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ABSTRACT 31 

Research focusing on among-individual differences in behaviour (“animal personality”) has 32 

been blooming for over a decade. One of the central theories explaining the maintenance of 33 

behavioural variation posits a trade-off between behaviour and survival with individuals 34 

expressing greater “risky” behaviours suffering higher mortality. Here, for the first time, we 35 

synthesize the existing empirical evidence for this key prediction. Our results did not support 36 

this prediction as there was no directional relationship between riskier behaviour and greater 37 

mortality; however there was a significant absolute relationship between behaviour and 38 

survival. In total, behaviour explained a significant, but small, portion (4.4%) of the variance 39 

in survival. We also found that risky (versus “shy”) behavioural types live longer in the wild, 40 

but not in the laboratory. This suggests that individuals expressing risky behaviours might be 41 

of overall higher quality but the lack of predation pressure and resource restrictions mask this 42 

effect in laboratory environments. Our work implies that individual differences in behaviour 43 

explain important differences in survival but not in the direction predicted by theory. 44 

Importantly, this suggests that the models predicting survival trade-offs may need revision 45 

and/or empiricists may need to reconsider their proxies of risky behaviours when testing such 46 

theory. 47 



INTRODUCTION 48 

Across the animal kingdom, individuals within populations differ in their average behavioural 49 

expression (Bell et al. 2009; Holtmann et al. 2017). Studying the causes and consequences of 50 

among-individual variation in behavioural expression (also termed “animal personality”) has 51 

been a major focus in the fields of animal ecology and evolutionary biology for more than a 52 

decade. Indeed, individual differences in behavioural expression have been found to play a key 53 

role in biological invasions (Fogarty et al. 2011; Chapple et al. 2012; Carere & Gherardi 2013), 54 

population dynamics (Dall et al. 2012), dispersal (Cote et al. 2010), predator-prey interactions 55 

(Pruitt et al. 2012; DiRienzo et al. 2013; McGhee et al. 2013; Pettorelli et al. 2015), and also 56 

suggested to affect fitness components such as survival and longevity (reviewed in Dingemanse 57 

& Reale 2005; Réale et al. 2007; Smith & Blumstein 2008).   58 

Several evolutionary hypotheses have been proposed as mechanisms explaining how 59 

individual differences in behavioural expression can be maintained within the same population 60 

(Wilson et al. 1994; Réale et al. 2007; Stamps 2007; Biro & Stamps 2008a; Wolf & Weissing 61 

2010; Sih et al. 2015). These hypotheses generally assume that individual differences in 62 

behaviour are linked to individual differences in fitness components such as longevity and 63 

survival (Stamps 2007; Biro & Stamps 2008a; Réale et al. 2010; Dammhahn et al. 2018). For 64 

instance, life-history theory predicts that individuals resolve the trade-off between current 65 

reproduction and future survival differently (Stearns 1992) and that behaviours mediate such 66 

trade-offs at the individual level (Réale et al. 2010; Dammhahn et al. 2018). Thus, adaptive 67 

individual differences in behaviour result from divergent life‐history strategies with more 68 

active, bold or risk‐taking individuals reproducing rapidly (i.e. invest more heavily in resource 69 

acquisition and reproduction) but dying early in life (i.e. increased risk of mortality) (“pace-of-70 

life syndrome hypothesis”, Réale et al. 2010; Dammhahn et al. 2018; Royauté et al. 2018). 71 

Assuming that (risky) behaviours act as mediators of the trade-off between current and future 72 

reproduction, the specific prediction is that expression of risky behaviours is negatively 73 



associated with survival and longevity (hereafter, survival) (Réale et al. 2010; Dammhahn et 74 

al. 2018).  75 

Labile traits, such as behaviours, vary both among- and within-individuals: individuals 76 

differ relative to one another in their mean behavioural expression, while, at the same time, 77 

change their behavioural expression from one instance to the next, respectively (Dingemanse 78 

& Dochtermann 2013). Both individual differences and reversible plasticity in the expression 79 

of labile traits are predicted to be independently associated with survival (Sih et al. 2004b; 80 

Ratikainen & Kokko 2019). Moreover, the direction of the associations between traits often 81 

differs at the among- versus within-individual levels (Adolph & Hardin 2007; Brommer 2013; 82 

