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Abstract 8 

Decision-making under uncertain conditions favors bet-hedging (avoidance of fitness variance), 9 

whereas predictable environments favor phenotypic plasticity. However, entirely predictable or 10 

entirely unpredictable conditions are rarely found in nature. Intermediate strategies are required when 11 

the time lag between information sensing and phenotype induction is large (e.g. transgenerational 12 

plasticity) and when cues are only partially predictive of future conditions. Nevertheless, current theory 13 

regards plasticity and bet-hedging as distinct entities. We here develop a unifying framework: based 14 

on traits with binary outcomes like seed germination or diapause incidence we clarify that diversified 15 

bet-hedging (risk-spreading among one’s offspring) and transgenerational plasticity are mutually 16 

exclusive strategies, arising from opposing changes in reaction norms (allocating phenotypic variance 17 

among or within environments). We further explain the relationship of this continuum with arithmetic 18 

mean maximization vs. conservative bet-hedging (a risk-avoidance strategy), and canalization vs. 19 

phenotypic variance in a three-dimensional continuum of reaction norm evolution. We discuss under 20 

which scenarios costs and limits may constrain the evolution of reaction norm shapes.  21 



Merging plasticity and bet-hedging 

 
2 

1 Introduction 22 

Changing conditions can promote evolutionary change in various ways (Botero et al., 2015; Tufto, 23 

2015). One commonly envisioned mode of evolution is the continuous change of trait means as result 24 

of changing mean conditions (Darwin, 1859). Yet, although trait changes in response to novel 25 

conditions are widely observed (e.g. due to climate change, Piao et al., 2019), they frequently result 26 

from phenotypic plasticity (Boutin and Lane, 2014), i.e. changes of the phenotype in response to an 27 

environmental cue. Phenotypic plasticity may provide a short-term relief from changing conditions 28 

(Charmantier et al., 2008; Chevin et al., 2010), but also shield a genotype from selection and thereby 29 

prevent evolution (Oostra et al., 2018), or it may facilitate evolution via genetic accommodation (Kelly, 30 

2019). In any case, phenotypic plasticity is a pervasive evolutionary strategy, and considered a major 31 

factor in a rapidly changing climate (Fox et al., 2019). 32 

The time scale of phenotypic change depends on the time scale of environmental fluctuation (Rando 33 

and Verstrepen, 2007; Stomp et al., 2008). Fluctuations over very rapid timescales can be addressed 34 

by reversible plasticity, which includes, for example, the induction of plant defense when herbivores 35 

are present (Green and Ryan, 1972). Gradual long-term changes, on the other hand, are addressed by 36 

genetic adaptation. Between those extremes lie environmental fluctuations that are roughly on the scale 37 

of one life span. When environments change over the course of an organism’s development, they can 38 

be tackled by irreversible developmental plasticity, i.e. plastic adjustment of developmental pathways 39 

that lead to alternative phenotypes (Botero et al., 2015). For example, some Daphnia can produce 40 

protective phenotypes when chemical cues from predators are sensed during development (Krueger 41 

and Dodson, 1981). When environments are constant throughout an organism’s life time but change 42 

from one generation to the next, phenotypic change can be induced in the offspring generation. These 43 

are referred to as anticipatory parental effects (Burgess and Marshall, 2014) or intergenerational 44 

inheritance (Perez and Lehner, 2019). For example, aphids that live under crowded conditions may 45 

produce winged offspring that can leave the colony and avoid high predation pressure or plant 46 

deterioration (Braendle et al., 2006). Lastly, when environmental fluctuations last for several 47 

generations, epigenetic modifications may be integrated into the germ line and affect multiple 48 

succeeding generations. This is referred to as transgenerational plasticity or non-genetic inheritance 49 

(Perez and Lehner, 2019; Adrian-Kalchhauser et al., 2020). For the remainder of the article we will 50 

refer to all these irreversible changes simply as phenotypic plasticity, ignoring the potential 51 

physiological constrains that may limit their evolution. They all have in common that there is a long 52 

delay between information sensing and phenotype induction.  53 
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Although often assumed, phenotypic plasticity does not need to be adaptive (Ghalambor et al., 2007; 54 

Arnold et al., 2019). Plasticity requires some environmental cue on which the induction of phenotypic 55 

change is based, and uncertainty around the future environmental state may turn plasticity maladaptive 56 

(Burgess and Marshall, 2014; Donelson et al., 2018). Such unpredictable conditions instead favor bet-57 

hedging, which refers to the reduction of fitness variance (Cohen, 1966; Seger and Brockmann, 1987; 58 

Starrfelt and Kokko, 2012). Bet-hedging can be achieved by avoiding risky investments (conservative 59 

bet-hedging), or by spreading the risk among one’s offspring (diversified bet-hedging), i.e. producing 60 

offspring with varying phenotypes (Seger and Brockmann, 1987; Starrfelt and Kokko, 2012). Although 61 

empirical evidence is difficult to obtain (Simons, 2011), bet-hedging is a likely explanation for high 62 

trait variance or unexpected trait means in many systems, such as the seed dormancy of desert annuals 63 

(Cohen, 1966), diapausing strategies of insects (Hopper, 1999) and annual killifish (Furness et al., 64 

2015), wing dimorphisms (Grantham et al., 2016), facultative sexual reproduction (Gerber and Kokko, 65 

2018), dispersal and partial migration (Goossens et al., 2020). 66 

At fluctuations of intermediate time scales where there is a delay between information sensing and 67 

phenotype induction, both phenotypic plasticity (e.g. Baker et al., 2019) and bet-hedging (e.g. Venable, 68 

2007) may be expected to evolve. Various theoretical studies have clarified the conditions that may 69 

lead to one or the other (Botero et al., 2015; Tufto, 2015), but although occurring potentially 70 

simultaneously, bet-hedging and plasticity are nevertheless often treated independently (Donelson et 71 

al., 2018). Moreover, when diversified bet-hedging and plasticity are considered jointly, there is no 72 

clear consensus about their exact relationship. Adaptive offspring variance that is needed for diversified 73 

bet-hedging might be either established by developmental instability (Simons and Johnston, 1997; 74 

Kærn et al., 2005; Veening et al., 2008; Woods, 2014; Dueck et al., 2016; Perrin, 2016) or by overly 75 

relying on cues with little predictive power (“microplasticity”, Simons and Johnston, 2006; 76 

“hyperplasticity”, Scheiner and Holt, 2012). With this article we aim to clarify the relationship between 77 

bet-hedging and plasticity, with special attention to readers that are familiar with plasticity but less 78 

familiar with bet-hedging theory. We will first use one simple numerical example (insect diapause) to 79 

explain the relationship of diversified bet-hedging, conservative bet-hedging and arithmetic mean 80 

maximization in detail. We will then extend the consideration to a range of environments whose state 81 

is partially predictable, thereby adding the potential for phenotypic plasticity. Lastly, we generalize 82 

from our example and describe a method to quantify phenotypic plasticity and bet-hedging based on 83 

reaction norm shapes.  84 
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2 An example 85 

