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Abstract 9 

Decision-making under uncertain conditions favors bet-hedging (avoidance of fitness variance), 10 

whereas predictable environments favor phenotypic plasticity. However, entirely predictable or 11 

entirely unpredictable conditions are rarely found in nature. Intermediate strategies are required when 12 

the time lag between information sensing and phenotype induction is large (e.g. transgenerational 13 

plasticity) and when cues are only partially predictive of future conditions. Nevertheless, current 14 

theory regards plasticity and bet-hedging as distinct entities. We here develop a unifying framework: 15 

based on traits with binary outcomes like seed germination or diapause incidence we clarify that 16 

diversified bet-hedging (risk-spreading among one’s offspring) and transgenerational plasticity are 17 

mutually exclusive strategies, arising from opposing changes in reaction norms (allocating 18 

phenotypic variance among or within environments). We further explain the relationship of this 19 

continuum with arithmetic mean optimization vs. conservative bet-hedging (a risk-avoidance 20 

strategy), and canalization vs. phenotypic variance as a three-dimensional continuum of reaction 21 

norm evolution. We discuss under which scenarios costs and limits may constrain the evolution of 22 

reaction norm shapes. 23 
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1 Introduction 25 

Changing conditions can promote evolutionary change in various ways (Botero et al., 2015; Tufto, 26 

2015). One commonly envisioned mode of evolution is the continuous change of trait means as result 27 

of changing mean conditions (Darwin, 1859). Yet, although trait changes in response to novel 28 

conditions are widely observed (e.g. due to climate change, Piao et al., 2019),  they frequently result 29 

from phenotypic plasticity (Boutin and Lane, 2014), i.e. changes of the phenotype in response to an 30 

environmental cue. Phenotypic plasticity may provide a short-term relief from changing conditions 31 

(Charmantier et al., 2008; Chevin et al., 2010), but also shield a genotype from selection and thereby 32 

prevent evolution (Oostra et al., 2018), or it may facilitate evolution via genetic accommodation 33 

(Kelly, 2019). In any case, phenotypic plasticity is a pervasive evolutionary strategy, and considered 34 

a major factor in a rapidly changing climate (Fox et al., 2019). 35 

The time scale of phenotypic plasticity depends on the time scale of environmental fluctuation 36 

(Rando and Verstrepen, 2007; Stomp et al., 2008). Fluctuations over very rapid timescales can be 37 

addressed by reversible plasticity, which includes, for example, the induction of plant defense when 38 

herbivores are present (Green and Ryan, 1972). Gradual long-term changes, on the other hand, are 39 

addressed by genetic adaptation. Between those extremes lie environmental fluctuations that are 40 

roughly on the scale of one life span. When environments change over the course of an organism’s 41 

development, they can be tackled by irreversible developmental plasticity, i.e. plastic adjustment of 42 

developmental pathways that lead to alternative phenotypes (Botero et al., 2015). For example, some 43 

Daphnia can produce protective phenotypes when chemical cues from predators are sensed during 44 

development (Krueger and Dodson, 1981). When environments are constant throughout an 45 

organism’s life time but change from one generation to the next, phenotypic change can be induced 46 

in the offspring generation. These are referred to as anticipatory parental effects (Burgess and 47 

Marshall, 2014) or intergenerational inheritance (Perez and Lehner, 2019). For example, aphids that 48 

live under crowded conditions may produce winged offspring that can leave the colony and avoid 49 

high predation pressure or plant deterioration (Braendle et al., 2006). Lastly, when environmental 50 

fluctuations last for several generations, epigenetic modifications may be integrated into the germ 51 

line and affect multiple succeeding generations. This is referred to as transgenerational plasticity or 52 

non-genetic inheritance (Perez and Lehner, 2019; Adrian-Kalchhauser et al., 2020). For the 53 

remainder of the article we will refer to all these irreversible changes simply as phenotypic plasticity, 54 
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ignoring the potential physiological constrains that may limit their evolution. They all have in 55 

common that there is a long delay between information sensing and phenotype induction.  56 

Although often assumed, phenotypic plasticity does not need to be adaptive (Ghalambor et al., 2007; 57 

Arnold et al., 2019). Plasticity requires some environmental cue on which the induction of 58 

phenotypic change is based, and uncertainty around the future environmental state may turn plasticity 59 

maladaptive (Burgess and Marshall, 2014; Donelson et al., 2018). Such unpredictable conditions 60 

instead favor bet-hedging strategies, which refer to the reduction of fitness variance (Cohen, 1966; 61 

Seger and Brockmann, 1987; Starrfelt and Kokko, 2012). This can be achieved by avoiding risky 62 

investments (conservative bet-hedging), or by spreading the risk among one’s offspring (diversified 63 

bet-hedging), i.e. producing offspring with varying phenotypes (Seger and Brockmann, 1987; 64 

Starrfelt and Kokko, 2012). Although empirical evidence is difficult to obtain (Simons, 2011), bet-65 

hedging is a likely explanation for high trait variance or unexpected trait means in many systems, 66 

such as the seed dormancy of desert annuals (Cohen, 1966), diapausing strategies of insects (Hopper, 67 

1999) and annual killifish (Furness et al., 2015), wing dimorphisms (Grantham et al., 2016), and the 68 

evolution of facultative sexual reproduction (Gerber and Kokko, 2018), dispersal and partial 69 

migration (Goossens et al., 2020). 70 

At fluctuations of intermediate time scales where there is a delay between information sensing and 71 

phenotype induction, both phenotypic plasticity (e.g. Baker et al., 2019) and bet-hedging (e.g. 72 

