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Abstract 18 

Species invasion and habitat degradation very often result in local species loss, which may 19 

result in a cascade of secondary extinctions that typically end up disrupting whole ecological 20 

netwroks. Herein, we used historical records and the natural abundance of stable isotopes 21 

(13C and 15N) of primary producers, aquatic animals and sediment/detritus to derive the past 22 

and present structure of food webs from the freshwater wetland “Las Tablas de Daimiel”, in 23 

central Spain. Before the green revolution and agricultural transformation of the area, this 24 

wetland was characterised by a high biodiversity of basal species, including primary consum-25 

ers such as bivalves and gastropods, which are currently absent or very scarce. Our results 26 

demonstrate that the increase of anthropogenic disturbances, exotic species and changes in 27 

primary productivity of this wetland is affecting the biodiversity at all trophic levels (mainly 28 

herbivorous fish) but not the length of the food chain, which we estimated between 3.9 and 29 

4.4 trophic levels. Using the mixing models, we showed that macrophytes represent an im-30 

portant contribution of matter and energy to higher trophic levels. Our model also suggested 31 

that a currently expanding, allochthonous halophytic tree (Tamarix canariensis) may be the 32 

main energy source for two species of commonly found butterflies (Pieris rapae and Rho-33 

dometra sacraria) as well as for invertebrates, while the macrophyte Thypa dominguensis 34 

was the main diet source for the exotic crayfish Procambarus clarkii, which occupies the 35 

niche left by the native crayfish. Our work demonstrates the importance of taking a whole-36 

systems approach to characterize the magnitude of human impacts on the functioning of wet-37 

land ecosystems.    38 
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Introduction 42 

Species invasion and habitat degradation of wetlands, including water eutrophication, often 43 

cause an initial loss of local species that can result in a cascade of secondary extinctions, thus 44 

generating considerable challenges to conservation efforts (Sahasrabudhe and Motter, 2011). 45 

Although it is well established that nutrient enrichment and species invasion typicallly de-46 

crease diversity within and across trophic levels (Guy et al., 2012; Post, 2002; Sahasrabudhe 47 

and Motter, 2011; Schindler and Scheuerell, 2002; Vander Zanden et al., 1999), only a few 48 

studies have sought to assemble complete food webs in ecosystems that have historically 49 

been simultaneously subjected to multiple anthropogenic stressors and where both alien and 50 

native species currently coexist (Costanzo et al., 2005; Gartner et al., 2002; Spies et al., 51 

1989). Studies related to the impacts of allochthonous species in wetlands usually report dra-52 

matic effects on the size, structure and species diversity of food webs, very often causing a 53 

loss of connectivity between native species (Demopoulos et al., 2007; Ings et al., 2009; 54 

Nilsson et al., 2012; Rennie et al., 2009; Woodward et al., 2008). However, other studies re-55 

port no alteration in the length of the food chain under disturbance (Marks et al., 2000; 56 

McHugh et al., 2010; Pimm and Kitching, 1987; Walters and Post, 2008). In this context, 57 

natural abundance of stable isotopes from current living and non-living samples, coupled 58 

with information obtained from historical records, can be used to track changes in the struc-59 

ture of the food webs of ecosystems exposed to the simultaneous effects of eutrophication 60 

and invasion by allochthonous species (Brauns et al., 2011). 61 

The National Park Tablas de Daimiel (NPTD) is one of the few relict floodplain wet-62 

land of the Iberian Peninsula. However, it has been subjected to numerous environmental 63 

pressures during the last 50 years, including drainage, sewerage, flooded area reduction, pol-64 

lution (mainly organic) and the introduction of exotic species, many of them introduced on 65 

purpose for commercial reasons (Castaño et al., 2018). Although its biodiversity and the po-66 



tential causes of its reduction in the NPTD have been the subject of numerous studies 67 

(Alvarez-Cobelas et al., 2001; Feilhauer et al., 2018), there is no previous study about the 68 

structure of food webs and the effects of environmental degradation, including those derived 69 

from exotic species and eutrophication, on this emblematic wetland. However, based on his-70 

torical information, it has been suggested that fifty years ago the wetland must have had a 71 

very complex trophic structure that included, besides the European crayfish Austropotamobi-72 

us pallipes, up to ten endemic species of fish, all disappeared today due to widespread degra-73 

dation of the wetland (Alonso et al., 2000). Therefore, stablishing how the structure of the 74 

food web and the links within and between trophic levels have changed over time is key to 75 

the develpment of adequate conservation, mitigation and, eventually, restoration strategies.  76 

There are many matter and energy sources that can potentially contribute to different 77 

consumers in the food web. The use of natural abundances of the stable isotopes 13C and 15N 78 

in organisms of a given ecosystem is useful to establish the range of possible contributions of 79 

each source (isotope mixing; (Galván et al., 2011). Since food webs are overly complex to 80 

solve due to multiple dietary sources (Layman et al., 2007), different mixing models have 81 

been designed for situations in which n isotopes can be used to determine the range of contri-82 

bution of a mixture of n + 1 sources (Phillips and Gregg, 2003). These models are limited by 83 

isotopic mass balances (Phillips, 2001) and the absence of a unique solution for each case 84 

(Benstead et al., 2006). However, Bayesian mixing models have allowed the incorporation of 85 

