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Deadwood is a large aboveground carbon (C) pool that regulates how forests respond to global change1,2. Due to slow decomposition, CWD delays C emissions following major forest disturbances so predicting how carbon balance will respond to changing disturbance regimes requires identifying factors that influence the full temporal trajectory of wood decay from senescence to complete mineralization2,3.  However, typical experiments only examine how wood decay begins4 with unknown consequences for scaling short-term results up to long-term forest ecosystem projections. Using a 7-year experiment that captured complete mineralization among 21 temperate tree species, we demonstrate that (1) wood traits are more important than environmental drivers, (2) trait effects fade with advancing decay and (3) permeability-related traits control how decay rates change through time. Only long-term data and a time-varying model yielded accurate predictions of both mass loss in a concurrent experiment and naturally-recruited deadwood structure in a 32-year old forest plot. Given the importance of forests in the carbon cycle, and the pivotal role for wood decay, accurate ecosystem projections are critical and they require experiments that go beyond enumerating potential mechanisms by identifying the temporal scale for their effects.
Variation in wood decay rates reflects the combined influences of intrinsic and extrinsic drivers5,6. Wider stems from species with denser, more nutrient-limited wood tend to decompose more slowly7. Decay rates also depend on features of the surrounding environment, such that higher soil nutrient availability, temperature, and moisture tend to accelerate decay8,9. Ultimately, decay rates reflect activity of decomposing organisms, including fungi, bacteria, archaea, and invertebrates, which interact with changing substrates, external environments and one another10. Despite a growing list of candidate wood decay drivers, scaling up from experimental results to accurate forest ecosystem projections has proven considerably more challenging for several reasons. First, different mechanisms that drive decay can interact in complex ways11. A second major challenge is identifying the spatial scale where important drivers and interactions emerge12. Careful experiments and hierarchical models are beginning to resolve where certain drivers control decay13. However, scaling from short-term experiments to long-term processes also requires extrapolating beyond the temporal domain of the results, so an outstanding challenge is identifying when experimental drivers are relevant, whether early, late or throughout decay.
To illustrate how experimental time scale influences forest carbon projections, consider a study designed to test how variation in a tree functional trait drives deadwood residence times (Fig. 1). In this example, the trait value controls how decay rates change relative to a common, single-parameter decay model that assumes constant proportional mass loss (i.e. negative exponential or NegExp, central grey curve). Because samples from the species with high trait values have lost relatively less mass at first, but more mass later on, the apparent relationship between trait values and residence time depends on experiment duration. Long-term decay data produce a trait effect in the correct direction but of reduced magnitude, intermediate-term data show no significant relationship, and short-term data incorrectly imply that the trait strongly increases residence times. Any of these distorted relationships would lead to inaccurate representations of forest processes as an artefact of experiment duration and sampling frequency, and associated misspecification of the underlying decay model.


[image: ]
Figure 1 | Hypothetical example illustrating the importance of time scale for inferring deadwood residence time from a wood-decay experiment. Points represent mass loss from replicates of two tree species, one with high values of an important functional trait (yellow) and another with low values (blue). The generating function (lower left inset) is a hierarchical Weibull model (Equation 1-2) where the trait has a positive log-linear correlation with the value of the shape parameter (i.e. c Equation 1). The mass-loss curves for both species intersect at time equal to the reciprocal of their common scale parameter (i.e. λ Equation 1). The curve from the associated negative exponential model is illustrated in grey. Inset panels represent the inferred relationships between residence time and trait values at different sampling times (dashed vertical lines). 
Here, we tested how experiment duration and sampling frequency influenced candidate driver strength, functional role and predictive accuracy. We integrated data from three complementary studies: a common-garden wood decay experiment involving 21 woody species decomposing for up to 7 years in two contrasting habitats, a concurrent experiment for validating mass loss projections, and a CWD inventory of naturally recruited deadwood in a 32-year old forest dynamics plot. For the larger experiment, we analyzed mass loss using a new hierarchical Bayesian approach that interpolated between the widely used NegExp model and a time-varying Weibull model14. We evaluated the strength for 23 candidate drivers, including tree species wood chemistry and anatomy, as well as plot edaphic and microclimatic variables using different sampling schemes to test two specific predictions. First, because decay changes the wood substrate itself, we predicted that significant drivers would change with the duration and sampling frequency of experiment. Second, we predicted that long-term data analyzed using a flexible model would more accurately project mass loss and natural CWD structure.