Common examples of bet-hedging are transgenerational biphenisms, i.e. the parent decides among two 86 

possible physiological states of the offspring in the face of uncertainty (e.g. Cohen, 1966; Grantham et 87 

al., 2016; Maxwell and Magwene, 2017; see Simons, 2011 for further examples). One of these 88 

examples is the timing of insect diapause (Halkett et al., 2004; Pélisson et al., 2013), which we will 89 

use to illustrate the theory throughout this article.   90 

Multivoltine insects benefit from exponential population growth throughout the growing season, but 91 

need to produce an overwintering (diapausing) generation before the onset of cold weather (Kivela et 92 

al., 2016). Aphids, for example, reproduce by parthenogenesis during summer, which enables 93 

particularly quick population growth; in autumn they invest in sexual offspring that produce diapausing 94 

eggs, as frost kills the soft-bodied insects and only eggs survive (Simon et al., 2002). The struggle to 95 

keep the growing season long on one hand and to avoid death on the other hand puts diapause timing 96 

under intense selection pressure. If the onset of frost would be invariant, day length could be used as 97 

reliable cue of impeding winter, so plasticity in response to day length is expected to evolve. However, 98 

if just one generation faces early frosts, all offspring may simultaneously die and the genotype is driven 99 

to extinction, regardless of their otherwise high growth rates. Under unpredictable or only partially 100 

predictable conditions, bet-hedging strategies may therefore be expected to evolve (Halkett et al., 101 

2004). 102 

For the remainder of this article we will use examples that are loosely based on aphid overwintering. 103 

We will assume that parthenogenetic offspring (P1) may produce four offspring when environmental 104 

conditions are mild, but face a 90% mortality rate when conditions change. In contrast, diapausing 105 

offspring (P2) only replace themselves with 1 offspring in either environment. Hence we assign 106 

phenotype P1 a fitness value of 4 in E1 (summer), but only 0.1 in E2 (winter), whereas phenotype P2 107 

achieves 1 fitness in either environment. We assume that the evolution of these growth rates is 108 

constrained, so only the proportion of each phenotype may evolve.  109 

  110 
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3 Arithmetic mean maximization, diversified bet-hedging and conservative bet-111 

hedging 112 

We wish to explain the bet-hedging concept in detail with a few numerical examples. We first consider 113 

an entirely unpredictable environment, in which an aphid mother cannot collect any information about 114 

the potential environment of their offspring i.e. there is a 50% chance that the offspring will face 115 

beneficial summer conditions (E1), but also a 50% chance for harsh winter conditions (E2). A genotype 116 

that invests exclusively in parthenogenesis (P1) achieves on average 2.05 fitness (table 1), while 117 

increasing the proportion of diapausing offspring (P2) lowers arithmetic mean fitness. Nevertheless, a 118 

genotype that invests exclusively in diapause (P2) is more successful on the long term, because the 119 

parthenogenetic genotype nearly dies out every two years. For example, a parthenogenetic population 120 

would decline to 16% of its original size over four years (4 * 0.1 * 4 * 0.1), while the population size 121 

of the diapausing genotype would remain constant. The arithmetic mean obviously fails here as 122 

predictor of long-term population growth.  123 

If there are multiple decisions to make and the outcome is multiplicative, the geometric mean is a much 124 

better predictor for long-term growth, because it is sensitive to variance among years (Cohen, 1966; 125 

Seger and Brockmann, 1987; Starrfelt and Kokko, 2012). In the above example of population growth 126 

over multiple years, the lower arithmetic mean fitness was more than compensated by the reduction in 127 

fitness variance, therefore the risk-averse strategy achieved higher geometric mean fitness than the 128 

arithmetic mean maximization (AMM) strategy. This risk-aversive strategy of investing in lower 129 

fitness fluctuation at the cost of arithmetic mean fitness is called conservative bet-hedging (CBH), akin 130 

to investing in gold when stock markets fluctuate. The risky strategy of maximizing arithmetic mean 131 

fitness (AMM), on the other hand, is superior when fluctuations are low, and an analogy in economics 132 

would be the investment in a highly profitable product that is not insured against loss (“unhedged”). 133 

Now let us consider a genotype with high developmental instability, i.e. whose offspring phenotype is 134 

randomly determined (Table 1). This means that the arithmetic mean fitness is not reduced as strongly 135 

as that of the risk-aversive phenotype (100% P2), but the fitness fluctuation between E1 and E2 is also 136 

not as great as that of the arithmetic mean maximizer (100% P1). This genotype will increase in 137 

population size over four years by the factor 1.89 (2.5 * 0.55 * 2.5 * 0.55), so in this example it is 138 

clearly superior to both CBH and AMM. Investing equally in both phenotypes (P1 and P2) breaks down 139 

the fitness correlation among the offspring, as half of the offspring takes a risk, while the other half 140 
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plays it safe (Starrfelt and Kokko, 2012). This strategy is similar to investing in a portfolio of stocks 141 

rather than a single stock and is called diversified bet-hedging (DBH).  142 

The geometric mean can be calculated for any phenotype proportion p (proportion of P2) between 0 143 

and 100% (Fig.1A, solid blue line), showing that actually neither of the three strategies (AMM, CBH, 144 

DBH) is optimal. Instead, p = 0.61, i.e. a mix of CBH and DBH, yields the highest geometric mean 145 

fitness (Table 1). Starrfelt and Kokko (2012) explored the relationship among AMM, CBH and DBH 146 

in great detail, and explained fitness optimization as a three-way trade-off between maximizing the 147 

arithmetic mean, reducing fitness variance, and reducing fitness correlation among the offspring. 148 

However, as outlined in our example, this three-way relationship breaks down to a simple linear 149 

gradient when there are exactly two phenotypes to choose from. 150 

The same principles also apply when the two environments do not occur with equal frequency, e.g. 151 

when the probability of E2 (winter) is reduced to 20%. In this case the arithmetic mean fitness of P1 152 

and P2 needs to be weighted by the frequencies of E1 and E2. Nevertheless, arithmetic mean fitness is 153 

still a linear function of the phenotype proportion p (Fig. 1A, dashed orange line), and increasing the 154 

proportion of P2 constitutes a change from AMM towards DBH or CBH. In this example with only 155 

occasionally adverse conditions, the optimum lies at p = 0.17 (solid orange line), i.e. much closer to an 156 

