background mortality $\left(m_{a, u}^{O}\right)$. With currently available data, it was impossible to determine what part of the estimated $m_{a, u}^{O}$ is due to passing the dam. However, Nater et al. (2019) suggested that the high mortality of smaller above-dam spawners may be due to the dam, as they are more likely to enter the turbines on their downriver migration. With that in mind, we designed exploratory scenarios of reduced dam mortality of upriver spawners by reducing the increase of $m_{a, u}^{O}$ with body size for smaller than average ($x<670 \mathrm{~mm}$) individuals by $0-100 \%$. We then built projection matrices and calculated λ for the range of possible combinations of harvest- and adult dam mortality (= 2601 scenarios; each mortality reduction ranging from 0 to 100% at 2% intervals). We then repeated these calculations for $m_{d a m}=0$.

Results

Population dynamics with and without stocking

With stocking in place, the population was projected to converge towards a stable equilibrium population size, which depended strongly on the severity of the below-dam penalty on early survival (Figure 2). In the absence of stocking, the population declined rapidly towards extinction irrespective of whether reproductive output below the dam was penalised or not (Figure 2). Here, the long-term growth rate λ took values of 0.882 when assuming no below-dam penalty, 0.824 with a moderate below-dam penalty, and 0.783 with a severe below-dam penalty. With or without stocking, juveniles made up the largest part of the population (84-97\%). The higher the below-dam penalty, the larger was the proportion of juveniles uprelative to downriver of the dam, and subadults and small spawners made up a larger segment of the population when stocking was included (Figure S1.1).

Relative importance of mortality components

In general, harvest mortality had the largest effect on modelled population dynamics. The sensitivity of equilibrium population size (with stocking) and λ (without stocking) to harvest mortality was twice that of the next-ranking component, subadult background mortality (m_{s}^{O}, Figure 3). With higher below-dam penalty, changes in other mortality components (particularly $m_{0, u}$ and $m_{j, u}$) became relatively more influential and even outweighed harvest mortality when proportional changes (elasticities) were considered (Figure S1.3a). The dynamics of stocked populations were more sensitive to mortality of stocked than wild-born individuals (Figure

S1.2). As a consequence, harvest and subadult background mortality - the two mortality components applying to the large number of stocked fish after their release - were relatively more important (Figures 3a and S1.3a). The dynamics of wild populations, conversely, were more sensitive to contributions from natural recruitment (i.e. m_{0} and m_{j}), particularly when considering proportional changes (Figures 3b and S1.3b).

Response to mitigation measures

Mitigation measures involving changes in harvest regulations had strong impacts on population viability in the absence of stocking (Figure 4). Completely abolishing harvest led to a $\sim 25 \%$ increase in λ irrespective of below-dam penalty (Table S1.1). This resulted in a growing population when there was either no (Figure 4a) or only a moderate below-dam penalty (Figure S1.4). Sparing only a part of the population based on their body size had smaller impacts, leading to $\sim 11 \%$ higher λ when both small ($>500 \mathrm{~mm}$) and large ($>700 \mathrm{~mm}$) individuals were protected. Sparing large individuals was more efficient when there was no below-dam penalty, whereas sparing small individuals had a larger effect when recruitment below the dam was compromised (Table S1.1). Mitigation measures protecting all or only large individuals further resulted in higher proportions of large-sized individuals within populations (Figure 4b).

Scenarios involving proportional decreases in harvest mortality revealed that even in the best case (i.e. no below-dam penalty) a reduction of harvest mortality by $54-58 \%$ was necessary to ensure population viabilty (Figure 5). Assuming a moderate below-dam penalty, the population was viable in the absence of stocking
only if total harvest was reduced by at least $84-88 \%$ (Figure S1.5b). Finally, if the below-dam penalty was severe, even completely abolishing harvest was insufficient to sustain the population (Figure S1.5c). Simultaneous decreases in dam mortality of spawners had only small effects, but combined measures led to higher λ than harvest measures alone. Additionally reducing dam mortality of smolts to 0 had only minor effects, increasing λ by 0.63% (no below-dam penalty) to 2.09% (severe below-dam penalty, Figure S1.6).ß

Discussion

We used an integral projection model structured by body size and life stage to study the dynamics of a population of brown trout exposed to multiple human activities: long-term stocking with captive-bred individuals, intensive harvest, and river regulation. Our model projections indicated that current levels of exploitation are only possible due to the large-scale stocking programme, and that its termination may lead to a population crash. As harvest of subadult and adult individuals was the key driver of population dynamics, drastic reductions in harvest were found necessary to ensure long-term population viability without stocking.