δ13C- δ15N signatures of multiple diets to generate potential solutions through probability 86 

distributions (Holtgrieve et al., 2010; Solomon et al., 2011). For example, SISUS (Stable Iso-87 

tope Sourcing Using Sampling; Erhardt et al. 2014) is a mixing model based on Bayesian 88 

statistics that has been developed to estimate the proportional contributions from different 89 

sources to a mixture using stable isotope data (Erhardt and Bedrick, 2013), allowing many 90 



exact solutions, unlike other probabilistic models such as the deterministic mixture IsoSource 91 

(Phillips and Gregg, 2003), which yields only approximations. 92 

In this study, we aimed to determine the past and present configuration of the food 93 

web in Las Tablas de Daimiel. For this, we used historical sources and stable isotopes (13C 94 

and 15N) of the main consumer species that are currently present in the ecosystem. We also 95 

assessed the most important structural and functional changes, including the trophic effects of 96 

introduced exotic species.  97 

 98 

Material and methods 99 

2.1. Study site 100 

The study was conducted at the NPTD (39 ° 08'N, 3 ° 43'W), in the semiarid portion of cen-101 

tral Spain. The representative species of the local flora restricted to coastal areas are emerging 102 

aquatic macrophytes such as the European sedge (Cladium mariscus), reed (Phragmites aus-103 

tralis) and cattail (Typha dominguensis) (Alvarez-Cobelas and Cirujano, 1996), along with 104 

other species such as Scirpus maritimus and Potamogeton pectinatus, as well as submerged 105 

macrophytes such as charophytes (Chara sp.). In addition to the common carp (Cyprinus 106 

carpio), the local wildlife is represented exclusively by exotic species such as the American 107 

crayfish (Procambarus clarkii), bluegill (Lepomis gibbosus), mosquitofish (Gambusia 108 

holbrookii) and catfish (Ameirus melas).  109 

 110 

2.2. Sampling 111 

To examine the structure and composition of the food web of NPTD, we focused on the dom-112 

inant taxa from all trophic levels. We considered all potential sources of energy in the wet-113 

land, including detritus/sediment, dissolved organic matter (DOC), particulate organic matter 114 

(POC), and primary producers (phytoplankton, epiphyton, filamentous algae, seaweed, aquat-115 



ic and terrestrial vegetation). We also considered microbial mats (i.e., benthic communities 116 

composed of different layers of photosynthetic prokaryotes and eukaryotes, such as filamen-117 

tous and unicellular cyanobacteria and diatoms). The microbial mats were included due to 118 

their key role in primary production and decomposition of organic matter (Goldsborough and 119 

Robinson, 1996). Benthic macroinvertebrates and zooplankton were considered as primary 120 

consumers, whereas crabs, fish and waterfowl were considered higher level consumers. 121 

Winged insects were also included to assess their contribution and importance in the food 122 

web. In the NPTD, no bivalve mollusks have been present since the mid-1970 (there are re-123 

mains of shells of freshwater mussel Unio sp.), and during this study there were none ob-124 

served in the substrate. 125 

 126 

2.2.1. Collection of consumer organisms 127 

The collection and preparation of samples of sediment/detritus, primary producers, zooplank-128 

ton and benthic macroinvertebrates was performed as follows: different species of winged 129 

adult insects were collected in the vegetation, air (<2 m above the ground surface) and nests 130 

in twelve random points along the wetland during June 2011. The sampled insects were iden-131 

tified to genus level and, when possible, to species level. The collection of secondary con-132 

sumers was conducted using different techniques. Fish and crabs were caught using gillnets 133 

(light path of 8 cm) and pots (1.5, 2.5, 4, 7 and 10 cm mouth opening) at five and ten loca-134 

tions in the wetland, respectively. Smaller fish (G. holbrookii and catfish) were caught using 135 

landing nets in wetland areas where they were present (Morenillo and Tablazo, mainly). For 136 

isotopic analysis, 5-10 specimens of each species from each sampling site were frozen until 137 

further preparation. 138 

Samples of waterfowl were provided by the Toxicology Wildlife Research Institute of 139 

Hunting Resources (IREC-CSIC) and were collected post-mortem in the wetland and its sur-140 



roundings during the spring and summer of 2011. Muscle tissue from the specimens were 141 

taken, packaged and frozen in liquid N immediately after collection in the field. Waterfowl 142 

were represented by stilt (Himantopus himantopus), black-headed gull (Larus ridibundus), 143 

yellow gull (Larus sp.), coot (Fulica atra), white-headed duck (Oxyura leucocephala), shov-144 

eler (Anas clypeata), mallard frieze (Anas strepera) and cattle egret (Bubulcus ibis). Since the 145 

specimens were exclusively collected post-mortem, we could not obtain samples from all 146 

species of waterfowl present in the wetland. 147 

Filamentous algae were represented mainly by Cladophora glomerata, Spirogyra sp. 148 

and Vaucheria dichotoma (Aboal et al., 1996); charophytes consisted of the species Chara 149 

hispida var. major; microbial mats were mostly formed by the cyanobacteria Schizothrix pen-150 

icillata (Barón, 2011); the epiphyton was represented mainly by Pseudonabaena catenata, P. 151 

tenuis, Fragilaria acus, Nitzschia cf. capitelata and Navicula venta and phytoplankton spe-152 

cies Cyclotella meneghiniana, Cryptomonas erosa, Rhodomonas bill and Monoraphidium 153 

griffithii (Rojo and Rodrigo, 2010). The vegetation was represented by two species of vascu-154 

lar submerged macrophytes (Potamogeton pectinatus and Ceratophyllum submersum), four 155 

species of emergent macrophytes (Cladium mariscus, Phragmites australis, Typha 156 

dominguensis and Scirpus maritimus) and Tamarix canariensis as the dominant tree species. 157 

