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Abstract25

The concept of resilience occupies an increasingly prominent position within con-26

temporary efforts to confront many of modernity’s most pressing challenges, including27

global environmental change, famine, infrastructure, poverty, and terrorism, to name28

but a few. Received views of resilience span a broad conceptual and theoretical terrain,29

with a diverse range of application domains and settings. In this paper, we identify30

several foundational tenets — dealing primarily with intent/intentionality and uncer-31

tainty — that are seen to underlie a number of recent accounts of resilience, and we32

explore the implications of these tenets for ongoing attempts to articulate the rudiments33

of an overarching resilience paradigm. Firstly, we explore the complemental nature34

of risk and resilience, looking, initially, at the role that linearity assumptions play in35

numerous resilience frameworks found in the literature. We then explore the limita-36

tions of these assumptions for efforts directed at modeling risk and resilience in complex37

domains. These discussions are then used to motivate a pluralistic conception of re-38

silience, drawing inspiration and content from a broad range of sources and empirical39

domains, including information, network, and decision theories. Secondly, we sketch the40

rudiments of a framework for engineered resilience, the primary focus of which is the41

exploration of the fundamental challenges that system design and system performance42

pose for resilience managers. The conception of engineered resilience set forth here also43

considers how challenges concerning time and predictability should factor explicitly into44

the formal schemes that are used to represent and model resilience. Finally, we conclude45

with a summary of our findings, and we provide a brief sketch of possible future research46

directions.47
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You must be the change you want

to see in the world.

Mahatma Gandhi

48

1 Introduction49

Our modern preoccupation with resilience arises out of a basic human need to endure. In50

recent years, a host of scholars and practitioners — such as Levin (1999); Folke (2006); Levin51

and Lubchenco (2008); Carpenter et al. (2012); Linkov et al. (2014); Troell et al. (2014);52

Ganin et al. (2016); Goel et al. (2018); Linkov et al. (2018); Massaro et al. (2018); Rocha53

et al. (2018); Scheffer et al. (2018), Linkov and Trump (2019), and van Strien et al. (2019)54

— have sought to outline the conceptual rudiments of an emerging “resilience paradigm”.55

Constructive efforts such as these — directed, as they are, at integration, synthesis, and56

(in some instances) prescription — represent reasoned attempts to assimilate and make use57

of what has become an increasingly disparate array of conceptual schemes, methodologies,58

and worldviews. By their very nature, these “paradigm-building” efforts are replete with59

choices — choices (and, indeed, meta-choices) that shape the definition and scope of the60

emerging paradigm, and that influence, ultimately, its applicability and usefulness to human61

and ecological affairs. An exploration of the burgeoning literature that surrounds the topic62

of resilience reveals a congealing set of foundational tenets that conceptually ground many63

contemporary accounts of resilience. For our purposes here, we single out three tenets that64

are seen to underly an increasing number of received views of resilience:65

T1 Utilitarian Orientation. Within the theoretical landscape of many contemporary66

accounts of resilience, the need or quest for resilience is typically construed as a desirable67

or sought-after end-in-itself. Such a mindset — decidedly utilitarian in its orientation68

— is in contrast to conceptualizations that look, for example, to contextualize the notion69

of resilience by situating it within larger theories or accounts of collective action, self-70

organization and emergence, and human intentionality.71

T2 Monolithic Approaches to Reasoning About Uncertainty. Most formal ac-72

counts of resilience utilize the language of probability to reason about uncertainty,73

making use of a diverse range of probabilistic representations and methodologies. While74

understandable, given the numerous successes that probabilistic methods have enjoyed75

(across a diverse range of disciplines and problem domains) in recent decades, the mono-76

lithic status that probability theory enjoys within the resilience literature ultimately77
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comes at the cost of a constrained vision of how uncertainty, in all its guises, might78

best be managed in a diverse range of resilience-related settings and contexts.179

80

T3 Circumscribed Accounts of Human Cognition and Intentionality. Most con-81

temporary accounts of resilience pay lip service to the idea that human beings often82

exhibit cognitive biases that impose limits or constraints on their ability to reason coher-83

ently under uncertainty, even in relatively simple choice situations (e.g., simple gambles,84

etc.). While the recognition of such biases is certainly relevant to the study of resilience,85

a myopic focus on the limitations of human cognition has the effect of rapidly shifting86

the focus away from cognition, broadly construed, towards, for instance, formal decision87

aides capable of minimizing the potentially deleterious effect of these biases on deci-88

sion quality. In so doing, however, what often ends up being excluded from numerous89

contemporary accounts of resilience is the explicit consideration of matters pertaining90

to experimentation/observation, perception, and representation, together with nuanced91

treatments of human intentionality.92

In what follows, we look to explore how tenets T1, T2, and T3 are currently being con-93

strued and pursued within important strands of the resilience literature. Central to our94

objectives is the desire to offer a constructive critique of important aspects of how these con-95

struals and directions are currently shaping the research agendas and questions that underlie96

numerous ongoing scientific research programs that address the topic of resilience. In this97

regard, we shall argue that these tenets exert an influence that is — both individually and98

collectively — overly constrained in its purview, and that ultimately limits the usefulness of99

the resilience-related conceptual schemes and methodologies that emerge from these efforts.100

From the outset, we note that many of the problems that we discuss here arise, in the101

first instance, from a failure to acknowledge that resilience is a concept whose theoretical102

bases lie not with just one “paradigm” or weltanschauung, but rather a plurality of concep-103

tual schemes and viewpoints. This expansive viewpoint enables us to capture the complex104

interplay of natural/physical phenomena, as well as important aspects of human behavior105

and intervention, using a diverse panoply of descriptive, explanatory, and predictive tools.106

Figures 1 and 2 highlight the generality and methods of this viewpoint, seen through a set of107

conceptual lenses that are anchored in information, network, and decision theories. Figure 1108

1It is worth noting that numerous contemporary accounts of resilience often hover near this conceptual
terrain when they probe the nature of uncertainty itself — with a number of commentators arguing, for
example, that there exist fundamental limitations in our ability to make predictively informative assertions
about large-scale socio-biological and technical systems. These limitations are often taken to have important
implications for any well-motivated theory or conception of resilience; in this regard, later in our discussion,
we offer some perspectives on the topic of predictability and its relevance to our evolving conceptions of
resilience.
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shows how human decisions give rise to emergent scale-free networks; Figure 2 depicts the109

variables and probabilistic patterns that allow us to formally characterize complex systems,110

dependent on desired performance and systems’ drivers. By pursuing this path, we look to111

broaden the field of vision that is brought to resilience-related challenges and concerns, in112

ways that ultimately enable a pluralistic conception of resilience to emerge.113

The discussion that follows is divided into three parts. In the first part, we explore the114

complemental nature of risk and resilience. We begin this discussion by considering, first, the115

role that linearity plays in many prevailing accounts of risk and resilience. This discussion116

is then used to motivate a more general discussion concerning the challenges entailed in117

modeling risk and resilience, in a broad range of empirical settings and contexts. We close118

this section with an outline of the conceptual rudiments of a pluralistic approach to reasoning119

about resilience. In the second part, we sketch the rudiments of a theory or conception of120

engineered resilience. We begin this portion of our discussion by confronting the conceptual121

and practical limitations of tenets T1 and T3. Specifically, we explore aspects of an idea that122

is seen to underlie many contemporary debates surrounding the notion of resilience, namely,123

that system design — and, by implication, optimal system performance (Figures 2 and 3124

show probabilistic and time-dependent patterns of systems’ performance) — is achieved via125

resilience only. As part of this discussion, we go some distance towards countering this view126

by exploring resilience frameworks and application domains where optimal system design is127

seen to require (i) an awareness and understanding of complex stakeholder preferences and128

value trade-offs; (ii) a multifaceted understanding of outcomes and consequences; and (iii) a129

holistic understanding of what it means to optimize overall system performance. As part130

of this discussion, we explore how time factors into our broadened conception of resilience,131

and we take up matters pertaining to to criticality and predictability in our characterization132

and evaluation of complex systems. Throughout our discussion, we endeavor to cast a wide133

field of vision — both conceptually and methodologically — and we provide illustrations134

drawn from a diverse range of doamins and empirical settings. In addition, we explore recent135

theoretical and computational advancements in the study of resilience for socio-biological136

and technological systems, from the perspective of complex systems science (see, e.g., Bialek137

et al. (2001), Prokopenko et al. (2008), Marsili et al. (2013), Helbing et al. (2015), and Bar-138