Niemelä & Dingemanse 2018b). The models predicting a negative association between survival 83 

and risky behavioural types explicitly state that those traits covary at the among-individual level 84 

of variation (Stamps 2007; Biro & Stamps 2008a; Réale et al. 2010). Thus, unbiased testing of 85 

the theoretical prediction at the among-individual level of variation requires study designs and 86 

statistical analyses that allow researchers to partition behavioural (co)variance to its among- 87 

and within-individual levels (Brommer 2013; Dingemanse & Dochtermann 2013; Niemelä & 88 

Dingemanse 2018a). Nevertheless, such partitioning is currently still rare in the empirical 89 

behavioural ecology literature (Niemelä & Dingemanse 2018a, b; Royauté et al. 2018). This is 90 

probably the main reason why a previous meta-analysis focusing on animal personality and 91 

survival was conducted at the (unpartitioned) phenotypic level instead of among-individual 92 

level of variation (Smith & Blumstein 2008). A systematic review testing whether empirical 93 

work supports this theoretical prediction at the among-individual level is therefore still lacking. 94 

In this study we conducted the first-ever meta-analysis to estimate the overall empirical 95 

support for the hypothesis predicting among-individual differences in (risky) behaviour to 96 

negatively correlate with survival (Stamps 2007; Biro & Stamps 2008a; Réale et al. 2010; 97 

Dammhahn et al. 2018). Because published among-individual level estimates were largely 98 

absent (only 3% of studies reported actual among-individual level estimates; see below), we 99 



proceeded to identify which studies in our systematic literature review contained adequate data 100 

(repeated measures of behaviour) even if the published statistical analyses were performed at 101 

the phenotypic level. We then contacted the authors for the raw datasets. Using the collected 102 

datasets, we re-analysed the data at the among-individual level. We tested three key predictions. 103 

First, we investigated whether higher levels of bold, active, aggressive and/or explorative 104 

behaviour were associated with decreased survival at the among-individual level (Stamps 2007; 105 

Biro & Stamps 2008a; Réale et al. 2010; Dammhahn et al. 2018). Previous research has 106 

suggested that females incur a stronger survival cost than males at the phenotypic level,  even 107 

though sexes do not differ in their mean behavioural expression or in the variance in behaviour 108 

(Tarka et al. 2018). Therefore, as a second step, we tested whether females differ in the strength 109 

of the correlation between behaviour and survival compared to males at the individual level. 110 

Finally, we explored whether the relationship between behaviour and survival was different 111 

when it was measured in the wild versus in the laboratory as predation pressure and resource 112 

constraints, two key ecological features predicted to affect the costs and benefits of behavioural 113 

expression, are present in the wild but not in the laboratory environments.  114 

 115 

METHODS 116 

(a) Collection of meta-analytical data 117 

We conducted a literature search in Web of Science and Scopus on 26 September 2018 to 118 

retrieve papers presenting data on behaviour (with repeated measures, or with single 119 

measurements and reporting repeatability estimates for the focal dataset) and survival variables 120 

following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 121 

approach (Liberati et al. 2009; Moher et al. 2009) (electronic supplementary material, Fig. S1). 122 

We used search terms that would identify papers focusing on among-individual associations 123 

(e.g., “animal personality” and “behavioural syndrome”) between behaviour and survival 124 

(search terms are presented in electronic supplementary material, Text S1). In our Web of 125 



Science search, we used “Zoology”, “Behavioral sciences”, “Ecology”, “Biology”, 126 

“Evolutionary biology”, and “Multidisciplinary sciences” as topic fields. In our Scopus search, 127 

we used “Agricultural and Biological Sciences” as the topic field. Altogether the searches 128 

retrieved 674 papers from 2007-2018. We also screened papers cited in Table 1 of Smith & 129 

Blumstein (2008) to retrieve those studies (published prior 2007) reporting individual-level 130 

correlations between behaviour and survival. Because the vast majority of studies (see below) 131 

presented repeated measures of behaviour but did not make use of them statistically (i.e., 132 

reported unpartitioned phenotypic correlations instead of among-individual correlations), we 133 

contacted the authors of those studies and requested the primary dataset. We also posted a 134 

message on Twitter and directly asked colleagues who work on the topic of individual 135 

differences in behaviour and survival, to contribute primary datasets (details about datasets can 136 

be found in electronic supplementary material, Table S1). With all the collected datasets, we 137 

estimated (unpublished) among-individual correlations between behaviour and survival. 138 