RESULTS
Common Garden Wood Decay Experiment. The common garden experiment involved 630 unique replicates and captured nearly complete mass loss for all species and sites. When the final replicates were harvested 5.7 yr (±0.01 s.e.) after deployment, samples had lost 72.9% (±1.58 s.e.) of their initial mass. Experimental duration (i.e. one versus five years of mass loss) and sampling frequency (i.e. once versus three to four times) strongly influenced which candidate drivers influenced decay, the strength of their effects and how they influenced the shape of the decay function. Among the 12 wood trait and 11 environmental candidate drivers (Fig. 2), the portion that were important for decay (i.e.  in Equation 4) was highest when analyzing only the first year of mass loss (yr 1 NegExp, =0.421, 95% CI=[0.225, 0.633]) and lowest when analyzing only the fifth year of mass loss (yr 5 NegExp, =0.284, 95% CI=[0.091, 0.511]). Only log (lignin%) remained important after 5 years (Fig. 2). 
[image: ]Figure 2 | Tree species trait and environment predictors of wood decay vary with the time scale of the experiment and functional form of the model. Colored values represent standardized effect sizes for coefficients associated with accelerated (yellow) or slowed (blue) residence times. Null cells correspond to coefficients that had 95% credible intervals that included 0. The Proportion Important corresponds to in Equation 4, the scale parameter corresponds to λjk in Equation 1 and the shape parameter corresponds with cjk in Equation 1. TMI is the Topographic Moisture Index and TEB is Total Exchangeable Bases.
Analyzing every sampling point in the time series identified many of the same predictors, but supported different effect magnitudes and functional relationships. Assuming NegExp decay, the proportion and identity of important predictors resembled those estimated after only one year (yr 1-7 NegExp, =0.410, 95% CI=[0.216, 0.622]). Compared to NegExp decay, a simplified Weibull decay model was much more adequate (yr 1-7 NegExp DIC=-949.4; yr 1-7 Weibull DIC=-990.4). Many of the same candidate decay drivers were associated with variation in the scale parameter of the Weibull distribution, which is functionally related to the scale parameter of the NegExp model. However, both initial wood density and xylem conduit diameter predicted variation in the Weibull shape parameter which controls how decay rates change through time. Wood density accelerated mass loss while xylem conduit diameter decelerated mass loss. Differences in effect magnitudes translated to dramatically different projections of ecosystem dynamics (Fig. 3). Based on the first year of decay, a species with modestly more lignin (5%) had projected residence times more than an order of magnitude longer, while estimating the impact of the same trait difference after 5 years projected to an increase in residence times by only a factor of four.
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Figure 3 | The effect of increased log (lignin%) on deadwood residence time depends on experimental time scale. All values are expressed as a ratio of residence times for a hypothetical species with 5% more lignin compared to the average species in the analysis. Points represent means of average predictive comparisons and whiskers represent 95% credible intervals. 
Validation Experiment
 For 72 additional replicates representing a subset of three species decaying at the same sites over 5 years, long-term data generated more accurate predictions of observed mass loss. A model parameterized by just the first year of decay data resulted in the least accurate predictions (RMSD=0.217), although the overall relationship was unbiased (validation linear regression, R2=0.498; intercept t [H0=0]=-1.324, P=0.19; slope t [H0=1]=-0.785, P=0.218). In comparison, a model parameterized with just the fifth year of decay data was more accurate (RMSD=0.174), but marginally biased towards lower mass loss values (validation linear regression, R2=0.689; intercept=-0.077, d.f.=2, t [H0=0]=-1.988, P=0.051; slope t [H0=1]=-0.560, P=0.289). Models parameterized using all of the decay data produced the most accurate predictions (yr 1-7 NegExp RMSD=0.161, yr 1-7 Weibull RMSD=0.163) and neither exhibited bias (yr 1-7 NegExp, validation linear regression, R2=0.664; intercept t [H0=0]=-0.732, P=0.467; slope t [H0=1]=-0.845, P=0.200; yr 1-7 Weibull, validation linear regression, R2=0.666; intercept t [H0=0]=-0.540, P=0.591; slope t [H0=1]=-1.269, P=0.104). 
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Figure 4 | Time scale and functional form of wood decay influence the predictive accuracy for mass loss projections applied to a concurrent validation experiment. Species codes reflect the first two characters of the genus and species names (Table S1) and position denotes samples from plots on ridges (H) versus valleys (L).

