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Abstract 

A key feature of life’s diversity is that some species are common but many more are rare. 
Nonetheless, at global scales, we do not know what fraction of biodiversity consists of 
rare species. Here, we present the largest compilation of global plant species observation 
data in order to quantify the fraction of Earth’s extant land plant biodiversity that is 
common versus rare. Tests of different hypotheses for the origin of species commonness 
and rarity indicates that sampling biases and prominent models such as niche theory and 
neutral theory cannot account for the observed prevalence of rare species. Instead, the 
distribution of commonness is best approximated by heavy-tailed distributions like the 
Pareto or Poisson-lognormal distributions. As a result, a large fraction, ~36.5% of an 
estimated ~435k total plant species, are exceedingly rare. We also show that rare species 
tend to cluster in a small number of ‘hotspots’ mainly characterized by being in tropical 
and subtropical mountains and areas that have experienced greater climate stability. Our 
results indicate that (i) non-neutral processes, likely associated with reduced risk of 
extinction, have maintained a large fraction of Earth’s plant species but that (ii) climate 
change and human impact appear to now and will disproportionately impact rare species. 
Together, these results point to a large fraction of Earth’s plant species are faced with 
increased chances of extinction. Our results indicate that global species abundance 
distributions have important implications for conservation planning in this era of rapid 
global change.  
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Introduction 

Why some species are common and others are rare has puzzled ecologists ( 1, 2)  at least 
since Darwin ( 3) . Rare species are orders of magnitude more likely to go extinct ( 4, 5) , 
making it puzzling how so many rare species can be maintained ( 6) . Understanding rarity 
and the maintenance of rare species are also central to conservation biology (e.g. ( 7) ) and 
for understanding current and future changes in biodiversity due to global change ( 8) . 
Despite this importance, at a global scale, it is surprising how little we know about the 
causes of commonness and rarity, and its maintenance ( 9, 10) . 
Traditional quantification of species abundance uses abundance from local communities 
because measures or estimates of global taxon abundance have been difficult to obtain. 
However, there are two major limitations to focusing solely on local abundance. First, 
most species tend to be simultaneously common in a few parts of their ranges and rare in 
most of their ranges ( 11, 12)  making measures of local abundance a very noisy metric as 
well as a poor measure of how truly rare a species is globally. Second, at a global scale, a 
measure of rarity results from a combination of the average local abundance and the 
number of sites occupied throughout the species geographic range. Measures of local 
species abundance and species occupancy across the geographic range tend to be 
correlated ( 12–14) . As a result, locally rare species tend to also show up in only a few 
local communities. This makes it likely that measures of global abundance will be more 
skewed to the rare, but this has rarely been tested ( 15) . Thus, a more global measure of 
rarity can minimize potential issues associated with characterizing if a species is rare. 
With the rapid development of biodiversity databases and networks in the past decade, it 
is becoming increasingly possible to quantify continental and global patterns of 
biodiversity and test competing models for the origin and maintenance of diversity 
gradients, and assessing patterns of rarity, at a global scale ( 16) .  
Here, we utilized a global botanical database of unprecedented coverage to: (i) assess 
global patterns of plant rarity; (ii) test several proposed hypotheses underlying the 
generation and persistence of rare species; (iii) identify the regions that harbor ‘hotspots’ 
of rare species and explored the drivers such spatial patterns;  and (iv) assess how current 
patterns of human impact and future climate change scenarios may impact plant diversity 
via impacts on rare species. Quantification of global patterns of abundance and rarity, 
however, has been hampered by several limitations and prevalent errors in global 
biodiversity data. These issues make their use in comprehensive biodiversity analyses 
difficult ( 17, 18) . In this paper we take a novel approach that overcomes many of these 
limitations. For all known land plants (Embryophyta), we compiled a global database of 
standardized botanical observation records - the integrated Botanical Information and 
Ecology Network (Figure 1, BIEN v4.1; http://bien.nceas.ucsb.edu/ ; see Supplementary 
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Materials, ( 19) ). The BIEN data mainly comprise of herbarium collections, ecological 
plots and surveys, and trait observations. Together these data constitute over 200 million 
observations of primary botanical diversity data. Assembling such data involves 
overcoming numerous challenges of taxonomy, data quality, data exchange, provenance, 
interoperability, and scaling (Figure 1, ( 20) ). After correcting misspelled or synonymous 
taxon names and removing records with invalid or suspect geocoordinates, incomplete or 
unresolvable taxon names, and observations of non-native species and cultivated plants, 
the final dataset consists of 34,902,348 observation records of 434,934 land plant species 
(See Figure 1 and Supplementary Materials for details of data cleaning and validation). 

We quantified the distribution of global abundance for all land plant species (hereafter 
plant species) on Earth by using a metric of global relative abundance  - the total number 
of unique observations of a species ever recorded in global databases. The distribution of 
the total number of global observations per species (the global species abundance 
distribution or gSAD) is an estimate of global abundance, and is still a sample as a count 
of all individuals on the planet would be impossible. Nonetheless, quantifying gSADs 
have a substantial practical advantage over other measures of abundance. First, we can 
combine data from different data sets including plots and surveys, herbarium specimens, 
and trait observations to increase sampling coverage. These datasets all share the 
common attribute of observing an individual of a given species in a given location and 
time. Second, comparing and integrating estimates of gSADs from different datasets 
(plots vs. herbarium specimens etc.) provide a way to assess potential biases in estimating 
species global abundance. For example, gSADs can be measured by compiling just plot 
or ecological survey data. In plot data, a global estimate of species abundance is 
quantified directly as each individual of that species within is summed within and across 
plots. As we discuss, our approach is less biased than data that uses only local plot-based 
abundance data that samples only a tiny fraction of the Earth’s surface.  

Traditionally, measures of rarity have been based on a multidimensional concept. For 
example, Rabinowitz ( 21)  identified three major axes on which a species can be common 
or rare: local abundance, extent of the geographic range, and habitat specificity. Although 
conceptually these three dimensions are independent, they are often strongly positively 
correlated ( 22) . Four of the five criteria the IUCN uses to evaluate extinction risk for their 
Red List ( 23)  directly involve measurement of rarity via absolute levels of, or declines in 
abundance and geographic distribution, while the fifth involves computer simulations 
which are likely to incorporate population size and range size as well. Importantly, these 
criteria all point to the importance of measuring rarity at global scale (in contrast to local 
rarity). A species may be globally rare because it has few individuals at many local sites 
or many individuals at few sites.  
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Results 

We generated two gSAD distributions based on summing species individual observations 
across all ecological plots and by summing all observations across all other botanical 
observation records. Our analyses reveal that a large fraction of the plants on earth are 
rare (Figs. 2 & 3). Analyzing the distribution of the number of observations per species 
reveals that the global-scale distribution is highly skewed and lacking of central tendency 
(i.e. the mode of the global species abundance distribution  gSAD is at N=1; Fig. 2). 
Although we estimate that the total number of land plant species on the planet is ~435k, a 
large fraction of these species, 36.5% or 158,535 are quite rare (species that are 
represented by only 5 observations or fewer) and 28.3% or 123,149 and have 3 
observations or less. The large number of rare species is consistent with past claims that 
when biodiversity observations are compiled at increasingly larger spatial ( 15)  and 
temporal scales ( 24)  rare species should be increasingly comprise the majority of species. 

Global species abundance distribution (gSADs) - We tested several long-standing 
hypotheses concerning the processes creating and maintaining large-scale patterns of 
commonness and rarity. Specifically, we assessed whether the number of observed rare 
species follows predictions from biodiversity theory by comparing several proposed 
statistical distributions for the gSAD. First, we assessed two contrasting sets of 
predictions for the distribution of commonness and rarity of species (Fig. 2). Specifically, 
at increasingly larger geographic scales both the Unified Neutral Theory of Biogeography 
(UNTB) ( 25)  and ecological niche theory (ENT) ( 26)  predict that the global SAD 
( gSAD) will converge on Fisher’s log-series distribution ( 27) 
 

(1) 
where  is the expected number of species,  is the total number of observations per 
species, α is the diversity parameter, and  is a nuisance parameter that is defined by α 
and total number of individuals, , sampled, .  The UNTB further 
makes two predictions: (i) at increasingly large spatial scales (such as continental and 
global scales) the Fisher’s log-series distribution will also increasingly converge to 
approximate a ‘power law’ (or a Pareto distribution) over most of the range of the 
distribution ( 28)  (see Fig. 2A), where 

 

(2) 
where (ii) the value of  , the scaling exponent or slope on a log-log plot, will equal -1.0. 
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For the continuous Pareto or power-law distribution,  is the minimum scale of the 
distribution, and   is the scaling exponent ( 29) . For the BIEN data, the minimum 
number of observations for a species is 1, so  was set at 1. 
 
The UNTB predicts that the gSAD (called the regional pool in neutral theory) will follow 
a log-series distribution. Pueyo ( 28)  notes that the log-series distribution consists of two 
parts multiplied together: a Pareto distribution with exponent =1 that is the result of 
neutral dynamics and an exponential “bend” that takes effect at very high abundances, 
which is due to the finite size assumption. Pueyo ( 28)  also suggests a generalization of 
the Pareto and log-series that incorporates a Pareto where the exponent  is allowed to 
vary combined with an exponential finite size term which we call here “Pareto with 
exponential finite adjustment”. Thus, testing whether the gSAD is best fit by a log-series 
(where =1), or a Pareto distribution (where is allowed to vary), or a ‘Pareto with 
exponential finite adjustment’ (where is also allowed to vary) provides a test of neutral 
dynamics.  In sum, both the UNTB and ETN predict that the log-series distribution will 
best fit gSADs but, at large geographic scales, this distribution will also converge to a 
Pareto distribution. Thus, fitting the Pareto or the “Pareto with exponential finite 
adjustment” provides a simultaneous test of whether neutral or niche dynamics underlie 
the data ( 28) .  A poor fit or a value of  not equal to one rejects neutral theory. A poor fit 
of the Pareto regardless of the value of beta further rejects niche theory. ( 28) . 
Additionally, the value of   is then a useful ecological and evolutionary indicator, of 
whether the Earth has more rare species ( , the slope of the function is steeper) or 
fewer (  , the slope of the function is flatter) rare species than expected under 
zero-sum neutral evolutionary dynamics ( 28, 30) .  
 