Venable, 2007) may be expected to evolve. Various theoretical studies have clarified the conditions 73 

that may lead to one or the other (Botero et al., 2015; Tufto, 2015), but although occurring potentially 74 

simultaneously, bet-hedging and plasticity are nevertheless often treated independently (Donelson et 75 

al., 2018). Moreover, when diversified bet-hedging and plasticity are considered jointly, there is no 76 

clear consensus about their exact relationship. Adaptive offspring variance that is needed for 77 

diversified bet-hedging might be either established by developmental instability (Simons and 78 

Johnston, 1997; Kærn et al., 2005; Veening et al., 2008; Woods, 2014; Dueck et al., 2016; Perrin, 79 

2016) or by overly relying on cues with little predictive power (“microplasticity”, Simons and 80 

Johnston, 2006; “hyperplasticity”, Scheiner and Holt, 2012). With this article we aim to clarify the 81 

relationship between bet-hedging and plasticity, with special attention to readers that are familiar 82 

with plasticity but less familiar with bet-hedging theory. We will first use one simple numerical 83 

example (insect diapause) to explain the relationship of diversified bet-hedging, conservative bet-84 

hedging and arithmetic mean optimization in detail. We will then extend the consideration to a range 85 

of environments whose state is partially predictable, thereby adding the potential for phenotypic 86 
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plasticity. Lastly, we generalize from our example and describe a method to quantify phenotypic 87 

plasticity and bet-hedging based on reaction norm shapes.  88 

 89 

2 An example 90 

Common examples of bet-hedging are trans-generational biphenisms, i.e. the parent decides among 91 

two possible physiological states of the offspring in the face of uncertainty (e.g. Cohen, 1966; 92 

Grantham et al., 2016; Maxwell and Magwene, 2017; see Simons, 2011 for further examples). One of 93 

these examples is the timing of insect diapause (Halkett et al., 2004; Pélisson et al., 2013), which we 94 

will use to illustrate the theory throughout this article.   95 

Multivoltine insects benefit from exponential population growth throughout the growing season, but 96 

need to produce an overwintering (diapausing) generation before the onset of cold weather (Kivela et 97 

al., 2016). Aphids, for example, reproduce by parthenogenesis during summer, which enables 98 

particularly quick population growth; in autumn they invest in sexual offspring that produce 99 

diapausing eggs, as frost kills the soft-bodied insects and only eggs survive (Simon et al., 2002). The 100 

struggle to keep the growing season long on one hand and to avoid death on the other hand puts 101 

diapause timing under intense selection pressure. If the onset of frost would be invariant, day length 102 

could be used as reliable cue of impeding winter, so plasticity to day length is expected to evolve. 103 

However, if just one generation faces early frosts, all offspring may simultaneously die and the 104 

genotype is driven to extinction, regardless of their otherwise high growth rates. Under unpredictable 105 

or only partially predictable conditions, bet-hedging strategies may therefore be expected to evolve 106 

(Halkett et al., 2004). 107 

  108 
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3 Arithmetic mean optimization, diversified bet-hedging and conservative bet-109 

hedging 110 

We wish to use the diapause example to explain the bet-hedging concept in detail with a few 111 

numerical examples. We first consider an entirely unpredictable environment, in which an aphid 112 

mother cannot collect any information about the potential environment of their offspring i.e. there is a 113 

50% chance that the offspring will face beneficial summer conditions (E1), but also a 50% chance for 114 

harsh winter conditions (E2). Let us further assume that parthenogenetic offspring (P1) have a fitness 115 

value of 4 in arbitrary units in E1 (summer), but only 0.1 in E2 (winter), whereas diapausing offspring 116 

(P2) have 1 fitness regardless of environmental conditions. A genotype that only invests in 117 

parthenogenesis (P1) maximizes the arithmetic mean fitness and achieves on average 2.05 fitness, 118 

which is twice as much as a genotype that invests exclusively in diapause (P2) (table 1). 119 

Nevertheless, the latter strategy (risk-aversion) is more successful on the long term, because the 120 

former nearly dies out every two years. The arithmetic mean obviously fails as predictor of long-term 121 

population growth. If there are multiple decisions to make and the outcome is multiplicative, such as 122 

for population growth over multiple years, the geometric mean is a much better predictor, because it 123 

is sensitive to variance among years (Cohen, 1966; Seger and Brockmann, 1987; Starrfelt and 124 

Kokko, 2012). It correctly shows that the strategy of investing exclusively in diapause is superior to 125 

investing exclusively in parthenogenesis, because the lower arithmetic mean fitness is more than 126 

compensated by the reduction in fitness variance. The risk-aversive strategy of investing in lower 127 

fitness fluctuation at the cost of arithmetic mean fitness is called conservative bet -hedging (CBH), 128 

akin to investing in gold when stock markets fluctuate.  129 

Now let us consider a genotype with high developmental instability, i.e. whose offspring phenotype 130 

is randomly determined. Investing equally in both phenotypes (P1 and P2) breaks down the fitness 131 

correlation among the offspring, as half of the offspring takes a risk, while the other half plays it safe 132 

(Starrfelt and Kokko, 2012). This means that the arithmetic mean fitness is not reduced as strongly as 133 

that of the risk-aversive phenotype (100% P2), but the fitness fluctuation between E1 and E2 (2.5 vs 134 

0.55) is also not as great as that of the arithmetic mean optimizer (100% P1). This strategy is similar 135 

to investing in a portfolio of stocks rather than a single stock and is called diversified bet -hedging 136 