Yam (2016)). Furthermore, we seek to broaden the typically encountered thematic focus on139

infrastructure, by also including alternative views drawn from studies of environmentally-140

dependent, multiscale socio-biological systems. Finally, we conclude with a summary of our141

findings and a brief discussion of possible future research directions.142
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2 Risk and Resilience in Complement143

The Latin word resilio means to “rebound” or to “spring back” — and, indeed, our ordinary-144

language usage of the word “resilience” is consistent with this etymology. In contrast, risk145

is typically defined as the likelihood that a stressor affects a given system, considering that146

system’s vulnerabilities, as well as its dynamics in space and time (Kéfi et al., 2013; Kefi147

et al., 2014). Accordingly, resilience can be viewed as the observed or predicted response of148

a system to one or more definable risks. In this way, risk and resilience are easily seen as149

complemental notions, with a conceptual interplay that is, at once, both common-sensical and150

capable of yielding important insights about complex systems, especially at systemic levels of151

aggregation (Helbing et al., 2015).2 In this section, we explore aspects of the complemental152

nature of risk and resilience, beginning with an exploration of how our assumptions concerning153

linearity play into our descriptions and representations of resilience. These considerations154

then lead us to a more general discussion of the challenges associated with modeling risk155

and resilience. We close this section with a tentative outline of the rudiments of a pluralistic156

conception of resilience.157

2.1 On the Uses (and Abuses) of Linearity158

Linearity is to science as, perhaps, concrete is to civil engineering and construction. Often159

invoked as a convenient fiction, linearity assumptions are typically used to render systems160

that are otherwise in-amenable to decomposition and analysis (due to, say, inherent system161

complexities and/or attendant uncertainties), amenable to first-order approximation and eval-162

uation. While oftentimes a sensible starting point in the analysis of complex systems, the163

invocation of linearity assumptions can sometimes obfuscate and oversimplify, to the point164

where erroneous (in some instances, even potentially dangerous) prescriptions can emerge,165

requiring careful interpretation and bracketing. For our purpose here, we adopt the most166

general definition of complex systems: systems whose cause-effect dynamics is highly non-167

linear and non deterministic. Such systems are, of course, less trivial and predictable than168

simple systems. Figure 4 illustrates the differences between linear and a non-linear systems,169

where components’ interactions is a minor and predominant factor in systems’ response, re-170

spectively. In the former and latter cases, a risk and resilience approach is suitable. Figure171

2We construe risk and resilience in a manner that looks to eschew any kind of value- or norm-based
hierarchy. In contrast, claims by researchers such as Linkov et al. (2014) that “resilience management goes
beyond risk management” seem misplaced, in that they can be taken to imply a presumed hierarchy, with
resilience somehow occupying a higher level of “importance”, enjoying a primacy that appears grounded in
the belief that in designing and managing complex systems, the desire or quest for resilience is somehow
“most essential” or “more fundamental” than other goals, objectives, and desired end-states. In truth, there
are no a priori reasons to suppose that such views are supportable on theoretical grounds; their prescriptive
relevance derives purely from a value-laden understanding of human meaning and purpose in specific contexts
and situations.
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5 shows how complex systems can be categorized into dynamical classes, based on how sys-172

tems’ components interact with each other and perform independently for achieving systems’173

functions. The quantification of the functioning of complex systems is always dependent on174

available data; therefore, any assessment should always consider the dependence of function175

on the amount of information used that can reconstruct systems’ networks (see, e.g., Servadio176

and Convertino (2018) and Li and Convertino (2019)).177

A common difficulty with many of the resilience frameworks that researchers have sketched178

in recent years is the inherent linearity, in time and in space, of the examples that are often179

cited in this work. In many instances, resilience is interpreted or seen as a single risk-response180

function. For example, Linkov et al. (2014), and more recently Linkov et al. (2018), present181

case studies that are grounded in decidedly linear characterizations of potential system states.182

This simplistic view, while perhaps a useful starting point in such discussions, is in contrast183

to more frequently encountered (certainly in the types of real-world systems they cite as184

examples) non-linear system dynamics, where multiple drivers and events are considered over185

extended time horizons. Only in the simplest cases can resilience be assessed or measured by186

looking at just one instantaneous factor or event and its effects. An example of spatial non-187

linearity is provided in Figure 7, where the community interdependence network (inferred188

by the model developed in Servadio and Convertino (2018)) is applied to epidemiological189

time series of Leptospirosis in Sri Lanka (Convertino et al., 2019). This example shows how190

space and time are, indeed, connected and non-linear scale-free time series, representative191

of epidemic critical states (depicted in the top plot), correspond to scale-free transmission192

networks; vice versa endemic states are related to seasonal time series and exponential random193

networks. This example typifies a line of reasoning that highlights the fact that resilience194

cannot be assumed as a linear function as assumed by analytic frameworks and models that195

claim to deploy the “science of resilience” in practical applications (see Linkov and Trump196

(2019)). Moreover, resilience should not be evaluated solely in terms of “speed of recovery” to197

some previous system state, before the influence of any stressor(s); instead, resilience should198

also be evaluated in terms of the magnitude of effects, together with the full range of possible199

state transitions via probability distribution functions, including transitions toward “better”200

or perhaps preferred system states (see Figure 3). This probabilistic mapping of systems’201

dynamics allow us to create the system potential landscape (Figure 8) that describes and202

represents all likely systems’ states, dependent on data-inferred dynamics and stakeholders’203

mental models (including model choice(s) and preferences).204

Experience teaches us that low risks can actually give rise to major impacts on systems205
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— an increasingly common occurrence in a non-linear world.3 The ubiquitous “cup and206

ball” diagram is typically used to depict “system energy potential” (or potential landscape)207

based on known risk factors (Figure 2), where stable states are characterized by low energy208

(maximum entropy) and the low probability of a system change toward states with highly209

likely changes (Perz et al., 2013).4210

More generally, we recognize that resilience should be assessed in a manner that considers211

all factors — to the degree possible — that significantly affect system performance, recog-212

nizing that the response of a system facing one identified stressor is also dependent on the213

resilience built for other stressors (perhaps in the past, or at the current state). This is the214

reason why, in resilience-focused design, the baseline assessment of complex systems (existing215

or planned) starts from known features and risks; these elements constitute systems’ known216

history — such as previous diseases, species abundance trajectories, infrastructure failure217

records, and the like.218

For these reasons, consideration of non-linearities should factor prominently in any well-219

motivated theory or conception of resilience in complex systems. An important non-linear220

example not often considered in the literature concerns systems that are subjected to high221

levels of systemic risk.5 Systemic risk differs from traditional definitions of risk in the follow-222

ing ways: (i) the system is considered as a whole, in its entirety, across space and time; (ii) all223

(objective-dependent) interconnections of the system are considered with other systems; and224

(iii) the whole system landscape risk is considered, including multiple stressors and uncer-225

tainty. Systemic risk therefore considers the full structural and functional networks, with226

their uncertainty, determining frequency and intensity of system response.227

Within the context of this systemic purview, the depth of the system response curve228

(the traditional “cup and ball” diagram (Scheffer et al., 2001; Holling and Gunderson, 2002;229

Scheffer et al., 2012; Perz et al., 2013) is not — contrary to what is sometimes asserted in230

the literature — necessarily a measure of system resilience, but rather a measure of system231

response to a particular risk. In many real-world contexts, to the extent that the potential232

states of a given system are changing or evolving over time, the system response curve233

should be construed in dynamical terms, accounting for changes in relevant portions of the234

3An important early example of this line of reasoning is found in Charles Perrow’s seminal book, Normal
Accidents.