In contrast to the predictions from the UNTB and ENT, ecological sampling theory 
predicts that gSADs will be characterized by a lognormal distribution.  If a species 
abundance is the result of several processes acting together ( 31) , lognormal distributions 
are expected.   Because of the central limit theorem (CLT), a lognormal distribution is 
expected any time many variables interact multiplicatively to influence abundance, such 
as many differing biotic and abiotic factors (see Refs in ( 32) ).  Indeed, common processes 
in ecology and evolution combine are known to interact multiplicatively to influence 
species abundance ( 32)  (see Supplemental Document) .  
 
Next, we fit several additional models and statistical distributions that have been 
proposed to describe the distribution of commonness and rarity (see ( 33, 34)  and 
Supplementary Materials). Using maximum-likelihood estimations, we fit each 
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distribution to the empirical gSAD both for all of the species observation records within 
the BIEN database as well as for just species recorded across all ecological plots. The 
best model varied with which measure of goodness of fit was used as well as the data set 
used. However, in general, the truncated Pareto (i.e. a modified Pareto distribution that 
adds an additional parameter to allow the right tail to drop down due to finite sample size 
( 28) ) and the Poisson-lognormal ( 35)  both fit well. These models possess strong skew on 
a log scale, indicative of many rare species. Indeed all three models (at the estimated 
parameter values) show the mode at species with one individual. The log-series, while 
also showing a mode at one individual in a log plot, drastically underestimates the 
number of extremely rare species, and the remaining models fit the distribution even 
worse (and have an interior mode, incorrectly predicting the most common abundances 
will be intermediate).  
 
The UNTB predicts that log-series distribution will be approximated by the fit of the 
Pareto power distribution, with an exponent,  ( 28) .  However, our fit of the 
log-series distribution shows that it was not the best fit and the fitted scaling exponent is 
significantly steeper than -1.0 (  MLE = -1.41 for all of the BIEN observations and  
MLE = -1.43, for the observations from ecological plot data, Fig. 2). Thus, a Pareto 
power distribution needs an exponent significantly less than -1 to generate the number of 
rare species actually observed. Together, these results underscore that, at continental to 
global scales, only a few species abundance distribution models are capable of producing 
sufficient numbers of rare species to match the observed data, and that neutral dynamics 
under the UNTB is not one of them. Interestingly, the observed value of  for 
Embryophytes is similar to what has been reported for an extensive dataset for other taxa 
including animals and marine phytoplankton ( 28) , suggesting that the shape of the SAD 
at increasingly larger spatial scales converges to a similar distribution across disparate 
taxa. In sum, the Poisson lognormal is best fit to both all data and the plots only and the 
Pareto exponent is markedly steeper than -1.0 (and the Pareto distribution is the 2nd best 
fit on 2 of the 3 metrics). 
 
Assessment of sampling or taxonomic bias - Next, an open question is whether the 
observed number of rare species is the result of sampling or taxonomic bias. Data from 
herbarium records are known to exhibit biases in collection and sampling ( 17 , 18 ) . 
However, do these biases influence our identification of whether a species is rare or not?  
 
We conducted two tests: 
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First, we compared the distribution of global abundance in the total BIEN database 
(including plot surveys and herbarium and museum records) with the gSAD for just the 
plot datasets (Fig. 2). Ecological plots and surveys, in contrast to herbarium data, contain 
minimal sampling biases as a robust effort is made to ensure all individuals within the 
sampling design are surveyed within a given area. In many cases repeated visits ensure 
accurate identification to species. Thus, assessing if the gSAD from plot data is different 
from the gSAD from all botanical observations enables us to assess potential bias and 
sampling effectiveness. As discussed below, both empirical global species abundance 
distributions are described by similar statistical distributions (e.g. the shape of Fig. 2B is 
similar to Fig. 2A).  

Next to further assess if rare species are truly rare or artifactual, we randomly sampled 
300 rare species with 3 observations or fewer from the Americas. The Americas were 
chosen because our taxonomic expertise was more focused between these two continents. 
For each species selected, we consulted taxonomic experts at the Missouri Botanical 
Garden and the New York Botanical Garden to sort each species into several 
classifications (Fig. 3; see Supplementary Materials). Taxonomic experts largely confirm 
that the rare species identified by BIEN are indeed rare taxa, while only 7.3% were 
clearly erroneous and recognized as abundant or large-ranged species. We concluded that 
our results are not driven by taxonomic and sampling biases associated with herbarium 
data.  

Our results from Figure 2 allow us to estimate the total number of native land plant 
species across the globe with estimates for taxonomic uncertainty. After correcting and 
standardizing data, we estimate that the total number of extant Embryophyte (land plant) 
species on earth is between ~358k to ~435k. The lower limit stems from subtracting 
17.6% from the total (10.3% from the remaining presence of naturalized non-native 
species + 7.5% due to the over inflation of names due to ‘old names’(basionyms) not yet 
corrected for by taxonomic data cleaning see Fig. 3). Our estimates are consistent with 
previous estimates of the total number of Embryophytes in the world of approximately 
391,000  (see ( 36)  and Supplementary Materials). However, now we can quantify that 
~36% of these species are strikingly rare with very little information. In sum, our results 
from Figure 2 show that rarity is commonplace across the land plants. Little botanical 
information exists across the world’s herbaria and ecological collections for between 
13.6% to 11.2% (species with 1 observation) or between 30.0% to 36.5% (species with 
fewer than or equal to 5 total observations) of all vascular plant species. 

‘Hotspots’ of rare species   - To identify the regions that harbor ‘hotspots’ of rare species, 
we mapped the location of rare species across the world (Fig. 4). We controlled for 
variation in sampling effort by calculating both the Menhinick and Margalef indices (see 
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Methods). Plotting the sampling corrected number of rare species, reveals several 
patterns. Rare species cluster: in the Americas  in (i) mountainous regions (particularly 
along the thin strip along the western flank of the Andean Mountains, Central America, 
and the southern Sierra Madre of Mexico); ( ii) the Guiana shield in northern South 
America; ( iii) relatively small climatic regions that are strongly distinct from surrounding 
areas (the Atlantic Forest, or Mata Atlântica in Brazil, the southern region of the 
California Floristic Province, and the Caribbean); in Africa in (iv) the Fynbos of South 
Africa; ( v) mountainous regions of Madagascar; ( vi) the coastal mountains of Cameroon, 
( vii) the Ethiopian highlands and the Somali peninsula; in Asia : ( viii) south eastern China 
and the border regions of Myanmar, Laos, and Thailand; ( ix) Malaysia; ( x) New Guinea; 
( xi) the mountainous strip from Iran through Turkey and Georgia. In Europe there are 
several regions of notably high diversity of rarity in and around ( xii) the Mediteranean 
including the Pyrenees.  
 
There is a relative dearth of rare species throughout the Amazon basin confirming past 
claims that the Amazon consists of widespread and relatively abundant species ( 37) . The 
areas identified by our methods show some overlap with areas independently identified as 
biodiversity ‘hotspots’ ( 14)  (e.g. Mesoamerican highlands, Andes, Southeast Asia, New 
Guinea; but differ in other areas). 

Drivers of the spatial distribution of rarity - To assess the drivers of the spatial 
distribution of rarity, we conducted ordinary least squares linear regression (OLS) and 
simultaneously autoregressive models (SAR) to analyze the relationship between rarity 
index and environmental variables, including present climate, historical climatic velocity 
or stability of climate, and topology. Our OLS models showed that all the variables 
(annual mean temperature, annual precipitation, temperature seasonality, precipitation 
seasonality, temperature velocity, precipitation velocity, elevation, and heterogeneity of 
elevation) have significant relationships with the Menhinick rarity index, with the largest 
effect from temperature velocity and heterogeneity of elevation (Table S1-3 and Fig. S1). 
In comparing the group models (present climate [annual mean temperature, annual 
precipitation, temperature seasonality, precipitation seasonality], stability of climate 
[temperature and precipitation velocity], and topology [elevation, and heterogeneity of 
elevation]), the model with stability of climate outperformed models with current climate 
and topography, while the full model showed the lowest AIC (Table S1-3). The 
exhaustively selected model did not include elevation as a predictor, though it had minor 
differences in model performance compared with the full model (Table S1-3).  
A Moran’s I  test showed high spatial autocorrelation in the residuals of the OLS models, 
while we found no significant spatial autocorrelation in the residuals of the SAR models 
(Table S1-3). The coefficients of the SAR models were generally similar with those from 
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OLS models, with the exceptions that signs of annual mean temperature, precipitation 
seasonality, and precipitation velocity switched from positive to negative in the SAR 
model. Temperature velocity remains the largest negative effect and heterogeneity of 
elevation remains the largest positive effects in the SAR models. Models with stability of 
climate and topography also outperformed the model with current climate, while the full 
model remains the best performed SAR model. The modeling results based on Menhinick 
and Margalef rarity index showed comparable results (Tables S1-6 and Figs. S1-2). 