(DBH).  137 

By definition, risk aversion strategies can only be equated with conservative bet-hedging (CBH), and 138 

developmental instability only with diversified bet-hedging (DBH), when they increase geometric 139 

mean fitness; and both bet-hedging strategies require that arithmetic mean fitness is reduced. In line 140 
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with these definitions we will refer to different phenotype proportions as risk-aversion, 141 

developmental instability and arithmetic mean optimization, and reserve the terms CBH and DBH for 142 

the case that these proportions increase geometric mean fitness. In summary, a genotype may 143 

maximize arithmetic mean fitness (100% P1), reduce individual fitness variance by risk aversion 144 

(100% P2), or reduce the fitness correlation among its offspring through developmental instability 145 

(50 % each).  146 

The geometric mean can be calculated for any phenotype proportion p between 0 and 100% (Fig.1, 147 

blue line), showing that actually neither of the three strategies (AMO, CBH, DBH) is optimal. 148 

Instead, a phenotype proportion of .61 yields the highest geometric mean fitness (Table 1). The same 149 

principles also apply when the frequency of E1 and E2 is not 0.5. For example, when the frequency of 150 

E2 (winter) is only 20%, the optimal proportion of P2 is 0.17 (Fig. 1, orange line). Geometric mean 151 

fitness thus changes along a gradient ranging from arithmetic mean optimization (p = 0) over 152 

developmental instability (p =0.5) to risk aversion (p=1), and the optimal strategy accordingly may 153 

range from AMO over DBH to CBH. The more seasoned reader of bet-hedging literature will notice 154 

that this description of a gradient appears to contrast with the view of Starrfelt and Kokko (2012), 155 

who see fitness optimization as a three-way trade-off between AMO, CBH and DBH rather than a 156 

linear gradient. We will clarify the apparent contradiction in box 1. 157 

4 Calculating optimal reaction norm shapes 158 

We so far discussed the optimal phenotype proportion in a single, isolated environment. However, 159 

the benefit of diapause lies in adapting to a continually changing environment. Like in many other 160 

insects, aphid diapause is mainly governed by day length. Aphids exclusively reproduce by 161 

parthenogenesis under long-day conditions, but transition to the production of sexual forms under 162 

long-night conditions (Marcovitch, 1923). The diapause decision can hence be visualized as a 163 

biphenic reaction norm, in which the x-axis represents a continuous night length and the y-axis 164 

represents a probability (or, from the mother’s perspective, a proportion) of diapause induction 165 

between 0 and 100%. This reaction norm to night length generally follows a logit-curve that ranges 166 

from a probability of zero under short nights to a probability of 1 under long nights, and the 167 

inflection point at which half of the offspring are diapausing forms is called critical day length 168 

(Danilevskii, 1965). The day length response is additionally modulated by temperature (warm 169 
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temperatures delay diapause), but we ignore the additional plasticity to temperature in our 170 

considerations.  171 

Imagine an environment in which winter onsets over many years always occur at 14h night length. 172 

Obviously day length would be a reliable cue and plasticity to day length can be expected to evolve. 173 

A normal distribution with a mean of 14h and some standard deviation, on the other hand, describes a 174 

cue that predicts environmental change only partially. We now use three different scenarios to 175 

illustrate optimal reaction norm shapes to such partially predictable conditions: a normal distribution 176 

N1(14, 1) that is distributed around a cue c with a mean of 14 and standard deviation 1 (Fig. 2A, blue 177 

line); a distribution N2(14, 4) that simulates lower predictability by day length (orange line); and 0.5 178 

* N3(14,2), i.e. a distribution of intermediate variance, but where winter is mild in half of the cases. 179 

The cumulative distribution function of N describes the probability that winter will occur at a night 180 

length of c or lower (Fig. 2B). If an aphid lives in an environment of exactly 14 hours night length, it 181 

can expect that the offspring will experience winter conditions with a 50% probability (blue and 182 

orange line). At 15 hours night length winter onset is quite probable (85%) for environment N1 (blue 183 

line), but the probability is only 60% for N2 (orange line), because winter onset is more variable. In 184 

N3 the probability is further reduced, to 35%, because there is a high chance that winter is mild (green 185 

line). With fitness values as introduced earlier (parthenogenesis: 4/1; diapause: 1/1), the optimal 186 

proportion can be calculated as 1, 0.76 and 0.39, respectively, for the three distributions under 15h 187 

day length. This way the optimal response to any environmental cue c, i.e. the complete optimal 188 

reaction norm, can be calculated if mean and standard deviation of the environment-cue relationship 189 

are known (Fig. 2C, D).  190 

With these considerations we explained the reaction norm shape as a series of binary decisions. In 191 

each of these decisions, phenotype proportions may range from arithmetic mean optimization to risk-192 

aversion, with developmental instability in between. From our examples it is obvious that both the 193 

degree of developmental instability (slope) and the proportion of risk-aversive phenotypes 194 

(skewness) change with environmental predictability, but the relative contribution of each is difficult 195 

to quantify. Furthermore, our examples feature nearly logistic reaction norms, but depending on the 196 

environmental cue, other shapes (e.g. bimodal, sinusoid) are possible. We hence require summary 197 

statistics that adequately describe the reaction norm shape.  198 

 199 
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5 Classification of reaction norm shapes 200 

