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Abstract 

Meta-analyses are increasingly used in biology to both quantitatively summarize 

available evidence for specific questions, and generate new hypotheses. While this 

powerful tool has mostly been deployed to study mean effects, there is untapped 

potential to study effects on (trait) variance. Here, we use a recently published 

dataset as a case study to show how meta-analysis of variance can provide insights 

into ecological and evolutionary processes. This dataset included 704 effect sizes 

from 89 studies, covering 56 animal species, and was originally used to test 

developmental stress effects on a range of traits. We found that developmental 

stress not only negatively affects mean trait values, but also increases trait variance, 

mostly in reproduction, showcasing how meta-analysis of variance can reveal 

previously overlooked effects. Furthermore, we show how meta-analysis of variance 

can be used as a tool to help meta-analysts make informed methodological 

decisions, even when the primary focus is on mean effects. We encourage meta-

analysts in all disciplines to move beyond the world of means and start unravelling 

secrets of the world of variance. 

 

Keywords: tyranny of averages, variability, variance ratio, coefficient of variation, 

early-life effects, opportunity for selection, parental effects, transgenerational effects 
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Introduction 

“Our preoccupation with averages has blinded us to biological realities” (Hogben and 

Sim, 1953). Despite the exponential increase in the use of meta-analysis in recent 

years (Gurevitch et al., 2018; Stewart, 2009) almost all meta-analyses have 

exclusively focused on the study of mean effects (Koricheva and Gurevitch, 2014; 

Nakagawa and Santos, 2012). Meta-analysis is a powerful tool for integrating 

findings and generating new hypotheses, yet meta-analysts may be neglecting 

important biological realities by focusing on means alone. 

 

Fortunately, recent statistical advances in the field of meta-analysis have made it 

possible to study variance effects (Nakagawa et al., 2015), and meta-analyses of 

variance are starting to emerge (electronic supplementary material 1). For example, 

meta-analyses of variance have shown that early-life dietary restriction not only 

affects mean longevity (English and Uller, 2016) but also increases variance in 

longevity (Senior et al., 2017); and that sexual selection on males not only increases 

mean but also decreases variance in fitness-related traits (Cally et al., 2019). 

Despite this, meta-analyses of variance are still rarely used, and thus, a large portion 

of biological realities remains to be discovered.  

 

In this study, we aim to promote the use of meta-analysis of variance in biology and 

other disciplines. We used a recently published meta-analytic dataset of 

experimental studies (Eyck et al., 2019) as a case study to test the prediction that 

developmental stress not only negatively affects mean trait values, but also 

increases variance among individuals. Furthermore, we used meta-regression to test 

whether mean and variance effects differ across traits. Our meta-analysis of variance 
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revealed developmental stress effects on variance, mostly on reproduction, and 

highlighted the importance of shifting some of our meta-analytic attention to the raw 

material for natural selection: variation. 

 

Methods 

Data analyzed 

Experimental data on the effects of developmental stress on phenotype and fitness 

were obtained from Eyck et al. (2019). Before the analyses, we made modifications 

to the dataset (see details in electronic supplementary material 2). In brief, we: (1) 

excluded effect sizes based only on inferential statistics (k = 145 effect sizes 

excluded) because the calculation of our effect size statistics requires raw means, 

standard deviations (SD), and sample sizes; (2) excluded measurements not 

bounded at zero because our effect size statistics assume ratio scale data (Houle et 

al., 2011) (k = 7); (3) excluded group-level proportional data from the meta-analysis 

of variance as they do not have associated SD (e.g. 25% vs. 40% survival between 

control and treatment group; Nakagawa et al., 2015) (k = 3); (4) revisited primary 

studies to confirm the calculation of effect sizes and their direction, and excluded 27 

effects sizes from the meta-analysis of means because we could not assign a 

direction to them; (5) reclassified traits into six categories (behaviour, development, 

metabolism and physiology, morphology, reproduction, and survival) following 

Acasuso-Rivero et al. (2019); and (6) excluded two effect sizes that were identified 

as outliers by the function ‘escalc()’ from the R package ‘metafor’ v.2.1-0 

(Viechtbauer, 2010) due to their large mean to SD ratio. 
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Effect size calculation 

We calculated two types of effect sizes and their associated sampling variances 

using the function ‘escalc()’ from the R package ‘metafor’ v.2.1-0 (Viechtbauer, 

2010). To study mean effects, we calculated the log response ratio (lnRR; Hedges et 

al., 1999). To study variance effects we calculated the log coefficient of variation 

ratio (lnCVR; Nakagawa et al., 2015; Senior et al., in preparation). In 23 studies 

(25.8% of all studies) involving 252 effect sizes (35.8% of all effect sizes), multiple 

treatment groups shared a common control group, leading to non-independence 

among effect sizes (Lajeunesse, 2011). To deal with this non-independence, we 

adjusted the sample size of the control groups to be equal to the original sample size 

of that control group divided by the number of times that control group was 

compared to a treatment group (Noble et al., 2017). For comparison with the original 

study, we conducted an additional meta-analysis of means based on a standardized 

mean difference effect size (see electronic supplementary material 3).  