To summarize, areas that contain a higher proportion of rare species have had a more 
stable climate. The best predictor of high numbers of rare species is the historical 
temperature velocity(see Tables S1-6). Climate velocity describes climate instability with 
ecologically relevant units (distance/time; see refs and discussion in Supplemental 
Document). In addition, mountainous areas as measured by the standard deviation of 
elevation, is also a significant predictor with positive effect (Tables S1-6 and Fig. S1). 
Adding short-term annual variation (annual seasonality) in temperature and precipitation, 
and mountainous conditions in addition to climate velocity does improve the explanation 
of the current spatial distribution of rarity (e.g. R2 increased to 0.193 for the OLS model 
and to 0.518 for the SAR model of Menhinick rarity index; but less so for Margalef rarity 
index, 0.176 for the OLS model and 0.263 for the SAR model; Table S1-6). Together, 
these results are consistent with previous results (see Refs ( 38, 39 )  and references 
therein), indicating that increased rates of climate change velocity negatively impacts the 
retention of endemic and rare species. 

The overlaps between future climate velocity and human footprint and rarity indices- 

Our environment is facing rapid human changes at the global scale, thus we quantified 
the intensity of human impact on the area with rare species ( 40) . Regions with rare 
species are currently characterized by higher human impact and will experience faster 
rates of future climate change (Fig. 5). Areas with rare species have human footprint 
values of 8.5 ± 5.8 which is ~1.6 times higher (Wilcoxon test, p < 0.001) than that of the 
globe on average (5.2 ± 5.8). Further, on average, areas with rare species are predicted to 
experience ~ 200 (± 58) times greater rates of temperature velocity than those same areas 
experienced historically and will experience  ~1.2 times greater (Wilcoxon test, p < 
0.001) rates of temperature velocity than the globe will experience on average (170 ± 77).  

Predicted changes of rarity indices - With the previously calibrated OLS and SAR full 
models, we made predictions of rarity indices under future projected climate. The 
predictions showed worldwide decreases in rarity indices (Fig. 6), where the southern 
Andes and Southeast Asia are predicted to experience the highest decreases in rarity 
indices. These decreases were likely due to the accelerated future climate velocities to the 
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coming century under RCP8.5, which are two orders of magnitude higher than those 
experienced from Last Glacial Maximum (~21 Ka; LGM) to present day.  

Discussion  

Primary biodiversity data can be subject to various forms of collection bias, and large 
amounts of these data remain immobilized ( 17, 18) . Thus it is possible that that the 
patterns we observe may change with additional data. However, our dataset represents the 
most comprehensive assembly of plant diversity data, comprising both plots and museum 
specimen data globally from far more sources than ever before. Comparison between plot 
and all observation gSADs (Fig 2; Table 1) indicates that rare species  Further, we made 
significant efforts in data cleaning and curation to assure that our analyses represent by 
far the best window yet into the notions of global commonness and rarity in plants.  

Our results indicate that ‘hotspots’ of plant biodiversity largely reflect the accumulation 
of very rare species. Assessing the predictions of the Unified Theory of Neutral 
Biogeography (UTNB) to the distribution of commonness and rarity across species 
enables us to reveal likely drivers of rarity. The UTNB assumes that species overlap in 
their niches and are equivalent in their rates of speciation, extinction and dispersal ( 25) . It 
implies that biodiversity arises at random, as each species follows a random walk so that 
the distribution of abundances across species is given by a dynamic equilibrium of 
speciation and extinction. This equilibrium is predicted to result in a skewed global 
species abundance distribution ( gSAD) best fit by a log-series distribution and 
approximated with a slope  (Fig. 2A). However, if, at global scales, rates of 
speciation and extinction are not at equilibrium then . For example, if rarity is a 
result of poor adaptation to local conditions or if rare species are maintained by lower 
rates of extinction then we would expect  and , respectively (see Ref 
( 28) . Our results show that  indicating that the proportion of plant species that 
are rare is more than expected from neutral processes. Given that rare species are orders 
of magnitude more likely to go extinct ( 4, 5)  than more abundant species begs the 
question: why do we observe a larger proportion of observed rare species than expected 
from neutral theory?  

Together, our analyses (Tables S1-6; Fig S1-S3) suggest that current ‘hotspots’ of rare 
species (Fig. 4) reflect in part a lower risk of historical extinction because they are often 
found in geographic localities that have had less variable and more stable climates that 
has likely lowered the probability of extinction (see ( 4, 5) ).  
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Although the power or Pareto distributions fit well (especially with an exponential 
correction for finite samples), the Poisson-lognormal fits better supporting the predictions 
of the CLT. In the end, it is not surprising that the abundance of plant species across the 
globe is not determined abundance by the predictions of ENT where niche partitioning 
drives abundance (they are too far apart spatially to compete). Similarly, at large scales 
environmental gradients become so strong it is hard to imagine that neutrality and the 
predictions of UNTB applying across such scales. The Poisson-lognormal models integer 
(such as count of observation) samples from a lognormal distribution. The lognormal 
distribution derives from the same central limit theorem (CLT) argument that explains the 
normal distribution except it applies to random factors that are multiplied together or 
variables that are on a logarithmic scale (such as abundance; see the Supplemental 
Document). Biologically this can be interpreted as abundance being a consequence of 
multiple (~5+) different processes ( 34) . This statistical, complexity-oriented explanation 
often fits SADs better than either niche or neutral processes, especially in large scale data 
( 35)  . Abundance is such a central feature of ecology it is not surprising that many factors 
simultaneously work to determine relative abundance. 

The distribution of the observed species abundance distribution (or SAD) for all botanical 
observations as well as for species only observed in ecological plots, is heavily 
right-skewed on both an arithmetic and a logarithmic scale and is best described by a 
truncated power-law and/or Poisson-lognormal. While past macroecological research has 
indicated that many species are likely rare ( 14)  our results quantify the proportions of 
commonness vs. rarity. Furthermore, after controlling for number of species, rare species 
are spatially clumped in ways that support the mechanisms generating and maintaining 
rare species articulated by Simpson and Janzen. They speculated on the role of mountains 
and climate stability in influencing both rates of speciation as well as limiting dispersal. 
In 1964, G.G. Simpson ( 41 )  extended evolutionary theory to hypothesize that “ Small 

population ranges and numerous barriers against the spread and sympatry of related 

populations would therefore tend to increase density of species .” Janzen’s 1967 ( 42) 
‘Why mountain passes are higher in the tropics’ extended Simpson’s hypothesis to 
predict that mountainous regions in the tropics will harbor proportionally more rare 
species than temperate mountains or even topographically uniform tropical regions 
because of less variability in climate. Our findings of disproportionate numbers of rare 
species in mainly tropical mountains and small climatic regions support these ideas.  

Our results present important implications for conservation in the light of climate change 
and human impact. If ~36% of species are indeed rare, then our ability to forecast and 
anticipate how the majority of plant species will respond to climate change is severely 
limited. Methods to forecast species responses to global change, such as the use of 
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ecological niche models or species distribution models often require sample sizes on the 
order of 20 or more observations to generate accurate models ( 43) . Currently, we 
estimate that only a quarter of all land plant species (26% or 112,699 species) have 
sufficient sample sizes to assess their geographic distribution. Thus, our knowledge of 
plant species ecology, natural history, and conservation knowledge disproportionately 
stems from just a quarter of all plant species ( 44) . Though not all primary biodiversity 
data have been digitized, it is still remarkable that ~36% of all plant species known are 
only documented a small number of times. In addition, our analyses show that rapid rates 
of current human impact and projected future climate change appear to disproportionately 
impact regions that harbour most of these rare species (Fig. 5), whereas the rare species 
likely have been in relatively stable climate through their evolutionary history. 

Current human impact and climate change are currently (and will) disproportionately 
impact rare plant species (Fig. 5). Indeed, our results show a marked contrast between the 
historical stable climate characteristic of current rarity ‘hotspots’ (Fig. 4; Tables S1-6; 
Fig S1-S3) and the predicted two orders of magnitude increase in climate velocity in the 
areas enriched with rare species (Fig. 5). As shown in maps of rarity indices and 
regression models, areas with rare species tend to occur in regions that have had 
comparatively stable climates (i.e. low decadal or century-scale velocity of climate 
change), which has been noted by others (38, 40). The contrast indicates that future rates 
of climate change is likely to disproportionately impact diversity by impacting species 
most prone to extinction — the rare species. Furthermore, this predicted greater exposure 
to climate change is much greater (2 orders of magnitude) that what those rare species 
have experienced through their recent evolutionary history.  

Materials and Methods  

Because the sampling intensity for plants across the Americas is not uniform, we assessed 
the rarified species diversity. For each 1 o grid cell, we calculated the total number of 
observations or samples, N as well as the total number of observed rare species, S; rare 
species were defined as having 3 observation records or fewer. by calculating two 
separate rarified diversity measures for each 1 o grid cell:  

( i) Margalef diversity ( S
Margalef)  – which assumes that species richness increases with 

sampling intensity N, and in particular, increases non-linearly and approximately 
logarithmically with N.  

S
Margalef = (S - 1) / ln N (3) 
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( ii) Menhinick diversity ( SMenhinick)  – In a similar vein, the Menhinick diversity measure 
assumes that species richness also increases nonlinearly with sampling intensity, N, but 
according to a square root function  

S
Menhinick = S/√N (4) 

 
Comparing both measures of S

Margalef and S 
Menhinick reveals similar spatial maps indicating 

that both measures result in identical conclusions.  