Our search retrieved a total of 125 estimates from 34 studies with primary datasets 139 

collected (plus estimates from one published study) from which we had to drop seven studies 140 

due to convergence problems (see below). From the remaining 27 studies with primary datasets 141 

collected (Table 1): five were fully unpublished, 20 were published but did not estimate among-142 

individual correlations (rather they used the unpartitioned phenotypic correlations), and two 143 

published studies did estimate among-individual correlations but used a different statistical 144 

approach than a bivariate model. In total from these 27 studies, we collected 41 datasets which 145 

we re-analysed to get comparable estimates across all studies. From these 41 datasets, 18 had 146 

information on males, 16 had information on females and in seven datasets, the sex was 147 

unknown. These datasets comprised a wide range of taxa, from mammals, fish, insects, 148 

molluscs, reptiles and birds (Table 1, Fig. S2). 149 

From each dataset we extracted the following information: type of behaviour (e.g. 150 

exploration, activity, boldness, aggression), type of fitness component (longevity, survival), sex 151 



(male, female, unknown), whether measurements were taken in the laboratory or in the wild, 152 

species name and sample sizes (number of individuals and number of observations). Each 153 

dataset often comprised several behaviours and/or survival estimates. Following Niemelä & 154 

Dingemanse (2018), we changed the values of the behavioural trait within the data sets (by 155 

multiplying it by -1) to ensure that higher values indicated more risky behaviour (sensu Réale 156 

et al. 2007): higher levels of boldness, activity, exploration or aggressiveness, and lower levels 157 

of docility (see the electronic supplementary material, Table S1 for which estimates were 158 

multipled by -1).  159 

 160 

(b) Statistical methods for extraction of the estimates for meta-analytic models 161 

In order to collect correlation coefficients at the among-individual level (ri) from the data sets 162 

described above, we constructed four types of bivariate models depending on the error 163 

distribution of behavioural and survival data: 1) binary behaviour and binary survival, 2) binary 164 

behaviour and Gaussian survival, 3) Gaussian behaviour and Gaussian survival and 4) Gaussian 165 

behaviour and binary survival. For one dataset (Quinn et al. 2009), the residuals of longevity 166 

data were Poisson distributed, and we changed the link function to Poisson.  167 

Since survival is by definition a fixed trait (i.e. it is only expressed once for each 168 

individual) and thus does not harbour within-individual variation, we fixed the residual variance 169 

of survival to one. We also fixed the residual variance to be one for behaviours with binary 170 

error distribution. Residual covariance between behaviour and survival was restricted to be not 171 

estimated. One could argue that non-biological residual variation may still exist in any fixed 172 

trait due to the measurement error (Brommer 2013). However, measurement error should not 173 

be generally correlated with the trait value (i.e., the residual covariation due to measurement 174 

error should be zero) (Brommer 2013), and thus, is likely not pooled to the among-individual 175 

level correlations. In all models, we set the behaviour and survival as the two response variables 176 



and individual identity as random effect and estimated the among-individual level correlation 177 

coefficients with 95% Credible Intervals.  178 

We also had eight data sets where the behaviour was measured only once, but 179 

repeatability estimates (𝑅 ) for the all the behaviours were available for the focal dataset. 180 

Normally, it is not possible to estimate among-individual correlations in the absence of repeated 181 

measurements. However, since survival is a fixed trait (𝑅 = 1 𝑖𝑛 𝐸𝑞𝑛. 1), the residual part in 182 

the equation describing the association between different levels of correlations (Eqn.1) is 183 

dropped and, thus, simplified to Eqn.2. In this way, we can estimate the among-individual 184 

correlation by estimating the phenotypic correlation between behaviour and survival (i.e. 𝑟
,

) 185 

and then, dividing the posterior distribution of 𝑟
,  by 𝑅   (Eqn.3).  186 

 187 

𝑟
,
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𝑟
,

= 𝑟
,

 / 𝑅                   Eqn.3 190 

where 𝑟
,

 , 𝑟
,

 and 𝑟
,  are the phenotypic, among-individual and within-individual 191 

correlations between the behavioural trait y and survival z, respectively. Ry and Rz are the 192 

repeatabilities of behaviour and survival, respectively.  193 

We ran the bivariate models using the R-package MCMCglmm (Hadfield 2010) in the 194 

statistical environment R 3.5.1. (R Core Team 2017). The chain length varied between 195 