AMM strategy. If the frequency of E2 is raised to 70%, on the other hand, the optimal strategy moves 157 

with p = 0.90 close to pure CBH (not shown). The optimal strategy thus strongly depends on the 158 

environmental frequency.  159 

We wish to complete this description of fitness maximization in a single environment with two last 160 

special cases. First, we consider the production of two specialist phenotypes, in which P1 achieves a 161 

fitness of 4 in E1, but none in E2, while P2 achieves 0 fitness in E1 but 4 fitness in E2 (thus deviating 162 

from the aphid example). With these parameters geometric mean fitness peaks at p = 0.5 (Fig. 1B, blue 163 

solid line), so a strategy that maximizes developmental instability is optimal. Yet, the mixed production 164 

of offspring does not constitute DBH, because the diversification does not come at the cost of 165 

arithmetic mean fitness (i.e. the dashed blue line is flat). If, however, the growth rates of the two 166 

phenotypes are slightly uneven, e.g. reduced to 3.9 for P2 in E2, the same investment in P2 would lower 167 

arithmetic mean fitness (dotted grey lines), and hence technically classify as a diversified bet-hedging 168 

strategy. This borderline example shows that the classification of bet-hedging strategies is not only a 169 

question of whether arithmetic mean fitness is reduced, but rather by how much. The second special 170 

case concerns very high probabilities of adverse conditions. When the frequency of E2 is raised to 0.9, 171 

it carries so much weight that the arithmetic mean fitness does not decrease, but increase with the 172 
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proportion of P2 (Fig. 1B, dashed orange line). The strategy that avoids variance is hence also the one 173 

which maximizes arithmetic mean fitness, so increasing geometric mean fitness (solid orange line) 174 

does not come at the cost of arithmetic mean fitness and CBH becomes impossible. In general, the 175 

linear gradient from AMM over DBH to CBH (and, in fact, the occurrence of bet-hedging) breaks 176 

down, when there is no conflict between arithmetic mean maximization and reduction of fitness 177 

variance. We will avoid these special situations in the remainder of the article. 178 

4 Calculating optimal reaction norm shapes 179 

We so far discussed the optimal phenotype proportion in a single, isolated environment. However, the 180 

benefit of diapause lies in adapting to a continually changing environment. Like in many other insects, 181 

aphid diapause is mainly governed by night length. Aphids exclusively reproduce by parthenogenesis 182 

under long-day (short night) conditions, but transition to the production of sexual forms under long-183 

night conditions (Marcovitch, 1923). The diapause decision can hence be visualized as a biphenic 184 

reaction norm, in which the x-axis represents a continuous night length and the y-axis represents a 185 

probability (or, from the mother’s perspective, a proportion) of diapause induction between 0 and 186 

100%. This reaction norm to night length generally follows a logit-curve that ranges from a probability 187 

of zero under short nights to a probability of 1 under long nights, and the inflection point at which half 188 

of the offspring are diapausing forms is called critical day length (Danilevskii, 1965). The night length 189 

response is additionally modulated by temperature (warm temperatures delay diapause), but we ignore 190 

the additional plasticity in response to temperature in our considerations.  191 

We will now use the diapause example to illustrate how to calculate optimal reaction norm shapes. 192 

Imagine an environment in which winter onsets over many years always occur at 14 h night length. 193 

Obviously night length would be a reliable cue and plasticity in response to night length can be 194 

expected to evolve. Conversely, night length is useless as cue for a plastic response if winter onset 195 

fluctuates randomly. Between those extremes lies an only partially reliable cue, i.e. there is between-196 

years variation in the relationship of night length and winter onset. For example, winter onset may in 197 

some years coincide with a night length of 14 h, but fall in other years on an earlier (13.8 h) or later 198 

(14.5 h) date, which can be described by a normal distribution with a mean of 14 h and some standard 199 

deviation. We now use three different scenarios of how environmental conditions (winter onset) may 200 

vary: 1) Winter onset fluctuates according to a normal distribution N1(14, 1) with a mean cue value of 201 

14 h and standard deviation 1; 2) Winter onset follows a normal distribution N2(14, 4) with a mean cue 202 

value of 14 h and standard deviation 4, thus simulating lower predictability by night length; 3) Winter 203 



Merging plasticity and bet-hedging 

 
8 

onset fluctuates according to a normal distribution N3(14, 2) with standard deviation 2, but half of the 204 

winters are mild enough that offspring of type P1 (e.g. parthenogenetic offspring) can survive.  205 

The cumulative distribution function of N describes the probability that winter will occur at a night 206 

length of c or lower (Fig. 2A). If, for example, an aphid lives in an environment of exactly 14 hours 207 

night length, it can expect that the offspring will experience winter conditions with a 50% probability 208 

(the optimal phenotype proportion is then 0.61, see table 1). At 13 hours night length winter onset is 209 

less probable (18%) for environment N1 (blue line) than for N2 (41%, orange line), because winter onset 210 

variability is lower. In N3 the probability distribution must be multiplied by 0.5, i.e. with the chance 211 

that winter is mild (green line). This reduces the probability of winter onset at c = 13 h to 16%. Given 212 

these environmental frequencies and the fitness values introduced earlier (parthenogenesis: 4/0.1; 213 

diapause: 1/1; in summer/winter conditions, respectively), one can now calculate the optimal 214 

proportion p as described in section 3. This proportion is 0.47 (nearly pure DBH) in scenario 1, as there 215 

is considerable risk of unfavorable conditions, but in scenarios 2 and 3 the ratios drop to 0.12 and 0.11, 216 

respectively. Thus, DBH is favored over pure AMM with increasing probability of winter conditions. 217 

The same calculations can be performed along the whole range of c, so the complete optimal reaction 218 

norm can be calculated if mean and standard deviation of the environment-cue relationship are known 219 

(Fig. 2B, C).  220 

With these considerations we explained the reaction norm shape as a series of binary decisions. In each 221 

of these decisions, phenotype proportions may range from AMM to CBH, with DBH in between. The 222 

overall degree of bet-hedging is hence defined by the reaction norm shape, and in our specific examples 223 

mostly correlates with the reaction norm slope (Fig. 2B, orange and blue lines) and range (green line). 224 

However, as indicated by the skew in the orange line towards the lower range of c (AMM is 225 

discouraged even under low risk) in Fig. 2C, more complex shapes are also possible and the relative 226 

contribution of each strategy is difficult to quantify. Furthermore, our examples are based on 227 

cumulative densities of normal distributions, but depending on the environmental cue, other shapes 228 

(e.g. bimodal, sinusoid) are possible. We hence require summary statistics that adequately describe the 229 

reaction norm shape.  230 

  231 
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5 Classification of reaction norm shapes 232 