Competing different hypothesized gSADs —  As we describe in Supplementary Materials, 
we fit several additional hypothesized univariate distributions to the global species 
abundance distribution ( gSAD) using the following proposed biological and statistical 
distributions. Most theories produce SADs that are so similar to each other it is difficult 
to distinguish them given the noisy data and the fact that the differences are most 
pronounced in the tails which are by definition infrequently observed ( 34) . In Table 1 we 
provide several different goodness of fit measures. Each emphasizes different aspects of 
fit (chi-square on log-binned data emphasizes the fit of each statistical distribution to rare 
species, calculating an r 2 on the predicted vs. empirical cumulative distribution function), 
CDF (describes the probability that a random variable, , drawn from  is ) 
emphasizes the abundances with the most species —usually intermediate abundances, 
while likelihood emphasizes avoidance of extreme outliers. As previously noted, it is 
common for different measures of fit to select different SAD theories as providing the 
best fit to a single data set ( 32) . As a result, any claim of a superior fit must be robust by 
being superior on multiple measures. 

Methods for regression models — As described in the Supplementary Materials, we 
conducted ordinary least squares (OLS) linear regression models to analyze the 
relationship between environmental variables and rarity index. We included three groups 
of environmental variables that portray present climate (annual mean temperature, annual 
precipitation, temperature seasonality, precipitation seasonality), stability of climate 
(temperature velocity and precipitation velocity), and topology (elevation and 
heterogeneity of elevation).We also calculated the standardized deviation of elevations 
within each one by one degree window and considered this as the heterogeneity of 
elevation. We performed log-transformation of rarity index, temperature and precipitation 
velocity, elevation, and heterogeneity of elevation to get normally distributed residuals in 
the regression models. We standardized all variables to zero mean and one standard 
deviation to make the regression coefficients comparable. With 4,571 records, we 
conducted OLS linear regression models to explore the bivariate relationship between 
rarity index and each environmental variable.  
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We also constructed multiple regression models using each group of variables (present 
climate, stability of climate, and topology), as well as using all variables (full model). We 
conducted multiple regression models through exhaustive model selection based on AIC 
values using all environmental predictors. Lasty, to account for spatial autocorrelation in 
climate data, we performed Moran’s I  test and performed simultaneous autoregressive 
models for all the OLS models mentioned above.  

Climate change and future predicted changes in rarity indices — With the previously 
calibrated full models (OLS and SAR models), we made predictions of rarity indices 
under future projected climate. We used the full models as they outperformed individual 
models or sub-group models, and had comparable performances with the exhaustively 
selected model. We obtained future climatic variables from WorldClim 
( https://www.worldclim.org/paleo-climate1 ) ( 45) . We used the future climate in 2070 
constructed by Community Climate System Model (CCSM4) under RCP 8.5 scenario, 
which has comparatively high greenhouse gas emissions ( 46) . To match the resolution of 
the rarity map, we sampled the environmental variables (annual temperature, annual 
precipitation, temperature seasonality, and precipitation seasonality) to one degree cells. 
We further calculated the temperature and precipitation velocity between present and 
future following ( 38) . The two topological variables (elevation and heterogeneity of 
elevation)were kept the same as present. After making the predictions, we compared the 
differences between predicted rarity indices under present and future climate.  

Rarity & climate velocity — Using data sources and methods described above in 
regression model methods, we derived velocity of temperature change and velocity of 
precipitation change over the periods: Last Glacial Maximum (LGM) to baseline climate 
(~21 Ka to 1960-1990) and baseline climate to late century (1960-1990 to 2060-2080) 
under RCP8.5. Velocity was calculated using the neighborhood statistic approach 
originally described in Loarie et al. 2009 ( 47) . We compared velocity values at locations 
where 1) there are rare species observations; 2) there are no rare-species observations; 
and to 3) background sampled locations. This comparison was conducted for both 
historical change since LGM and projected future change. 

Rarity & the human footprint— Our environment is facing rapid human changes at the 
global scale, thus we quantified the intensity of human impact on the area with rare 
species. We downloaded global human footprint data ( 40)  and resampled to the 
resolution of rarity map. We extracted the values of human footprint where rare species 
exist (i.e. one degree by one degree spatial windows where one or more rare species are 
observed), and compared  the mean of those values with that of the global human 
footprint map using Wilcoxon test. 
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CPUN, CR, CRAI, FURB, CU, G, CRP, CS, CSU, CTES, CTESN, CUZ, DAO, HB, 
DBN, DLF, DNA, DR, DUSS, E, HUA, EAC, EIF, EIU, GES, GI, GLM, GMNHJ, K, 
GOET, GUA, EMMA, HUAZ, ERA, ESA, FAA, FAU, FB, UVIC, FI, GZU, H, FLAS, 
FLOR, HCIB, FR, FTG, FUEL, GB, HNT, GDA, HPL, GENT, HUAA, HUJ, CGE, 
HAL, HAM, IAC, HAMAB, HAO, HAS, IB, HASU, HBG, IBUG, HBR, HEID, IEB, 
HIP, IBGE, ICEL, ICN, ILL, SF, HO, HRCB, HRP, HSS, HU, HUAL, HUEFS, HUEM, 
HUFU, HUSA, HUT, IAA, HXBH, HYO, IAN, ILLS, HAC, IPRN, IMSSM, FCQ, 
ABH, INEGI, INIF, BAFC, BBB, INPA, IPA, NAS, INB, INM, MW, EAN, IZTA, 
ISKW, ISC, ISL, GAT, JEPS, IBSC, UCSB, ISTC, ISU, IZAC, JACA, JBAG, JE, SD, 
JUA, JYV, KIEL, ECON, KSC, TOYA, MPN, USF, TALL, RELC, CATA, AQP, KMN, 
KMNH, KOELN, KOR, FRU, KPM, KSTC, LAGU, TRTE, KSU, UESC, GRA, IBK, 
KTU, ACAD, MISSA, KU, PSU, KYO, LA, LOMA, LW, SUU, UNITEC, TASH, NAC, 
UBC, IEA, GMDRC, LD, M, LE, LEB, LIL, LINN, AV, HUCP, QFA, LISE, MBML, 
NM, MT, FAUC, MACF, CATIE, LTB, LISI, LISU, MEXU, LL, LOJA, LP, LPAG, 
MGC, LPD, LPS, IRVC, MICH, JOTR, LSU, LBG, WOLL, LTR, MNHN, CDBI, 
LYJB, MOL, DBG, AWH, NH, HSC, LMS, MELU, NZFRI, MA, UU, MU, CSUSB, 
MAF, MAK, MB, KUN, MARY, MASS, MBK, MBM, UCSC, UCS, JBGP, DSM, OBI, 
BESA, LSUM, FULD, MCNS, ICESI, MEL, MEN, TUB, MERL, CGMS, MFA, FSU, 
MG, HIB, MIL, DPU, TRT, BABY, ETH, YAMA, SCFS, SACT, ER, JCT, JROH, 
SBBG, SAV, PDD, MIN, SJSU, MMMN, PAMP, MNHM, OS, SDSU, BOTU, OXF, P, 
MOR, POM, MPU, MPUC, MSB, MSC, CANU, SFV, RSA, CNS, WIN, MSUN, CIB, 
MUR, MTMG, VIT, MUB, MVFA, SLPM, MVFQ, PGM, MVJB, MVM, MY, PASA, 
N, UCMM, HGM, TAM, BOON, UFS, MARS, CMM, NA, NU, UADY, UAMIZ, UC, 
NE, NHM, NHMC, NHT, UFMA, NLH, UFRJ, UFRN, ULS, UMO, UNL, UNM, US, 
NMB, NMNL, USP, NMR, NMSU, WIS, NSPM, XAL, NSW, NT, ZMT, BRIT, MO, 
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NCU, NY, TEX, U, UNCC, NUM, O, CHSC, LINC, CHAS, ODU, CDA, OSA, OSC, 
OSH, OULU, OWU, PACA, PAR, UPS, PE, PEL, SGO, PEUFR, PFC, PH, PKDC, SI, 
PLAT, PMA, PORT, PR, QM, PRC, TRA, PRE, PY, QCA, TROM, QCNE, QRS, UH, 
QUE, R, SAM, RBR, REG, RFA, RIOC, RM, RNG, RYU, S, SALA, SANT, SAPS, 
SASK, SBT, SEL, SIU, SJRP, SMDB, SMF, SNM, SOM, SP, SRFA, SPF, SPSF, SQF, 
STL, STU, SVG, TAI, TAIF, TAMU, TAN, TEF, TENN, TEPB, TFC, TI, TKPM, TNS, 
TO, TU, UAM, UB, UCR, UEC, UFG, UFMT, UFP, UGDA, UJAT, ULM, UME, UNA, 
UNB, UNR, UNSL, UPCB, UPEI, UPNA, USAS, USJ, USM, USNC, USZ, UT, UTC, 
UTEP, UWO, V, VAL, VALD, VEN, VMSL, VT, W, WAG, WAT, WII, WELT, WFU, 
WMNH, WS, WTU, WU, Z, ZSS, ZT, CUVC, LZ, AAS, AFS, BHCB, CHAM, FM, 
PERTH, SAN. 
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Table 1.  Three different measures of goodness of fit ( r 2 or percentage of variance 
explained in the cumulative distribution function, χ 2 on log 2 bins and AIC) are shown for 
six different species abundance models (see ( 34) ). Distributions were fitted for the 
number of observations per species across all species found ( i)within ecological plots 
only, and ( ii) across all datasets within the BIEN database. Sampling species found only 
in plots standardizes for sampling influences as all individuals within ecological plots 
are sampled and identified to species. Thus, the species abundance distribution from 
ecological plots is expected to more accurately describe the species abundance 
distribution. As predicted by the central limit theorem (CLT) the Poisson lognormal 
distribution provides the best fit to both  gSADs. Nonetheless, Pareto, and Truncated 
Pareto also all fit well. The log-series distribution, predicted by ecological niche theory 
and neutral theory, falls behind these distribution across the different goodness of fit 
measures.  