2,300,000 to 10,300,000 depending on the model to ensure sufficient sampling of the chain. We 196 

always used a burn-in of 300,000 and sampled the chain every 2,000 iterations. We used four 197 

different parameter expanded priors tailored specifically for each of the four types of bivariate 198 

models used (electronic supplementary material, see Text S2). We had to drop seven data sets 199 



due to convergence problems (mostly caused by very low sample sizes in number of 200 

individuals). This led to a final sample size of 125 correlation coefficients from 27 studies with 201 

primary data collected and one published study (Table 1). 202 

 203 

(c) Statistical methods for meta-analytic models 204 

We estimated the i) average among-individual level correlation between behaviour and survival 205 

(i.e. 𝑟
,

), ii) average absolute magnitude (i.e. |𝑟
,

|) and iii) squared average absolute 206 

magnitude of that correlation (i.e. |𝑟
,

|2) of that correlation. The first estimate describes the 207 

linear statistical relationship between two traits, the second estimate describes the absolute 208 

magnitude of the correlation between two traits while the latter represents the proportion of 209 

among-individual variance in behaviour (i.e., animal personality) that is attributable (in a 210 

statistical sense) to among-individual variation in survival. We applied the “analyse-then-211 

transform” approach (Morrissey 2016), consisting of estimating the posterior distribution of the 212 

average z-transformed correlation coefficient (𝑟
,

Z; Eqn. 4), back-transforming this posterior 213 

to standard correlation coefficients (𝑟
,

; Eqn. 5), folding the latter posterior to return the 214 

absolute average magnitude of the correlations (|𝑟
,

|) (Eqn. 7 in Morrissey 2016), and squaring 215 

the folded posterior distribution to estimate |𝑟
,

|2 (Niemelä & Dingemanse 2018a). This 216 

approach is more accurate than the alternative “transform-then-analyse” approach (Morrissey, 217 

2016; Nakagawa & Lagisz, 2016), where correlations are transformed into absolute values prior 218 

to analysis. Since we used posterior distributions for each estimate, we were able to take the 219 

uncertainty forward in each step of the modelling process. For each focal posterior distribution 220 

(i.e. 𝑟
,

, |𝑟
,

|, or |𝑟
,

|2), we estimated the mode and 95% Credible Intervals (95% CI). We 221 

also estimated total heterogeneity (I2 total), residual heterogeneity (I2 residual), phylogenetic 222 

heterogeneity (I2 phylogeny) and study heterogeneity (I2 study) while statistically controlling 223 

for sampling error variance (Higgins & Thompson 2002) (Table 3). I2 is an estimation of the 224 



proportion of variance among effect sizes explained by a focal variance component, after 225 

controlling the effect sizes for sampling variance.   226 

𝑍 = 𝑙𝑛          Eqn. 4 227 

𝑟 =
( )

( )
         Eqn. 5 228 

We applied multilevel meta-analytic models (i.e. intercept models) for all estimates of 229 

among-individual correlations between behaviour and survival (i.e. global model), for studies 230 

conducted in the wild and in the laboratory, and for females and males separately. We controlled 231 

for sampling variance in all models as a way to control the correlation coefficients for statistical 232 

noise (e.g. differences in sample size across correlation coefficients). By controlling for 233 

sampling variance the precision of estimated effect size is greatly increased (Morrissey 2016; 234 

Nakagawa & Lagisz 2016). Sampling variance was calculated from the standard error (using 235 

Eqn. 6). Thus, the 95% Credible Intervals from each 125 correlation coefficient were 236 

transformed into standard errors prior to calculating sampling variance by using Eqn. 7. We 237 

included data set identity and phylogeny as random effects in all meta-analytic models. Our 238 

models are thus controlled for pseudo-replication caused by the inclusion of repeated 239 

correlation coefficients from the same data set and, for evolutionary divergence of the species. 240 