Naturally-recruited CWD 
Across a 4 ha, 32-year old forest dynamics plot at the same site, estimates of residence time based on the full time series and Weibull decay accurately predicted two features of naturally recruited deadwood structure. Among 434 tagged pieces of CWD greater than 7 cm in diameter, 261 matched 12 species that had been included in the experiment. At the time of inventory, 98 were standing unsupported above 2 m and intermediate decay classes were most common (DC 1=51, DC 2=73, DC 3=106, DC 4=24, DC 5=7). The most adequate model for deadwood position included both stem diameter and hierarchical Weibull residence times (Supplementary Table 2). Controlling for the effect of stem diameter, CWD from species and environments with longer projected residence times were marginally more likely to occur as standing (Fig. 5A, Logistic Regression, n=261, diameter effect=0.051, z=3.56, P < 0.001, residence time effect=0.397, z=1.92, P=0.055). Similarly, wider CWD was more likely to occur in less advanced decay classes, as was CWD with longer projected residence times (Supplementary Table 2, Fig. 5B, Proportional Odds Logistic Regression, n=261, diameter effect=-0.0295, t=-2.306, P=0.009, residence time effect=-0.393, t=-2.20, P=0.012).
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Figure 5 | Naturally recruited coarse-woody debris (CWD) with longer estimated residence time is more likely to occur standing intact (A) and in a less advanced decay class (B). Curves represent the marginal effect of residence times based on a Weibull model of wood decay for a hypothetical CWD piece of average stem diameter.


DISCUSSION
As climate change stresses trees, forest carbon balance hinges on how quickly deadwood decomposes. Initial wood decay rates vary widely among tree species and sites, with short-term experiments emphasizing different roles for intrinsic and extrinsic drivers that can depend on spatial scale 5,7,12. However, scaling from experiments to ecosystems also requires testing whether mechanisms that prevail when wood decay begins still matter as wood mineralizes. Our results demonstrate how experimental time scale can distort mechanistic representations of decay in widely used empirical models with major consequences for projecting forest responses to disturbance.
Trait effects depend on temporal scale 
Consistent with our first hypothesis, the effects of trait and environmental drivers changed with time scale. As the duration increased, driver effects weakened and produced radically different relationships between traits and residence times. Fading effects of species traits has also been observed during long-term leaf litter decay15,16. Initial trait effects, like the traits themselves, may become less distinct as decomposers homogenize senesced plant tissues17. Not only did time scale change the effects of drivers, it also changed their functional roles. Initial wood density provides an important example. Some experiments have demonstrated slower decay for denser wood18 while others found no difference7,19,20. Our results show that wood density can control how decay rates vary through time. Vessel diameter also changed the shape of the decay curve but in the opposite direction. Together, these traits may mediate biological feedbacks related to substrate permeability and decomposability21. Denser wood with narrow vessels may have more inaccessible internal cavities that breakdown faster as decay increases microbial access, microscale surface area to volume, and defensive compound leaching6,22. Further experiments could explore underlying mechanisms by connecting changes in bulk wood properties with variation in microbial community assembly and function. 
Compared to wood traits, candidate environmental drivers had weak or unexpected effects. Differences in soil chemistry and temperature between habitats strongly influence living tree community structure23, but only soil temperature slowed decay in the full time series. This unexpected result is consistent with at least one other experiment found that leaves in warmer sites decayed more slowly8. In general, variation in initial wood traits more strongly influenced wood decay than environmental variability, which is consistent with global patterns7.
Long-term data, frequent sampling and flexible models make more accurate ecosystem projections Consistent with our second hypothesis, accounting for dynamic wood trait effects by analyzing long-term data in a flexible model generated more accurate predictions. In the validation experiment, the least accurate predictions were based on short-term results, when trait effects were strongest. More accurate predictions came from a much weaker relationship between initial log(lignin%) and long-term decay. Even so, models based on more traits and longer time series were more accurate and unbiased, predicting as much as 66% of the observed variation in mass loss.
The ultimate goal of scaling up from experiments to ecosystem dynamics requires assessing model predictions in natural systems. Only long-term data with time-scale dependent effects yielded accurate predictions of naturally recruited deadwood structure. Dead trees with quickly decomposing wood were more likely to be broken, which is consistent with an analysis of standing dead tree fall across the eastern United States24. They also tended to be in a more advanced decay class, which forms the basis for estimating deadwood C content25. Even so, many other factors contribute to variation in deadwood structure observed at a particular point in time. To the extent that mortality depends on the same sets of traits that control wood decay, it is possible that our observational results actually reflect a different process. We excluded observations of Amerlanchier arborea, a species with relatively slowly decomposing wood, because it was severely impacted by drought and difficult to classify as dead. Resolving this ambiguity will require more comprehensive forest C models that include trait-based mortality and wood decay.