 

Model Plot Data Only All Data 

 CDF r 2 
Chi2 log

2 
AIC ∆AIC CDF r 2 

Chi2 log
2 

AIC ∆AIC 

Zipf Mand 0.929 54,188 139,822 25,848 0.447 738,849,47 7,402,206 3309517 

Weibull 0.999 1.6E+10 127,111 13,137 0.999 3.01E+10 4,269,287 176,598 

Log-series 0.991 1.57E+13 120,082   6,109 0.999 5.08E+13 4,119,057 26,368 

Truncated 

Pareto 

0.999 5.69E+13 115,244 1,270 0.999 1.46E+13 4,110,900 18,211 

Poisson 

lognormal 

0.999 490 113,974 0 0.999 2,966 4,092,689 0 

Pareto with 

finite 

sample 

exponential 

adjustment 

0.999 563 114,096         122 0.998 100,558 4,203,550 110,861 
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Table 2.  Parameter fits for each of the fitted statistical distributions. The estimated slope 
values, , of the gSAD are given in bold by fits of the Pareto and Truncated Pareto 
distributions. Note the estimated slope values differ from -1.0 expected from the unified 
neutral theory of biodiversity. Instead, the observed fitted slope, , is steeper than 
expected from neutral theory (with fitted exponents more negative than -1.0). The 
steeper exponents indicate that of all of the observed plant species on Earth, 
proportionally more of them are rare species and that there are more rare species than 
expected by demographic and evolutionary neutral processes. Thus, the processes 
creating and maintaining rare species on earth generate proportionally more rare species.  

  

Model Plot Data  All Data 

Zipf-Mand, b 13.3 1186.7 

Zipf-Mand, c 1.4 1.2 

Logseries, c 0.9 0.9 

Pareto fitted exponent,  
-1.4 -1.3 

Weibull scale 18.1 40.6 

Weibull shape 0.4 0.5 

Poisson Lognormal, m 4.07E-08 1.7 

Poisson Lognormal,  s 2.9 2.6 

Pareto with exponential finite 

adjustment(28) fitted Pareto 

exponent,  

-1.3 -1.1 

Pareto with exponential finite tial 
adjustment: exponential 
parameter, Omega 

0.1 0.1 
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Figure 1  Computational workflow for creating global species abundance distributions 
( gSADs).  
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Figure 2. The global species abundance distribution, gSAD for all plant species. A. 

The expected distribution of the number of observations recorded for species, the global 
species abundance distribution or gSAD, based on expectations from theory ( 28)  (see 
main text). In the inset, we list several differing predictions for the shape of the gSAD. 
B. Two estimates of the gSAD for all land plant species. The first distribution (black) is 
the observed number observations per species for all species found in ecological plots 
and community surveys. Each data point represents the total number of individuals 
observed for a given species. The second distribution (red) is all botanical observations 
combined (including herbarium specimens) per species. Each distribution is strongly 
modal at the lowest abundance,  showing that most species have only been observed a 
very small number of times and only a few species are common. The distributions are 
shown on log10 transformed axes. Comparing the shape of the distributions the competing 
the fits of differing proposed gSAD distributions allows us to test differing hypotheses 
for the origin of the gSAD. 

 

 

23 

https://paperpile.com/c/2iW7yz/XUSQ
https://paperpile.com/c/2iW7yz/XUSQ
https://paperpile.com/c/2iW7yz/XUSQ


 

Figure 3. Does using the number of observations in botanical datasets provide a 

reliable measure of rarity? Assessments of rarity by taxonomic specialists at the 
Missouri Botanical Garden and the New York Botanical Garden for a random sample of 
300 species with 3 observations or fewer in the BIEN database. Most species (72.7%) 
identified as ‘rare’ based on the number of unique occurrences within the BIEN database 
are also recognized as rare by experts. Approximately 7.3% of these species appear to be 
incorrectly characterized as rare, as they are recognized by experts as abundant or having 
large ranges. The apparent scarcity of approximately 7.5% of these taxa may reflect 
recent taxonomic splits or old names no longer used. Moreover, 10.3% are non-native 
species (which may or may not be rare). In sum, we estimate that between 72 to 90% of 
plant taxa (recognized as rare + recent name + unresolved + old name) identified by 
BIEN as being rare would be recognized as rare by other measures.  
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Figure 4.  Where are rare species distributed geographically? Plotting the geographic 
coordinates for all the observations for species with 5 observations or fewer at a coarse, 
one-degree resolution reveals several patterns. Shown are: the sampling background 
(gray cells indicate regions with botanical observation records, white cells are areas with 
no georeferenced botanical sampling records). Colored cells correspond to areas with rare 
species (species with 5 observations or fewer) rarified to the sampling intensity using the 
Margalef index (see Supplementary Materials). Areas with a proportionally high number 
of rare species are red (‘hotspots of rarity’) while areas with relatively low numbers of 
rare species are green to blue. Areas with a high number of rare species tend to be 
clustered in a small number of locations including mountainous tropical and subtropical 
regions including New Guinea, Indonesia, SE China, Madagascar, The Andes (in 
Ecuador, Columbia and Peru), Central America (Costa Rica and Panama) and southern 
Mexico. Also, several notable temperate zone locations including the Fynbos in South 
Africa and south west Australia, Northern Iran/Georgia/Turkey, and the Iberian peninsula  
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Figure 5.   Regions that currently have high numbers of rare species are also 

characterized by higher human impact and will experience faster rates of future 

climate change. A . Density plot of human footprint index in areas with rare species (light 
gray) and the global map (dark gray). Areas with rare species have on average human 
footprint values of 8.5 ± 5.8 which is  ~1.6 times higher (Wilcoxon test, p < 0.001) the 
human impact than the globe on average (5.2 ± 5.8).  B. Density plot of the ratio of future 
climatic (temperature) velocity vs. historical climatic velocity. On average, areas with 
rare species will experience ~ 200 (± 58) times greater rates of temperature velocity than 
those same areas experienced historically and will experience  ~1.2 times greater 
(Wilcoxon test, p < 0.001) rates of temperature velocity change than the globe will 
experience on average (170 ± 77).  
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Figure 6. What will happen to rare species diversity with climate change?  (A) The 
predicted Margalef or Menhinick rarity index for area (grid cells) where rare species 
occur in Fig. 4. Each panel shows the predicted rarity index using either ordinary least 
squares linear regression (OLS) or simultaneously autoregressive models (SAR) for both 
present and future climatic conditions. The rarity indices are log transformed. The 
diagonal 1:1 line (red) represents situations of no difference between the predicted 
current and future rarity index. All points in the scatter plot are below the diagonal line, 
indicating a reduction of rare species diversity across all the areas where they currently 
occur ( B).  
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Supplemental document 

BIEN Data Workflow 
 
The BIEN database ( http://bien.nceas.ucsb.edu/bien/about/ ) is generated via a linked workflow 
that imports and integrates heterogeneous data structures (including Darwin Core ( 1)  , plus a 
variety of project-specific schemas and exchange formats), and then performs multiple 
corrections and validations (Fig. 1). The BIEN workflow is described at 
http://bien.nceas.ucsb.edu/bien/tools/  and in the following references ( 2–6) .  In addition to 
correcting erroneous original content and standardizing variant spellings to a single canonical 
form, corrections also remove or flag erroneous content when the correct meaning cannot be 
determined). Validations delete erroneous records and add annotations that can be used to filter 
low-quality data and data useful for some analyses but not others (e.g., observations of 
introduced or cultivated species).  

 
The two major classes of corrections are taxonomic name resolution and geographic name 
resolution. Taxonomy is standardized using the Taxonomic Name Resolution Service (TNRS; 2) , 
which corrects spelling errors in scientific names, standardizes variant spelling and updates 
synonyms to accepted names. Additional code detects cross-code homonyms (e.g. plant and 
animal species with identical names) and flags non-plant observations for removal. The names of 
political divisions (e.g. country, state/ province, county/parish) are standardized using the 
Geographic Name Resolution Service (GNRS; https://github.com/ojalaquellueva/gnrs ) which 
corrects spelling errors and matches codes (e.g., ISO, FIPS), abbreviations, variant spellings and 
alternative names in multiple languages to standard political divisions in the GeoNames gazetteer 
(https://www.geonames.org).  

 
The two major classes of validations are geographic validation and species status validation. 
Checks performed by geographic validations include (1) coordinate values outside coordinate 
system (e.g., longitude >180° or <-180°), (2) likely erroneous coordinate values (latitude is 
exactly 0 or 90 or longitude is exactly 0 or 180,  (3) coordinates in the ocean, (4) coordinate 
matches a centroid (centroid detection) and (5) coordinates outside lowest declared political 
division (political division validation). Centroid detection and political division validation used 
administrative boundaries from the Database of Global Administrative Areas (GADM; 
http://www.gadm.org ), with political division names standardized by the GNRS (see above). 
Species status validations checked for (1) species falling outside their native ranges and (2) 
observations of human-cultivated plants. Observations species outside of their native range were 
identified using the Native Species Resolver (NSR; https://github.com/ojalaquellueva/nsr), which 
uses published country and state checklists to determine if the observed species is native to the 
lowest declare political divisions. List of endemic taxa are also used to detect non-native 
occurrences outside the region of endemism. and endemism data.  Observations were flagged as 
cultivated based on (1) keywords in the specimen locality data suggesting provenance from a 
farm or garden, or (2) geographic proximity (≤3 km) to a botanical garden or herbarium, or (3) 
original observation metadata indicating a cultivated origin. 
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For these analyses we excluded records if (1) they lacked a scientific name resolved to at least 
the species level; (2) they did not come from a land plant (Embryophyta); (3) they failed one or 
more geographic validations; (4) the species was flagged as potentially non-native to the region 
of observation; (5) the plant was flagged as potentially cultivated; 5) the observation did not 
originate from either plot or specimen data. 
 