Our pooled data contained 28 data sets (27 data sets with published and unpublished primary 241 

data, plus one published study with published correlation coefficient estimates) and the 242 

phylogeny was constructed of 24 different species (Table 1, Fig. S2). The meta-analytical 243 

models were run using the R-package MCMCglmm (Hadfield 2010) in the statistical 244 

environment R 3.5.1. (R Core Team 2017) . Estimates with 95% Credible Intervals not 245 

overlapping with zero were viewed as indicating statistically important effects. All meta-246 

analytic models were run with chain length of 2,300,000 with burn-in 300,000 and sampling 247 

rate of 2000, and with inverse-gamma priors. 248 



𝑉𝑎𝑟𝑍 = 𝑆𝐸
( )( )

        Eqn. 6 249 

𝑆𝐸 =
(  %  % )

       Eqn. 7 250 

In Eqn. 4 – Eqn. 7, r represents the focal correlation coefficient, Zr represents the Z-transformed 251 

r, n the number of individuals, SE the standard error, and 95% CI the 95% Credible Intervals.  252 

 253 

(d) Directional bias in the estimates 254 

The majority of the datasets we used in our analyses were associated with published studies 255 

(five datasets were unpublished, Table 1); however our (re-) analysis of these data resulted in 256 

new correlation coefficients that are previously unpublished. Indeed, only three out of 125 257 

among-individual correlation coefficients were included in the published (all three estimates 258 

came from a single study) studies we used, and so we cannot estimate the publication bias in 259 

our correlation coefficients. Instead, our test of “publication bias” represents the general 260 

directional bias in our (unpublished) data. To visualize such potential directional bias in our 261 

correlation coefficients, we constructed a funnel plot for the main meta-analytic model by fitting 262 

precision (i.e., the inverse of sampling variance) as a function of meta-analytic residuals 263 

(Nakagawa & Santos 2012). We further used Egger’s regression analysis to statically test 264 

whether the distribution of correlation coefficients was more asymmetrical than expected by 265 

chance (Stuck et al. 1998). Following Nakagawa and Santos (2012), meta-analytic residuals 266 

were calculated using the R-package MCMCglmm (Hadfield 2010), and Egger’s regression 267 

conducted using the R-package metaphor (Viechtbauer 2010).  268 

 269 

RESULTS 270 

Among-individual correlations between behaviour and survival 271 



Contrary to our first prediction, we did not find evidence that the average among-individual 272 

correlation between survival and behaviour was different from zero (r = [mean, 95% CI] 0.072 273 

(-0.105, 0.201)); that is, individuals that exhibited riskier behaviour did not suffer greater 274 

mortality. In regards to our second prediction, we did not find evidence that females differed in 275 

their strength of correlation compared to males (Table 2). However, we did find that the average 276 

correlation estimated from data collected in the wild was positive (r = 0.156 (0.019, 0.314)), 277 

while the correlation did not differ from zero when the data was collected in the laboratory 278 

environment (r = -0.043 (-0.284, 0.261)). This result indicates that in the wild more risky (i.e. 279 

more active, explorative, aggressive and bold) individuals live longer compared to less risky 280 

individuals.  281 

The absolute average correlation was important in all meta-analytic models (range 282 

0.157–0.267) (Table 2), indicating that the correlation between behaviours and survival is on 283 

average different from zero (irrespective of the direction of the correlation). Finally, behaviours 284 

globally explained 4.4% of the variation in survival at the among-individual level (|r|2 in global 285 

model= 0.044, Table 2). The proportion of variance in survival explained by the individual level 286 

behavioural expression did not differ between wild and laboratory conditions, or between males 287 

and females (Table 2). 288 

Sampling variance 289 

We found no directional bias in our (mostly unpublished) correlation coefficients given that the 290 

funnel plot was symmetrical (Fig. 1) and the Egger’s regression indicated lack of bias 291 

(p=0.218). The total heterogeneity was high (79%; Table 3) following Higgins & Thompson 292 

(2002) classification (i.e. 25%: small, 50%: medium, 75%: high). This means that statistical 293 

noise or sampling error, (i.e. sampling variance) explained only a small amount of the total 294 

variance in our data of correlation coefficients (i.e. 21%). Study-level heterogeneity was 295 

moderate (36%), meaning that the magnitude and/or sign of correlations differed between 296 



studies (Table 3). Residual heterogeneity was moderate to small (27%; Table 3), indicating that 297 

within a study, the correlations were relatively similar. Phylogeny explained only a small 298 

amount of variation and had large standard deviation (16%; Table 3). This indicates that 1) the 299 

evolutionary signal in correlation coefficients between behaviour and survival is weak and 2) 300 

that there might be low genetic variation among species in the correlation between behaviour 301 

and survival.  302 

 303 

DISCUSSION 304 

Contrary to our prediction, we did not find evidence for a negative relationship between 305 

behaviour and survival. That is, risky behavioural types (i.e., more active, bold and/or more 306 

explorative individuals) did not generally pay a survival cost. While the previous meta-analysis 307 

performed by Smith & Blumstein (2008) identified significant associations between behaviour 308 

and survival (i.e., negative association of survival with boldness, and positive with exploration), 309 

our results are, however, not comparable with them. This is because the meta-analysis by Smith 310 