4In mechanical systems, for example, an engineered product is evaluated for resilience by testing it under
the same cyclical conditions, observing the systems’ responses over the time horizon for which the product’s
functions need to be guaranteed. Such tests have obvious analogues within the realms of complex socio-
ecological systems

5Systemic risk (Beale et al., 2011; Haldane and May, 2011; Helbing, 2013) can be defined as the likelihood
of an outcome (typically adverse/undesired), evaluated by taking into account local vulnerability and systems’
interdependencies in space and time. Assessment of systemic risk typically entails considering multiple risks
that are capable of affecting the magnitude of aggregate outcomes (such as multiple diseases, group behav-
ioral dynamics, flooding, etc.) for a specified time horizon. More generally, performance can be evaluated
considering systemic risk and attendant costs.
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systemic risk landscape, as well as the ability for agents (e.g., affected populations) to learn235

and adapt (where and when possible). In this way, resilience is, perhaps, more akin to a236

“trajectory” (Figure 3) — thereby better represented by slopes of response and recovery,237

depth of the system response curve, and post-shock values for system function over time238

horizons deemed important or relevant for intervention and control. In truth, response curves239

and system potential landscapes are partial elements of what system-level resilience is. We240

now consider how the evolution of system performance should, in probabilistic terms, be the241

risk-independent pattern to consider when evaluating systemic resilience.242

2.2 Models of Risk and Resilience243

The nature of the relationships that can be said to exist between “models” and “reality” is, of244

course, a topic that has preoccupied philosophers and scientists, alike, for centuries. A review245

of the salient themes that emerge from this body of thought is well beyond our scope here —246

suffice it to say that we accept that the nature of the relationship between any model and247

the “reality” it seeks to describe or represent is necessarily tenuous. To the extent that this248

characterization is accurate, it is surprising to note that numerous contemporary accounts of249

resilience seem to somehow lose sight of this point. This idea is most prevalent within certain250

ideological camps (e.g., computational scientists), and it typically finds expression in a line251

of thought that supposes that if a model is capable of generating highly accurate predictions,252

then the embedded processes represent (or at least reflect) the “true” predicted processes.253

Munoz-Carpena et al. 2013, for example, promulgate the view that “more information is254

better”. This principle has its origins in the classical reductionist belief that the successive255

accumulation of knowledge leads to closer and closer approximations of reality. A vast array of256

empirical insights, derived from a range of scientific disciplines, teach us, however, that more257

information can lead to more uncertainty. Accordingly, managing information value (Feistel258

and Ebeling, 2016) is an important prerequisite to effective problem solving and decision-259

making within the realm of complex systems. Furthermore, consideration of trade-offs that260

exist between sensitivity, uncertainty, and complexity of information is a common problem261

within existing decision-making paradigms, where perfect information is seldom available to262

decision-makers.263

A wide range of stochastic decision-making models have been proposed in the literature264

that focus on modeling complex systems under uncertainty (Shalizi and Crutchfield, 2001;265

Marsili et al., 2013; Helbing et al., 2015). This strand within the literature of work teaches266

us many things — for example, that any model is an information machine (Marsili et al.,267

2013; Quax et al., 2016), with its own variability, uncertainty, and complexity. In order to268
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analyze risk and resilience, the key is to have models that are capable of optimizing the269

important trade-offs that exist between these features (which often exhibit non-linearity). In270

such contexts, non-linearities can arise any number of ways. For example, the magnitude of a271

system’s performance (gathered from data, or as an output of models) may be uninformative272

about the magnitude of a given hazard and its risk in such instances; it is important to273

also consider the significance of small changes in input factors that can potentially have274

dramatic influences on performance. For instance, small, gradual changes in input factors275

that accumulate over time and space can bring about cascading changes in interconnected276

system performance metrics (e.g., numerous population outcomes that are related to one277

single cause). This “butterfly effect” (as it is often described in the chaos theory literature —278

see, e.g., Crutchfield (2012)) is the potential for a ripple in one part of a system’s “world” to279

be amplified and subsequently lead to major disturbances in another part of the system (due280

to the increased connectivity of system parts and multiple, interconnected systems) is another281

symptom of non-linearity. This type of phenomenon is, of course, commonplace within many282

biological systems, where, for instance, numerous biomarkers are highly interconnected and283

even small changes may be extremely meaningful for overall system performance in the long-284

term (see, e.g., Convertino et al. (2018)). At a much larger scale, consider the case of many285

interdependent infectious diseases that are related to the same environmental and social286

causes, leading to co-occurrent disease transmission (see, e.g., Convertino et al. (2014)).287

2.3 System Dynamics and Resilience288

Proper characterization and evaluation of system response is central to any well-motivated289

approach to resilience. Adding, then, to our observations above concerning non-linearities,290

it is important to recognize that risk is not solely proportional to the depth of the system291

response curve, as this reflects a system’s outcome as a function of ex post interdependent292

hazards whose intensity may or may not be well predicted ex ante.6 This observation is293

important, because unexpected events — and possibly other unknown factors — can hardly294

be anticipated with perfect foresight, despite our best efforts to eliminate risks and to include295

all salient factors. Instances where risk is seen to be proportional to the depth of the system296

response curve typically arise when the system response curve is constructed using historical297

data, focusing on correlations with one single hazard. The level that is reached by the system298

after recovery, and the system’s ability to withstand or rebound faster after an identical shock299

at future times, is but one of several crucial elements that should be evaluated when assessing300

resilience and system criticality. More generally, we must seek to characterize and evaluate301

6This point is often overlooked in the literature — see, e.g., Linkov et al. (2014).
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overall system performance, over extended time horizons, considering all (again, to the degree302

possible/practical) potential system states.303

Our commentary above suggests that the task of arriving at credible estimates of resilience304

requires a plurality of viewpoints and perspectives which are, in turn, capable of informing the305

development of requisite schemes and frameworks that are able to confront the complexity306

that the world presents to us, in a diverse range of settings and contexts. For its part,307

complexity science provides a number of useful starting points for the kind of expansive308

vision that we prescribe here:309

• Systemicity. Consistent with our earlier discussion, the resilience of a complex sys-310

tem is not just the response of that system to one well-identified hazard, but rather,311

the response of that system to multiple connected hazards, plus any intrinsic ability of312

that system to increase fitness. In situations where one hazard is identified, resilience313

is a non-linear function of risk, where risk is not solely proportional to the magnitude314

of the attendant hazards, but also considers its probabilities and vulnerability func-315

tions (including exposure factors), convoluted to some uncontrollable noise. Equivalent316

stressors can potentially give rise to a very different response; only a normalization of317

system functionalities can make systems comparable in terms of resilience.7318

• Spatio-Temporal Non-Linearity. In looking to formally characterize resilience, his-319

tory often matters, i.e., resilience is typically history-dependent. More specifically,320

resilience is dependent non-linearly on the present, the past, and future sensed risks.321