BIEN Data Sources –  

The BIEN data mainly comprise herbarium collections, ecological plots and surveys ( 7–13) , and 
trait observations.  For details of specimen data sources see Table S2 of Maitner et al. 2017 ( 3) . 
A full listing of the herbaria data used are given in the Acknowledgements section. The 
observations in the BIEN database are the product of contributions by 1076 different data 
contributors, including numerous individual herbaria, data indexers of herbarium or plot data. Of 
the herbaria, 550+ are listed in Index Herbariorum  . Additionally,  BIEN 4.1 includes data from 1

RAINBIO , TEAM , The Royal Botanical Garden of Sydney, Australia , and NeoTropTree . 2 3 4 5

Plot data within BIEN are from the CVS, NVS, SALVIAS, VEGBANK, CTFS, FIA, MADIDI, 
and TEAM data networks and datasets (see 
http://bien.nceas.ucsb.edu/bien/data-contributors/all/ ). 

A summary of all of the botanical data in the (BIEN 4.1) database include: Total observations:
206,241,288 which stem from 63,498,238 observations from specimen dat, 17,430,379 
observations from plot and survey observations. Plot observations originate from 364,477 plots.  
Multiple observations of the same species from a single plot were counted as a single ‘plot’ 
observation. For details of plot data sources  see Table S1 of Maitner et al. 2017 ( 3) . The final 
number of the total number of specimens observations used in our analyses after passing through 
our pipeline was 9,345,197.  For each species we counted the total number of occurrences that 
were recorded in each dataset.  

Estimates of the total number of land plant species.  

There have been several estimates of the total number of Embryophyte species on Earth. Our 
estimates come from estimates from the following sources ( 14–18)  as well as the most recent 
estimate from Kew ( 19) . 
Assessment of the accuracy of our rarity measure –  

Potential confounding issues associated with characterizing rarity status - There are several 
potential issues with using the number of absolute observations as a measure of rarity. For 
example, small number of observations may reflect collection bias for under sampled species. 
Indeed, three types of errors could drive the pattern in Fig. 2a. First, sampling biases with 
botanical data may under-sample rare species so that the number of observations is a poor 
measure of rarity. Second, the high number of species names with small numbers of observations 

1 http://sweetgum.nybg.org/science/ih/ 
2 http://rainbio.cesab.org/ 
3 https://www.wildlifeinsights.org/team-network 
4 https://www.rbgsyd.nsw.gov.au/ 
5 http://www.neotroptree.info/ 
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may reflect taxonomic biases such as old names no longer in use or more recent taxonomic 
splits. In which case, the high numbers of rare species may reflect the predominance of old 
taxonomic names that are no longer in use. Third, using the number of observations as a measure 
of rarity may impose bias, if low sampled species are indeed common elsewhere and/or have 
large geographic distributions.  

Methods  - To assess the accuracy of our classification of rarity we randomly selected 350 taxa 
that we identified as ‘rare’ (having 3 unique observations or less). These names were then 
divvied up between the appropriate taxonomic experts at the Missouri Botanical Garden and The 
New York Botanical Garden. Experts were asked to classify each name as falling into one of 
seven classifications: (i) Recognized by taxonomists as rare; (ii) a non-native taxa; (iii) an ‘old’ 
taxonomic name that is no longer used or is synonymous with another taxa; (iv) a taxa known to 
be invasive; (v) as taxa not actually rare but instead abundant or having a large geographic range; 
(vi) a taxa having a name that is ‘unresolved’ or with a status that is unclear; (vii) a taxa having a 
‘recent name’ - meaning that it was either recently discovered or recently taxonomically split. 

Most species, 72.7%, identified by BIEN as being ‘rare’, (having 3 unique observations or less), 
are indeed taxa that are recognized by experts as rare. Only 7.3% of the remaining subsampled 
taxa appear to be incorrectly characterized as rare but recognized by experts as actually abundant 
or having large geographic ranges. The large number of rare taxa does not appear to be due to 
recent taxonomic splits or old names no longer apply, as ~7.5% of the remaining taxa were due 
to recent taxonomic splits. In total, 10.3% of the remaining species were identified as non-native 
species, which may indeed be rare in their naturalized range. Thus, we estimate that between 
72% and 90% of plant taxa (the later value being equal to the ‘recognized as rare’ + ‘Recent 
name’ + ‘Unresolved’ + ‘Old Name’) identified by BIEN as being rare would be recognized as 
indeed rare species by other metrics.  
 

Model fitting to Species Abundance Distribution -   

We tested how well different proposed distributions fit the observed data by fitting several 
hypothesized distributions and statistical distributions ( 20–22)  to the BIEN data.  Each univariate 
distribution was fit using the Palamedes toolbox ( 21)  developed in MATLAB which uses 
maximum-likelihood estimations for each distribution. All univariate distributions were fit to the 
continuous BIEN species observation data by maximizing the log-likelihood unless otherwise 
indicated.  
 
We first visualized the fit of several candidate distributions including: 

Fisher’s log-series ( 23) (S1) 

Pareto distribution ( 24) (S2) 
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Weibull distribution ( 25)  ` (S3) 

where  is the expected number of species. For the log-series, n  is the total number of 
observations per species, α is the diversity parameter, and x is a nuisance parameter and is 
defined by α and total number of individuals, N, sampled, x = N/( N − α).  For the Pareto or 
power-law distribution where n

0 is the minimum scale of the distribution, and  is the scaling 
exponent. For the BIEN data, the minimum number of observations for a species is 1, so n

0 was 
set at 1. For the Weibull distribution, k is the shape parameter,  is the location parameter of the 
distribution,  is the scale parameter. 
 
Next, we fit several additional hypothesized univariate distributions to the species abundance 
distribution using the following proposed biological and statistical distributions. The following 
distributions were fit by plotting the species logarithmic abundances in decreasing order, or 
against ranks of species: 
 

Broken Stick model of MacArthur ( 26) (S4) 

Niche-preemption or geometric series ( 27) (S5)  

The Log-normal or Preston distribution ( 28, 29) 

(S6) 

The Zipf-Mandelbrot distribution ( 30) (S7) 

Here,   is the expected abundance of species at rank r , S is the number of species, N is the 

number of observations,  is a standard normal function,  is the estimated proportion of the 

most abundant species, and , , , and  are the estimated parameters in each model.  
 
We compete each of these distributions by fitting each distribution to the gSADs. For these 
distributions, we fit each to the global species abundance distribution fits we followed the 
methodology of McGill 2011 ( 20) .  
 
Additional niche based models  -  The Broken Stick model was proposed by MacArthur in 1957 
( 26) . The model assumes that a given resource in a community is then ‘randomly’ divided into 
species niches.  Species niches are broken at random and the successive niches are chosen with a 
probability proportional to their size. This model can lead to a more even distribution, where 
larger niches are more likely to be broken, facilitating co-existence between species in equivalent 
sized niches.  In contrast, the geometric series model, originally proposed in 1932 by Montomura 
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( 27)  has been proposed to equate with a model of niche preemption, in which species 
sequentially colonize a region and the first species to arrive receives the majority of resources 
( 8).  
The Lognormal Distribution and statistical limit theorems 

The central limit theorem (CLT) of statistics predicts that that we should expect to find normal 
distributions when many variables interact additively. However, within biology many biological 
processes are multiplicative instead of additive ( 31) . Many biological phenomena (e.g. fitness, 
growth, reproduction, metabolism, sensation) are fundamentally the result of multiplicative 
processes and likely conform more closely to a geometric error model ( 32, 33) . When many 
variables interact multiplicatively, we should find a lognormal distribution ( 34–36) . We note that 
lognormal distributions are expected any time many variables interact multiplicatively to 
influence abundance, such as many differing biotic and abiotic factors ( 34–36) , see also ( 37 ) .  
 
Competing model fits -  Building on the arguments by McGill et al. ( 9), we next fit and then 
competed several different proposed candidate species abundance distributions:  
 

● Geometric distribution . We utilized the methodology of He & Tang 2008 ( 38) . Their 
regression method was used to fit this distribution to the distribution of commonness 
across species. 

● Logseries distribution - We used the standard iterative method ( 39, 40) . 
● Zipf-Mandelbrot distribution  – We used the methods per Izsak 2006 ( 41) . 
● Power law or truncated pareto distribution  – We used the maximum likelihood 

estimate of the discrete, truncated power law following per White, E. P., B. J. Enquist, et 
al. (2008) ( 24) .  

● Powbend distribution  – We used the iterative maximum likelihood methods as per 
Pueyo, S. (2006) ( 42) .  

● Poisson Lognormal distribution  – We used an iterative maximum likelihood approach 
with integral approximations as per Bulmer, M. G. (1974) ( 43) . 

● Lognormal distribution - Was fit using standard maximum likelihood estimator 
formulas, e.g. Evans, M., N. Hastings, et al. (1993) ( 44) 

● Gamma distribution - Was fit using standard maximum likelihood estimator formulas, 
e.g. Evans, M., N. Hastings, et al. (1993). ( 44) 

● Weibull distribution  – Was fit using standard maximum likelihood estimator formulas, 
e.g. Evans, M., N. Hastings, et al. (1993).  ( 44) 

 
We competed each model we followed the methodology of  McGill (2003; ( 45)  ) by calculating 
several goodness of fit measures including: from the Cumulative Distribution Function (CDF) 
r 2, the Chi-square log2 measure and AICc. For each distribution we calculated the Akaike’s 
Information Criterion (AIC) value for the fitted function ( 10). We utilized the vegan package  in 6

R to generate AIC values for the fitted Broken Stick, preemption, Zipf, Fisher’s log-series, and 
log-normal distributions.  Because the vegan package does not generate AIC values for the 
Fisher’s log-series, we generated AIC values for the log-series by calculating the log-likelihood 
and then calculating the AIC values directly where AIC = 2 * No. of Parameters – 2 * 

6 http://vegan.r-forge.r-project.org/ 
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log(Likelihood). To calculate AIC values for the Pareto distribution, we utilized the pareto.R 
function  and the log-likelihood value to calculate the AIC directly. The Wiebull distribution was 7

fit using the fitdistr.R function . Following Burnham and Anderson ( 10), the best-fit model is the 8

one with the lowest AIC value.  
 