 

For the meta-analysis of means, effect sizes were coded such that negative values 

indicate that developmental stress negatively affects fitness. That is, effect sizes 

were coded based on the expected relationship between the trait and fitness. For 

example, since fitness was expected to positively associate with body mass and 

immune response, the sign of those effect sizes were left unchanged. However, 

since fitness was expected to negatively associate with latency to reproduce and 

corticosterone levels, the sign of those effect sizes were inverted (all decisions are 

available in the R script “003_data_preparation.R” in Sánchez-Tójar et al., 2019). For 

the meta-analysis of variance, effect sizes were left unchanged as we expected an 

increase in variance across traits. 
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Meta-analyses and meta-regressions 

We ran two multilevel meta-analytic (i.e. intercept-only) models, one for each type of 

effect size, to test whether developmental stress generally affects phenotype and 

fitness both at the mean (lnRR) and at the variance level (lnCVR), and two multilevel 

meta-regression models to test whether developmental stress effects differed across 

different types of traits. For meta-analytic models we investigated unexplained 

variation across studies (after accounting for sampling variance) by estimating total 

and separate relative heterogeneity for each random effect (I2; Nakagawa and 

Santos, 2012), and absolute heterogeneity (Q) using the R package ‘metafor’ v.2.1-0 

(Viechtbauer, 2010). For meta-regressions, we estimated the percentage of variance 

explained by the moderators (R2marginal; Nakagawa and Schielzeth, 2013). 

 

Publication bias 

We assessed publication bias at the mean level only because virtually all studies 

included in our dataset focused on mean effects, i.e. we do not expect publication 

bias at the variance level. We ran a variant of Egger’s regression using the meta-

analytic residuals as the response variable, and the precision (i.e. the square root of 

the inverse of the sampling variance) as the moderator (Nakagawa and Santos, 

2012). Additionally, we assessed potential temporal trends in effect sizes that could 

indicate a time-lag bias (Jennions and Møller, 2002; Koricheva and Kulinskaya, 

2019) by running a multilevel meta-regression that included year of publication as a 

z-transformed moderator (Nakagawa and Santos, 2012; Sánchez-Tójar et al., 2018). 

 

 

 



7 
 

Random effects 

All models included the following random effects: (i) observation ID, which 

represents the observational or residual variance that needs to be explicitly modelled 

in a meta-analytic model, (ii) study ID, which encompassed those estimates obtained 

within each specific study, (iii) species ID, which encompassed those estimates 

obtained for each species, and (iv) phylogeny, which consisted of a phylogenetic 

relatedness correlation matrix. To build the phylogeny, we searched for our species 

in the Open Tree Taxonomy (Rees and Cranston, 2017) and retrieved the 

phylogenetic relationships from the Open Tree of Life (Hinchliff et al., 2015) using the 

R package ‘rotl’ v.3.0.5 (Michonneau et al., 2016). We estimated branch lengths 

following Grafen (1989) as implemented in the function ‘compute.brlen()’ of the R 

package ‘ape’ v.5.2  (Paradis and Schliep, 2019). The single polytomy encountered 

was dealt with via randomization using the function ‘multi2di()’ from the R package 

‘ape’ v.5.2 (Paradis and Schliep, 2019). 

 

We used the R programming language v.3.5.1 (R Core Team, 2018) throughout. All 

analyses were run in a Bayesian framework based on Stan programming language 

using the R package ‘brms’ v.2.9.0 (Bürkner, 2017; model parameters available in 

the R code provided). Figures and tables were created using the R package ‘ggplot2’ 

v.3.1.0 (Wickham, 2016), and the R package ‘gt’ v.0.1.0 (Iannone et al., 2019), 

respectively. All data and code are available in Sánchez-Tójar et al. (2019).  
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Results 

Our final dataset consisted of 704 effect sizes from 89 studies covering 56 animal 

species (Aves = 12 sp., Reptiles = 12 sp., Arthropods = 11 sp., Fishes = 9 sp., 

Amphibians = 6 sp., Mammals = 6 sp.; Figure S2). 