CONCLUSIONS
By finding that time scale influences how wood traits influence decay, our study emphasizes how short-term studies and correspondingly simple empirical models can misrepresent long-term ecosystem dynamics. In a recent review of litter decay experiments in the boreal zone, very few (11%) lasted long enough to capture major changes in decay rates that emerged after 12 years16. While short-term data may be sufficient for testing hypotheses about factors that influence initial decay rate variation, they may rush to conclusions about transient mechanisms that eventually fade or flip. More importantly, analyses that cannot accommodate dynamic decay rates may distort the roles for underlying drivers and produce radically different ecosystem projections. With global change driving forest dieback, understanding what controls wood decay has never been more urgent. When it comes to accurately representing wood decay in earth system models, our results show that long-term experiments are worth the wait.
[bookmark: _GoBack]METHODS
Site description The experiments and CWD inventory occurred at the Tyson Research Center, USA, at the northeastern edge of the Ozark ecoregion (38°31’N, 90°33’ W) with a mean annual temperature of 13.5°C and mean annual precipitation of 957 mm. Topography varies across highly eroded limestone bedrock where valley bottom from ridgetop habitats have distinct soil chemistry and plant communities23,26.
Wood decay experiment Eight common-garden plots were situated in adjacent ridge top and valley bottom sites in four watersheds. For each plot, we harvested tissue from 21 species widely spread across seed plant families and belonging to different growth forms (Supplementary Table 1). We processed healthy stems into replicates approximately 22 cm in length and 5-9 cm in midpoint diameter and deployed them in two cohorts. The first cohort was deployed in 2009 and included wood from 16 species while the second cohort was deployed in 2011 and included segments from five new species, as well as the validation experiment consisting of replicated segments from three species that were also included in the first cohort (Table S1). Details of sample preparation are given in (5). We harvested replicates on 4 occasions. In 2010, 2012 and 2014, we harvested one replicate per rot plot per cohort using the protocol described in (5). In 2014, a laboratory accident damaged samples before drying, so we calculated moisture content from sawdust subsamples using a multiple imputation approach (See moisture content imputation). Following our primary 2014 harvest, we anticipated complete mineralization for some species and plots prior to the final planned harvest, so we collected those samples using the same general protocol but directly measured dry mass. We harvested and directly measured dry mass for every remaining replicate during the final harvest in 2016.
Moisture content imputation 
To estimate the dry mass of 108 samples that were damaged in 2014 prior to drying the full samples, we imputed missing values by regressing the whole log dry mass to wet mass ratios (DMWMR) onto sawdust subsamples from the same log.  In cases where more than one independent sawdust subsample was collected, we took the mean DMWMR of every subsample taken from the same log.  To meet the assumptions of the regression model, we logit transformed both the predictor (sawdust) and response (log) DMWMRs.  Then we estimated the regression parameters in a Bayesian context with vague priors (i.e. Normal (0,1000)) on the intercept and slope coefficients using MCMC sampling as implemented in rjags 4.627.  After discarding the first 1000 samples as burn-in, we drew 2000 samples from the posterior distribution from three independent MCMC chains representing both regression coefficients and, at each iteration, calculated the missing value of DMWMR for damaged log samples.  We checked for convergence by visually inspecting the traceplots for the parameters and ensuring that the Brooks-Gelman-Rubin28 statistic was less than 1.03.  We then substituted the mean of the imputed DMWMR when calculating mass loss for those samples.  For all other samples, we used the directly measured DMWMR.
Candidate drivers To represent intrinsic drivers of decay, we analyzed initial wood chemical and anatomical traits. For wood chemistry, we analyzed the log of the C:N ratio, carbon fractions (i.e. Cellulose%, Hemicellulose% and log(Lignin%),) and concentrations of elements associated with wood decay enzymes (i.e. Ca, P, and Mn)5. Anatomical traits were wood density, conduit lumen diameter 5 and conduit length29. We also measured the fraction of cross-sectional area represented by parenchyma and conduit walls based on microscopic analysis of radial sectors of fixed, stained cross sections from three branches per species following the same methodology as Osazuwa-Peters et al.30.