Indeed, oftentimes, the larger the realized risk, the larger the resilience of the system —322

“the more we fall the more we learn”. System performance achieved after a disturbance323

(e.g., the slope of, and area under, the system’s functionality curve, and post-stress324

performance) can change non-linearly; thus, the very same combination of risk factors325

can lead to different resilience levels, and vice-versa. Small risks typically accumu-326

late critically and generate systemic effects after cascading events on spatio-temporal327

connections of complex systems. Notwithstanding this non-linearity, the higher the328

controlled ability of a system to change to multiple varying states (desirably around329

optimal states), dependent on environmental fluctuations, the higher the resilience.330

• Subjectivity. Resilience is not solely proportional to one functional or structural cri-331

7Consider, for instance, the case of a hurricane of the same intensity level hitting two nearby but very
different locations; or a psychological stress affecting two individuals linked by family ties, but nurtured
in very different environments. A wealth of social science theory and empirical case study teaches us that
socio-environmental context exerts a tremendous influence in the response of communities and individuals to
the same stressors. The detailed characterization of heterogeneities is therefore fundamental for predicting
complex systems, and for comparing them after their normalization, dependent on the key heterogeneities
leading to different outcomes.

12



teria (e.g., complementary damage, speed of recovery, etc.), but also to a stakeholder-332

weighted multi-criteria function that captures desired system performance, stakeholder333

preferences on performance drivers, and the quality of information related to perfor-334

mance and disturbances. Quality of information, as much as other “intangible” criteria,335

constitute the “subjective” components of resilience, beyond its strictly “objective” fea-336

tures. In this way, so-called “cup and ball” diagrams that are commonly found in the337

literature only reflect the structural components of resilience — and thereby omit crit-338

ical features of many real-world systems.339

3 Steps Toward a Formal Conception of Engineered Re-340

silience341

3.1 Initial Steps, Towards a Plurality of Possible Destinations342

Coming out of the discussion above, what we now seek is the beginnings of a conceptual343

outline for an enriched vision of resilience, where human intentionality is seen to play a344

central, defining role. In what follows, we explore aspects of what it means to, in effect,345

engineer resilience. In so doing, we draw inspiration and insights from a range of disciplines,346

including complexity science, information theory, network and decision-theoretic sciences,347

together with an appreciation for what it means to apply these concepts in a diverse range of348

settings and contexts. Ultimately, we seek a conception of, and approach to, resilience that349

is capable of serving a host of purposes, including:350

• Helping life (at any scale of biological organization) to flourish sustainably on Earth;351

• Protecting and providing thoughtful/purposeful stewardship of the Earth’s atmosphere352

and ecosystems;353

• The health and protection of people and property; and,354

• The ability to sustain infrastructure that is essential to the proper functioning of our355

increasingly technological society and it socio-economic systems.356

All of these interconnected purposes, which reflect a “safe operating space for humanity”357

(Rockström et al., 2009), are (and indeed must be) centered on a pluralistic conception of358

resilience that encompasses both self-organization and intentionality of social actors and359

complex systems. Pursuing such expansive ends requires that, independent of the size of360

the complex system considered, the interconnections of a given system with all others must361
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be taken into account (to the extent that knowledge and resources allow). Increasingly,362

such concerns are intertwined with more general societal desires or quests for sustainability;363

we argue that any model of sustainability must consider forms of resilience that aim for364

consistently improving desired ecosystem services versus risk-based approaches that focus on365

maintaining current levels of desired services.366

At its essence, a model is a representation of how a system is “seen” and described.367

The sensitivity of a system’s features is defined by the so-called ST-scale that determines the368

spatial and temporal lens of analysis. In a broader sense, cognition, ST-scale, and entropy are369

the “how, where/when, and how much” that a system is analyzed. At the bottom of Figure 2,370

the left plot is a single risk-dependent performance profile (deterministic), the middle plot is371

a probabilistic performance profile, dependent on one single system’s driver, and the plot on372

the right is a risk-independent probability distribution of performance.373

The conceptual relevance and practical utility of our resilience framework is borne out in a374

diverse range of empirical settings and contexts. It is instructive to consider examples drawn375

from both natural and engineered systems. In the context of socio-environmental systems,376

considering data and numerical simulations of Hurricane Katrina (2005) and Hurricane Sandy377

(2012), the (ex post) resilience of New Orleans and NYC can be evaluated by considering378

(i) the urban and natural ecosystem’s ability to respond early; (ii) the damage in terms of379

structure and function; and (iii) the speed of recovery (Bonanno et al., 2007; Shultz et al.,380

2007; Pietrzak et al., 2014; Valverde and Convertino, 2019). Interestingly, the same basic381

concepts and approach finds application, for instance, in the study of infectious diseases,382

with high and low frequencies of occurrence, in cases of foodborne and Ebola outbreaks,383

respectively.384

In the case of repetitive events, it is reasonable to expect that populations are capable385

of learning, over time, how to be more resilient to equivalent (or at least “similar) events.386

In this vein, an interesting example is the state of Florida, which, in light of its recurring387

tropical cyclone season, has put in place an efficient surveillance system for rapid response388

and recovery. Along similar lines, other examples include flood control infrastructure and389

runoff monitoring, which work effectively to reduce extreme runoff events. Within the realm390

of public health, examples include the surveillance, hygiene, and sanitation infrastructure391

put in place in developed and developing countries that are affected by waterborne diseases,392

such as cholera (e.g., Bangladesh and Haiti are instructive examples of populations that have393

built effective response mechanisms). Also worthy of note, in terms of system function, are394

the networks of epidemiological surveillance of infectious diseases worldwide — e.g., FOOD-395

NORS for foodborne outbreaks in the USA, and ProMED-HealthMap for infectious diseases396
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at the global scale. As part of their design, these systems seek continual improvement, and397

have demonstrated an ability to minimize the incidence of massive outbreaks. All these398

examples show how realized risks were necessary elements to building resilience over time;399

moreover, they show that a purely ideological “risk-free” resilience approach does not exist.400

Of course, learning systems such as those referenced above need to be maintained and401

updated on a regular basis, taking into consideration natural and anthropogenic variability402

(e.g., climate extremes, agricultural intensification, urbanization, and related factors). These403

examples illustrate that active surveillance of system structure and function (e.g., supply404

chain integrity/reliability and foodborne infection cases) is crucial to building and maintain-405

ing resilience, and to avoiding catastrophic events. Ultimately, it is history that teaches us406

that both positive and negative events are necessary to build resilient systems.8407

Within the context of a more traditional risk-based framework, the change from one micro-408

state to another is typically associated with an alteration of system function, observable in409

the increased variability of system components (color of node from white to red), and for410

major transitions also in the variability of system structure (e.g., connectivity among nodes)411

(Figure 3). Before any tipping point, the variance of system function is increasing while the412

stable state corresponds to a low variance state (e.g., network with “white nodes”).413

From an information-theoretic perspective, similar transitions have been observed in social414

systems (Borge-Holthoefer et al., 2016), where approaching critical states (a manifestation415

of critical dynamics) implies an increase of fluctuations in the information exchange at the416

system scale, after accumulation of local fluctuations above a critical threshold. These fluc-417

tuations are typically responding to time-point hazards and do not necessarily reflect the418

system’s long-term performance. An intuitive example of this is the hyperactivity of certain419

physiological biomarkers that an individual presents during intense exercise; fluctuations of420

all sizes occur until a peak performance level is reached, and after they slow down to base-421

line condition levels. These dynamics and fluctuations do not reveal anything about the422

long-term — for instance, the lifetime performance of the individual considered. Traditional423

risk analysis has been mostly focused on these time-point single hazard-dependent events,424

rather than having a long-term view that is more in line with resilience paradigms that are425

focused on guaranteeing a positive resilient trajectory, with increasing systems’ performance,426

independent of any preconceived risk.427

Exploring these matters more broadly, we note that resilience is an innate property of any428

living system, arising from the evolutionary pressures of survival, and giving rise, over the429