Primary consumers consisted of zooplankton (rotifers and ciliates, mainly; Rojo & 158 

Rodrigo 2010), benthic macroinvertebrates (one Odonata [Crocothemis erytrhaea] larvae), 159 

one Heteroptera [Naucoris maculatus larvae] and one Diptera [Chironomus sp.] larvae), sev-160 

en species of winged insects, including Lepidoptera (Leptotes pirithous, Pieris rapae, Poly-161 

ommatus icarus, Maniola jurtina, Pontia daplidice, Colias crocea, Rhodometra sacraria), 162 

two species of Odonata (Lestes sp. and Sympetrum sp.), one crustacean decapod (Procamba-163 

rus clarkii) and four species of fish (Ameirus melas, Cyprinus carpio, pumpkinseed and east-164 

ern mosquitofish). In some areas of the NPTD, we were also able to capture both juvenils and 165 



adults of A. melas. To perform isotopic analysis, G. holbrookii individuals were separated by 166 

size (1.5-3 mm, 3.1-4 mm and> 4.5 mm). Individuals of P. clarkii were separated between 167 

females and males. At each sampling location individuals of each species of fish and crabs 168 

were measured and weighed (Table 1). 169 

 170 

2.3 Sample preparation and analysis 171 

Prior to isotopic analysis, all samples were treated following the procedures cited in Lewis et 172 

al. (2001), Parkyn et al. (2001) and (Oreilly et al., 2002). We removed insect heads and ex-173 

tremities (Gratton and Denno, 2006; Gratton and E Forbes, 2006) Whenever there was 174 

enough biomass available, a composite sample was prepared combining 3-7 individuals of 175 

the same species for each capture site. Since the main limitation of the analysis was obtaining 176 

enough material for isotopic analysis (0.5 to 1 mg dry mass), those less abundant insect spe-177 

cies whose presence was sporadic at any given sampling site had to be analysed together with 178 

a sample composed of several individuals, combining sites that were closer to one another. In 179 

samples of fish and crabs, muscle tissue was extracted by removing the viscera and digestive 180 

tract. Muscle tissue lipids were removed from all samples with a solution of chloroform: 181 

methanol (2: 1), following the procedures described in Hobson and Welch (1992), Murry et 182 

al., (2006) and Logan & Lutcavage (2008). Subsequently, all samples were washed with dis-183 

tilled water and oven-dried at 60 °C (insects) and 80 °C (crabs, fish and birds) for 24 to 48 184 

hours. Once dried, samples were crushed with a grinder, pulverized in an agate mortar and 185 

finally sieved through a 1-mm mesh. Finally, all samples were stored in sealed plastic con-186 

tainers (ependorf type) for shipment to the stable isotope laboratory. 187 

 188 



2.4 Stable isotope analysis 189 

The analysis of stable isotopes 13C and 15N were carried out at the Environmental Isotope 190 

Laboratory of the University of Arizona, United States 191 

(http://www.geo.arizona.edu/node/153) using a continuous flow isotope ratio mass spectrom-192 

eter (Delta Finnigan PlusXL) coupled to an elemental analyzer (Costech). Two standards, 193 

Peedee belemnite and atmospheric N2, were used for C and N, respectively. The results are 194 

presented as parts per thousand (‰). Units used to express the ratios of stable isotopes in the 195 

notation (δ), a common form of isotopic measurement (Ben-David and Flaherty, 2012): 196 

δ13C or δ15N (‰) = [(Rsample / Rstandar) - 1] × 103 197 

Where R = 13C / 12C and 15N / 14N. Analytical accuracy was greater than ± 0.2 ‰. 198 

 199 

2.5 Determination of trophic levels of consumers in Daimiel 200 

We used the equation developed by (Vander Zanden et al., 1997), and subsequently modified 201 

by Post (2002), to estimate the trophic levels of each of the organism: trophic level (TL) TL = 202 

λ + (δ15NC - δ15Nbase) / Δn .  Where λ (λ = 1 or 2) is the basis of the trophic level, whether pri-203 

mary producers or primary consumers, respectively. In this study the trophic levels with both 204 

λ (1 and 2) were determined to check whether there were differences. For the baseline λ = 2 205 

(primary consumers), the average value of the δ15N signature of zooplankton was used since 206 

bivalve mollusks were absent in this wetland. The use of primary consumers as a baseline (λ 207 

= 2) reduces the error in the estimation of trophic levels (Wolf et al., 2009). δ15N represents 208 

the isotopic composition of the N consumers, and δ15Nbase is the isotopic composition of the 209 

base used. Finally, Δn is the trophic level enrichment, which was set at 2.54 as suggested in 210 

the meta-analysis by (Vanderklift and Ponsard, 2003). 211 

 212 



2.6. Data analysis of present-day and past food webs 213 

To explore the functional relationships between predators and potential prey, first, the eating 214 

habits of each species was investigated through literature search and, subsequently, using the 215 

Bayesian statistical model SISUS (vO.09 workbook template, (Erhardt et al., 2014) in R. This 216 

model uses δ13C and δ15N signatures to estimate the proportional contribution of each source 217 

to each consumer. To apply the SISUS model, and prior to resolving each consumer's diet, 218 

increases were made in δ13C values and potential sources δ15N according to the values 219 

suggested by previous studies (δ13C: 0-1 ‰ and δ15N: 2.54, 3.4 and 4 ‰; Minagawa & Wada, 220 