 

Meta-analysis of variance 

Overall, developmental stress increased variance by around 4% on average, albeit 

uncertainty was high (Table 1, Figure 1). The effect of developmental stress on 

variance differed depending on the trait studied, with reproduction showing the 

largest increase in variance (ca. 21% on average) (Figure 2). However, the 

percentage of variance explained by the trait moderator was less than 1% (Table 2), 

indicating that most of the heterogeneity remains unexplained.  

 

Table 1. Results of the meta-analyses testing the effect of developmental stress on 

mean (lnRR) and variance (lnCVR) in phenotype and fitness. The results of the 

Egger’s regression test are also shown (see section ‘Publication bias’). 
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Figure 1. Developmental stress affects negatively mean, and slightly increases 

variance in trait values. Points and associated error bars correspond to posterior 

modes and 95% highest posterior density intervals (HPDI) from the meta-analyses 

(see section ‘Methods’). The posterior distributions with vertical lines indicating the 

median are plotted on top of their respective modes and 95% HPDI. 

 

Meta-analysis of mean 

Our results showed that, on average, developmental stress negatively affected mean 

trait values by around 13% (Table 1, Figure 1). The meta-regression showed that 

developmental stress affected all traits negatively, with the strongest effects being on 

reproduction (ca. 21% on average) and behaviour (ca. 16% on average; Table 2, 

Figure 2). Nonetheless, heterogeneity remained high even after including the trait 

moderator (Table 2). 
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Table 2. Results of the meta-regressions testing whether the effect of developmental 

stress on mean (lnRR) and variance (lnCVR) differ across traits. The results of a 

meta-regression assessing temporal trends in effect sizes are also shown (see 

section ‘Publication bias’). 
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Figure 2. Developmental stress affects mean and variance differently across traits, 

with the strongest effects being on reproduction. Points and associated error bars 

correspond to posterior modes and 95% highest posterior density intervals (HPDI) 

from the meta-regressions (see section ‘Methods’). The posterior distributions with 

vertical lines indicating the median are plotted on top of their respective modes and 

95% HPDI. Point size is proportional to the number of effect sizes (see Table 2).  

 

Publication bias 

The intercept of the Egger’s regression was negative and the 95% HPDI did not 

overlap zero, thus, highlighting some evidence for the existence of publication bias in 

this dataset (Table 1). The meta-regression testing for temporal trends in effect sizes 

showed a small effect size reduction over time, but the trend was uncertain and the 

percentage of variance explained by the moderator was essentially zero (Table 2). 
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Discussion 

Combining a recent advance in meta-analytic methodology and a case study, we 

demonstrate how meta-analysis of variance can shed light on important biological 

processes. We showed that developmental stress not only negatively affects mean 

trait values, but also increases trait variance among individuals. Our results have 

also revealed that developmental stress affects reproduction most strongly, both at 

the mean and at the variance level. Overall, we encourage meta-analysts to start 

focusing on both mean and variance effects to unearth previously overlooked effects. 

 

Developmental stress effects on phenotype and fitness have been studied often. For 

example, studies have investigated the effects of different developmental stressors 

on morphology and coloration (Tschirren et al., 2009), attractiveness (Kahn et al., 

2012), social network position (Boogert et al., 2014), telomere dynamics (Grunst et 

al., 2019), and fitness (Arbuthnott and Whitlock, 2018). Perhaps not surprisingly, 

several reviews and meta-analyses have attempted to synthesize how different 

developmental stressors influence phenotype and fitness, however the majority 

focused on mean effects (e.g. English and Uller, 2016; Eyck et al., 2019; Macartney 

et al., 2019; Nakagawa et al., 2012), with only a few exploring the effects of some 

developmental stressors on variance (O’Dea et al., 2019; Senior et al., 2017, 2015). 

Here we confirm the results of Eyck et al. (2019), showing that developmental stress 

negatively affects mean trait values, with the strongest effects on reproduction (ca. 

21%) and behaviour (ca. 16%). Additionally, our meta-analysis of variance revealed 

that developmental stress also increases trait variance, and that this effect is mostly 

driven by an increase in variance of around 21% in reproduction. This increase in 

variance in experimental versus control treatments is in agreement with previous 
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meta-analyses showing that dietary restriction increases variance in longevity 

(Senior et al., 2017), that single-food diets increase variance in fitness (Senior et al., 

2015), and that increasing developmental temperature leads to larger phenotypic 

variance in fish (O’Dea et al., 2019). Furthermore, our results also agree with a 

recent meta-analysis showing that environmental stress can increase both genetic 

and residual variances (Rowiński and Rogell, 2017). Overall, our study shows that 

developmental stress may lead to increased opportunity for (natural) selection via 

increasing its raw material, i.e. variation. 