To represent extrinsic drivers of decay, we analyzed microclimate and soils. We measured air temperature and relative humidity at 1 m above the soil surface, as well as soil temperature and moisture content at 10 cm below the surface every 10 minutes from June 2011 to June 2014 using Hobo weather stations5. Because some sensors failed during this interval, we quantified plot-level microclimatic variation as the mean deviation from simultaneous measurements at a reference station that collected data for all four variables throughout the entire measurement period. For soil chemistry, we collected 8 cores from 1-10 cm depth within the original footprint of the rot plot in July 2012 and measured N content, soil pH, Total Exchangeable Bases, Bray P, Ca, and Mn using standard methods23,26. Finally, we used a smoothed digital elevation model to calculate the topographic moisture index at every site31.
Coarse woody debris inventory We characterized CWD structure based on a 2012 deadwood inventory in a 4-ha section of the 20-ha Tyson Research Center Forest Dynamics plot. To match dead stems to species in the decay experiment, we used attached ID tags from previous surveys23. Among matched stems, we analyzed two aspects of deadwood structure that reflect the relative degree of decay. First, we classified vertical position by distinguishing CWD that was standing unsupported and intact above 2 m from CWD that had broken or fallen to the ground. Second, we identified decay class, which is a standard classification system based on a progressive series of external indicators31. Because drought-related defoliation made Amerlanchier arborea difficult to identify as dead during the inventory, we excluded this species from the analysis.
To estimate the values of environmental covariates at the locations of deadwood, we conducted spatial analyses of variation in soil-surface temperature. Specifically, we used a dataset of soil-surface temperatures generated by 199 shielded iButton (Maxim Integrated, Jan Jose, CA) temperature loggers systematically distributed across the site26. Loggers measured temperatures at two-hour intervals from July 11, 2013 to July 11, 2014. Because methods differed from the common-garden plots, we z-transformed the iButton data and rescaled them to have the same mean and standard deviation as air temperatures recorded over the same interval by the reference weather station for the common-garden plots. We then fit an exponential variogram to the mean temperature-distance relationship and kriged the fitted variogram to a set of points in a 5x5 m square grid over the CWD survey area using the R package “sp” 30, 31
Model structure To represent decay, we assumed that the proportion of mass remaining (M) for every replicate i = 1 … l with increasing time, t, since deployment for j = 1 ... n species and k = 1 ... m plots is defined by the Weibull function14:
				(1)
where λ is the scale parameter and c is the shape parameter. If the value of the shape parameter is greater than 1, mass loss accelerates through time, which reduces residence times relative to the NegExp decay. If the value of the shape parameter is less than one, mass loss decelerates through time, which increases residence times. Fixing the shape parameter at one yields the NegExp model. 
To estimate the parameters of the Weibull function from observed data, we employed a generalized Weibull regression approach using a double log link function and normally distributed measurement-level error on the transformed scale29. Under this approach, the parameters of the Weibull decay function, λjk, cjk, may vary with intrinsic features of wood and extrinsic features of the environment. Specifically, we treated λjk and cjk as stochastic variables that depend in turn on hyperparameters in a multilevel regression framework: 
	 	 	(2)
Where αλ is the intercept for the scale parameter, W is a l x n matrix of species-level trait covariates and  is a vector of n species trait effects, X is a l x m matrix of plot-level environmental covariates and  is a vector of m environment effects, and τλ is the precision (inverse variance) for the scale parameter. An equivalent expression applies to a multilevel regression for the shape parameter, cjk. The log-normal likelihood reflects the constraint that both λjk and cjk must be positive. For NegExp decay, we fixed c to one and used the canonical log-link function with normally distributed measurement-level error29.
To determine which drivers predict variation in decay parameters we used a latent binary indicator variable approach34. Specifically, each element in the vector of n + m multilevel regression coefficients (i.e.  and  in Equation 2) is represented as the product of a binary indicator variable, , and a latent regression coefficient, 
	 					(3)
When an indicator variable takes a value of 1, the corresponding covariate is included in the model. The probability that an indicator takes a value of 1 is treated as stochastic:
 					(4)
where  is the probability of covariate inclusion as estimated by the data.
Model implementation
We fit the decay model (i.e. main text Eq. 1-4) in a Bayesian context using rjags v 4.627 using vague priors with broad distributions. For the residual measurement-level level errors, we placed a broad uniform (0,10) prior on the residual standard deviation. We used the same prior for the error standard deviation in the lognormal hyperparameter regressions for the effects of species traits and environmental covariates (i.e. the square root of the reciprocal of  Eq. 2). For the intercepts of the hyperparameter regressions, (i.e.  Eq. 2), we used vague Normal (0,100) priors. As priors for the latent hyperparameter regression coefficients (i.e.  Eq. 3), we used vague Normal (0,100) priors. Finally, for the prior on the proportion of important covariates, (i.e.  Eq. 4) we used a vague Beta (0.5,0.5) distribution which is symmetric around a minimum of 0.5.