With regular stocking, the trout population stabilised at an equilibrium size which depended strongly on the number of stocked fish and the capacity for natural recruitment below the dam (Figure 2). Without stocking, the population was unable to persist and was projected to disappear in less than 50 years in the best scenario, thus closely resembling the dynamics of other landlocked salmonids exposed to multiple human disturbances (Whelan \& Johnson 2004, Brown et al. 2013). Post et al. (2003) noted that populations of landlocked migratory salmonids can only tolerate low levels of harvest due to their slow life histories, and the present study supports this by revealing a strong sensitivity to harvest relative to other sources of mortality (Figure 3). The fundamental link between the speed of life history and vulnerability to harvest is well established for fish in general (Hutchings \& Reynolds 2004), as well as for other taxonomic groups (Reynolds et al. 2001), and is a consequence of populations being unable to naturally replace the older, larger individuals targeted by harvest fast enough. In agreement with this, our sensitivity analysis also showed that without stocking, mortality components across
the entire life cycle were highly influential (Figures 3b and S1.3b). Population dynamics with stocking, on the other hand, were driven predominantly by harvest and background mortality of subadults (Figure 3a). This mirrors the fact that in the stocked population, newly released subadults represent the majority of the recruitment and make up a considerable part of the population (Figures S1.6 and S1.7).

The high sensitivity of population dynamics to harvest (Figure 3), and the fact that harvest mortality - unlike most other types of mortality - can be targeted by management intervention directly, make harvest regulations a key mechanism for ensuring population viability. Given the assumptions of the current model, we found that the total harvest mortality of fish of all sizes would have to be reduced by $54-100 \%$ (depending on natural recruitment capacity) to sustain a population without stocking in the long run (Figures 5, S1.8 and S1.9). At the same time, this would lead to higher proportions of ecologically valuable, large-sized individuals in the population (Figure 4b, Whelan \& Johnson 2004, Ohlberger et al. 2014). In practice, however, reductions in total harvest mortality of such magnitude would likely have to be achieved by drastically limiting not only each individual fisher's catch (e.g. with bag limits) but also the total fishing effort (e.g. by restricting the number of fishers, Post et al. 2003). Policy interventions such as these, which place strong limitations on fishers' activity, tend to be faced with strong opposition and may thus be hard to implement and enforce (Arlinghaus et al. 2002). This is likely also the case for the fishery of the Hunder trout, which not only has a long history (Aass \& Kraabøl 1999) but is also very popular today. Alternatives to policies aiming for drastic reductions of total harvest include size limits and catch-release fishing
(Gwinn et al. 2015, Cooke \& Schramm 2007). Harvest scenarios employing minimum (500 mm) or maximum (700 mm) size limits led to similar increases in population growth rate in our model (Figure 4a) but were unable to prevent the population from declining if harvest pressure remained unchanged beyond the limit. Combining minimum and maximum size limits, while still insufficient to achieve viability in the presented projections, increased population growth rates substantially. Harvest slot limits have proved to be a valuable option to meet conservation targets while ensuring fisher satisfaction in other systems (by maintaining the presence of large, harvestable individuals in the population, Gwinn et al. 2015, Arlinghaus et al. 2010), and may thus be worth considering, especially in combination with policies reducing total harvest. However, just like catch-and-release fishing (which is becoming more popular in our study system), their efficiency depends strongly on hooking mortality and thorough study and evaluation are needed prior to implementation (Post et al. 2003, Cooke \& Schramm 2007).