1984; McCutchan Jr et al. 2003; Post 2002; Vanderklift & Ponsard 2003). Finally, we chose a 221 

value between 0 and 1 ‰ for δ13C and 3 ‰ for δ15N because we found that the average in-222 

crease in δ15N with increasing trophic level was around 3 ‰. In addition, this combination 223 

showed a greater number of relationships between consumers and sources studied in the eco-224 

system. 225 

We complemented the isotopic analyses with literature search and records containing 226 

historical information that would allow us to reconstruct the foodweb of the wetland around 227 

1950 (Alvarez-Cobelas and Cirujano, 1996). However, due to the lack of data and samples 228 

from that time, this part of the study was necessarily categorical rather than quantitative.  229 

 230 

Results 231 

3.1 Isotopic composition of the primary and secondary consumers of the wetland 232 

13C and 15N signatures and ratios of C and N of all components of the NPTD are shown in 233 

Fig. 1. None of the species differed in terms of 13C and 15N depending on the sampling loca-234 

tion, except in the case of A. melas and P. clarkii (Figs. 2 and 3). Catfish showed a signifi-235 

cantly different isotopic signature depending on their size, stage of development and weight 236 



(Fig. 2a and 2b). The crayfish also showed a different 15N signature depending on its size but 237 

showed no difference regarding sex (Fig.3). 238 

 239 

3.2 Food chain length and trophic levels 240 

The food chain length in the NPTD was estimated at 3.9 trophic levels, where primary pro-241 

ducers are considered as the base, and at 4.4 trophic levels (Fig. 4a and 4b), when the primary 242 

consumers are used as the base. Food chain length description, hereinafter, is based on the 243 

results obtained with primary consumers as the chain base. 244 

Invertebrates, zooplankton, three species of birds (B. ibis, Larus sp. and L. ridibun-245 

dus) and the most abundant winged insects (butterflies) and the damselfly (Sympetrum sp.), 246 

were placed in the primary consumers level. Secondary consumers were represented by two 247 

species of birds (H. himantopus and F. atra) and the winged insect Lestes sp. The fish species 248 

C. carpio, G. holbrooki, three species of birds (Anas clypeata, A. strepera, and Aythya ferina) 249 

and P. clarkii were integrated into the tertiary consumers group. Finally, A. melas, L. gibbosus 250 

and the white-headed duck (O. leucocephala) were at the top of the food web. 251 

 252 

 3.3 Organic source's contribution to consumers of the NPTD 253 

The estimates of the SISUS model using two stable isotopes 13C and 15N-consumers are 254 

shown in Table 2 and Fig. 5. Concerning waterfowl, the diets of black-headed gull and stilt 255 

showed connection with microbial mats, perhaps a reflection of their opportunistic feeding 256 

behaviour in the mud. The laughing gull also revealed dependence on benthic macro inverte-257 

brates and sediment in their diet. The American crab and invertebrates were the main diet 258 

source of the shoveler. The diet of the coot reflected a varied eating habit with a similar dis-259 

tribution between zooplankton, macrophytes and crayfish. The main food source of Odonata 260 



class, represented by Lestes sp. And Sympetrum sp., was invertebrates (41 to 60.47% and 261 

from 23.05 to 60.25%, respectively). 262 

Macrophytes were, in most cases, a primary or secondary energy source for organisms 263 

of higher trophic levels. For example, P. clarkii (trophic level = 3.2) based its diet intake on 264 

emergent macrophytes, representing up to 81.98% and 76.91% of its diet (T. dominguensis 265 

and S. maritimus, respectively). Another clear example is the secondary consumers H. himan-266 

topus and F. atra (trophic level= 2.0 and 2.9, respectively), which can base a significant per-267 

centage of their diet on submerged macrophytes. The isotopic signatures of Tamarix canar-268 

iensis indicated that it was one of the main food sources for winged such as insects Rhodom-269 

etra sacraria and Pieris rapae, and also for the cattle egret. The mixing model indicated that 270 

the contribution of macrophytes to the diet of the fish species collected is negligible. 271 

  272 

3.4 Past and present foodweb in NPTD 273 

In the mid-twentieth century, up to twelve native fish species in the wetland coexisted with 274 

carp and mosquito fish, including sea lamprey (Petromyzon marinus ), eel (Anguilla anguil-275 

la), common catfish, comiza and cabecicorto (Barbus bocagei, B. comiza, B. microcephalus, 276 

respectively), boga (Condrostoma willkommii polylepis), chub (Leuciscus pyrenaicus) pardila 277 

(Rutilus lemmingii), tench (Tinca tinca), calandino (Tropidophoxinellus alburnoides), loach 278 

(Cobitis malaria) and monk (Blennius fluviatilis) (Elvira and Barrachina, 1996), along with 279 

other species of gastropods (Lymnaea peregra, Pisidium sp., Bithynia tentaculata and Physel-280 

la acuta, among others; (Casado de Otaola, 1996). Nowadays, they have all disappeared. 281 

Based on historical information (Alvarez-Cobelas and Cirujano, 1996), we reconstructed the 282 

foodweb of the wetland around 1950 when, before the introduction of the mosquito fish, the 283 