Pareto or power-law distribution  – We calculated the slope or the exponent of the power-law fit 
to the data, by calculating the maximum likelihood estimate (MLE) for the exponent ( 2, 11)  
 

(S8) 
where n

i is the number of observations for a given species, i. We utilized the pareto.R function 2 
to calculate the MLE and 95% confidence intervals for . 
 

Sampling and Rarefaction –  

For each 1 o grid cell, we calculated the total number of samples, N as well as the total number of 
rare species, S; rare species were defined as having 3 observation records or less.  

Because the sampling intensity for plants across the Americas is not uniform, we assessed the 
rarified species diversity by calculating two separate rarified diversity measures for each 1 o grid 
cell:  
 
( i) Margalef diversity ( S

Margalef)  – This measures stems from Margalef ( 46)  who noted that species 
richness increases with N, and in particular, increases non-linearly and roughly logarithmically 
with N.  
 

S
Margalef = (S - 1) / ln N (S9) 

 
( ii) Menhinick diversity ( SMenhinick)  – In a similar vein ( 47 ) , Menhinick proposed adjusting species 
richness by the similarly shaped square root of N.  
 

S
Menhinick = S/√N (S10) 

 
Comparing both measures of S

Margalef and S
Menhinick reveals similar spatial maps indicating that both 

measures result in identical conclusions.  

Rarefaction produces subtle changes to the absolute rare species diversity map. For example, in 
Central America, Costa Rica and Panama each have large numbers of absolute rare species while 
also having a relatively large number of samples. Thus, rarefaction effectively ‘demotes’ the 
large number of rare species throughout Central America due to the heightened sampling 
intensity there.  

7 http://www.stat.cmu.edu/~cshalizi/uADA/12/pareto.R 
8 http://cran.r-project.org/package=fitdistrplus 
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Methods for regression models 

We conducted ordinary least squares (OLS) linear regression models to analyze the relationship 
between environmental variables and rarity index. We included three groups of environmental 
variables that portray present climate (annual mean temperature, annual precipitation, 
temperature seasonality, precipitation seasonality), stability of climate (temperature velocity and 
precipitation velocity), and topology (elevation and heterogeneity of elevation), which are known 
to influence biodiversity patterns ( 48–51) . We obtained the four variables for current climate and 
elevation from WorldClim (version 1.4) ( 52)  at10 arc-minute resolution. We also calculated the 
temperature and precipitation velocity between present climate and Last Glacial Maximum 
climate [based on Community Climate System Model (CCSM4); 
https://www.worldclim.org/paleo-climate1 ] following ( 53) . To match the resolution of rarity 
map, we aggregated the environmental variables and the derived velocity to one degree by one 
degree.  

We performed Moran’s I  test and found the presence of spatial autocorrelation in the dataset 
analyzed here. Therefore, we performed simultaneous autoregressive models (SAR) ( 54 )  for all 
the OLS models mentioned above. We considered three different simultaneous autoregressive 
model types (lagged-response, lagged-mixed, and spatial error) and five different spatial 
neighborhood structures (lag distances between 200 and 1,000 km). Our preliminary analyses of 
Akaike’s information criterion (AIC) and Moran’s I  values showed that SAR with spatial error 
and a lag distance of 600 km accounted best for the spatial structure in the analyzed data set. All 
analyses were conducted in R 3.5.1 ( 55) , using raster ( 56) , glmulti ( 57)  and spdep ( 58)  packages. 
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1 
 

Table S1. Summary statics of ordinary least squares linear regressions models (OLS) and simultaneously autoregressive models 1 
(SAR) for predicting the Menhinick rarity index. 2 
 3  

OLS linear regression model Simultaneous autoregressive model 

Variables Coefficient R2 AIC Moran's I Coefficient R2
a AIC Moran's I 

Annual mean temperature 0.171*** 0.009 14240.324 0.530 -0.251*** 0.501 11104.069 -0.011 

Temperature seasonality -0.171*** 0.011 14234.316 0.534 -0.165* 0.500 11121.533 -0.010 

Annual precipitation 0.195*** 0.036 14115.325 0.517 0.076*** 0.500 11115.225 -0.010 

Precipitation seasonality 0.187*** 0.024 14173.469 0.519 -0.048 0.499 11124.369 -0.010 

Temperature velocity -0.493*** 0.121 13696.249 0.477 -0.275*** 0.513 10998.582 -0.011 

Precipitation velocity 0.068*** 0.002 14272.818 0.532 -0.087*** 0.501 11105.332 -0.011 

Elevation 0.193*** 0.029 14147.199 0.535 0.178*** 0.511 11017.718 -0.010 

Heterogeneity of elevation 0.340*** 0.077 13918.380 0.501 0.179*** 0.512 11004.857 -0.011 

Current climate b 0.088 13869.881 0.470 b 0.504 11082.582 -0.009 

Stability of climate b 0.146 13563.481 0.436 b 0.513 10996.343 -0.011 

Topography b 0.078 13915.694 0.497 b 0.514 10990.681 -0.011 

Full b 0.193 13312.139 0.396 b 0.518 10966.549 -0.010 

Exhaustive selection b 0.194 13310.149 0.396 b 0.516 10980.676 -0.010 

a: Nagelkerke pseudo R2 4 
***p < 0.001, **p < 0.01, *p < 0.05 5 
b: coefficients of multiple regressions are shown in Tables S3 and S4 6 
  7 



2 
 

 8 

Table S2. Summary statics of ordinary least squares linear regressions models (OLS) for predicting the Menhinick rarity index. 

 indv1 indv2 indv3 indv4 indv5 indv6 indv7 indv8 Current 
climate 

Stability of 
climate Topography Full Exhaustive 

selection 
(Intercept) -2.29761*** -2.31324*** -2.29446*** -2.22792*** -2.52946*** -2.19005*** -2.26115*** -2.35542*** -2.26873*** -2.46921*** -2.35988*** -2.45199*** -2.45211*** 

 (0.02058) (0.02145) (0.01767) (0.01687) (0.02020) (0.01938) (0.01716) (0.01779) (0.02088) (0.02057) (0.01790) (0.02220) (0.02217) 
Annual mean 
temperature 0.17127***        -0.13250**   0.10838* 0.10995** 

 (0.02590)        (0.04142)   (0.04555) (0.04261) 
Temperature 
seasonality 

 -0.17051***       0.04285   0.22031*** 0.22097*** 

  (0.02416)       (0.03990)   (0.03988) (0.03931) 
Annual 

precipitation 
  0.19503***      0.31432***   0.24683*** 0.24715*** 

   (0.01489)      (0.01896)   (0.01846) (0.01817) 
Precipitation 
seasonality 

   0.18725***     0.30987***   0.16460*** 0.16407*** 

    (0.01772)     (0.01940)   (0.01996) (0.01922) 
Temperature 

velocity 
    -0.49288***     -0.56365***  -0.35213*** -0.35157*** 

     (0.01969)     (0.02032)  (0.03240) (0.03188) 
Precipitation 

velocity 
     0.06806***    0.23197***  0.20265*** 0.20267*** 

      (0.02047)    (0.01984)  (0.01982) (0.01982) 
Elevation       0.19252***    -0.04821* -0.00237  

       (0.01635)    (0.02227) (0.02420)  

Heterogeneity of 
elevation 

       0.33982***   0.37662*** 0.18623*** 0.18506*** 

        (0.01742)   (0.02434) (0.02922) (0.02666) 
Num. obs. 4571 4571 4571 4571 4571 4571 4571 4571 4571 4571 4571 4571 4571 
Moran’s I 0.529759 0.529759 0.529759 0.529759 0.529759 0.529759 0.529759 0.529759 0.529759 0.529759 0.529759 0.529759 0.529759 

R2 0.00948 0.01078 0.03620 0.02386 0.12063 0.00241 0.02946 0.07684 0.08779 0.14618 0.07779 0.19398 0.19398 
AIC 14240.32398 14234.31597 14115.32505 14173.46878 13696.24909 14272.81792 14147.19866 13918.38030 13869.88099 13563.48143 13915.69445 13312.13906 13310.14865 

***p < 0.001, **p < 0.01, *p < 0.05 
 9 
 10 
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Table S3. Summary statics of simultaneously autoregressive models (SAR) for predicting the Menhinick rarity index. 

 indv1 indv2 indv3 indv4 indv5 indv6 indv7 indv8 Current 
climate 

Stability of 
climate Topography Full Exhaustive 

selection 
(Intercept) -2.02150*** -2.22011*** -2.15563*** -2.13199*** -2.27854*** -2.14664*** -2.09769*** -2.16611*** -2.14515*** -2.27961*** -2.13755*** -2.28012*** -2.24749*** 

 (0.08949) (0.09100) (0.08286) (0.08469) (0.07881) (0.08456) (0.08318) (0.08053) (0.09371) (0.07959) (0.08162) (0.08861) (0.08833) 
Annual mean 
temperature -0.25057***        -0.31994***   0.04633 -0.10215 