The effects of stocking and harvest on the modelled Hunder trout population are intricately linked to hydropower production in the river and we investigated potential synergistic effects with two consequences of river regulation: compromised spawning and rearing habitat below the dam (represented by recruitment penalties) and additional mortality of smolts and upriver spawners associated with passing the dam on the downriver migration. Increasing recruitment penalties below the dam resulted in lower population sizes and growth rates and altered the relative importance of up- and downriver reproduction (Figures 3 and S1.3). Consequently, the value of mitigation strategies reducing dam mortality also depended on the recruitment penalty below the dam (Figures S1.8-S1.10). When early survival was
assumed independent of spawning location, population dynamics were more sensitive to mortality of eggs, juveniles, and spawners downriver of the dam. Mitigation measures improving dam survival of upriver smolts and spawners thus had very little effect. This was a direct consequence of highly fecund, large individuals being much more likely to spawn below the dam (Figure S2.4, Nater et al. 2019). When assuming compromised downriver recruitment due to river regulation, on the other hand, large individuals spawning below the dam lost a large portion of their reproductive output. Recruitment above the dam and the survival of smolts during the downriver migration $\left(S_{d a m}\right)$ thus became relatively more influential (Figures 3), and population persistence in the absence of stocking was more likely when not only harvest but also dam mortality of smolts and spawners were reduced (Figures S1.8-S1.10). Ensuring self-sustainability of the Hunder trout population in the long-run may thus require mitigation of not just harvest but also other human disturbances, as has been shown previously for Atlantic salmon (Gibson et al. 2009), Chinook salmon (Onchrorhynchus tshawytscha, Kareiva et al. 2000), and the entire salmonid assemblage in the Upper Great Lakes (Whelan \& Johnson 2004). In our study system, measures for mitigating negative impacts due to hydropower production could involve 1) increasing the number of large trout spawning upriver of the dam by improving the fish ladder, 2) reducing smolt and spawner dam mortality by installing safer downstream passages (Fjeldstad et al. 2018), and 3) restoring, protecting, and enhancing spawning habitat in the river (Trussart et al. 2002, Rubin et al. 2004).

Using a structured demographic model, we were able to investigate the potential effects of different management actions on population dynamics of the Hunder trout.

Our general insights could be refined by extending the model in several ways. In lack of individual-based data for much of the early life history, several vital rates in the model were derived from literature. While our general conclusions were robust to the choice of literature parameters (Appendix S3), efforts to collect population-specific data on egg, juvenile, and subadult mortality would greatly enhance our model's ability to make robust quantitative predictions. In this context, consideration of density-dependent effects may also be important. Compensatory density dependence in early life (recruitment, juvenile survival) is well documented in fish (Lorenzen 2005, Rose et al. 2001). While unlikely to prevent population collapse in the absence of stocking, compensatory density dependence may prevent extinction at low population sizes and modify the outcome of mitigation measures in declining populations. The outcome of some mitigation measures may also be affected by density-dependent harvest dynamics: fishers may change their effort and behaviour in response to fish population size and this can impact the effects of changes in fishing regulations (e.g. Post et al. 2003). Accounting for density-dependent effects in both early life and harvest may thus improve our mechanistic understanding of this and similar systems and their responses to human activity, in particular at low population size, and we see appropriate extensions of the present model as a promising future direction. Finally, the model presented here focused exclusively on the demographic consequences of stocking vs. not stocking. The biggest concern regarding stocking programmes and the main argument for their termination, however, is the associated loss of genetic variation (Laikre et al. 2010). Changes in genetic variation can be modelled alongside demographic mechanisms in integrated models (e.g Coulson et al. 2015, Willoughby \& Christie 2019). Adopting such an approach for the Hunder trout would be beneficial for quantifying past and future
impact of stocking on genetic variation. It could also aid in developing strategies for enhancing stocking practices to minimise negative genetic and demographic impacts (Araki \& Schmid 2010) and for weighing different stocking practices against compensatory mitigation measures (Johnston et al. 2018, Arlinghaus et al. 2002, Janowitz-Koch et al. 2018).

Conclusion

Large-scale stocking programmes have been used to sustain and supplement populations for decades, but the practice is increasingly called into question due to its potential negative impacts on the genetic integrity of wild populations. The results of this study indicate that termination of a long-term stocking programme may lead to the rapid collapse of a population of landlocked, migratory brown trout, unless accompanied by appropriate mitigation measures. Specifically, we found that drastic reductions in harvest pressure, possibly accompanied by improvements of natural spawning habitats, and enhanced survival while passing a hydroelectric dam were required to sustain the population in the long run. Our study highlights the need to quantify the effects of terminating stocking on population dynamics prior to changing policy and illustrates the large potential of structured demographic models for this purpose.

Authors' contributions

All authors were involved in conception of ideas; CN, AR, YV and AV collected data; CN, YV, ØL, and MWS designed methodology; CN and MWS analysed demographic data; CN performed population model analyses and led manuscript writing. All authors contributed critically to drafts and gave final approval for publication.