NPTD was still a series of fish reserves  (Fig. 6). The food web of NPTD for 1950 was com-284 

posed of fish species, all autochthonous, and species of waterfowl supported by mollusks, 285 



macroinvertebrates, and zooplankton and accompanied by the autochthonous crab Austro-286 

potamobius pallipes. Filter-feeding mollusks fed on phytoplankton, clarifying the water and 287 

contributing to the development of submerged macrophytes. These should have been food for 288 

the native crayfish and ducks, who also consumed soft macroinvertebrates. The food chain 289 

length was probably similar to the one present today. In contrast, Fig. 5 shows the configura-290 

tion of the current food web in 2011, strictly constructed with the results obtained with the 291 

results from the SISUS model. Here, we have included species of winged insects, although 292 

most butterflies do not show interactions with the species sampled. In today's food web, there 293 

are no shellfish, and the autochthonous crab has been completely replaced by the crayfish, 294 

which has a reduced number of interactions compared to those that A. pallipes could have 295 

potentially had in the food web of 1950. Higher trophic level organisms showed no trophic 296 

interactions with the rest of the organisms. Sediment/detritus is a food source for only egrets 297 

and gulls, while for benthic organisms like crayfish, its only of marginal importance. Some 298 

examples of food chains obtained through SISUS estimates are: T. dominguensis - P. clarkii- 299 

A. clypeata; Tamarix canariensis -invertebrates - Lestes sp.; or C. submersum - zooplankton - 300 

F. atra. 301 

 302 

4. Discussion 303 

Nowadays, the fish fauna of Las Tablas de Daimiel is only represented by opportunistic exot-304 

ic species, such as in other heavily disturbed freshwater ecosystems (Copp et al., 2005). Four 305 

species, three of them exotic, make up the fish fauna of this wetland; three from North Amer-306 

ica: the bluegill (Lepomis gibbosus), the mosquitofish (Gambusia holbrookii), introduced for 307 

the control of malaria in 1950 (Alvarez-Cobelas and Cirujano, 1996) and catfish (Ameirus 308 

melas), emerging in the wetland (first sightings in 2010; National Park team, personal com-309 

munication) and carp (Cyprinus carpio), which had already been mentioned in Las Tablas 310 



around 1910 (Elvira and Barrachina, 1996). NPTD has also been invaded by the American 311 

crayfish (Procambarus clarkii), native to the southeastern United States, replacing the Euro-312 

pean crayfish (Austropotamobius pallipes), also introduced in the late nineteenth century, and 313 

that was very abundant in these waters until the end of the 1960s, until it became extinct by 314 

the crayfish plague (Alvarez-Cobelas et al., 2010). 315 

 316 

4.1 Food chain length of NPTD 317 

The input of nutrients (including N, P and trace elements, etc.) and the invasion of exotic spe-318 

cies greatly influence energy pathways, C balance, and nutrient budget of many habitats (Guy 319 

et al., 2012), but little is known about the effects on the food webs of these ecosystems. Las 320 

Tablas de Daimiel is a hypertrophic ecosystem (Alvarez-Cobelas et al., 2001), but the food 321 

chain may be considered moderate in length (from 3.9 to 4.4 trophic levels; Briand & Cohen, 322 

1987; Beaudoin et al., 2001). Several authors have cited that disturbances and changes in 323 

primary productivity resulting from nutrient enrichment do not necessarily exert direct im-324 

pacts on the food chain length (McHugh et al., 2010; Walters and Post, 2008). However, there 325 

are clear indications that, among others, primary productivity (McHugh et al., 2010; Vander 326 

Zanden et al., 1999), the size of the ecosystem (Post, 2002; Schoener, 1989) and disruptions 327 

(Briand, 1983; Menge and Sutherland, 1987) are key in determining the configuration of food 328 

webs in aspects such as species diversity within trophic levels, the connection between spe-329 

cies, and the influence of the trophic position of an organism. 330 

The size of the ecosystem influences the food chain length, generating an increase or 331 

decrease in the number of trophic levels, allowing the coexistence of two predatory species in 332 

the same niche and even conditioning the abundance of a particular species (Takimoto et al., 333 

2008). Disturbances, however, seem more crucial in controlling the abundance of species at 334 

higher trophic levels (Takimoto et al., 2008). In this situation it is expected that the inflow of 335 



nutrients in NPTD has helped to increase net primary productivity, changing the structure of 336 

the food web from the bottom-up (bottom-up effects; (Sahasrabudhe and Motter, 2011). 337 

However, changes in consumer species also alter the structure of the food chain via trophic 338 

cascades (i.e., top-down; (Scheffer, 1998). The nutrient enrichment registered in NPTD and 339 

the consequent deterioration of the habitat has contributed to the disappearance of many spe-340 

cies of consumers, which has significantly modified the structure of the network (see Angeler 341 

et al. 2001; 2002) 342 

The highest trophic level in Las Tablas is occupied by two species of exotic fish (A. 343 

melas and L. gibbosus) with a very irregular abundance over time (Sánchez-Carrillo and 344 

Angeler, 2010), probably conditioned by extreme changes suffered in the wetland from year 345 

to year (e.g., drought-flood cycles). In fact, A. melas has not been observed in recent surveys 346 

in the park, in contrast to what happens downstream (Llanos Gabaldón Lozano and Peña, 347 

2009). Large fluctuations in the flooded area as well as disturbances have favored the inva-348 

sion of the exotic species that are more resistant to the new hydrological conditions (Dudgeon 349 

et al., 2006). In fact, populations of C. carpio in the Upper Guadiana Basin are concentrated 350 

in Las Tablas. Apparently, the disruption suffered by the NPTD and the consequent reduction 351 

in both the size of the habitat and its quality is a key factor in the disappearance of popula-352 

tions of native fish species, which can still be seen in the upper reaches of the Záncara, 353 