8Interestingly, this is an idea that is reflected, in a negative way, by the current “exposomics” and epige-
netics theories of disease generation in populations, where a multiplicity of factors contribute to the health
of an individual (J Patel and K Manrai, 2015).
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long term, to an optimal pruning of coupled form and function (Bak, 2013; Banavar et al.,430

2014). In this context, resilience is seen to depend on both the interconnected structure431

and function of systems, where structure is determined by the physical interconnections of432

system components, and function is the stakeholder-independent endogenous byproduct of433

complex systems. For biological systems, a classical example is the brain, where structure is434

determined by the dendritic assemblage of different neurons at the micro-scale, and where435

function arises from the electrical activity among many neurons for supporting other system’s436

functions (e.g., brain dynamics at the meso- and macro-scale) (Damasio and Carvalho, 2013).437

In this way, the brain is the central “system of systems” for human beings, responsible for438

controlling all physical and functional processes.439

In natural systems, the same duality of form and function is observed (West et al., 1997;440

Banavar et al., 1999; Bak, 2013; Banavar et al., 2014; Tendler et al., 2015; Seoane and Solé,441

2015; Koçillari et al., 2018). For instance, in river systems, structure is defined by the442

river network, with optimal and ubiquitous features, whereas function is the water transport443

mechanisms from a hydrological viewpoint, and so on and so forth, for geochemical and444

ecological processes that become apparent by enlarging the purview of analysis. All of these445

systems have embedded within them a natural capacity for building resilience over time,446

considering both the capacity to withstand structure-forming shocks and the long-term drive447

toward optimality (Hidalgo et al., 2016). Interestingly, for any individual, the human brain448

is part of the “collective”, or part of the “aggregate societal brain”, at the population scale,449

which is also determining (or at least influencing) the trajectories of natural and man-made450

systems. In this sense, it is important to broaden the traditional field of vision that is brought451

to such problems, to include consideration of the anthropogenic dynamics of resilience for452

any system at the population scale (Diamond, 2005).453

Our discussion thus far suggests that by enlarging the lens of analysis, it is possible to454

observe coupled structures and functions simultaneously, but more importantly, to identify455

the relevant information at any scale of analysis. In the case of river systems, for example, a456

network of dams and locks is seen to provide services to human populations, including flood457

control, hydroelectric energy, and transportation. As Linkov et al. (2014) and others have458

suggested, all of these systems should be considered in toto, with complexity and network459

theory providing useful analytic vehicles for exploring the structural and behavioral modalities460

of such systems. For its part, complexity theory has much to teach us about resilience.461

By simplifying the analysis of systems just enough to make possible the discernment of462

important system drivers at different scales, complexity theory yields insights that are useful463

for design and management purposes. From a decision-making perspective, it is useful to464
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recognize those situations where only a subset of drivers are important at the system-scale,465

and where single component drivers are of second- or lower-order importance in relation to466

the scale and objectives considered. This extraction of information can be accomplished using467

global sensitivity and uncertainty analysis models that identify the important information468

for the stated objectives. It is often the case that the emergence of systemic patterns arises469

only from a subset of critical drivers, whose importance and interaction with other factors470

is crucial to understanding the behavioral modalities and dynamics of the system. This471

holistic understanding of complex systems can be achieved by exploring the whole system472

landscape of potential states and their drivers, with emphasis on the dynamical trajectories473

and stressors that lead to emergent patterns (Figures 3 and 7; the patterns depicted in474

the latter figure illustrate the typical probability distribution function of infectious disease475

cases, in the form of power-law and exponential distributions, corresponding to epidemics476

and endemics, respectively).477

3.2 Time, Information, and Resilience478

At a foundational level, it is reasonable to suppose that time should factor prominently in479

the theories and conceptual schemes that we devise to address resilience-related challenges480

and concerns; in truth, however, this topic has been given scant attention in the literature.481

Philosophers have, of course, long preoccupied themselves with the nature of the relationship482

that human beings have with time. Though such discussions are somewhat removed from our483

concerns here, an awareness and understanding of how humans perceive, experience, and value484

time can meaningfully guide our efforts to broaden the conceptual terrain that contextualizes485

and informs our understanding of resilience.486

We begin this portion of our discussion by considering the situation where one or more487

individuals (say, e.g., the “resilience managers” that Linkov et al. (2014) envision) are tasked488

with creating and/or sustaining system-level resilience; such individuals must, as a matter of489

necessity, come to understand that resilience must be viewed through the a complementary490

set of lenses that partition time into various time horizons — ranging from the immediate491

to the long-term. As an example, take society’s desire for population resilience, and the492

events surrounding Hurricane Katrina in 2005 as a specific case in point. Some have argued493

(Cutter et al., 2013; Tierney, 2014) — rightly so, we believe — that Hurricane Katrina was,494

in fact, a necessary event for building resilience over time in that geographic region. The495

probative portions of this argument require a general systems theory perspective, together496

with a holistic view of collective action, taking into account all relevant factors affecting the497

built vs. natural environment, together with an understanding of the attendant influence that498
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these factors and events have on political institutions and stakeholders’ ability to effect change499

directed at the development of effective flood protection systems. Similar arguments can be500

made about Hurricane Sandy and the 9/11 terror attacks (Sarapas et al., 2011; Valverde and501

Convertino, 2019). To be sure, arguments of this nature are inherently difficult, given that502

we typically know more about the past than about the future — which in turn complicates503

efforts to interweave causation and intervention in ways that give rise to desirable end-states504

over time. This said, it is perhaps an inevitable feature of human existence and mankind’s505

(seemingly insatiable) desire for material progress that the discovery and elimination (or506

minimization) of points of failure cannot occur without the occasional occurrence of negative507

— sometimes even catastrophic — events. In this way, failure constitutes an inalienable508

element of resilience, understood vis-a-vis the arrow of time; given this line of thought, it is509

not surprising that much of the resilience management literature is grounded in theories of510

adaptive management (Holling and Gunderson, 2002; Convertino et al., 2013), which mimics511

the adaption, for biological systems, to fast and slow external changes.512

Given these considerations, it is interesting to observe that many contemporary accounts513

of resilience seem predicated on the idea that resilience is only an inherent, though perhaps514

ultimately manageable, property of systems. Indeed, the notion of resilience as an “emergent”515

property of systems (Kauffman, 1993; Jiménez et al., 2008; Anderson et al., 2013; Seoane and516

Solé, 2015; Tendler et al., 2015; Lansing et al., 2017) is strangely absent from several recent517

characterizations of the concept (see, e.g., Linkov and Trump (2019). As we have already518

noted in portions of our discussion above, biological science has much to teach us about519

this kind of phenomena. Traversing the micro-to-macro cellular life and population scales520

reveals instances where resilience is a continually evolving process, involving consideration521

of the intertwined evolution of human and natural systems. Human history is, of course,522

replete with examples of populations who have learnt, over time, how best to respond to523

flooding, fires, crime, outbreaks of infectious and chronic diseases, war, and other large-524

scale events (Diamond, 2005). There are aspects of this learning process that are overt and525

intentional, and others that are less intentional, arising, sometimes, by accident or through526

trail-and-error. Given the ever-expanding reach of data collection and analysis, combined527

with burgeoning advances in artificial intelligence, computational science, sensor technologies,528

and global system science, it is reasonable to suppose that the window of unpredictability529

about past risks (i.e., “known knowns”) will be narrowed (though, of course, perhaps never530

entirely closed), but new risks will emerge in relation to innovation and surprise. Almost531

surely, the unexpected/unanticipated will still occur, and perhaps with even greater frequency532

and/or severity (considering the dramatic changes the world is undergoing, e.g., climate533