In this section we will describe some typical reaction norm shapes and discuss useful summary 233 

statistics to describe the overall degree of plasticity, arithmetic mean maximization, conservative bet-234 

hedging and diversified bet-hedging. First, let us assume a “plastic” reaction norm (Fig. 3A, dark blue 235 

line). A step function describes a sudden switch from one phenotype (AMM) to the other (CBH), and 236 

the number of environments in which a mix of phenotypes is produced is minimized.  This function 237 

maximizes the standard deviation of phenotype proportions p across environments. We refer to the 238 

variance of p as 𝜎𝑎𝑚𝑜𝑛𝑔
2 . The opposite of a step function is one in which the mother’s decision is 239 

entirely independent of the environmental cue, i.e. left to developmental instability, and both 240 

phenotypes are produced in equal measure (DBH; Fig. 3A, light blue line). While 𝜎𝑎𝑚𝑜𝑛𝑔
2  is zero, there 241 

is variance in phenotypes within each environment (𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 ). The trait choice is a Bernoulli draw and 242 

the variance of each p is calculated as p * (1 – p), so we define 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2  across environments as the mean 243 

Bernoulli variance. The two variance components (among and within environments) complement each 244 

other, and we define their sum 𝑠 =  𝜎𝑎𝑚𝑜𝑛𝑔
2 +  𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  as the phenotypic variance of the genotype. It 245 

is not possible to maximize both 𝜎𝑎𝑚𝑜𝑛𝑔
2  (steep slope, high range) and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  (minimal departure from 246 

50%) at once, but intermediate reaction norms with mixed contributions of  𝜎𝑎𝑚𝑜𝑛𝑔
2   and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  are 247 

possible (solid and dashed medium blue lines). The trade-off between 𝜎𝑎𝑚𝑜𝑛𝑔
2  and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  can be 248 

described by the ratio r = 
𝜎𝑎𝑚𝑜𝑛𝑔

2

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2  . r thus describes the degree of developmental (in)stability across 249 

environments. 250 

The variance composition is not the only parameter in which reaction norms may vary. Reaction norms 251 

may, for example, be flat (r = 0), but the proportion of P2 (p) might be zero (Fig. 3B, light orange line), 252 

0.8 (dark orange) or 1 (darkest line) in all environments. These reaction norms differ in the mean 253 

frequency of phenotype P2 across environments, which we denote as f. A frequency of zero indicates 254 

a pure AMM strategy, while f = 1 is a pure CBH strategy. A mean frequency of 0.5 indicates a reaction 255 

norm with maximal phenotypic variance (s), enabling the aforementioned gradient from phenotypic 256 

plasticity to DBH (Fig. 3A, solid lines). As with Fig. 3A, intermediate reaction norm shapes are also 257 

possible: a reaction norm may, for example, range from p = 0 to p = 0.3 or from p = 0.7 to p = 1 (Fig 258 

3B, dashed lines). Reaction norms can thus vary from complete canalization to high phenotypic 259 

variance, and we express their shape by mean frequency of phenotype P2 and by the variance 260 

composition. A canalized reaction norm may be only expressing risk-aversive phenotypes, or only 261 
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expressing arithmetic mean optimizers, whereas high phenotypic variance may indicate steep plastic 262 

reaction norms or DBH.  263 

The two shape parameters f and r reflect the reaction norm shape to a reasonable extent, but as 264 

summarizing statistics they cannot sufficiently describe all its features. For example, the reaction norms 265 

in Fig. 3C both share the same mean frequency (0.5) and variance composition (0.47), but the strategies 266 

under environments that correspond to a low cue c differ considerably. In our aphid example these two 267 

strategies differ in the mean timing of diapause induction, which is an important consideration when 268 

the onset of seasons is under directional change (IPCC, 2014). This mean timing can be assessed by 269 

calculating the inflection point (called critical day length for diapause reaction norms), but for non-270 

logistic reaction norms or more complicated reaction norm shapes a different approach, e.g. based on 271 

autocorrelation patterns, is required. 272 

In summary we discussed three important parameters that describe a reaction norm shape: The 273 

frequency f, the variance composition r (among:within environments), and (for logistic reaction norms) 274 

the inflection points. These three parameters are partially interdependent of one another, and can be 275 

drawn as three perpendicular axes (Fig. 3D; see also supplementary figure S1 for an alternative 276 

representation). The resulting parameter space has three distinct ends which conform to maximum 277 

plasticity (i.e. a step-function, dark blue dot), CBH (dark orange), and AMM (light orange). Parameters 278 

outside these bounds are not possible, e.g. DBH and plasticity cannot occur in canalized reaction 279 

norms, and on the other hand mean frequencies of 0.5 necessarily imply phenotypic variance by DBH 280 

or plasticity.  281 

 282 

6 Reaction norm evolution 283 

So far we described optimal strategies in a single environment (Section 3), calculated optimal reaction 284 

norm shapes (Section 4), and explored which reaction norm shapes are generally possible (Section 5). 285 

We now return to our aphid diapause example to illustrate how optimal reaction norms change when 286 

environmental conditions and fitness functions are altered. We will cover cases with more frost-287 

resistant parthenogenetic forms (i.e., higher fitness of P1 in E2), harsher summer environments (lower 288 

fitness of P1 in E1), and three forms of change in the environment that are directly relevant for aphid 289 

biology: first, mean winter onset may vary with latitude, with earlier winter onset at high latitudes 290 

(Danilevskii, 1965). Secondly, winter onset dates may vary among years, which is the condition that 291 

should lead to bet-hedging in diapause timing (Halkett et al., 2004). Lastly, aphid populations in 292 
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warmer climates frequently lost the ability to produce sexual forms and reproduce by parthenogenesis 293 

throughout the year (anholocyclic life cycles, Simon et al., 2002). The preparation for winter makes 294 

only sense if there is sufficient change in environmental conditions, so this kind of canalization 295 

(obligate development) is expected at southern latitudes.  296 

We start with environments that vary in among-years predictability. Using night length (in hours) as a 297 

cue c, we consider scenarios where winter onset is normally distributed with a mean cue c of 14 and 298 

standard deviations ranging from 0 to 10. In our standard example with growth rates of 4/0.1 299 

(parthenogenetic) and 1/1 (diapausing), the optimal mean frequency f of risk-aversive (diapausing) 300 

phenotypes increases with environmental variance (Fig. 4A, blue solid line), while the variance ratio r 301 

(among : within environments) decreases (Fig. 4C, blue solid line). Thus, a greater tendency towards 302 

DBH and CBH is expected to evolve across environments in unpredictable conditions (see also Fig. 303 