We sampled from the posterior distributions using three independent MCMC chains with an adaptive burn-in phase of 104 iterations followed by 5x106 iterations, saving only every 50th sample. After quantifying the effective sample size, we extended chains, added additional chains or adjusted the thinning interval until effective sample size numbers for all sampled quantities exceeded 1000. We checked for convergence by visually inspecting the trace plots for the parameters and ensuring that the Brooks-Gelman-Rubin statistic was less than 1.03. 
Simultaneously estimating multilevel regressions for Weibull shape and scale parameters using the same candidate predictors complicated sampling. To speed convergence for the full Weibull hyperparameter regression (i.e. Eq. 1-4), we sampled from a model with a simple normal (0,100) prior on the intercept for the scale parameter (e.g.  Eq. 2) while estimating the full parameter effects for the shape parameter and vice versa. After running consecutive, complementary models with hyperparameter regressions for shape and then scale parameters respectively, we included all covariates with 95% CI intervals excluding zero in our simplified models. 
Following model simplification, we assessed the adequacy of alternative model specifications for different datasets. After analyzing the full model, we reduced the set of predictors to those with 95% CIs that excluded zero during simplification and substituted the binary latent indicator variable structure (i.e.  Eq. 3) for independent, vague normal (0,100) priors over each hyperparameter in the reduced vector of coefficients. We fit the models using the same approach described in model simplification but reduced the initial sampling phase to 5x105 iterations and the thinning interval to 10. After checking convergence, we drew an additional 2x105 samples for estimating the deviance information criterion (DIC35). DIC is an analog for the more widely used Akaike Information Criterion (AIC36) that accommodates multilevel models where the number of parameters is estimated from the data. We selected the model with the lowest DIC as the most adequate model and report the mean of the posterior distribution and the limits of the 95% CI. For datasets including only the first or the fifth year of mass loss data, the Weibull model is not identifiable. For these subsets of the data, we compared the negative exponential decay models.
Model Adequacy. To compare different models for the full time series, we calculated the DIC. To compare the predictive accuracy of different models against the validation dataset, we used two criteria. First, we re-expressed Eq. 2 as 
 				(5)
where the final term is the standard variance correction factor for lognormal regression. We used an equivalent expression for calculating the expected value of the shape parameter for Weibull decay. We then substituted the expected parameter values into the expression for mass loss (Equation 1). From these, we calculated the root mean square deviation (RMSD), which decreases with increasing accuracy37. Secondly, we quantified accuracy by regressing observed mass loss onto predicted mass loss and tested the null hypotheses that unbiased predictions have an intercept of zero and a slope of one using ordinary least squares regression using function “lm” in R package “stats”33.
	Because deadwood in the survey had naturally recruited at an unknown time, we calculated residence times for each piece of deadwood using trait and environmental covariates for different models. Under the Weibull decay function, the residence time  is given by:
		   (6)
where Γ is the gamma function14. Under NegExp decay, this expression simplifies to the reciprocal of . We evaluated the effect of residence time on CWD vertical position with standard logistic regressions with a two-sided hypothesis tests as estimated using function “glm” in R package “stats”33. We evaluated whether estimated residence times predict variation in CWD decay class as a proportional odds logistic regression with a two-sided hypothesis test using the “polr” function in R package “MASS”38. We compared models based on AIC37.
Parameter interpretation 
To represent the relative importance of parameters in simplified models, we used two approaches. First, we calculated standardized effect sizes by dividing the magnitude of the regression coefficients by the standard deviation of the associated covariates. Because the response variables represent decay function parameters, which can be difficult to interpret with respect to mass loss, we also calculated average predictive comparisons24. This approach compares the difference ( in the response of interest (y) with a specified change () in a predictor variable of interest () as:
			(7)
where  represents the vector of other parameters  represents a matrix of residual covariates held at their means.  Here, the response of interest is the residence time estimated by the generalized regression (i.e. Eq. 5-6). To represent uncertainty in average predictive comparisons, we estimated the 95% CI for each comparison based on 1000 samples from the posterior distributions for the associated parameters (i.e. Eq. 2).
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