18



change, technological innovation, globalization, etc.). Such occurrences are likely to defy534

expectations that are predicated on inferential mechanisms that presuppose stable historical535

baselines, structural regularities, and the like. The tightly coupled nature of these systems,536

together with the inherently “reflexive” nature of modern technological society (Beck, 2009),537

almost ensure that mankind will underestimate risks. Even more broadly, hypothetically,538

even our current resilient zeitgeist may be challenged, due to truly unexpected events that539

force us to revise our current information and values, with dramatically different information,540

in turn leading us to new conceptual (and computational) frames and modes of discourse and541

analysis. The fundamental question that emerges from such possibilities is this: is there some542

critical information that is always valid and upon which we can always build upon? This is543

a line of questioning to which we now turn.544

3.3 Criticality, Predictability, and Resilience545

As discussed earlier, it is well understood that complexity theory provides a number of useful546

analogies to physical systems that can significantly aid efforts to (i) improve theoretical and547

computational models of these systems; (ii) understand system-level dependencies; and (iii)548

guide the design and monitoring of complex systems by considering inner criticalities and549

externalities. As instrumental as these models and frameworks are, there is a method-centric550

tone that runs through significant portions of the resilience literature, much of it motivated551

by a desire, on the one hand, to question the usefulness of traditional risk assessment tools552

for assessing/measuring resilience, and a desire, on the other, to call for new “frameworks553

and models enabling system-wide and network-wide resilience analysis” (Linkov et al., 2014).554

Taken as a whole, these strands within the literature are not altogether successful in putting555

across a coherent picture of resilience, for reasons which we now consider.556

We begin by noting that the notion of “unpredictability” factors prominently in the nar-557

ratives of both academic and non-academic commentators about resilience. Linkov et al.558

(2014), for example, argue that “traditional risk assessment tools are limited in their use-559

fulness for quantitative analyses of resilience”; at the same time, these same authors offer560

prescriptions and illustrative case studies that seem distinctly rooted in traditional risk as-561

sessment frameworks and models.562

Our prevailing conceptions of risk require careful consideration to both sides of the tra-563

ditional risk equation — an awareness/understanding of threats and hazards must in some564

way be conjoined with ways to think and talk about consequential outcomes that play an565

important role in the kinds of societies that we wish to inhabit.566

It is not unreasonable to suppose that the gradual abandonment of the Gaussian view of567
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natural systems phenomena, combined with recently developed (and future) analytical and568

computational tools capable of providing the mapping of systems’ probabilistic landscape569

(Figures 3 and 4) (i.e., systems’ states and all trajectories considering all potential drivers570

and their combinations) will, over time, increase the predictability of events that are currently571

thought to be unpredictable.572

Ultimately, we are inclined to believe that there are good reasons to suppose that “un-573

predictability” should not factor prominently in our willingness to accept the claim that574

traditional risk analysis tools “are no longer sufficient to address the evolving nature of575

risks in the modern world” (Linkov et al., 2014). In truth, we are inclined to believe that the576

dilemma that unpredictability poses in any discussion of resilience is not either/or, nor should577

it be seen to be conceptually or practically “fatal”. The sensibility of this viewpoint can be578

argued a number of ways, including (i) the ability to render complex systems amenable to579

parsimonious analysis by exploiting recurrent patterns arising from universal topological fea-580

tures; (ii) the rareness of completely chaotic behavior versus critical dynamics;9 and (iii) the581

oftentimes poorly-motivated quest for precision in analyzing extreme events. The latter point582

is, unfortunately, a bias of modelers who look to maximize model predictive accuracy in ways583

that are spurious (due, mainly, to the limitations of the data at hand) and that often fail to584

heed the precision-oriented limitations that system errors impose within complex systems.585

With sound models (conceptual, analytical, computational, and practical models), it is pos-586

sible to scale-up small events to large events, along their power-law distributions, and to587

thereby estimate the frequency and intensity of potentially catastrophic events. An example588

where this approach has been applied successfully comes from the fields of hydrogeomor-589

phology and hydroepidemiology, to predict large runoff and cholera events (Bertuzzo et al.,590

2011; You et al., 2013; Convertino et al., 2014; Convertino and Liu, 2016). Zipf’s law — a591

special power law with an exponent close to unity — is ubiquitously observed in nature. The592

inverse relation between rank and frequency of events implies the existence of a few frequent593

extreme patterns and numerous rare patterns. The origin and function of Zipf’s law has been594

explored with respect to information processing in language and communication evolution,595

as well as numerous applications within natural systems. Zipf’s law has also been observed596

in the activity patterns of real neural networks, though probing its functionality in the an-597

imal brain is a formidable task; these empirical findings suggest an incredible connection598

between optimal decision making and criticality that can be implementable in current intel-599

ligent computer systems. In this regard, some authors have identified a critical layer where600

the cluster size distribution of processed data obeys a reciprocal relationship between rank601

9N.B. that even chaotic behavior displays stable attractors.
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and frequency. Deep learning ensures balanced data grouping by extracting similarities and602

differences between data. Furthermore, it verifies that data structure in the critical layer is603

most informative to reliably generate patterns of training data. Therefore, the criticality can604

explain the operational excellence of deep learning and provide a useful conceptual vehicle605

for probing optimal network architectures.606

Where such considerations lead us, then, is that while we may never reach complete607

predictability for all of the events that currently (or may possibly) interest us, advancement608

of global sensitivity and uncertainty analyses, supported by information theory, can leverage609

“unpredictability” as a positive impetus for exploring all system states, and to find optimal610

design alternatives. The same predictive models can also be used for surveillance purposes611

(Convertino and Hedberg, 2014; Vilas et al., 2017) in order to rapidly detect early warning612

signals for potentially catastrophic events that clearly determine critical transitions (Scheffer613

et al., 2001, 2012).614

3.4 System Landscape, Management, and Resilience615

Our commentary above goes some distance towards suggesting that risk and resilience can,616

in certain respects, be seen as two sides of the same coin. For the design and management of617

complex engineering systems, risk factors can be identified as causal factors affecting resilience618

via analyses of data and the assessment of systemic-level risk(s) (Sheffi et al., 2005; De Weck619

et al., 2011; Helbing, 2013). Our ability to arrive at credible (and requisite) representations620

of systemic landscapes is a vitally important prerequisite to any reasoned attempt to develop621

sensible prescriptive theories and frameworks directed at the design and management of622

complex engineering systems. It is this final topic to which we now turn.623

We begin by noting that portfolio approaches suggested in the literature incorporate sys-624

temic purviews of risk, and are capable of considering a multitude of scenarios for complex625

systems (see, e.g., Valverde and Convertino (2019)). Such frameworks can aid decision-maker626

efforts to identify the optimal design paths that support optimal form and function of systems627

in terms of resilience. Portfolio-based approaches to systems management typically embody628

dynamical models that reflect both the “blind watchmaker” dynamics of nature (criticality à629

la Bak) and causal external triggers, geared towards identifying optimal solutions that take630

into account the randomness and variability of system events. Portfolio approaches also con-631

sider the structure of the system analyzed, and they are capable of learning from previous632

events and outcomes; further, they enable decision-makers to make optimal decisions, based633

on both system structure and function, by identifying optimal design and management alter-634

natives, after evaluating the (often) combinatoric space of potential alternatives, constrained635
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by available budgets and resources. The scenarios considered are also unobserved scenarios636