4B, blue lines). With decreasing growth rate of P1 in E1(parthenogenesis in summer) the optimal ratio 304 

decreases less sharply and the frequency of P2 (diapause) increases more strongly (solid orange and 305 

green lines in Fig. 4A, green lines in Fig. 4B). Here the riskier strategy pays off less, and the balance 306 

is shifted towards CBH. When the growth rate of P1 in E2 (winter) is raised to 0.33 (frost tolerance) 307 

both r and f change less steeply with environmental unpredictability (dashed lines), i.e. the optimal 308 

reaction norms tend towards AMM. Increasing the growth rate in E2 further to 0.66 (dash-dotted lines) 309 

leads to a strategy that ignores environmental risk, except when the chance of mild (summer) conditions 310 

is very low. The range of environments that feature a sufficiently low chance of P1 decreases with 311 

increasing environmental variance, causing a drop of both f and r as a sign of canalization to AMM 312 

(Fig. 4D). Overall, both CBH and DBH can be expected under unpredictable conditions, but their 313 

relative benefits vary depending on the arithmetic mean fitness of risk-aversive and risk-prone 314 

phenotypes. 315 

We now simulate global changes in the probability of events, for instance increased or decreased 316 

probabilities of severe winters. For the latter, we multiply the normal distribution by 0.5, overall 317 

halving the probability of being in the harsh environment E2 (see also Fig. 2A). This discourages risk-318 

aversion and, for example, having all offspring diapausing is no longer beneficial (Fig. 5). When the 319 

growth rate of P1 is either 4 (summer) or 0.1 (winter), the frequency f stagnates at 0.2 to 0.25, while 320 

the ratio r decreases from 0.47 to 0.17 (Fig. 5A and C, solid blue line). This is because the reaction 321 

norm range is constrained (Fig. 5B). A lower growth rate of P1 in E1 restores phenotypic variance (Fig. 322 

5A and C, orange and green lines), as it reduces its arithmetic mean fitness and makes the alternative 323 
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phenotype again more profitable (Fig. 5B, green lines). Lowering the environmental risk further 324 

increases the benefit of arithmetic mean maximization (dashed lines) and eventually leads to AMM 325 

under all environmental conditions (dash-dotted lines). Overall, Fig. 5 shows that a global reduction of 326 

the probability for E2 may discourage CBH, and instead favor AMM. For example, a lower risk of 327 

freezing in winter may explain the existence of anholocyclic lines. 328 

A third axis of environmental variation concerns changes in mean environments. Moving the 329 

distribution of environments to a mean c of 9 h simulates the change of winter onset with latitude, as 330 

well as the effects of a changing climate. Although highly relevant for the optimization of fitness, the 331 

changes in optimal reaction norm shapes are trivial to describe. We refer to supplementary Material S2 332 

for further exploration. 333 

In general, we find that r and f evolve with changes in environmental predictability (Fig. 4, solid lines), 334 

leading to CBH and DBH in unpredictable environments. Changes in the fitness function (growth rates 335 

in our example) may, however, affect the balance of AMM and CBH, and very low rewards for CBH 336 

instead lead to the evolution of risky strategies that seek to maximize the arithmetic mean (Fig. 4, dash-337 

dotted lines). When the probability of adverse conditions is globally lowered across the range of 338 

environments (e.g. mild winters), the reaction norm range can become constricted, which further 339 

affects the balance of the fitness maximization strategies. Lastly,  f additionally depends strongly on 340 

the mean environment (e.g. winter onset, Supp. S2), but within reasonable limits the general shape of 341 

the reaction norms is not affected.  342 

 343 

7 Discussion 344 

Phenotypic plasticity can help organisms adapt to changing conditions (Fox et al., 2019), but this 345 

requires a predictable cue (Bonamour et al., 2019). Especially for transgenerational plasticity cues are 346 

not entirely predictable (Burgess and Marshall, 2014; Donelson et al., 2018), which, at least under 347 

some conditions, favors bet-hedging instead (Botero et al., 2015; Tufto, 2015). Nevertheless, the value 348 

of bet-hedging strategies as alternatives to plasticity is frequently overlooked.  349 

Starrfelt and Kokko (2012) have explained bet-hedging, including its mathematical foundation, in great 350 

detail. The main finding was that arithmetic mean fitness maximization, diversified bet-hedging and 351 

conservative bet-hedging form a three-way trade-off of conflicting strategies. However, it was difficult 352 

to see how these strategies play out in practice (Haaland et al., 2020). We provided a simple, detailed 353 

calculation of fitness based on insect diapause as example. Based on this system with only two possible 354 
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phenotypes (biphenisms) we  described how a conflict between arithmetic and geometric mean 355 

optimization can result in bet-hedging (Fig. 1A, B).  We explained that the three strategies form a 356 

gradient, in which arithmetic mean maximization (AMM) and conservative bet-hedging (CBH) are 357 

represented by distinct phenotypes, and diversified bet-hedging (DBH) by a mixture of the two 358 

extremes. We also extended the concept by adding a cue the organisms can respond to, thereby 359 

incorporating reaction norms and the potential for phenotypic plasticity. We identified the mean 360 

phenotype frequency f and the variance composition r as two summary statistics of reaction norms that 361 

allow distinguishing between AMM, CBH, DBH and plasticity, and the sum s of the variance 362 

components as a measure of phenotypic variance. Moreover, for logistic reaction norm shapes we 363 

discuss the inflection point as a third useful summary statistic.  364 

Arithmetic mean maximization vs. conservative bet-hedging 365 

In section 3 we described AMM, DBH and CBH as a linear gradient of strategies to cope with a single 366 

environment. When extended to multiple environments, a flat reaction norm at p = 0 (Fig. 3B, light 367 

orange line) maximises arithmetic mean fitness (see also Fig. 1A), and any adaptive deviation from 368 

this line incorporates some bet-hedging (in the cases we consider; see Fig. 1B for exceptions). Thus, 369 

the mean phenotype frequency f is a direct measure of the degree of CBH in a reaction norm shape. 370 

We illustrated that f correlates with the frequency of the harsh environment E2 (compare fig. 4A and 371 

S1, panel A), but f also changes with the degree of environmental variance: higher environmental risk 372 

shifts optimal reaction norms towards DBH and CBH (Fig. 4A, solid lines; Fig. 4B, dark blue vs. light 373 

blue lines), in line with expectations from other studies (Simons, 2011; Tufto, 2015). This shift is 374 

particularly noticeable when the potential fitness gain from a risk-prone strategy is low (Fig. 4B green 375 

lines; Fig. 2C, orange lines). If, on the other hand, the risk is reduced and the potential pay-off high 376 