& Blumstein (2008) synthesized studies that investigated the association between behaviour 311 

and survival at the (unpartitioned) phenotypic level while our work explicitly focuses at among-312 

individual level of (co)variation. Overall, our results show that empirical evidence does not 313 

support one of the central theories explaining maintenance of behavioural variation at the 314 

among-individual level of variation (e.g. Sih et al. 2004a; Stamps 2007; Biro & Stamps 2008; 315 

Réale et al. 2010; Dammhahn et al. 2018) and thus, suggests that theory might need to be 316 

revised. Alternatively, theory might still be valid but empiricists are not testing it correctly 317 

either by failing to measure the correct behaviours (e.g. truly risky behaviours) (Carter et al. 318 

2013) and/or survival without bias (Biro & Dingemanse 2009; Biro 2012; Stuber et al. 2013; 319 

Niemelä et al. 2015). Nevertheless, the absolute magnitude of the correlation was different from 320 

zero (|r|~0.21), meaning that the direction of the correlation simply differs across studies (i.e. 321 



large among-study heterogeneity, Table 3). Since behaviour explained around 4% of the 322 

variation in survival, our results indicate that behaviour is an important (although weak) 323 

predictor of survival, but not in the way predicted by predominant theory.  324 

Interestingly, our meta-analysis revealed that individuals that displayed risky 325 

behavioural types live longer in the wild but this association was absent under laboratory 326 

conditions. This difference might occur because of (at least) three (non-exclusive) reasons. 327 

Firstly, the species composition in studies conducted in the wild versus in the laboratory may 328 

differ systematically. If species differ in the strength of among-individual correlation between 329 

behaviours and survival, this could cause the correlation coefficients to differ substantially 330 

across environments. Indeed, studies carried out in the wild focused almost solely on birds and 331 

small mammals while studies conducted in the laboratory used almost entirely invertebrates 332 

(Table 1, Fig. S2). However, our results do not provide strong support for this interpretation; 333 

variance explained by the phylogeny in our global model was small (and with large error term, 334 

Table 3). Secondly, the positive association between risky behaviours and survival in the wild 335 

could have been partly caused by higher encounter rates of risky (compared to shy) behavioural 336 

types. Indeed, there is increasing evidence for sampling bias towards risky behavioural types in 337 

the wild (Stuber et al. 2013; Niemelä et al. 2015). We, however, excluded data sets where the 338 

survival estimates could have been biased by higher encounter rates of risky behavioural types. 339 

All the wild studies included in our meta-analysis were either i) conducted in closed 340 

populations, ii) reported extremely high encounter rates or iii) were studies where direct 341 

mortality was observed. Thus, our meta-analytic estimate is most likely representing true 342 

variation in survival rates rather than variation in encounter rates. The third, and we argue most 343 

likely, explanation is that the selection pressures differ across the two environments (Frankham 344 

2008; Niemelä & Dingemanse 2014). Risky behaviours are predicted to facilitate higher 345 

resource acquisition in the wild, potentially leading to a subsequent increase in body condition, 346 

but at the cost of higher predation risk (Stamps 2007; Biro & Stamps 2008b; Réale et al. 2010). 347 



However, in laboratory environments, those environmental factors determining the causes and 348 

consequences of the expression of risky behaviours are largely removed; i.e., risky behaviours 349 

do not facilitate higher resource acquisition nor lead to higher mortality due to predation, 350 

breaking the functional association between behaviour and survival. This means that empiricists 351 

are most likely measuring biologically different phenomena in the wild versus laboratory (i.e., 352 

intrinsic mortality in the laboratory and extrinsic mortality in the wild), making the correlations 353 

differ across environments. Nevertheless, given that we found a positive correlation between 354 

expressions of risky behaviours and survival in the wild, our results may actually indicate that 355 

risky behavioural types in the wild can avoid or reduce the costs associated with predation 356 