Acknowledgements

This work was supported by the Research Council of Norway (project SUSTAIN, 244647/E10). We thank Per Aass for contributing with long-term scale data needed for estimating smolting and maturation schedules, Erik Friele (County Governor of Oppland) and Frank Hansen (Hunderfossen hatchery) for providing smolt release reports, and all participants of two stakeholder meetings for contributing to the discussions leading up to this paper.

Data accessibility

Data will be made available on Dryad.

References

Aas, Ø., Cucherousset, J., Fleming, I.A., Wolter, C., Höjesjö, J., Buoro, M., Santoul, F., Johnsson, J.I., Hindar, K. Arlinghaus, R. (2018) Salmonid stocking in five north atlantic jurisdictions: Identifying drivers and barriers to policy change. Aquatic Conservation: Marine and Freshwater Ecosystems 28, 1451-1464.

Aass, P. (1993) Stocking strategy for the rehabilitation of a regulated brown trout (Salmo trutta L.) river. Regulated Rivers: Research छ Management 8, 135-144.

Aass, P. \& Kraabøl, M. (1999) The exploitation of a migrating brown trout (Salmo trutta L.) population; change of fishing methods due to river regulation. River Research and Applications 15, 211-219.

Aass, P., Nielsen, P.S. \& Brabrand, Å. (1989) Effects of river regulation on the structure of a fast-growing brown trout (Salmo trutta L.) population. Regulated Rivers: Research छ Management 3, 255-266.

Aass, P., Rustadbakken, A., Moe, S.J., Lund, E. \& Qvenild, T. (2017) Life-history data on Hunder brown trout (Salmo trutta) from lake Mjøsa, Norway. Freshwater Metadata Journal 25, 1-11.

Albuquerque, U.P., Gonçalves, P.H.S., Júnior, W.S.F., Chaves, L.S., da Silva Oliveira, R.C., da Silva, T.L.L., dos Santos, G.C. de Lima Araújo, E. (2018) Humans as niche constructors: Revisiting the concept of chronic anthropogenic disturbances in ecology. Perspectives in Ecology and Conservation 16, 1-11.

Allendorf, F.W., Luikart, G.H. \& Aitken, S.N. (2013) Conservation and the genetics of populations. Wiley-Blackwell, Chicester, 2nd edn.

Andren, H. (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355-366.

Araki, H. \& Schmid, C. (2010) Is hatchery stocking a help or harm?: evidence, limitations and future directions in ecological and genetic surveys. Aquaculture 308, S2-S11.

Arlinghaus, R., Lorenzen, K., Johnson, B.M., Cooke, S.J. \& Cowx, I.G. (2016) Management of freshwater fisheries: addressing habitat, people and fishes. Freshwater Fisheries Ecology (ed. J.F. Craig), pp. 557-579, John Wiley \& Sons, Chichester, UK.

Arlinghaus, R., Matsumura, S. \& Dieckmann, U. (2010) The conservation and fishery benefits of protecting large pike (Esox lucius L.) by harvest regulations in recreational fishing. Biological Conservation 143, 1444-1459.

Arlinghaus, R., Mehner, T. \& Cowx, I.G. (2002) Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe. Fish and Fisheries 3, 261-316.

Brown, J.J., Limburg, K.E., Waldman, J.R., Stephenson, K., Glenn, E.P., Juanes, F. \& Jordaan, A. (2013) Fish and hydropower on the US Atlantic coast: failed fisheries policies from half-way technologies. Conservation Letters 6, 280-286.

Caswell, H. (2001) Matrix population models: construction, analysis, and interpretation. Sunderland, Mass.: Sinauer Associates.

Christie, M.R., Marine, M.L., Fox, S.E., French, R.A. \& Blouin, M.S. (2016) A single generation of domestication heritably alters the expression of hundreds of genes. Nature Communications 7, 10676.

Cooke, S. \& Schramm, H. (2007) Catch-and-release science and its application to conservation and management of recreational fisheries. Fisheries Management and Ecology 14, 73-79.

Coulson, T., Plard, F., Schindler, S., Ozgul, A. \& Gaillard, J.M. (2015) Quantitative genetics meets integral projection models: unification of widely used methods from ecology and evolution. arXiv preprint arXiv:1509.01351 .