(Fig. 4A, dashed and dot-dashed lines; Fig. 5), the optimal reaction norm shapes are shifted towards 377 

risk-prone (AMM) strategies (Halkett et al., 2004). Thus our framework made clear that arithmetic 378 

mean maximization and variance avoidance form exact opposites on a gradient of strategies that is 379 

reflected by f (Fig. 3D, y-axis). 380 

We have illustrated that frequencies or means of reaction norms that mismatch with environmental 381 

means might serve a function. Recent climate change imposes novel environmental conditions, and 382 

species or populations whose trait means do not evolve in concert with environmental means are often 383 

considered as under risk (e.g. Charmantier and Gienapp, 2014), ignoring that this phenotype-384 

environment mismatch may in fact be due to an adaptive CBH strategy. This is not to say that CBH 385 
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can be invoked whenever environmental variance is observed (Simons, 2011), but any combination of 386 

mean maximization and variance avoidance (f) has the potential to be adaptive depending on life 387 

history and environmental variance. 388 

Phenotypic plasticity vs diversified bet-hedging 389 

Reaction norms that are not entirely canalized exhibit some degree of phenotypic plasticity and/or 390 

diversified bet-hedging (Fig. 3 A,B,C), and we expressed their relative contribution with the variance 391 

ratio r. When environmental cues convey reliable information, a high r is adaptive, i.e. phenotypes 392 

change with the environmental cues, but vary only little for any given cue (solid dark blue lines in Fig. 393 

2B, 3A and 4B)(Botero et al., 2015; Tufto, 2015). This reaction norm pattern is commonly referred to 394 

as phenotypic plasticity, or, when the offspring phenotype is dictated by the (grand-) parental 395 

environment, as inter- or transgenerational plasticity (Perez and Lehner, 2019). A low r, on the other 396 

hand, corresponds to DBH across the range of possible environments (orange line in Fig. 2B, solid 397 

light blue lines in Fig. 3A and 4B), and occurs predominantly when cues convey little information 398 

about the optimal phenotype (Cohen, 1966). Our simple models based on aphid diapause illustrate such 399 

a negative relationship between r and cue variance for all but the most extreme growth rate functions 400 

(Fig. 4C, 5C). We therefore see phenotypic plasticity and diversified bet-hedging as a continuum of 401 

evolutionary strategies that is based on the reaction norm shape (Fig. 3D, x-axis).  402 

This definition extends classical concepts of bet-hedging and transgenerational plasticity. Plasticity has 403 

a long history of being related to reaction norm shapes (Woltereck, 1913; Bradshaw, 1965), but 404 

diversified bet-hedging is not as easily visualized, nor is the relationship with plasticity entirely clear. 405 

On the one hand, developmental instability has been seen as a cause of diversified bet-hedging (Simons 406 

and Johnston, 1997; Kærn et al., 2005; Woods, 2014; Dueck et al., 2016; Perrin, 2016). Low copy 407 

numbers e.g. of transcriptional regulators (Volfson et al., 2006) cause sampling errors that ultimately 408 

lead to expression of alternative phenotypes. On the other hand, DBH might be produced by a reaction 409 

norm to noise (“microplasticity”, Simons and Johnston, 2006; “hyperplasticity”, Scheiner and Holt, 410 

2012). For example, Maxwell and Magwene (2017) engineered a yeast model that evolved a response 411 

to estradiol, a compound that was entirely unrelated to fitness but ensured phenotypic variance in a 412 

fluctuating environment. Accordingly, the relationship between diversified bet-hedging and plasticity 413 

might be perceived as nested or as one of two competing strategies. We instead distinguish them as the 414 

two extremes on a continuum of strategies, that correspond to a continuum of reaction norm shapes.  415 

 416 
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Fixed vs. flexible development 417 

The phenotype frequency f and the variance composition r are not entirely independent (Fig. 3D), 418 

because phenotypic variance s, i.e. the sum of variance among and within environments, is a quadratic 419 

function of f: when f is zero (pure AMM or CBH, Fig. 3B) there is no phenotypic variance and hence 420 

no potential for DBH or phenotypic plasticity. When f is 0.5, on the other hand, DBH, phenotypic 421 

plasticity, or a mix of the two strategies is necessarily required (Fig. 3A, D).  422 

In section 6 we altered the amplitude between summer and winter conditions, both by changing the 423 

fitness of the phenotypes (Fig. 4, green and orange lines) and by affecting the global probability of E2  424 

(Fig. 5). Reductions in the difference between summer and winter led to a reduction of phenotypic 425 

variance, i.e. to a decrease in f towards canalization (Fig. 4A, Fig. 5 B, D), illustrating that phenotypic 426 

variance is not beneficial when environments are stable. The relationship between the variance 427 

composition r and environmental variance was, however, maintained (Fig. 5C, dark vs. light lines in 428 

Fig. 5B). The benefits of plasticity and DBH under predictable and unpredictable conditions, 429 

respectively, were thus also apparent under partially canalizing conditions.  430 

Our examples clarified that phenotypic variance is a function of f in binomial reaction norms, and as 431 

such it is equally related to both phenotypic plasticity and diversified bet-hedging. The opposite of 432 

phenotypic variance (i.e., of plasticity and DBH) in our models is environmental canalization, a term 433 

which so far has been used ambiguously (Debat and David, 2001), as it was considered either the 434 

opposite of plasticity (Waddington, 1942; Van Buskirk and Steiner, 2009) or of developmental noise 435 

(Gibson and Wagner, 2000; Zhang and Hill, 2005) alone. Phenotypic plasticity is regarded an essential 436 

component of climate change adaptation (Fox et al., 2019), precisely because of the variance it entails; 437 

moreover, de-canalization by phenotypic plasticity may accelerate evolution through genetic 438 

accommodation (Kelly, 2019). We argue that the same mechanisms may apply for all modes of 439 

phenotypic variance, including diversified bet-hedging. 440 

The importance of mean timing 441 

We introduced the inflection point as additional important reaction norm shape parameter (Fig. 3C, z-442 

axis in Fig. 3D; Fig. S1). In our example the inflection point determined the mean timing of phenotypic 443 

change (i.e. the phenology), and clearly depended on the mean timing of environmental change (Fig. 444 

S2). The inflection point (called critical day length in diapause reaction norms) is known to change 445 

with latitude (Danilevskii, 1965; Bradshaw, 1976), and questions regarding its evolution are highly 446 
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important under climate change (Saikkonen et al., 2012; Zohner et al., 2016). While limited to logistic 447 

reaction norms, we think the inflection point as reaction norm shape parameter deserves special 448 

attention, because many phenological traits are of binary nature (e.g. bird arrival, migration onset, plant 449 

germination and flowering) and hence modelled as logistic reaction norms. 450 

Outlook 451 

The world is simultaneously changing in climate means, variability and predictability (IPCC, 2014; 452 