First, let us assume a “plastic” reaction norm (Fig. 3A, blue line). A step function describes a sudden 201 

switch from one phenotype (the arithmetic mean optimizer) to the other (the risk-aversive one), and 202 

the number of environments in which a mix of phenotypes is produced is minimized.  This function 203 

maximises the standard deviation of phenotype proportions across environments (pi). We refer to the 204 

variance of pi as 𝜎𝑎𝑚𝑜𝑛𝑔
2 . The opposite of a step function is one in which the mother’s decision is 205 

entirely independent of the environmental cue, i.e. left to developmental instability, and both 206 

phenotypes are produced in equal measure (Fig. 3A, orange line). While 𝜎𝑎𝑚𝑜𝑛𝑔
2  is zero, there is 207 

variance in phenotypes within each environment (𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 ). This variance is calculated as pi * (1-pi), 208 

since the trait choice is a Bernoulli draw. The two variance components complement each other, i.e. 209 

it is not possible to maximize both 𝜎𝑎𝑚𝑜𝑛𝑔
2  (steep slope, high range) and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  (minimal departure 210 

from 50%). Intermediate reaction norms are possible, however (Fig. 3A, green line). The trade-off 211 

between 𝜎𝑎𝑚𝑜𝑛𝑔
2  and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  can be described by their ratio r. r thus describes the degree of 212 

developmental (in)stability across environments. 213 

Another type of reaction norm is that of a highly canalized genotype (Fig 3B, blue lines). In the 214 

extreme case, the genotype does not react to the environment at all, and produces a single phenotype 215 

in every environment. In this case both variances (𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 and 𝜎𝑎𝑚𝑜𝑛𝑔

2 ) are zero. As with Fig. 3A, less 216 

extreme reaction norm shapes are also possible: a reaction norm may be, for example, flat at p i = 0.1 217 

(Fig. 3B, orange line), or have a steep slope but only range from p = 0 to p = 0.2 (Fig 3B, green line). 218 

Reaction norms can thus vary from complete canalization to high phenotypic variance, and we 219 

express total phenotypic variance s by the sum of the two variance components. A canalized reaction 220 

norm may be only expressing risk-aversive phenotypes, or only expressing arithmetic mean 221 

optimizers, whereas high phenotypic variance may indicate steep reaction norms or high 222 

developmental instability.  223 

A last consideration is the overall frequency of the conservative phenotypes across environments. 224 

The reaction norm may, for example shift along the x-axis (Fig. 3C, orange line),e.g. when winter 225 

onset is highly unpredictable. A flat reaction norm (Fig. 3C, green line) that shifts the balance from 226 

developmental instability (pi = 0.5) to risk-aversion (pi = 1) equally in all environments also increases 227 

the frequency. We denote the frequency of conservative phenotypes as f. 228 
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In summary we discussed three important parameters that describe a reaction norm shape: The 229 

frequency f, the total phenotypic variance s, and the variance composition r (among:within 230 

environments). These three parameters are partially interdependent of one another, and can be drawn 231 

as three perpendicular axes (Fig. 3D). The resulting parameter space has three distinct ends which 232 

conform to ideal plasticity, risk-aversion, and arithmetic mean optimization.   233 

 234 

6 Phenotypic plasticity, bet-hedging and adaptive canalization 235 

So far we described optimal strategies in a single environment, calculated optimal reaction norm 236 

shapes, and explored which reaction norm shapes are generally possible. We are now interested in 237 

how the optimal reaction norm shape parameters change with changing environmental means, 238 

variability and amplitude, by focusing back on our diapause example. First, mean winter onset may 239 

vary with latitude, with earlier winter onset at high latitudes (Danilevskii, 1965). Secondly, winter 240 

onset dates may vary among years, which is the condition that should lead to bet-hedging in diapause 241 

timing (Halkett et al., 2004). Lastly, aphid populations in warmer climates frequently lost the ability 242 

to produce sexual forms and reproduce by parthenogenesis throughout the year (anholocyclic life 243 

cycles, Simon et al., 2002). The preparation for winter makes only sense if there is sufficient change 244 

in environmental conditions, so this kind of canalization (obligate development) is expected at 245 

southern latitudes.  246 

We start with environments that vary in among-years predictability. We consider environments that 247 

are normally distributed around cues (c) with a mean of 14 and standard deviations ranging from 0 to 248 

10. In our introduced example with growth rates of 4/0 (parthenogenetic) and 1/1 (diapausing), the 249 

ratio r decreases with environmental predictability (Fig. 4A, blue solid line), while the mean 250 

frequency f of risk-aversive (diapausing) phenotypes increases (Fig. 4B, blue solid line). The sum s, 251 

on the other hand, remains relatively stable (Fig. 4C). Thus, both DBH and CBH are expected to 252 

evolve simultaneously in unpredictable conditions (see also Fig. 4D). With decreasing growth rate of 253 

P1 (parthenogenesis in summer) the ratio decreases less sharply and the diapausing frequency 254 

increases more strongly (solid orange and green lines). Here the riskier strategy pays off less, and the 255 

balance is shifted towards CBH. When the growth rate of P1 in E2 (winter) is raised to 0.33 (i.e. the 256 

environmental risk is lower), both r and f change less steeply with environmental unpredictability 257 

(dashed lines), i.e. the reaction norms tend towards arithmetic mean optimization. Increasing the 258 

growth rate in winter further to 0.66 leads to a very risk-prone strategy, because risk-aversion pays 259 
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only off when the chance of mild (summer) conditions is very low. The range of environments that 260 

feature a sufficiently low chance of summer decreases with increasing environmental variance, 261 

causing a drop of both f and s as a sign of canalization to AMO (dotted lines). Overall, both CBH and 262 