 (0.05128)        (0.05376)   (0.06902) (0.05713) 
Temperature 
seasonality 

 -0.16549*       -0.22966**   -0.07875 -0.07171 

  (0.06816)       (0.07415)   (0.07543) (0.07552) 
Annual 

precipitation 
  0.07633***      0.07224**   0.05058* 0.04577* 

   (0.02182)      (0.02338)   (0.02324) (0.02325) 
Precipitation 
seasonality 

   -0.04759     -0.01627   -0.02312 -0.01618 

    (0.02708)     (0.02784)   (0.02744) (0.02743) 
Temperature 

velocity 
    -0.27502***     -0.26268***  -0.13433*** -0.15011*** 

     (0.02398)     (0.02468)  (0.03560) (0.03541) 
Precipitation 

velocity 
     -0.08703***    -0.03882*  -0.02970 -0.03085 

      (0.01848)    (0.01880)  (0.01893) (0.01895) 
Elevation       0.17845***    0.09309*** 0.11097***  

       (0.01693)    (0.02310) (0.02904)  

Heterogeneity of 
elevation 

       0.17867***   0.11832*** 0.03697 0.08640*** 

        (0.01602)   (0.02189) (0.02680) (0.02351) 
Num. obs. 4571 4571 4571 4571 4571 4571 4571 4571 4571 4571 4571 4571 4571 

Moran’s I -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 -0.01054 
Nagelkerke 
pseudo R2 0.501466 0.501466 0.501466 0.501466 0.501466 0.501466 0.501466 0.501466 0.501466 0.501466 0.501466 0.501466 0.501466 

AIC (Spatial 
model) 11104.06869 11121.53292 11115.22491 11124.36879 10998.58222 11105.33218 11017.71828 11004.85706 11082.58216 10996.34255 10990.68112 10968.09917 10980.67615 

***p < 0.001, **p < 0.01, *p < 0.05 
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 14 
 15 
 16 
 17 
 18 
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Table S4. Summary statics of ordinary least squares linear regressions models (OLS) and simultaneously autoregressive models 20 
(SAR) for predicting the Margalef rarity index. 21  

OLS linear regression model Simultaneous autoregressive model 

Variables Coefficient R2 AIC Moran's I Coefficient R2
a AIC Moran's I 

Annual mean temperature 0.200*** 0.011 9105.447 0.211 -0.356*** 0.175 8571.756 -0.008 

Temperature seasonality -0.317*** 0.030 9047.746 0.211 -0.374*** 0.176 8569.524 -0.006 

Annual precipitation 0.233*** 0.056 8965.718 0.186 0.167*** 0.179 8559.861 -0.004 

Precipitation seasonality -0.012 0.000 9136.231 0.231 -0.133*** 0.173 8581.107 -0.006 

Temperature velocity -0.506*** 0.115 8778.627 0.195 -0.538*** 0.235 8349.668 -0.005 

Precipitation velocity -0.098*** 0.005 9122.341 0.236 -0.192*** 0.182 8548.623 -0.006 

Elevation 0.204*** 0.033 9039.071 0.242 0.331*** 0.214 8430.225 -0.006 

Heterogeneity of elevation 0.388*** 0.090 8860.037 0.226 0.425*** 0.242 8325.336 -0.005 

Current climate b 0.068 8936.720 0.184 b 0.200 8488.695 -0.006 

Stability of climate b 0.115 8779.622 0.193 b 0.238 8341.996 -0.006 

Topography b 0.091 8856.571 0.222 b 0.243 8322.144 -0.005 

Full b 0.176 8581.069 0.151 b 0.263 8253.847 -0.004 

Exhaustive selection b 0.176 8578.428 0.153 b 0.260 8262.023 -0.003 

a: Nagelkerke pseudo R2 22 
***p < 0.001, **p < 0.01, *p < 0.05 23 
b: coefficients of multiple regressions are shown in Tables S5 and S6 24 
 25 
  26 
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 27 
Table S5. Summary statics of ordinary least squares linear regressions models (OLS) for predicting the Margalef rarity index. 

 indv1 indv2 indv3 indv4 indv5 indv6 indv7 indv8 Current 
climate 

Stability of 
climate Topography Full Exhaustive 

selection 

(Intercept) -
0.62222*** 

-
0.72481*** 

-
0.64103*** 

-
0.52260*** 

-
0.92820*** 

-
0.57586*** 

-
0.58309*** 

-
0.74361*** -0.67410*** -0.91999*** -0.75418*** -

1.02524*** -1.03314*** 

 (0.02748) (0.02972) (0.02234) (0.02111) (0.02873) (0.02528) (0.02160) (0.02393) (0.02955) (0.02987) (0.02434) (0.03373) (0.03251) 
Annual mean 
temperature 0.19953***        -0.24280***   0.18939** 0.18100*** 

 (0.03571)        (0.05627)   (0.06345) (0.05108) 

Temperature seasonality  -
0.31702*** 

      -0.22142***   0.00388  

  (0.03340)       (0.05404)   (0.05444)  

Annual precipitation   0.23280***      0.24959***   0.20441*** 0.20641*** 
   (0.01756)      (0.02345)   (0.02261) (0.02136) 

Precipitation seasonality    -0.01232     0.11038***   -0.04983 -0.04709 
    (0.02286)     (0.02533)   (0.02620) (0.02586) 

Temperature velocity     -
0.50559*** 

    -0.51243***  -
0.18810*** -0.18192*** 

     (0.02593)     (0.02681)  (0.04426) (0.04298) 

Precipitation velocity      -
0.09837*** 

   0.02551  0.02867  

      (0.02610)    (0.02546)  (0.02502)  

Elevation       0.20416***    -0.06516* 0.11574*** 0.11642*** 
       (0.02052)    (0.02787) (0.03253) (0.03200) 

Heterogeneity of 
elevation 

       0.38751***   0.43973*** 0.24519*** 0.24141*** 

        (0.02277)   (0.03188) (0.04009) (0.03916) 
Num. obs. 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 

Moran’s I 0.210599 0.210599 0.210599 0.210599 0.210599 0.210599 0.210599 0.210599 0.210599 0.210599 0.210599 0.210599 0.210599 
R2 0.01051 0.02974 0.05644 0.00010 0.11462 0.00481 0.03260 0.08976 0.06761 0.11492 0.09145 0.17609 0.17571 
AIC 9105.44673 9047.74614 8965.71758 9136.23088 8778.62704 9122.34102 9039.07139 8860.03720 8936.71989 8779.62229 8856.57095 8581.06921 8578.42755 

***p < 0.001, **p < 0.01, *p < 0.05 
 28 
 29 
 30 
 31 
 32 
 33 
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Table S6. Summary statics of simultaneously autoregressive models (SAR) for predicting the Margalef rarity index. 

 indv1 indv2 indv3 indv4 indv5 indv6 indv7 indv8 Current 
climate 

Stability of 
climate Topography Full Exhaustive 

selection 

(Intercept) -
0.40532*** 

-
0.79384*** 

-
0.64092*** 

-
0.56641*** 

-
0.95994*** 

-
0.66699*** 

-
0.61932*** 

-
0.76853*** -0.70418*** -0.98656*** -0.75496*** -

1.05468*** -0.98129*** 

 (0.07613) (0.07235) (0.05449) (0.06041) (0.05704) (0.06169) (0.06211) (0.05737) (0.07771) (0.05868) (0.05888) (0.06920) (0.06320) 
Annual mean 
temperature 

-
0.35574*** 

       -0.63121***   -0.01922 0.11957 

 (0.06950)        (0.07772)   (0.09100) (0.07879) 

Temperature seasonality  -
0.37425*** 

      -0.62355***   -0.25575**  

  (0.07522)       (0.09573)   (0.09131)  

Annual precipitation   0.16726***      0.13354***   0.10484*** 0.12950*** 
   (0.02784)      (0.03245)   (0.03070) (0.02923) 

Precipitation seasonality    -
0.13261*** 

    -0.04807   -0.09598** -0.10082** 

    (0.03717)     (0.03888)   (0.03661) (0.03627) 

Temperature velocity     -
0.53821*** 

    -0.51263***  -
0.18387*** -0.23255*** 

     (0.03362)     (0.03469)  (0.05207) (0.04976) 

Precipitation velocity      -
0.19155*** 

   -0.08810**  -0.05863*  

      (0.02840)    (0.02814)  (0.02791)  

Elevation       0.33075***    0.07852* 0.11786** 0.13223*** 
       (0.02541)    (0.03411) (0.04065) (0.04014) 

Heterogeneity of 
elevation 

       0.42538***   0.37072*** 0.22060*** 0.21085*** 

        (0.02538)   (0.03489) (0.04334) (0.04236) 
Num. obs. 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 2940 

Moran’s I -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 -0.00773 
Nagelkerke pseudo R2 0.175334 0.175334 0.175334 0.175334 0.175334 0.175334 0.175334 0.175334 0.175334 0.175334 0.175334 0.175334 0.175334 

AIC 8571.75610 8569.52444 8559.86115 8581.10732 8349.66815 8548.62336 8430.22536 8325.33619 8488.69545 8341.99638 8322.14435 8253.84651 8262.02337 
***p < 0.001, **p < 0.01, *p < 0.05 
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 37 

Figure S1. Scatter plots showing the relationships between bivariate relationship between 38 
Menhinick rarity index and environmental variables. 39 
 40 

  41 
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 42 

Figure S2. Scatter plots showing the relationships between bivariate relationship between 43 
Margalef rarity index and environmental variables. 44 

  45 
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Figure S3.  Predicted changes of Margalef rarity index. Warm color (red) indicates higher 46 
decreases, and cold color (blue) indicates lower decreases. 47 

 48 
 49 
 50 
 51 