Gigüela and Riansares rivers (seven-eight endemic species: (Elvira and Barrachina, 1996; 354 

Llanos Gabaldón Lozano and Peña, 2009). If the flooded area remained constant for a long-355 

term cycle (over 10 years) and if the water quality improved, then it would be likely that 356 

some of these native species arrive to populate the NPTD again, which may eventually lead 357 

to a readjustment of the structure of trophic niches (Gathman et al., 2005; Wilcox et al., 358 

2008). 359 



Recently, the presence of comiza barbel (Barbus comiza) has been reported in the 360 

NPTD when the surface of the flooded area increased significantly after almost a decade 361 

without water. But its passage through the ecosystem has been ephemeral and it is unknown if 362 

this is related to its niche being occupied by other exotic species. Changes in the ecosystem 363 

can also alter the eating habits of certain species indirectly. For example, (Takimoto et al., 364 

2008) showed that with the reduction of the ecosystem, the trophic cascade effect is magni-365 

fied, and species of higher trophic levels seek food at lower trophic levels, consequently re-366 

ducing their trophic position and length of the chain. This may be the reason why the speci-367 

mens studied here of the genus Larus, which in other ecosystems reach a trophic level of 4 368 

(e.g. on the Mediterranean coast; Navarro et al. 2011), are located at trophic level 1 (i.e., pri-369 

mary consumers) at NPTD. 370 

 371 

4.2 Source contribution to the support of the food web of NPTD 372 

There has been some controversy about the importance of macrophytes as the base of aquatic 373 

food webs because of their high biomass and production in these ecosystems (Hamilton et al., 374 

1992; Hart and Lovvorn, 2002). Some studies using stable isotopes in aquatic food webs 375 

show that vascular plants are not as important in C flow for aquatic food webs (France, 376 

1995). In wetlands, traditionally it is considered that food webs are supported by the decom-377 

position of macrophytes as they are an important source of C for benthic macroinvertebrates 378 

(James et al., 2000; Kornijów, 1996). Numerous studies show that phytoplankton may be-379 

come more important as secondary producers (Hamilton et al., 1992; Hart and Lovvorn, 380 

2002). To our knowledge, only one study found vascular plants as major actors in wetland 381 

food webs through herbivores and detritivores (France R. L., 1995). Despite this, macro-382 

phytes are known to play a main role in trophic interactions in shallow lakes as they condition 383 

numerous chemical, behavioral and structural interactions (Burks et al., 2006). 384 



Our isotopic results suggest that plants from NPTD contribute to the diet of some con-385 

sumers that occupy the highest trophic levels. For example, Tamarix canariensis appeared as 386 

an important food source for benthic macroinvertebrates and for butterflies through its flow-387 

ers (in fact, on the days of collection we noted that leaves were coated with pollen, indicating 388 

that it was their blooming time). In fact, the use of Tamarix sp. flowers by Pieris rapae has 389 

been described in the Mojave Desert (USA; Andersen & Nelson, 2013). Moreover, T. 390 

dominguensis and S. maritimus seem to be the main food sources of P. clarkii in the park. In 391 

support of this, other studies have reported that the diet of the American crab includes differ-392 

ent macrophytes such as Callitriche brutia, Chara connivens, Ranunculus peltatus (Alcorlo et 393 

al., 2004) and T. dominguensis (Rosenthal et al., 2005). 394 

Six of the nine species of waterfowl evaluated in this study showed isotopic signa-395 

tures consistent with the sources studied (Carpenter and Lodge, 1986). Fulica atra bases its 396 

diet on submerged macrophytes, while the coot has a varied diet, feeding on macrophytes and 397 

other aquatic plants. However, its diet also includes invertebrates, filamentous algae, detritus, 398 

seeds, herbs, insects, snails, worms and even tadpoles (Perrow et al., 1997; Phillips et al., 399 

1978). In contrast to waterfowl, the contribution of macrophytes to the fish fauna was negli-400 

gible, something also noted by others (Bunn and Boon, 1993; Keough et al., 1996). This same 401 

pattern has been observed in Ruidera Laguna Complex (Cave Morenilla; Ruiz-Jimenez, 402 

2015). Also, isotopic composition of fish does not reflect any consistency in the carbon 403 

sources evaluated in this study, as some authors also observed in other ecosystems (Matthews 404 

and Mazumder, 2003; Post, 2002). This may be because the fish community is subsidized by 405 

external habitats (Sierszen et al., 2019), all potential food sources of the wetland that were not 406 

captured, or because the park's isotopic variation of zooplankton is more heterogeneous than 407 

what was recorded in this study. Consistent with this, a study in several lakes in Finland 408 

showed that the 13C-zooplankton can vary up to 19 delta 13C (from -46.0 ‰ to -27.2 ‰; 409 



(Jones et al., 1999), depending on the hydro-geomorphological conditions (E. Sierszen et al., 410 

2006). The isotope fractionation accompanying the anaerobic decomposition of vascular 411 

plants in wetlands may result in that C fluxes between microbial populations and the rem-412 

nants of macrophytes become decoupled, with the consequence that the isotopic signatures of 413 

the fish do not reflect the values of the vascular plants (Boon and Sorrell, 1991). Another fac-414 

tor may be the high concentration of sulphates in the wetland, mainly in the summer 415 