DBH can be expected under unpredictable conditions, but their relative benefits vary depending on 263 

the arithmetic mean fitness of risk-aversive and risk-prone phenotypes. 264 

To simulate the effect of low environmental amplitudes, e.g. mild winters, we multiply the normal 265 

distribution by 0.5 (see also Fig. 2A, B). This discourages risk-aversion and it no longer pays off to 266 

have all offspring diapausing (Fig. 5). When the growth rate of parthenogenesis is either 4 (summer) 267 

or zero (winter), the phenotypic variance stagnates at 0.2, and the frequency is fixed between 0.28 268 

and 0.29 (solid blue line). This is because the reaction norm range is constrained (Fig. 5D). A lower 269 

growth rate of P1 in E1 restores phenotypic variance (Fig. 5B, orange and green lines), as it reduces 270 

arithmetic mean fitness of parthenogenesis and makes diapause again more profitable. This increases 271 

the range of the reaction norm again (Fig. 5D, orange line). Lowering the environmental risk further 272 

increases the benefit of arithmetic mean optimization (dashed lines) and eventually leads to AMO 273 

under all environmental conditions (dotted lines). Overall, Fig. 5 shows that occasional mild winters 274 

may discourage CBH, and instead favor AMO. For example, a lower risk of freezing in winter may 275 

explain the existence of anholocyclic lines. 276 

A third axis of environmental variation concerns changes in mean environments. Moving the 277 

distribution of environments to a mean c of 10h simulates the change of winter onset with latitude, as 278 

well as the effects of a changing climate. Although highly relevant for the optimization of fitness, the 279 

changes in optimal reaction norm shapes are trivial to describe. We refer to supplementary Material 280 

S1 for further exploration. 281 

In general, we find that r evolves with changes in environmental predictability (Fig. 4A), whereas s is 282 

a function of winter severity (Fig. 5 B). The mean frequency f depends strongly on the mean 283 

environment (Supp. S1), but may also change with environmental predictability as conservative bet-284 

hedging strategy (Fig. 4C, solid lines), or as risk-prone strategy that seeks to optimize the arithmetic 285 

mean (Fig. 4C, dotted lines). 286 

 287 

 288 
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7 Discussion 289 

Phenotypic plasticity can help organisms adapt to changing conditions (Fox et al., 2019), but this 290 

requires a predictable cue (Bonamour et al., 2019). Especially for transgenerational plasticity cues are 291 

not entirely predictable (Burgess and Marshall, 2014; Donelson et al., 2018), which, at least under 292 

some conditions, favours bet-hedging instead (Botero et al., 2015; Tufto, 2015). Nevertheless, the 293 

value of bet-hedging strategies as alternative to plasticity is frequently overlooked.  294 

Starrfelt and Kokko (2012) have explained bet-hedging, including its mathematical foundation, in 295 

great detail. The main finding was that arithmetic mean fitness optimization, diversified bet-hedging 296 

and conservative bet-hedging form a three-way trade-off of conflicting strategies. However, it was 297 

difficult to see how these strategies play out in practice (Haaland et al., 2020). We provided a simple, 298 

detailed calculation of fitness based on insect diapause as example. Based on this system with only 299 

two possible phenotypes (biphenisms) we explained that the three strategies form a gradient, in 300 

which arithmetic mean optimization (AMO) and conservative bet-hedging (CBH) are represented by 301 

distinct phenotypes, and diversified bet-hedging (DBH) by a mixture of the two extremes. This view 302 

is not fundamentally different from Starrfelt and Kokko’s, but easier to imagine, and can be moreover 303 

easily placed into a reaction norm framework. 304 

We also extended the concept to multiple environments, thereby incorporating phenotypic plasticity. 305 

We rephrased reaction norms as a series of decisions under different environmental frequencies, 306 

wherein the solution to each environment ranges from CBH to AMO. The reaction norm shape can 307 

be classified along three dimensions, and each of the 6 endpoints on the three-dimensional continuum 308 

can be associated with one evolutionary strategy.  309 

7.1 Phenotypic plasticity vs diversified bet-hedging 310 

Predictable conditions select for a high r, i.e. the phenotypes change with the environments but vary 311 

only little within each environment. This reaction norm pattern is commonly referred to as 312 

phenotypic plasticity, or, when the offspring phenotype is dictated by the (grand-) parental 313 

environment, as inter- or transgenerational plasticity. A low r, on the other hand, corresponds to high 314 

developmental instability across the range of possible environments, and occurs predominantly when 315 

environments are unpredictable. When higher developmental instability is adaptive, it is called 316 

diversified bet-hedging (Simons and Johnston, 1997). We therefore see phenotypic plasticity and 317 

diversified bet-hedging as a continuum of evolutionary strategies that is based on the reaction norm 318 
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shape. The two ends of this strategy continuum differ in how much information about the 319 

environment is available and used, hence one may label this axis “information use”.  320 

This definition extends classical concepts of bet-hedging and trans-generational plasticity. Plasticity 321 

has a long history of being related to reaction norm shapes (Woltereck, 1913; Bradshaw, 1965), but 322 

diversified bet-hedging is not as easily visualized, nor is the relationship with plasticity entirely clear.  323 

On the one hand, developmental instability has been seen as a cause of diversified bet-hedging 324 

(Simons and Johnston, 1997; Kærn et al., 2005; Woods, 2014; Dueck et al., 2016; Perrin, 2016). Low 325 

copy numbers e.g. of transcriptional regulators (Volfson et al., 2006) cause sampling errors that 326 

ultimately lead to expression of alternative phenotypes. On the other hand, DBH might be produced 327 

by a reaction norm to noise (“microplasticity”, Simons and Johnston, 2006; “hyperplasticity”, 328 