(compared to shy types), potentially because they are able to acquire better or more resources, 357 

and therefore, present greater body condition and competitive abilities.  358 

Another major finding is that very few studies that set out to study the association of 359 

among-individual variation in behaviour and survival were partitioning the behavioural 360 

variance into its among- and within-individual components. Thus, empiricists are mainly testing 361 

the theory at a different level of variation (i.e. unpartioned phenotypic level) compared to where 362 

the theory has been laid out (i.e. among-individual level). Generally, there is an increasing 363 

concern that empiricists are using inappropriate data collection methods and/or statistical tools 364 

when testing theories related to animal personality, i.e., individual differences in behavioural 365 

expression (Niemelä & Dingemanse 2018a, b; Royauté et al. 2018). For example, a previous 366 

meta-analysis showed that ~80% of studies claiming to test individual-level theory used 367 

methods that did not allow for answering individual-level questions (Niemelä & Dingemanse 368 

2018a). Our study shows that only 3% (3/100) of the papers that were present in the last stage 369 

of the PRISMA-protocol, delivered actual among-individual level parameter estimates 370 

(Bergeron et al. 2013; Niemelä et al. 2015; Boulton et al. 2018). In the rest (97% of the studies), 371 

authors provided unpartitioned phenotypic level estimates and applied the “individual gambit”, 372 

i.e. assumed that the among- and within-individual patterns of co-variation are similar in 373 



strength and direction (Brommer 2013; Dingemanse & Dochtermann 2013; Niemelä & 374 

Dingemanse 2018b). Partitioning behavioural variance into its among- and within-individual 375 

components not only provides important insights about the detailed biological mechanisms 376 

underlying behavioral expression (Dingemanse et al. 2010), but more importantly, if the models 377 

and predictions are developed at a specific level of variation (e.g., the focal theory tested in this 378 

work explicitly lays out among-individual level predictions), the unpartitioned phenotypic data 379 

can therefore not test theory in an unbiased manner. A remarkable example of individual-level 380 

study in the context of our meta-analysis is Boulton et al. (2018), where authors used bivariate 381 

mixed-effects models to estimate (unbiased) among-individual level correlations between 382 

behaviour and longevity. Generally, information about appropriate data collection designs and 383 

statistical tools to test (among-) individual level theory is widely available (e.g., van de Pol & 384 

Wright 2009; Dingemanse & Dochtermann 2013). In the future, we hope that empiricists 385 

increasingly apply these tools to expand the proportion of studies that firmly test the focal 386 

theory at the appropriate level of variation. 387 

 388 

CONCLUSION 389 

Individual variation in behaviour is predicted to be related to differences in individual fitness 390 

components such as survival and longevity. Using meta-analytic techniques, we were able to 391 

show that there is indeed a significant relationship between behaviour and survival, with 392 

behavioural variation explaining about 4% of the variance in survival. However, this 393 

relationship was not in the direction predicted by the key models, implying that current 394 

theoretical predictions are not capturing the whole complexity of the phenomenon. Current 395 

theory suggesting negative associations between individual level expression of risky behaviours 396 

and survival is almost solely based on verbal models (Mathot & Frankenhuis 2018). We 397 

therefore need more formal mathematical models that assess under which conditions risky 398 



behavioural types would or would not incur a survival cost, encouraging further theoretical 399 

work on developing environmental-specific hypothesis and empirical work on testing the 400 

validity of those predictions.  401 
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TABLES 602 

Table 1. Summary of data from each study used in the meta-analyses. For each study, we print 603 

an abbreviated reference to the study (“Study”), the Latin name of the study species (“Species”), 604 

the study environment (“Environment”), and the number of estimates per study (“Estimates”). 605 