(Sánchez-Carrillo and Angeler, 2010), which makes δ13C-consumer values appear more de-416 

pleted than their food source (Alongi, 1998; Brooks et al., 1987; Robinson and Cavanaugh, 417 

1995).  418 

The contribution of P. australis, the most abundant and productive macrophyte in the 419 

NPTD (Cirujano et al., 2010), to the food web of this wetland is almost insignificant, except 420 

for zooplankton and crawfish, for which it represented up to 54% and <20% of their diet. 421 

However, this species has a high range of isotopic variability (Hines et al., 2006; Treydte et 422 

al., 2009) and its consumption may remain masked by other sources (Chapin III et al., 1995; 423 

Hines et al., 2006). If this is confirmed, this would have major implications for ecosystem 424 

management, as the withdrawal of biomass would not critically affect trophic interactions, at 425 

least directly. To date, only in a marsh in the Delaware Bay, United States, there is knowledge 426 

of P. australis having a direct contribution to the diet of secondary producers (73% mixing 427 

models 13C and 34S; (Wainright et al., 2000). Moreover, most studies show adverse effects of 428 

proliferation of P. australis, including lower abundance of fish (Able and Hagan, 2003; 429 

Hunter et al., 2006) and lower abundance of some groups of algae, which indirectly influence 430 

higher trophic levels (Perez et al., 2013) and the reduction of birds and mammals due to the 431 

decrease in favourable areas (Hauber et al., 1991). 432 

 433 



4.3 Las Tablas food web: past and present 434 

More than five decades ago, the food web in Las Tablas was represented by a high diversity 435 

of organisms, including ten species of fish (Alvarez-Cobelas and Cirujano, 1996). Around the 436 

mid-twentieth century, it is likely that fish species coexisted at all trophic levels and with a 437 

trophic role of the crayfish Austropotamobius pallipes very similar to the American crayfish, 438 

based on the eating habits of this species (Reynolds and O’keeffe, 2005). Although it is likely 439 

that in the past the baseline wetland resources were much higher (with the presence of, for 440 

examples, bivalves and gastropods), a currently poorly connected trophic system suggests 441 

that ecosystem resources are currently not being fully exploited. Main causes may be related 442 

to the quality of the ecosystem or the presence of populations of certain opportunistic, versa-443 

tile species that undermine potential competitors. The trophic configuration presented in Fig-444 

ure 5 shows a wide variety of fish species, mainly in the lower trophic levels, with high im-445 

portance of benthic macroinvertebrates in sustaining the food web. 446 

The water restrictions limit the diversity of intermediate predatory fish species 447 

(Hairston Nelson G. and Hairston Nelson G., 1993, 1997). It is more likely that in Las Tablas 448 

the lack of species populating the lower niches (trophic level 1 and 2), rather than resource 449 

constraints, may have allowed the expansion of opportunistic and resistant species such as A. 450 

melas and P. clarkii, as reported in other studies (Braig and Johnson, 2003; Novomeská and 451 

Kováč, 2009; Winemiller and Rose, 1992). This influences the low trophic complexity of the 452 

wetland present today, although the deterioration in water quality also has harmful effects on 453 

the diversity of fish species (e.g Serrano-Grijalva et al., 2011). Likewise, the American cray-454 

fish may also be contributing indirectly to an important control of certain fish populations and 455 

may also be key for consumer interactions. It has been said that P. clarkii benefits limne-456 

philus species, such as A. melas, that depends on specific substrate conditions to lay eggs and 457 

build nests (Braig and Johnson, 2003; Cucherousset et al., 2006). It has also been suggested 458 



that P. clarkii controls the abundance of certain species like L. gibbosus through the reduction 459 

of the macrophytes they depend on (Roth et al., 2007). The indirect influence of P. clarkii in 460 

the presence of amphibians for the removal of sediments has also been reported (Nyström et 461 

al., 1999). Opportunistic species such as P. clarkii and A. melas have a high trophic versatility 462 

and can occupy more than one trophic level throughout their life cycle (Matěna, 1995). The 463 

low abundance of carp, in decline since 1983 in the NPTD, may be allowing the entry of oth-464 

er exotic species to the ecosystem, altering the trophic structure of the wetland. The American 465 

crayfish can efficiently extract resources from niches left by other local and even exotic spe-466 

cies that have disappeared from the ecosystem due to environmental degradation (Angeler et 467 

al., 2002; Leunda et al., 2008). The lack of success in capturing the diet of other species very 468 

adapted to the NPTD such as the mosquitofish may be due to its peculiar diet based on inver-469 

tebrates captured in a wide range of microhabitats from the benthos (Diptera, Odonata and 470 

ostracods), surface water column (Hemiptera, Coleoptera, copepods, cladocerans), and even 471 

those that swarm on aquatic vegetation (Hymenoptera) (Rodríguez-Jímenez A. J., 1987). In 472 

our study, the mosquitofish occupies the 3.18-3.6 trophic level, demonstrating the plasticity 473 

of this species, whereas its previously described trophic level was lower (2.2; Capps et al., 474 