Ellner, S.P. \& Rees, M. (2006) Integral projection models for species with complex demography. The American Naturalist 167, 410-428.

Ergon, T., Borgan, \varnothing., Nater, C.R. \& Vindenes, Y. (2018) The utility of mortality hazard rates in population analyses. Methods in Ecology and Evolution 9, 2046-2056.

Fjeldstad, H.P., Pulg, U. \& Forseth, T. (2018) Safe two-way migration for salmonids and eel past hydropower structures in Europe: a review and recommendations for best-practice solutions. Marine and Freshwater Research 69, 1834-1847.

Gibson, A.J.F., Jones, R.A. \& Bowlby, H.D. (2009) Equilibrium analyses of a population's response to recovery activities: a case study with Atlantic salmon. North American Journal of Fisheries Management 29, 958-974.

Gwinn, D.C., Allen, M.S., Johnston, F.D., Brown, P., Todd, C.R. \& Arlinghaus, R. (2015) Rethinking length-based fisheries regulations: the value of protecting old and large fish with harvest slots. Fish and Fisheries 16, 259-281.

Hansen, M.M., Nielsen, E.E., Ruzzante, D.E., Bouza, C. \& Mensberg, K.L.D. (2000) Genetic monitoring of supportive breeding in brown trout (Salmo trutta L.), using microsatellite DNA markers. Canadian Journal of Fisheries and Aquatic Sciences 57, 2130-2139.

Hobbs, R.J. \& Huenneke, L.F. (1992) Disturbance, diversity, and invasion: implications for conservation. Conservation biology 6, 324-337.

Hostetler, J.A., Onorato, D.P., Jansen, D. \& Oli, M.K. (2013) A cat's tale: the impact of genetic restoration on Florida panther population dynamics and persistence. Journal of Animal Ecology 82, 608-620.

Hutchings, J.A. \& Reynolds, J.D. (2004) Marine fish population collapses: consequences for recovery and extinction risk. BioScience 54, 297-309.

Janowitz-Koch, I., Rabe, C., Kinzer, R., Nelson, D., Hess, M.A. \& Narum, S.R. (2018) Long-term evaluation of fitness and demographic effects of a Chinook salmon supplementation program. Evolutionary Applications .

Johnston, F.D., Allen, M.S., Beardmore, B., Riepe, C., Pagel, T., Hühn, D. \& Arlinghaus, R. (2018) How ecological processes shape the outcomes of stock enhancement and harvest regulations in recreational fisheries. Ecological Applications 28, 2033-2054.

Kareiva, P., Marvier, M. \& McClure, M. (2000) Recovery and management options
for spring/summer Chinook salmon in the Columbia River Basin. Science 290, 977-979.

Kraabøl, M. (2006) Gytebiologi hos Hunderørret i Gudbrandsdalslågen nedenfor Hunderfossen kraftverk. NINA rapport 217 pp. 1-34.

Laikre, L., Schwartz, M.K., Waples, R.S., Ryman, N., Group, G.W. et al. (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends in ecology \mathfrak{E} evolution 25, 520-529.

Lorenzen, K. (2005) Population dynamics and potential of fisheries stock enhancement: practical theory for assessment and policy analysis. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 171-189.

McGinnity, P., Jennings, E., DeEyto, E., Allott, N., Samuelsson, P., Rogan, G., Whelan, K. Cross, T. (2009) Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction. Proceedings of the Royal Society B: Biological Sciences 276, 3601-3610.

Moe, S.J., Nater, C.R., Rustadbakken, A., Vøllestad, L.A., Lund, E., Qvenild, T., Hegge, O. Aass, P. (2019) A 50-year series of mark-recapture data of large-sized brown trout (Salmo trutta) from Lake Mjøsa, Norway. bioRxiv Doi:10.1101/544825.

Museth, J., Dervo, B., Brabrand, Å., Heggenes, J., Karlsson, S. \& Kraabøl, M. (2018) Storørret i Norge. Definisjon, status, påvirkningsfaktorer og kunnskapsbehov. NINA rapport 1498 pp. 1-97.

Naish, K.A., Taylor III, J.E., Levin, P.S., Quinn, T.P., Winton, J.R., Huppert, D. \& Hilborn, R. (2007) An evaluation of the effects of conservation and fishery enhancement hatcheries on wild populations of salmon. Advances in Marine Biology 53, 61-194.