Scheiner and Holt, 2012). For example, Maxwell and Magwene (2017) engineered a yeast model that 329 

evolved a response to estradiol, a compound that was entirely unrelated to fitness but ensured 330 

phenotypic variance in a fluctuating environment. Accordingly, the relationship between diversified 331 

bet-hedging and plasticity might be perceived as nested or as one of two competing strategies. We 332 

instead distinguish them as the two extremes on a continuum of strategies, that correspond to a 333 

continuum of reaction norm shapes.  334 

7.2 Fixed vs. flexible development 335 

s scales with environmental amplitude, i.e. with the fitness difference between environments. When 336 

the fitness difference is low or there is a high chance that winters are mild, genotypes can afford to be 337 

canalized and never diapause. In high-amplitude environments, however, the selection pressure on 338 

phenotypic variance increases, and the genotypes are forced to express a second phenotype, be it by 339 

increasing variance among or within environments. This continuum from canalization to phenotypic 340 

variance corresponds to a second axis of evolutionary strategies, and we label the axis as 341 

“responsiveness” and the two ends as “fixed” and “flexible”, respectively. 342 

The current use of the term canalization is ambiguous (Debat and David, 2001), as environmental 343 

canalization may be considered either the opposite of plasticity (Waddington, 1942; Van Buskirk and 344 

Steiner, 2009) or of developmental noise (Gibson and Wagner, 2000; Zhang and Hill, 2005). We take 345 

an integrative view and see environmental canalization as the opposite of phenotypic variance, 346 

including both variance components. Phenotypic plasticity is regarded an essential component of 347 

climate change adaptation (Fox et al., 2019), precisely because it prevents canalization to a single 348 

environment; moreover, de-canalization by phenotypic plasticity may accelerate evolution through 349 
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genetic accommodation (Kelly, 2019). We argue that the same mechanisms may apply for all modes 350 

of phenotypic variance, including diversified bet-hedging. 351 

7.3 Arithmetic mean optimization vs. conservative bet-hedging 352 

we showed that f corrleates with the frequency of E2 in most environmental conditions, as could be 353 

intuitively expected as an AMO strategy. In highly unpredictable environments, however, we found 354 

that the frequency of diapause phenotypes is higher than expected. When there are more risk-aversion 355 

phenotypes across the environmental range than expected by the environmental frequency, the fitness 356 

variance is reduced at the cost of arithmetic mean fitness. An adaptive increase of f hence constitutes 357 

conservative bet-hedging. 358 

Our framework made clear that arithmetic mean optimization and variance avoidance form exact 359 

opposites on a gradient of strategies that is reflected by f; therefore, frequencies, means or midpoints 360 

of reaction norms that do not match environmental means might serve a function. Recent climate 361 

change imposes novel environmental conditions, and species or populations whose trait means do not 362 

evolve in concert with environmental means are often considered as under risk (e.g. Charmantier and 363 

Gienapp, 2014), which ignores the potential benefit (or at least reduced loss) due to CBH. This is not 364 

to say that CBH can be invoked whenever environmental variance is observed (Simons, 2011), but 365 

any combination of mean optimization and variance avoidance (f) has the potential to be adaptive 366 

depending on life history and environmental variance. 367 

CBH and DBH have been separated as distinct strategies early on (Seger and Brockmann, 1987), yet 368 

they remain often discussed in conjunction (e.g. Simons, 2011). Similarly, DBH and plasticity were 369 

contrasted against each other (Cooper and Kaplan, 1982), but may be invoked simultaneously (e.g. 370 

Simons and Johnston, 2006; Maxwell and Magwene, 2017). Starrfelt and Kokko (2012) provided a 371 

useful framework which joined CBH, DBH and AMO; we built on this framework (although our 372 

views differ slightly), adding plasticity, canalization and phenotypic variance. 373 

The world is simultaneously changing in climate means, variability and predictability (IPCC, 2014; 374 

Lenton et al., 2017; Bathiany et al., 2018), and we argue that a model on reaction norm evolution 375 

should reflect this three-dimensional relationship. Currently there are many phenomenological 376 

studies on responses to climate change (Parmesan and Yohe, 2003; Badeck et al., 2004; Cohen et al., 377 

2018), but only few detailed case-studies on the mechanisms of adaptation (Nussey et al., 2005; 378 

Gienapp et al., 2013; Lane et al., 2018). One cannot assume that a matching trait mean or a high level 379 

of plasticity is always adaptive (Boutin and Lane, 2014), just like one cannot assume CBH or DBH to 380 
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be an optimal solution (Simons, 2011) – but we can analyse the reaction norm shape to decide 381 

whether it has the potential for adaptive mean optimization, plasticity, bet-hedging or canalization. 382 

There is ample room to extend our framework. We have restricted our arguments to binary trans-383 

generationally inherited traits, as these are commonly treated both empirically (Venable, 2007; 384 

Maxwell and Magwene, 2017; Scholl et al., 2020) and theoretically (Cohen, 1966; Halkett et al., 385 

2004; Starrfelt and Kokko, 2012; Kivela et al., 2016; Gerber and Kokko, 2018). For continuous traits, 386 

e.g. offspring size (Marshall et al., 2008), our calculations may not apply, because AMO, DBH and 387 