— in contrast to reductionist models that only reproduce observations — that are used to637

explore a vast plurality of potential system outcomes for taking optimal decisions in the face638

of what is considered possible.639

An in-depth understanding of potential system states can be built by taking advantage640

of uncertainty propagation methods on probabilistic computational models. For instance,641

global sensitivity and uncertainty analyses (GSUA) are perturbation methods that propagate642

uncertainty from system drivers to outcomes (e.g. performance); these are input and output643

factors in a model designed to predict system dynamics. An idealized example is provided644

in Figure 8, where two drivers — labelled F1 and F2 — can affect the whole system or645

just one of its components (it is possible to consider the whole system, or just a portion of646

it in the physical domain). More generally, it is important to recognize that global scale647

factors and outcomes are much like systemic scale factors; however, global factors are not648

necessarily created by systemic components (such as networks that connect communities),649

whereas systemic outcomes are systemically distributed. In this way, systemic outcomes can650

be global, but global outcomes are not necessarily systemic because they can be driven by651

concomitant local factors.652

In the context of contagion phenomena (such as infectious diseases, but other examples653

include cyber-attacks, false information diffusion, and species invasion), outcomes are out-654

breaks over a region (a system’s component can be a geographical area, while the whole655

system is the whole globe). F1 and F2 can be two different pathogenic drivers, such as Zika656

and Dengue viruses (hazards). Systemic factors could include, e.g., transportation networks,657

while local factors might include local weather factors that determine the environmental niche658

of pathogens (these can be vulnerability features, such as rainfall and landscape wetness in-659

dex). Global factors can, for instance, be similar vulnerability features that are homogenous660

across all communities (e.g., lack of medical facilities). These common global factors can give661

rise to equivalent epidemics without the need of systemic factors, such as long-range human662

mobility networks. A good distinction between epidemics and pandemics is likely related to663

the presence of systemic networks which are the predominant contagion spreading feature of664

the latter.665

Systemic performance is not necessarily associated to one single risk, but rather to multiple666

risks; therefore, resilience is not the complementary function of one single risk function. In667

Figure 8, state A is characterized by the dominance of one stressor that acts locally (e.g.,668

due to local weather) and produces local outcomes (such as a local endemics). These local669

outcomes are typically associated by a bimodal distribution that, for instance, corresponds670
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to seasonal dynamics. State B is characterized by the coexistence of two stressors at the671

local and global scale. State C is characterized by the predominance of one single stressor672

that is systemic. States B and C are typically associated with one mode in the probability673

distribution function, because hazards are typically more rare, stronger, and systemic than for674

state A that is occurring regularly with a much smaller recurrence time. State C is typically675

associated with a critical dynamics that is characterized by a power-law distribution of system676

stressors and outcomes.677

Such considerations suggest that the focus of complex system design and management678

— including “resilience management” — should be on reducing complexity to manageable679

levels required to achieve articulated goals and objectives (Jones, 2014). This can be achieved680

by improving traditional modeling methods, integrating these methods with real-time sen-681

sors, finding optimal design rules by investigating analogous systems, and mining relevant682

information from data. From this vantage point, the prescriptive import of the prevailing683

resilience paradigms require an important conceptual coda. To be sure, risk managers should684

seek to identify critical transitions, critical states, tipping points, and the like, wherever and685

whenever possible; still, the fact remains that much of this learning will occur in the wake of686

accidents and catastrophes. Rarely will “zero-event, zero-consequence” or even “early integra-687

tion” approaches to resilient design be prudent or even feasible; in truth, in some instances,688

such approaches may even be counter-productive (Park et al., 2013).689

As with resilience, risk can be independent of any hazard because risk is a function690

related to a definable set of relevant system outcomes (such as a structural failure, species691

extinction, or disease outbreak), which can occur without any external factor occurring or a692

clear failure of specific intrinsic factors. These risks, or decays in systems’ performance, are693

related to systems’ self-organization. However, systems’ self-organization alone is not able to694

entirely alleviate our persistent inability to predict completely the whole spectrum of systems’695

outcomes. Hence, from this consideration it stems the need to include the “environmental696

noise” in mathematical models, which allow us to have a better representation of the combined697

self-organization–environment dynamics on complex systems. Therefore, risk and resilience698

are both evaluative functions of a desired performance (e.g., a “systemic ecosystem service”);699

both functions can be seen as the first derivative of the system’s performance function, and700

their negative or positive sign determines their connotation of being risk or resilience. The701

same models can be used to evaluate risks as well as resilience about criteria that can have a702

positive or negative connotation, depending on how these criteria are viewed and managed.703

The dynamics of these criteria (e.g., resources to manage) are dependent on both intrinsic704

and extrinsic dynamics, and can be included into decision analytic frameworks and models705
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that aid efforts to manage systems’ performance.706

4 Conclusion707

Our discussion above has sought to offer a constructive commentary concerning important708

aspects of our evolving conceptions of, and approaches to, resilience. In so doing, we have709

availed ourselves of a number of disparate views of resilience, each of which provides a purview710

and lens through which to construe the syntax and semantics of different paradigmatic con-711

ceptions of resilience. We now offer a closing commentary that looks to provide a tentative712

outline of possible future research directions that takes the pluralistic conception of resilience713

set forth here as its point of departure.714

To this end, we begin by noting that if resilience is a desired or sought after property715

of systems (i.e., of societies, cities, communities, etc), then, all things being equal, it seems716

reasonable to suppose that “stakeholders” — broadly construable to include all forms of life717

on this planet — will prefer to enjoy the benefits that resilience brings/provides sooner rather718

than later. Just how such benefits are to be quantified and evaluated is a problem that poses719

vexing challenges for system planners and risk managers. A partial list of such challenges720

will include the complex preference structures that are endemic to these systems, as well as721

the multifaceted nature of the potential benefits (arriving or realized over both short- and722

longer-term time horizons). To be sure, it is far too easy to suppose that the challenges723

that resilience poses for affected stakeholders are somehow surmountable by appealing to one724

paradigm, or by subscribing to a “one-size-fits-all” mentality as to how such problems might725

be thought through and addressed in practical terms. Our remarks here perhaps go some726

distance towards making the case that there are, in fact, a plurality of “paradigms” that727

are capable of informing our understanding of how such matters might best be framed and728

approached.729

As we have observed in the numerous examples cited in our presentation above, each730

problem domain — be it infrastructure, public health, technology, and a host of others —731

presents its own unique set of challenges and objectives. In this light, discussions about732

resilience “paradigms” are best grounded in carefully posed questions that are capable of733

forming the basis of research agendas that confront the problems and limitations of prevailing734

theories and methodologies. To illustrate, we close our discussion by suggesting four lines of735

research that hold the promise of expanding upon the pluralistic conception of resilience that736

we have outlined here:737

• Computationally efficient models for better characterizing the stochastic structural and738
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behavioral modalities of resilience in complex systems (e.g., identifying structural and739

functional scale-invariant factors responsible for emerging stable patterns, and factors740

that maintain or increase resilience, avoiding undesired critical transitions);741