Lenton et al., 2017; Bathiany et al., 2018), and there are many phenomenological studies on responses 453 

to climate change (Parmesan and Yohe, 2003; Badeck et al., 2004; Cohen et al., 2018). However, only 454 

few detailed case-studies on the mechanisms of adaptation (Nussey et al., 2005; Gienapp et al., 2013; 455 

Lane et al., 2018) exist, and one cannot assume that a matching mean timing or a high level of plasticity 456 

is always adaptive (Boutin and Lane, 2014), just like one cannot assume CBH or DBH to be an optimal 457 

solution (Simons, 2011) – but one can analyse reaction norm shapes with the proposed shape 458 

parameters to decide whether it has the potential for adaptive tracking, arithmetic mean maximization, 459 

plasticity, bet-hedging or canalization (Joschinski and Bonte, 2020). 460 

There is ample room to extend our framework. First of all, we focussed only on the optimal reaction 461 

norm shape. This ignores that CBH and DBH are often nearly equally suited strategies to cope with 462 

environmental uncertainty (Starrfelt and Kokko, 2012), i.e. the shape and curvature of the geometric 463 

mean fitness curve (Fig. 1 A) requires further consideration. Secondly, we have restricted our 464 

arguments to binary trans-generationally inherited traits, as these are commonly treated both 465 

empirically (Venable, 2007; Maxwell and Magwene, 2017; Scholl et al., 2020) and theoretically 466 

(Cohen, 1966; Halkett et al., 2004; Starrfelt and Kokko, 2012; Kivela et al., 2016; Gerber and Kokko, 467 

2018). For continuous traits, e.g. offspring size (Marshall et al., 2008), our calculations may not apply, 468 

because AMM, DBH and CBH need not lie on a linear gradient (i.e. intermediate trait values need not 469 

incur highest trait variance). Nevertheless, theory regarding Gaussian functions arrives at a similar 470 

conclusion: that offspring variance evolves to the amount of environmental mismatch that is not already 471 

covered by phenotypic plasticity (Tufto, 2015). This is equivalent to our finding that only the variance 472 

composition (r) changes with environmental variability, whereas the degree of phenotypic variance 473 

remains relatively constant (e.g. Fig. 5B). Other possible extensions would include plastic responses 474 

that take place within an individual’s life time. The opportunity for both within- and transgenerational 475 

plasticity may not only make one strategy obsolete (Luquet and Tariel, 2016), but also lead to complex 476 

interactions among the two (Fuxjäger et al., 2019). Similarly fitness may include multiplicative 477 

instances within an individual’s lifetime (e.g. iteroparity), shifting the balance from DBH towards CBH 478 
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strategies, or conversely sum across generations (“fine-grained” environments), moving the balance 479 

towards AMM strategies (Haaland et al., 2020). Lastly, there are also potential bet-hedging strategies 480 

that appear entirely unrelated to transgenerational plasticity. These include, for example, an iteroparous 481 

life history (Garcia-Gonzalez et al., 2015), hotspots for genetic mutations (“contingency loci”, Rando 482 

and Verstrepen, 2007), and sexual reproduction in general (Li et al., 2017). A unification with these 483 

alternative strategies might lead to a better understanding of adaptation to rapid climate change. 484 

8 Conclusion 485 

In this review we rephrased reaction norm evolution as a complex trade-off among four strategies. It 486 

is increasingly recognized that changes in climate extremes and in predictability are as important as 487 

changes in means (IPCC, 2014; Donelson et al., 2018) – focusing only on strategies to match the mean 488 

is hence not fruitful. For example, failure to shift mean phenology with climate change (Gienapp et al., 489 

2013) is not problematic per se – it could be mitigated by concurrent changes in phenotypic variance. 490 

Similarly, the lack of both phenotypic plasticity and mean change may not have severe fitness 491 

consequences, if the lack of plasticity is mitigated by diversified bet-hedging. It is the combination 492 

along all three axes that defines fitness in a given environment.  493 
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14 Figure legends 706 

Fig. 1. Geometric (solid lines) and arithmetic mean fitness (dashed lines) when a genotype can express 707 

two discrete phenotypes in a two-state environment. A) Conflict between geometric and arithmetic 708 

mean maximization. Environment E2 (e.g. winter) occurs with frequencies of 0.5 (blue) or 0.2 (orange). 709 

Phenotype P2 represents a risk-averse phenotype (e.g. diapausing offspring) with 1 fitness in either 710 

environment, the alternative phenotype is a phenotype with higher arithmetic mean fitness (4 fitness in 711 

E1, 0.1 in E2). B) No or little conflict between arithmetic and geometric mean maximization. Blue line: 712 

E2 occurs with frequency 0.5 and P1 and P2 are specialists for E1 and E2, respectively (4 fitness if 713 

matched, 0 fitness if mismatched); grey: same as blue line, but P2 has 3.9 fitness in E2; orange: fitness 714 

is the same as in panel A, but E2 occurs with frequency 0.8. Colored dots represent the maxima of the 715 

respective functions. 716 

Fig. 2 Panel A) Probability of encountering environment E2 (winter conditions) for different values of 717 

an environmental cue c (e.g. night length). E2 fluctuates around c according to three normal 718 

distributions N1(14,1), N2(14,4) and 0.5 * N3(14,2) (blue, orange, green). Shown are cumulative 719 

probability functions of the three distributions. B) Optimal reaction norm shapes (e.g. proportion p of 720 

diapausing offspring for different night lengths) under the three scenarios of environmental uncertainty 721 

introduced in panel A. As in the main text, fitness of P1 (parthenogenesis) is 4 in E1 and 0.1 in E2, 722 

whereas fitness of P2 is always 1. C) optimal reaction norm shapes when fitness of P1 is 4/0 and fitness 723 

of P2 is 1.8/1.8 in E1/E2, respectively. Dotted lines represent c = 14 h, small coloured dots refer to the 724 

examples given in the main text. 725 

Fig. 3: Example reaction norm shapes. A) Four reaction norm shapes that exhibit high phenotypic 726 

variance. Variance may occur exclusively among environments (dark blue), exclusively within each 727 

environment (light blue), or as a mix of both variance components (medium blue, solid and dashed). 728 

We refer to the ratio of the variance components (among : within) as r. B) Three different reaction 729 

norms with r = 0 (solid lines), and two different reaction norms with r = 0.14 (dashed). The reaction 730 

norms differ in the mean frequency f of phenotype P2, which also affects the phenotypic variance s (i.e. 731 

the sum of variance among and within environments). Reaction norms with f = 0 (light orange) and f 732 

= 1 (dark orange) are canalized (s = 0), and phenotypic variance is maximized at f = 0.5 (see panel A). 733 

C) Two logistic reaction norms with the same f and r, but different inflection points. D) possible 734 

parameter space of r, f and inflection points. Grey dots depict sample reaction norms across the range 735 
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of possible parameters (darkness scales with z-axis), colored dots indicated samples from panel A and 736 