Nater, C.R., Vindenes, Y., Aass, P., Cole, D., Langangen, Ø., Moe, J., Rustadbakken, A., Turek, D., Vøllestad, L.A. Ergon, T. (2019) Estimating cause- and sizespecific mortality hazard rates using mark-recapture-recovery data. bioRxiv Doi:10.1101/544742.

Ohlberger, J., Thackeray, S.J., Winfield, I.J., Maberly, S.C. \& Vøllestad, L.A. (2014) When phenology matters: age-size truncation alters population response to trophic mismatch. Proceedings of the Royal Society B: Biological Sciences 281, 20140938.

Paquet, P., Flagg, T., Appleby, A., Barr, J., Blankenship, L., Campton, D., Delarm, M., Evelyn, T., Fast, D., Gislason, J. et al. (2011) Hatcheries, conservation, and sustainable fisheries-achieving multiple goals: results of the Hatchery Scientific Review Group's Columbia River basin review. Fisheries 36, 547-561.

Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37, 637-669.

Post, J.R., Mushens, C., Paul, A. \& Sullivan, M. (2003) Assessment of alternative harvest regulations for sustaining recreational fisheries: model development and application to bull trout. North American Journal of Fisheries Management 23, 22-34.

Reynolds, J.D., Mace, G.M., Redford, K.H. \& Robinson, J.G. (2001) Conservation of exploited species, vol. 6. Cambridge University Press.

Rogers, M.W., Allen, M.S., Brown, P., Hunt, T., Fulton, W. \& Ingram, B.A. (2010) A simulation model to explore the relative value of stock enhancement versus harvest regulations for fishery sustainability. Ecological Modelling 221, 919-926.

Rose, K.A., Cowan, J.H., Winemiller, K.O., Myers, R.A. \& Hilborn, R. (2001) Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis. Fish and Fisheries 2, 293-327.

Rubin, J.F., Glimsäter, C. \& Jarvi, T. (2004) Characteristics and rehabilitation of the spawning habitats of the sea trout, Salmo trutta, in Gotland (Sweden). Fisheries Management and Ecology 11, 15-22.

Ryman, N. \& Laikre, L. (1991) Effects of supportive breeding on the genetically effective population size. Conservation Biology 5, 325-329.

Sanderson, E.W., Jaiteh, M., Levy, M.A., Redford, K.H., Wannebo, A.V. \& Woolmer, G. (2002) The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891-904.

Tallmon, D.A., Luikart, G. \& Waples, R.S. (2004) The alluring simplicity and complex reality of genetic rescue. Trends in Ecology ${ }^{6}$ Evolution 19, 489-496.

Trussart, S., Messier, D., Roquet, V. \& Aki, S. (2002) Hydropower projects: a review of most effective mitigation measures. Energy Policy 30, 1251-1259.

Whelan, G.E. \& Johnson, J.E. (2004) Successes and failures of large-scale ecosystem manipulation using hatchery production: the upper Great Lakes experience. Propagated fish in resource management. American Fisheries Society, Symposium, vol. 44, pp. 3-32.

Williams, B.K., Nichols, J.D. \& Conroy, M.J. (2002) Analysis and management of animal populations. Academic Press.

Willoughby, J.R. \& Christie, M.R. (2019) Long-term demographic and genetic effects of releasing captive-born individuals into the wild. Conservation Biology 33, 377-388.

Ziegler, J.P., Golebie, E.J., Jones, S.E., Weidel, B.C. \& Solomon, C.T. (2017) Social-ecological outcomes in recreational fisheries: the interaction of lakeshore development and stocking. Ecological Applications 27, 56-65.

Supporting information

The following supporting information is available for this publication: Appendices S1-S4.

Figure 1: Life cycle of the Hunder trout as formulated in the IPM. Arrows represent the possible annual transitions from the start of the spawning migration in year t to the start of the spawning migration in year $t+1$. Arrows are annotated with transition probabilities based on various vital rates (see Table 2).

Figure 2: Projection of the Hunder trout population with (up to year $50=$ dashed line) and without stocking, and assuming either no below-dam penalty (green), or below-dam penalties of 50% (blue) and 100% (black) higher early mortality.

a) Population with stocking

b) Population without stocking

Figure 3: Sensitivity of a) equilibrium population size in a population with stocking and b) asymptotic population growth rate λ in a population without stocking to different mortality hazard rates (see Table 2).