CBH need not lie on a linear gradient (i.e. intermediate trait values need not incur highest trait 388 

variance). Nevertheless, theory regarding Gaussian functions arrives at a similar conclusion: that 389 

offspring variance evolves to the amount of environmental mismatch that is not already covered by 390 

phenotypic plasticity (Tufto, 2015). This is equivalent to our finding that in high-amplitude 391 

environments only the variance composition (r) changes with environmental variability, whereas the 392 

degree of phenotypic variance (s) remains constant. Other possible extensions would include plastic 393 

responses that take place within an individual’s life time. The opportunity for both within- and 394 

transgenerational plasticity may not only make one strategy obsolete (Luquet and Tariel, 2016), but 395 

also lead to complex interactions among the two (Fuxjäger et al., 2019). Lastly, there are also 396 

potential bet-hedging strategies that appear entirely unrelated to transgenerational plasticity. These 397 

include, for example, an iteroparous life history (Garcia-Gonzalez et al., 2015), hotspots for genetic 398 

mutations (“contingency loci”, Rando and Verstrepen, 2007), and sexual reproduction in general (Li 399 

et al., 2017). A unification with these alternative strategies might lead to a better understanding of 400 

adaptation to rapid climate change. 401 

8 Conclusion 402 

In this review we rephrased reaction norm evolution as a complex trade-off among three axes of 403 

strategies. It is increasingly recognized that changes in climate extremes and in predictability are as 404 

important as changes in means (IPCC, 2014; Donelson et al., 2018) – focusing only on strategies to 405 

match the mean is hence not fruitful. For example, failure to shift mean phenology with climate 406 

change (Gienapp et al., 2013) is not problematic per se – it could be mitigated by concurrent changes 407 

in responsiveness. Similarly, the lack of both phenotypic plasticity and mean change may not have 408 

severe fitness consequences, if the lack of plasticity is mitigated by diversified bet-hedging. It is the 409 

combination along all three axes that defines fitness in a given environment.  410 
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Box 1: Fitness optimization – trade-off or gradient? 411 

Our article describes arithmetic mean optimization (AMO), diversified bet-hedging (DBH) and 412 

conservative bet-hedging (CBH) as a gradual continuum. This appears to contrast the view of 413 

Starrfelt and Kokko (2012), who describe the strategies as a three-way trade-off. To clarify this 414 

apparent contradiction, we want to reiterate the example given by Starrfelt and Kokko (2012), which 415 

itself is borrowed from Seger and Brockman (1987). In their example, one genotype (“Awet”) has 1 416 

fitness in a wet environment and 0.6 in a dry one, whereas the other genotype (“Adry”) has 0.58 417 

fitness in the wet environment and 1 fitness in the dry environment. A genotype that produces a mix 418 

of both specialists is a diversified bet-hedger, because it achieves a lower arithmetic mean fitness but 419 

higher geometric mean fitness than a wet-adapted specialist. To explain CBH, however, the authors 420 

introduced another genotype with a fitness of .785 under both environments. It thus appears that 421 

AMO, CBH and DBH form three corners on a triangular continuum of strategies. 422 

We ignore the conservative genotype for a moment and concentrate on the optimal proportion of Adry 423 

and Awet (Figure B1, blue line). The pure production of Awet (p = 0) maximizes arithmetic mean 424 

fitness, whereas a mixed production (p = 0.5) minimizes the fitness correlation among the offspring 425 

and may hence constitute DBH. Individual fitness variance would be minimized by producing only 426 

Adry (p = 1), but this is not a viable alternative to arithmetic mean optimization in this example, as the 427 

geometric mean fitness is much lower than that of p = 0. In other words, this example is not suited to 428 

explain CBH. To make CBH possible, one could change Adry to 0.65 in wet environments, and 0.93 429 

in dry environments, i.e. reduce the fitness variance further at only moderate reduction of arithmetic 430 

mean fitness (orange line). In this altered example the exclusive production of the dry phenotype is 431 

marginally better than AMO, though DBH at p = 0.51 would still be optimal. Lastly, one may change 432 

Adry to 0.785 under both environments (green line). Now the dry-adapted specialist achieves a much 433 

higher geometric mean fitness than the wet-adapted specialist, despite a lower arithmetic mean 434 

fitness. This is also the conservative bet-hedger in the example of Starrfelt and Kokko (2012). The 435 

highest fitness is reached at a phenotype proportion of 0.7, i.e. about halfway between CBH and 436 

DBH. In all cases that make CBH a possible strategy, there is a gradient, not a three-way trade-off, 437 

from AMO to CBH, with DBH in between. In other words, it is impossible to think of a continuum 438 

between CBH and AMO that does not involve DBH. 439 

 440 

  441 
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14 Figure legends 640 

Fig. 1. Geometric mean fitness as function of the proportion of diapausing offspring when E2 occurs 641 

with frequencies of 0.5 (blue) and 0.2 (orange). 642 

Fig. 2 Panel A) Probability of E2 as function of a cue c. These curves are the probability density 643 

functions of three normal distributions N1 (14,1), N2(14,4) and 0.5 * N3(14,2) (blue, orange, green). 644 

B) Probability that E changes given c. These curves are the cumulative probability functions of the 645 

normal distributions. C) optimal reaction norm shapes in the three environments of panel A and B 646 

when fitness of P1 is 4 in E1 and 0.1 in E2 and fitness of P2 is always 1. D) optimal reaction norm 647 

shapes in the three environments of panel A and B when fitness of P1 is 2.5 in E1 and 0.1 in E2 and 648 

fitness of P2 is always 1.2. 649 

Fig. 3: Example reaction norm shapes. A) Three reaction norm shapes that differ in the ratio of the 650 

variance components. Blue: only variance among environments, orange: only variance within 651 

environments, green: intermediate variance among and within environments. B) Reaction norm 652 

shapes that differ in the sum of variance components. Black: canalization; orange: low degree of 653 

variance within environments; green: low degree of variance among environments. C) Three reaction 654 

norms that vary in mean frequency of P2 (blue: 0.5, orange: 0.3, green: 0.8) across environments. D) 655 

possible parameter space of variance composition, sum, and mean frequency. Grey dots depict 656 

sample reaction norms across the range of possible parameters, colored dots indicated samples from 657 

panel A(blue) and B (black, orange and green).   658 

Fig. 4: Optimal reaction norm shapes for various growth rate functions and different levels of 659 

environmental predictability. Environments are normally distributed around a cue c with a mean of 660 