B and C in their respective color.   737 

Fig. 4: Optimal reaction norm shapes for various growth rate functions and different levels of 738 

environmental predictability. Environments are normally distributed around a cue c with a mean of 14. 739 

Mean frequency f of phenotype P2 (Panel A) and variance composition r (Panel C) are plotted against 740 

standard deviation of the environment. Growth rates of P2 (diapause) are always 1 for both 741 

environments (summer and winter); growth rates of P1 (parthenogenesis) in E1/E2 are 4/0.1 (blue, 742 

solid), 3/0.1 (orange, solid), 2/0.1 (green, solid); 4/0.33,  3/0.33, 2/0.33 (dashed blue, orange and green 743 

lines); and 4/0.66, 3/0.66, 2/0.66 (dash-dotted blue, orange and green lines). Panels B and D show 744 

optimal reaction norms for environments with standard deviations of 2(darker shade) and 8 (lighter 745 

shade) in the according line styles and colors. 746 

Fig. 5: Optimal reaction norm shapes for various growth rate functions and different levels of 747 

environmental predictability. Environments are normally distributed around a cue c with a mean of 14, 748 

but multiplied by 0.5. Growth rates, coloring and line styles are the same as Fig. 4. 749 

  750 
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Table 1: Growth rate calculations for various phenotype proportions in a two-environment system. A 751 

genotype may invest in two different phenotypes, P1 and P2, with a fixed proportion p.  P1 has four 752 

offspring if in environment E1, but 0.1 if in E2; P2 achieves 1 fitness in either environment. We show 753 

arithmetic and geometric mean fitness across environments (Environments E1 and E2 are chosen with 754 

probability 0.5), as well as their calculation (italics). 755 

 Proportion of P2 (p) 

 0 0.5 1 0.61 

E1 4 

(0 * 1 + 1* 4) 

2.5 

(0.5 * 1 + 0.5 * 4) 

1 

(1 * 1 + 0 * 4) 

2.17 

(0.61 * 1 + 0.39 * 4) 

E2 0.1  

(0 * 1 + 1 * 0.1)  

0.55 

(0.5 * 1 + 0.5* 0.1) 

1 

(1 * 1 + 0 * 0.1) 

0.65 

(0.61 * 1 + 0.39 * 0.1)  

Arithmetic mean 2.05 1.53 1 1.41 

Geometric mean 0.63 1.17 1 1.19 

 756 

  757 
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 758 

Fig. 1. Geometric (solid lines) and arithmetic mean fitness (dashed lines) when a genotype can express 759 

two discrete phenotypes in a two-state environment. A) Conflict between geometric and arithmetic 760 

mean maximization. Environment E2 (e.g. winter) occurs with frequencies of 0.5 (blue) or 0.2 (orange). 761 

Phenotype P2 represents a risk-averse phenotype (e.g. diapausing offspring) with 1 fitness in either 762 

environment, the alternative phenotype is a phenotype with higher arithmetic mean fitness (4 fitness in 763 

E1, 0.1 in E2). B) No or little conflict between arithmetic and geometric mean maximization. Blue line: 764 

E2 occurs with frequency 0.5 and P1 and P2 are specialists for E1 and E2, respectively (4 fitness if 765 

matched, 0 fitness if mismatched); grey: same as blue line, but P2 has 3.9 fitness in E2; orange: fitness 766 

is the same as in panel A, but E2 occurs with frequency 0.8. Colored dots represent the maxima of the 767 

respective functions. 768 
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 770 

Fig. 2 Panel A) Probability of encountering environment E2 (winter conditions) for different values of 771 

an environmental cue c (e.g. night length). E2 fluctuates around c according to three normal 772 

distributions N1(14,1), N2(14,4) and 0.5 * N3(14,2) (blue, orange, green). Shown are cumulative 773 

probability functions of the three distributions. B) Optimal reaction norm shapes (e.g. proportion p of 774 

diapausing offspring for different night lengths) under the three scenarios of environmental uncertainty 775 

introduced in panel A. As in the main text, fitness of P1 (parthenogenesis) is 4 in E1 and 0.1 in E2, 776 

whereas fitness of P2 is always 1. C) optimal reaction norm shapes when fitness of P1 is 4/0 and fitness 777 

of P2 is 1.8/1.8 in E1/E2, respectively. Dotted lines represent c = 14 h, small coloured dots refer to the 778 

examples given in the main text. 779 
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 781 

Fig. 3: Example reaction norm shapes. A) Four reaction norm shapes that exhibit high phenotypic 782 

variance. Variance may occur exclusively among environments (dark blue), exclusively within each 783 

environment (light blue), or as a mix of both variance components (medium blue, solid and dashed). 784 

We refer to the ratio of the variance components (among : within) as r. B) Three different reaction 785 

norms with r = 0 (solid lines), and two different reaction norms with r = 0.14 (dashed). The reaction 786 

norms differ in the mean frequency f of phenotype P2, which also affects the phenotypic variance s (i.e. 787 

the sum of variance among and within environments). Reaction norms with f = 0 (light orange) and f 788 

= 1 (dark orange) are canalized (s = 0), and phenotypic variance is maximized at f = 0.5 (see panel A). 789 

C) Two logistic reaction norms with the same f and r, but different inflection points. D) Possible 790 

parameter space of r, f and inflection points. Grey dots depict sample reaction norms across the range 791 

of possible parameters (darkness scales with z-axis), colored dots indicated samples from panel A and 792 

B and C in their respective color.   793 
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 795 

Fig. 4: Optimal reaction norm shapes for various growth rate functions and different levels of 796 

environmental predictability. Environments are normally distributed around a cue c with a mean of 14. 797 

Mean frequency f of phenotype P2 (Panel A) and variance composition r (Panel C) are plotted against 798 

standard deviation of the environment. Growth rates of P2 (diapause) are always 1 for both 799 

environments (summer and winter); growth rates of P1 (parthenogenesis) in E1/E2 are 4/0.1 (blue, 800 

solid), 3/0.1 (orange, solid), 2/0.1 (green, solid); 4/0.33,  3/0.33, 2/0.33 (dashed blue, orange and green 801 

lines); and 4/0.66, 3/0.66, 2/0.66 (dash-dotted blue, orange and green lines). Panels B and D show 802 

optimal reaction norms for environments with standard deviations of 2(darker shade) and 8 (lighter 803 

shade) in the according line styles and colors. 804 
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 806 

Fig. 5: Optimal reaction norm shapes for various growth rate functions and different levels of 807 

environmental predictability. Environments are normally distributed around a cue c with a mean of 14, 808 

but multiplied by 0.5. Growth rates, coloring and line styles are the same as Fig. 4. 809 
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