2009). 475 

 In summary, the food chain length of the NPTD wetland does not appear to have 476 

changed significantly during the last 50 years. In contrast, environmental variations sustained 477 

over time associated with the entry of nutrients from different sources and species invasion 478 

have reduced the diversity within trophic levels and also resulted in a loss of connectivity 479 

between species, which has allowed the success of versatile, opportunistic organisms at all 480 

trophic levels. 481 
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Table 1. Length and weight of the species of fish and crabs captured in NPTD n summer 2011. Small: <10.5 cm, Medium: 10.5-12 cm, large >12 793 

cm.  794 

 795     
Length (cm) Weight (g) 

Species Common name Stage No. Average SD MIN MAX Average SD MIN MAX 

Lepomis gibbosus Pumpkinseed sunfish Adult 1 11.5 11.5 11.5 11.5 14.8 14.8 14.8 14.8 

Cyprinus carpio Carp Adult 61 35.3 1.7 32.0 39.0 648.1 91.0 500.0 800.0 

Ameiurus melas Cat fish Adult 38 18.0 2.5 11.5 22.0 114.5 90.5 21.6 400.0 

Ameiurus melas Cat fish Fry 40 2.4 0.3 1.8 3.0 0.2 0.1 0.1 0.4 

Gambusia holbrookii Gambusia Fry 76 3.4 1.2 1.7 5.6 0.7 0.7 0.1 2.3 

Procambarus clarkii American crab Small 106 9.3 1.0 6.5 10.5 24.1 8.7 4.3 41.8 

Procambarus clarkii American crab Medium 54 11.4 0.4 11.0 12.0 47.0 7.3 30.2 64.5 

Procambarus clarkii American crab Large 16 13.0 0.6 12.5 14.5 61.0 11.1 47.7 14.5 

 796 

  797 



Table 2. Range of contribution (minimum and maximum) of the different food sources to consumers in the NPTD based on the mixing model 798 

SISUS through the use of stable isotopes (13C and 15N).  799 

 800 
 Winged insects Crustaceans Birds 

 R. sacraria Pieris rapae Lestes sp. Sympetrum sp. P. clarkii L. ridibundus H. himantopus Fulica atra A. clypeata Larus sp. B. ibis 

 MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

Sediment     0.00 14.63 0.00 27.95 0.00 2.89 0.00 27.82 0.00 52.03     43.06 62.92 17.46 30.20 

POC         0.00 23.12             

Phytoplankton     0.00 20.75 0.00 39.64   0.00 51.67 0.00 73.80     0.00 29.04 0.00 18.63 

Periphyton     0.00 40.27 0.00 32.29   0.00 17.48 0.00 29.22     0.00 8.71 0.00 5.59 

Filamentous algae     0.00 44.58 0.00 35.75   0.00 19.35 0.00 30.39     0.00 8.57 0.00 5.50 

Microbial mats     0.00 26.73 0.00 51.07   16.90 83.51 0.00 73.53     0.00 20.84 0.00 13.37 

C. hispida var. major 0.00 11.45 0.00 2.69     0.00 2.22   0.00 23.44 0.00 43.85 0.00 6.76     

C. submersum 0.00 5.15 0.00 6.35     0.00 8.59   0.00 72.74 0.00 21.33 0.00 25.33 0.00 12.68 0.00 8.14 

P. pectinatus 0.00 5.76 0.00 3.79     0.00 3.13     0.00 61.45 0.00 9.37     

S. maritimus 0.00 1.97 0.00 2.43     0.00 76.91             

T. dominguensis 0.00 2.10 0.00 2.59     0.00 81.98         0.00 5.73 0.00 3.68 

C. mariscus 0.00 80.64 0.00 18.94     0.00 15.65             

P. australis 0.00 2.39 0.00 2.95     0.00 16.14             

T. canariensis 18.68 86.88 78.80 95.08     3.02 21.53         25.66 33.76 62.47 67.67 

Invertebrates     41.00 60.47 23.05 60.25   2.48 39.49 0.00 47.82 0.00 20.86 0.00 50.18 0.00 7.95 0.00 5.10 

Zooplankton     0.00 32.27 0.00 25.88   0.00 14.01 0.00 20.36 0.00 76.06 0.00 16.88 0.00 6.31 0.00 4.05 

P. clarkii small               0.00 27.89 0.00 67.08     

P. clarkii medium               0.00 45.77 0.00 83.35     

P. clarkii large               0.00 41.76 0.00 49.53     

 801 
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Figure. 1. Scatterplot of δ13C and δ15N (mean and standard deviation) of the main sources, primary producers and consumers from the present 804 

food web in the NPTD. DIC = dissolved inorganic C. DOC = dissolved organic C. POC = paticulate organic C.  805 

 806 

 807 

 808 

 809 



Figure 2. a) Mean ± SE of δ13C y δ15N of Ameirus melas in the four sites where it was 810 

collected. ANOVA: δ13C p=0.003 and δ15N p=0.036. b) Relationships between size and 811 

weight with isotopic signatures of A. melas. 812 
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Figure  3. Scatterplot of δ13C and δ15N of P. clarkii based on (a) sampling location (b) and 819 

sex (ANOVA δ13C p> 0.05 and δ15N p>0.05). 820 

 821 

 822 
 823 

 824 

 825 

 826 

 827 

  828 



Figure 4. Trophic levels of the main consumers from NPTD when (a) producers or (b) primary consumers are considered as the base of the 829 

foodweb.  830 
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Figure 5. Representation of the present foodweb. The range of contribution (minimum and maximum) of the different food sources to consumers 839 

in the NPTD are based on the mixing model SISUS through the use of stable isotopes (13C and 15N).  840 
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Figure 6. Schematic representation of the trophic network of NPTD around 1950 based on Alvarez-Cobelas and Cirujano (1996) and Cirujano 844 

Bracamonte et al. (1998). 845 
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