Figure 4: Projection of a) trout population size (log-scale) and b) size distributions within subadult and adult stages (spawners and post-spawners) with and without stocking and complimentary mitigation measures (no below-dam penalty). Size distributions in b) are scaled to sum to 1 within stages, representing relative, not total, density.

Asymptotic growth rate λ

Figure 5: Asymptotic population growth rate λ calculated from the projection matrix (1) under different reductions of harvest mortality (rows) and dam mortality of adults (columns). The latter is approximated as decreases in background mortality of below average-sized above-dam spawners. White lines mark $\lambda=1$ (solid) and $\lambda=0.9,1.1$ (dashed).

Tables

Table 1: Overview over the composition of all transition Kernels.

Stage transition	Transition kernel	Kernel composition
Juvenile-Juvenile	$K_{J J}\left(x^{\prime}, x, u\right)$	$=S_{j, u}(x)\left[1-P_{s m o l t}(x)\right] g_{R}\left(x^{\prime}, x\right)$
	$K_{J J}\left(x^{\prime}, x, d\right)$	$=S_{j, d}(x)\left[1-P_{\text {smolt }}(x)\right] g_{R}\left(x^{\prime}, x\right)$
Juvenile-Subadult	$K_{J S}\left(x^{\prime}, x, u\right)$	$=S_{j, u}(x) P_{\text {smolt }}(x) S_{\text {dam }}(x) g_{L}\left(x^{\prime}, x\right)$
	$K_{J S}\left(x^{\prime}, x, d\right)$	$=S_{j, d}(x) P_{\text {smolt }}(x) g_{L}\left(x^{\prime}, x\right)$
Subadult-Subadult	$K_{S S}\left(x^{\prime}, x\right)$	$=S_{s}(x)\left[1-P_{\text {mat }}(x)\right](x) g_{L}\left(x^{\prime}, x\right)$
Subadult-Spawner	$K_{S S_{p}}\left(x^{\prime}, x, u\right)$	$=S_{s}(x) P_{\text {mat }}(x)(x) g_{L}\left(x^{\prime}, x\right) P_{L}\left(x^{\prime}\right)$
	$K_{S S_{p}}\left(x^{\prime}, x, d\right)$	$=S_{s}(x) P_{\text {mat }}(x)(x) g_{L}\left(x^{\prime}, x\right)\left[1-P_{L}\left(x^{\prime}\right)\right]$
Spawner-Juvenile	$K_{S_{p} J}\left(x^{\prime}, x, u\right)$	$=0.5 F(x) S_{0, u} f\left(x^{\prime}\right)$
	$K_{S_{p} J}\left(x^{\prime}, x, d\right)$	$=0.5 F(x) S_{0, d} f\left(x^{\prime}\right)$
Spawner-Post-spawner*	$K_{S_{p} P}\left(x^{\prime}, x, u\right)$	$=S_{a, u}(x) g_{L}\left(x^{\prime}, x\right)$
	$K_{S_{p} P}\left(x^{\prime}, x, d\right)$	$=S_{a, d}(x) g_{L}\left(x^{\prime}, x\right)$
Post-spawner-Spawner ${ }^{* *}$	$K_{P S_{p}}\left(x^{\prime}, x, u\right)$	$=S_{a, u}(x) g_{L}\left(x^{\prime}, x\right) P_{L}\left(x^{\prime}\right)$
	$K_{P S_{p}}\left(x^{\prime}, x, d\right)$	$=S_{a, d}(x) g_{L}\left(x^{\prime}, x\right)\left[1-P_{L}\left(x^{\prime}\right)\right)$

[^1]Table 2: Summary of vital rates used in the population model. All functions for survival probabilities are formulated using time-averaged mortality hazard rates.

| Model components | Vital rate* |
| :--- | :---: | :--- | Description*

[^2]
[^0]: *.c.r.nater@ibv.uio.no

[^1]: * $S_{a, u}$ and $S_{a, d}$ represent survival over 2 years.
 ${ }^{* *} S_{a, u}$ and $S_{a, d}=1$.

[^2]: * z denotes the location relative to the dam; $z=u$ or $z=d$ for up- and downriver, respectively.