Study Species Environment Estimates 
(Schuett et al. 2015) Acyrthosiphon pisum lab 2 
(Lapiedra et al. 2018) Anolis sagrei wild 4 
(Piquet et al. 2018) Atlantoxerus getulus wild 4 
(Foster et al. 2017) Chlorostoma funebralis lab 2 
(Keiser et al. 2018) Chlorostoma funebralis lab 6 
(Jablonszky et al. 2018) Ficedula albicollis wild 1 
(Niemelä et al. 2019) Gryllus bimaculatus lab 4 
(Santostefano et al. 2017) Gryllus bimaculatus lab 8 
(Fisher et al. 2015) Gryllus campestris wild 10 
(Niemelä et al. 2015) Gryllus campestris wild 2 
(Akçay et al. 2015) Melospiza melodia amaka wild 6 
(Marshall et al. 2016) Mungos mungo wild 6 
(Réale & Festa-Bianchet 2003) Ovis canadensis canadensis wild 2 
(van Overveld et al. 2015) Parus major major wild 2 
(Quinn et al. 2009) Parus major major wild 2 
(Kain & McCoy 2016) Physella acuta lab 3 
(Hulthén et al. 2017) Rutilus rutilus caspicus wild 1 
(Santicchia et al. 2018) Sciurus vulgaris orientis wild 4 
(Morales et al. 2013) Sitophilus zeamais lab 20 
(Shackleton et al. 2005) Teleogryllus commodus lab 1 
(Monceau et al. 2017) Tenebrio molitor lab 8 
(Boulton et al. 2018) Xiphophorus birchmanni lab 3 
(Kralj-Fišer et al. 2017) Zygiella x-notata lab 6 
Polverino (unpublished) Gambusia holbrooki lab 2 
Niemela (unpublished) Gryllus campestris wild 4 

Pruitt (unpublished) 
Strongylocentrotus 

purpuratus 
lab 4 

Salandova (unpublished) Pisaura mirabilis lab 4 
Lundy sparrow project 
(unpublished) 

Passer domesticus 
domesticus 

wild 4 

*footnote:  We obtained four datasets from colleagues: 1) Salandova (unpublished data), 2) 606 

Fisher et al. 2015, 3) Pruitt (unpublished), and 4) Santostefano et al. 2017. We obtained the 607 

datasets of Lundy sparrow project (Unpublished data) and Polverino (Unpublished data) via 608 

Twitter; and included two of our own datasets: Niemelä (Unpublished data) and Niemelä et al. 609 



2019. The datasets from van Overveld et al. 2015 and Kralj-Fišer et al. 2017 present the original 610 

published data from the paper plus additional unpublished data. The dataset of Lundy sparrow 611 

project (unpublished data) present data partially published in Sánchez-Tójar et al. 2017. 612 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Estimates of r (correlation coefficient), |r| (absolute magnitude of correlation 613 

coefficient) and |r|2 (squared absolute magnitude of correlation coefficient) between behaviour 614 

and survival from our meta-analytic models. We show the point mode estimates with 95% 615 

Credible Intervals (in brackets). Sample sizes (n= number of estimates) are indicated after the 616 

description of the focal model. 617 

Model  r |r| |r|2 
Global (n=125) 0.072 (-0.105;0.201) 0.209 (0.155;0.324) 0.044 (0.024;0.105) 
        
Wild (n=46) 0.156 (0.019;0.314) 0.267 (0.174;0.382) 0.072 (0.030;0.146) 
Laboratory (n=79) -0.043 (-0.284;0.261) 0.250 (0.126;0.495) 0.036 (0.014;0.238) 
        
Females (n=43) 0.088 (-0.021;0.240) 0.157 (0.077;0.288) 0.025 (0.003;0.073) 
Males (n=60) 0.058 (-0.132;0.238) 0.231 (0.157;0.376) 0.053 (0.016;0.128) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Heterogeneity estimates (I2) with the associated standard deviation (in brackets) for 618 

the global meta-analytic model. I2 refers to the proportion of variance among effect sizes 619 

explained by a focal variance component after excluding the total sampling error variance. We 620 

present heterogeneity estimates for study identity and phylogeny and, the residual and total 621 

heterogeneity.  622 

  I2 Study I2 Phylogeny I2 Residual Total heterogeneity 
Global model 0.36 (0.16) 0.16 (0.17) 0.27 (0.10) 0.79 (0.06) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FIGURES 623 

Figure 1. Funnel plot of precision for z-transformed among-individual correlation coefficients 624 

(rZ) between survival and behavioural traits. Inner and outer dashed lines indicate pseudo- 95% 625 

and 99% confidence intervals, respectively. The solid red vertical line indicates the deviation 626 

of the distribution of rZ from the zero effect. 627 

 

 

 