14. Variance composition (Panel A), phenotypic variance (Panel B) and mean frequency (Panel C) 661 

are plotted against standard deviation of the environment. Growth rates of P2 (diapause) are always 1 662 

for both environments (summer and winter); growth rates of P1 (parthenogenesis) in E1/E2 are 4/0 663 

(blue, solid), 3/0 (orange, solid), 2/0 (green, solid); 4/0.33,  3/0.33, 2/0.33 (dashed); and 4/0.66, 664 

3/0.66, 2/0.66 (dotted). Panel D shows three optimal reaction norms for Environments with standard 665 

deviation of 5. 666 

Fig. 5: Optimal reaction norm shapes for various growth rate functions and different levels of 667 

environmental predictability. Environments are normally distributed around a cue c with a mean of 668 

14, but multiplied by 0.5. 669 

Fig. B1 [boxed text]. Geometric mean fitness as function of the proportion of Dry-year specialists in 670 

the example of Starrfelt and Kokko (2012). Blue lines indicate geometric mean fitness with the 671 

growth rates described by Starrfelt and Kokko, orange and green lines describe slightly modified 672 

examples. Awet has always 1 fitness in wet environments and 0.6 fitness in dry environments; the 673 

fitness of Adry is 0.58 or 1 (blue lines); 0.65 or 0.93 (orange lines); and 0.785 in both environments 674 

(green lines). 675 
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Table 1: Growth rate calculations for various phenotype proportions in a two-environment system 678 

 Proportion of P2 

 0 0.5 1 0.61 

E1 0 * 1 + 1* 4      

= 4 

0.5 * 1 + 0.5 * 4  

= 2.5 

1 * 1 + 0 * 4   

= 1  

0.61 * 1 + 0.39 * 4   

= 2.17 

E2 0 * 1 +   1 * 0.1 

= 0.1  

0.5 * 1 + 0.5 * 0.1 

= 0.55 

1 * 1 + 0 * 0.1 

= 1 

0.61 * 1 + 0.39 * 0.1 

= 0.65 

Arithmetic mean 2.05 1.53 1 1.41 

Geometric mean 0.63 1.17 1 1.19 

 679 
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 681 

Fig. 1. Geometric mean fitness as function of the proportion of diapausing offspring when E2 occurs 682 

with frequencies of 0.5 (blue) and 0.2 (orange). 683 
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 685 

Fig. 2 Panel A) Probability of E2 as function of a cue c. These curves are the probability density 686 

functions of three normal distributions N1 (14,1), N2(14,4) and 0.5 * N3(14,2) (blue, orange, green). 687 

B) Probability that E changes given c. These curves are the cumulative probability functions of the 688 

normal distributions. C) optimal reaction norm shapes in the three environments of panel A and B 689 

when fitness of P1 is 4 in E1 and 0.1 in E2 and fitness of P2 is always 1. D) optimal reaction norm 690 

shapes in the three environments of panel A and B when fitness of P1 is 2.5 in E1 and 0.1 in E2 and 691 

fitness of P2 is always 1.2. 692 
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 694 

Fig. 3: Example reaction norm shapes. A) Three reaction norm shapes that differ in the ratio of the 695 

variance components. Blue: only variance among environments, orange: only variance within 696 

environments, green: intermediate variance among and within environments. B) Reaction norm 697 

shapes that differ in the sum of variance components. Black: canalization; orange: low degree of 698 

variance within environments; green: low degree of variance among environments. C) Three reaction 699 

norms that vary in mean frequency of P2 (blue: 0.5, orange: 0.3, green: 0.8) across environments. D) 700 

possible parameter space of variance composition, sum, and mean frequency. Grey dots depict 701 

sample reaction norms across the range of possible parameters, colored dots indicated samples from 702 

panel A(blue) and B (black, orange and green).   703 
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705 
Fig. 4: Optimal reaction norm shapes for various growth rate functions and different levels of 706 

environmental predictability. Environments are normally distributed around a cue c with a mean of 707 

14. Variance composition (Panel A), phenotypic variance (Panel B) and mean frequency (Panel C) 708 

are plotted against standard deviation of the environment. Growth rates of P2 (diapause) are always 1 709 

for both environments (summer and winter); growth rates of P1 (parthenogenesis) in E1/E2 are 4/0 710 

(blue, solid), 3/0 (orange, solid), 2/0 (green, solid); 4/0.33,  3/0.33, 2/0.33 (dashed); and 4/0.66, 711 

3/0.66, 2/0.66 (dotted). Panel D shows three optimal reaction norms for Environments with standard 712 

deviation of 5. 713 
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 715 

Fig. 5: Optimal reaction norm shapes for various growth rate functions and different levels of 716 

environmental predictability. Environments are normally distributed around a cue c with a mean of 717 

14, but multiplied by 0.5. 718 
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 720 

Fig. B1 [boxed text]. Geometric mean fitness as function of the proportion of Dry-year specialists in 721 

the example of Starrfelt and Kokko (2012). Blue lines indicate geometric mean fitness with the 722 

growth rates described by Starrfelt and Kokko, orange and green lines describe slightly modified 723 

examples. Awet has always 1 fitness in wet environments and 0.6 fitness in dry environments; the 724 

fitness of Adry is 0.58 or 1 (blue lines); 0.65 or 0.93 (orange lines); and 0.785 in both environments 725 

(green lines). 726 
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