• Sensing and monitoring technologies, with emphasis on characterizing uncertainty, igno-742

rance, and surprise (e.g., development of models capable of exploring how quick-shocks743

and pre-cursor events can lead to transitions of interest, given their relevance to low744

probability/high consequence outcomes);745

• Improved methods for identifying and visualizing system drivers, especially in systems746

with complex dependencies and interactions;747

• Analytic frameworks that combine theories of resilience with theories of intentionality748

and collective action.749

Many of the research topics outlined above have a broadly construable participatory ele-750

ment, with the overarching goal of achieving a type of resilience that is arrived at by minimiz-751

ing the frequency and magnitude of undesired system effects, via instruments oriented towards752

anticipation, sensing/monitoring, learning, and adaptation. Other research trajectories are,753

of course, possible, and entirely consistent with the spirit that underlies the pluralistic con-754

ception of resilience that we have sketched here. Ultimately, we must strive to confront the755

essential tension that arises out of our need to view resilience, on the one hand, as an intrinsic756

quality of all life forms on Earth and, on the other, as one of a number of viable instrumental757

means to a plurality of possible trajectories and desired outcomes for humankind.758
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Figure Captions963

Figure 1. Holistic Conception of Collective Phenomena Leading to Scale-Free964

Resilient Networks. Individuals self-organize around collective decisions that result in965

emerging patterns. These patterns, such as patterns of human mobility (the middle plot rep-966

resents average scale-free mobility fluxes in NYC from and to Manhattan using the shortest967

path tree from any location to another), are the by-product of (bottom-line) local interactions968

among individuals constrained on a mobility infrastructure (i.e., multiple sets of transporta-969

tion networks), typically designed by structured, top-down decisions. Top-down decisions970

are planned via decision-analytic models (bottom of the figure, for instance) that can inte-971

grate stakeholder needs and preferences, and network features. The spontaneous criticality972

of living systems enhanced by critical decision-making can sustain optimal complex system973

performance and resilience trajectories. As is the case for natural networks, the local search974

for local minimum energy expenditure under global constraints and objective(s), leads to975

optimal scale-free networks.976

977

Figure 2. General Conception of Pluralistic Resilience for Complex Systems.978

(A) Complexity, sensitivity, and uncertainty morphospace for complex systems. These fea-979

tures of complex systems can be related to systems’ cognition, spatio-temporal scale, and980

entropy that defines the information of any system (e.g., data) or models (as “information981

machines”) representing the real systems. (B) Different conceptions of resilience proposed in982

the literature: single event system’s response curve and performance-driver system’s land-983

scape in the left and middle plots. The right plot shows our conception of resilience, where984

the pdf of system’s state is evaluated in different time periods; the transition between pdfs985

toward desired system’s performance reflects system’s resilience. The same temporal consid-986

eration, i.e., how the system responds to stressors, can be made for the other two resilience987

views, but fails to consider the long-term trajectory, the whole spectrum of stressors, intrinsic988

system’s drivers including stakeholders’ preferences, and surprises.989

990

Figure 3. Long-term Trajectories of System’s Performance. The change from991

one system (average) performance state to another typically involves a long-time span, which992

is different from the short-term response to stressors that may show a high degree of non-993

linearity (e.g., small stressors can cause large effects). The change from one single stressor994

state to another is typically associated with an alteration of system function (or, more holis-995

tically, performance), observable in the increased variance of system components (depicted996

as change of node color, from white to red), before the change occurs. For major transitions,997

34



this change is also observable in the high variance of system structure (e.g., connectivity998

among nodes). A “resilient” stable state generally corresponds to a low variance critical999

dynamics (e.g., network with “white nodes”), but mutable in case of necessity. The black1000

trajectory shows a resilient system that increases system performance over time, versus a1001

resistant system that recovers from point stressors, but does not increase the performance1002

over time (green trajectory), and a anti-resilience system (orange trajectory) that does de-1003

crease system’s performance over time. The pdf of system’s performance (Fig. 2) for the1004

black trajectory has the highest, most positive, and least uncertain performance.1005

1006

Figure 4. Network-Based Dynamical System Classification. Undirected or weakly1007

directed networks (left), where one node is dependent on many independent nodes, is typical1008

for linear systems. A highly direct network (right), where any node is dependent on many1009

interdependent nodes, is typical for non-linear systems. The former can be the case of a river1010

network, while the latter can be a biological network such as the microbiome. A risk and1011

resilience approach is the best approach for the linear and the non-linear system. Node 1 can1012

be thought of as the performance function to predict.1013

1014

Figure 5. Characterization of System Dynamics via Global Sensitivity and1015

Uncertainty Analyses. Global Sensitivity and Uncertainty Analyses (GSUA) plot (left)1016

characterizes complex systems according to their dynamics with respect to a predicted per-1017

formance (e.g., node 1 in the networks depicted in Fig. 4). Red nodes (i.e., model/system1018

factors) represent a system with critical dynamics, while blue and green nodes represent a1019

system with a linear (deterministic) and non-linear (chaotic) dynamic, respectively. Critical1020

systems are systems characterized by scale-free dynamics that ensure high resilience. pdfs1021

and time series on the right of the GSUA plot show the typical dynamics for different systems.1022

1023

Figure 6. Information Selection of Resilient Systems. Scaling analysis of total1024

information as a function of the information threshold. When a system transitions from one1025

phase to another, it loses or gains symmetry. In this context there is an ideal scale-invariant1026

region for which the total information (i.e., the uncertainty) that a system can gain about a1027

system’s dynamics is the same. However, for low values of the information threshold (defining1028

the sensitivity of the system) more redundancy of information exists. This can lead to a loss1029

of information or to a higher risk of predicting risk without accuracy, due to the inclusion of1030

irrelevant nodes. The maximum value of the information entropy has the highest utility for1031

a decision-maker in terms of system’s predictability. Complexity is related to network com-1032
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plexity determined by the diverse set of functional network properties. Lowest complexity1033

and highest sensitivity are typically associated with each other, due to the lack of redundant1034

nodes.1035

1036

Figure 7. Epidemiological Epitome of Complex System Dynamics. Spatial net-1037

work topology (of a functional nature, considering the interdependence of cases) is important1038

in determining the dynamics of complex systems, and also in determining areas with high1039

risk and in defining systems’ resilience. In epidemiology, high risk areas are associated with1040

persistent, large outbreaks. The persistent “bouncing-back” dynamics of these critical areas1041

has nothing to do with the ability of the population to respond to outbreaks, but rather, is1042

related to the intrinsic dynamics of the disease. Criticality is, in such cases, an undesired1043

property. Resilient communities are more likely those that sustain low levels of the disease,1044

such as the community highlighted in green. These communities tend to be more isolated,1045

but their undesired critical performance is avoided by the isolation versus at-risk communities1046

that are hubs of scale-free networks (e.g., the purple community). The blue network defined1047

on the map is the optimal transmission network, which is the directed scale-free network1048

(toward the capital community Colombo, depicted as the black node on the map), assessed1049

by using the maximum transfer entropy algorithm of Servadio and Convertino (2018) on the1050

epidemiological patterns of Leptospirosis in Sri Lanka.1051

1052

Figure 8. Potential System Landscape. The system landscape represents all po-1053

tential states of the system (and trajectories from one state to another) that are identified1054

by system’s performance pdf, as a function of a multicriteria driver function (stressors, vul-1055

nerability, and exposure functions, derivable using traditional risk analysis methods). Stable1056

resilient states are characterized by small total energy dissipation, minimum entropy, and1057

low probability of system’s transitions toward unstable states. These resilient states have1058

also high free energy, which allows them to change state in case of need. The whole system1059

landscape can be mapped via uncertainty methods, such as information-theoretic GSUA that1060

identifies all potential system states (e.g., A, B, and C among all others) and the correspond-1061

ing pdfs defining the likelihood of events to occur at different scales (e.g., for the whole system1062

and for subcomponents).1063

1064
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