 

Calculating lnCVR for a meta-analysis of variance requires essentially the same 

information needed to estimate other commonly used effect size statistics such as 

Cohen’s d (Cohen, 1988), Hedges’ g (Hedges, 1981) and lnRR (Hedges et al., 

1999). Specifically, one simply needs the mean, SD and sample size for the two 

groups being compared (Nakagawa et al., 2015). Nonetheless, there are some 

limitations that meta-analysts need to be aware of when conducting a meta-analysis 

of variance. First, as in the case of lnRR, only ratio scale data can be used to 

calculate lnCVR, and equations to derive lnCVR from other statistics such as F or t 

statistics are not available. Furthermore, lnCVR cannot be calculated for group-level 

proportional data (Nakagawa et al., 2015). Second, absolute error variance will 

generally be larger for lnCVR than for mean-based effect size statistics. This large 

sampling variance will generally lead to lower levels of absolute heterogeneity in 

lnCVR compared to mean-based effect size statistics (e.g. Table 1), and overall 

highlights that meta-analysing variances will usually be more data-hungry than meta-

analysing means. Despite these limitations, meta-analysis of variance is rather 

uncomplicated, making it easy for meta-analysts to start shifting some of their 
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preoccupations with averages to more variance-driven hypothesis testing and 

development.  

 

Meta-analysis of variance not only can reveal important biological realities, but can 

also help making informed methodological decisions. By identifying whether the 

compared groups show unequal variances (i.e. whether there is heteroscedasticity), 

meta-analysis of variance can help meta-analysts choose between effect sizes that 

assume homoscedasticity (e.g. Cohen’s d, Cohen, 1988; Hedges’ g, Hedges, 1981), 

and those that incorporate heteroscedasticity (e.g. SMDH, Bonett, 2009, 2008; see 

electronic supplementary material 3 for an example). This is important because not 

accounting for heteroscedasticity can cause parameter misestimation in meta-

analysis (Bonett, 2009, 2008). Overall, we suggest that even when variance-based 

hypotheses are of no interest to the researcher, meta-analysis of variance can still 

be used as a powerful methodological tool helping to choose the correct effect size 

statistic. 

 

Conclusion 

Our analyses on the effects of developmental stress on both mean and variance in 

phenotype and fitness showcases how meta-analysing variances alongside means 

can help unravel crucial processes. Importantly, meta-analysing variances is not 

limited to ecology and evolution, and can also advance disciplines such as 

agriculture (Knapp and Heijden, 2018), social sciences (O’Dea et al., 2018) and 

medicine (Senior et al., 2016). We have also shown how meta-analysis of variance 

can be used as a methodological tool to make informed decisions on how to choose 

effect size statistics for the study of mean effects. Overall, a holistic understanding of 
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the world requires moving beyond the world of means to incorporate the world of 

variance. 

 

Authors’ contributions 

Contributorship following CRediT taxonomy (Allen et al., 2014; 

https://www.casrai.org/credit.html). AST: Conceptualization, Data curation, Formal 

analysis, Investigation, Methodology, Project administration, Resources, Software, 

Validation, Visualization, Writing - original draft, Writing - review & editing. NPM: 

Investigation, Methodology, Validation, Writing - review & editing. REO: 

Conceptualization, Writing - review & editing. KR: Funding acquisition, Supervision, 

Writing - review & editing. SN: Conceptualization, Methodology, Funding acquisition, 

Supervision, Writing - review & editing. 

 

Competing interests 

We declare no competing interests. 

 

Acknowledgments 

We are grateful to the authors of the original publication for sharing data with us and 

answering our questions about the data, especially Harrison J.F. Eyck and Tim S. 

Jessop. AST is grateful to Pietro D’Amelio for enlightening discussions about data 

visualization. 

 

Data accessibility 

All data and code are available at the Open Science Framework (Sánchez-Tójar et 

al., 2019). 

https://www.casrai.org/credit.html


16 
 

Funding 

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research 

Foundati-on) - Projektnummer 316099922 - TRR 212, and the Australian Research 

Discovery Grant, DP180100818. 

 

References 

Acasuso-Rivero, C., Murren, C.J., Schlichting, C.D., Steiner, U.K., 2019. Adaptive 
phenotypic plasticity for life-history and less fitness-related traits. Proc. R. 
Soc. B Biol. Sci. 286, 20190653. https://doi.org/10.1098/rspb.2019.0653 

Allen, L., Scott, J., Brand, A., Hlava, M., Altman, M., 2014. Publishing: Credit where 
credit is due. Nat. News 508, 312. https://doi.org/10.1038/508312a 

Arbuthnott, D., Whitlock, M.C., 2018. Environmental stress does not increase the 
mean strength of selection. J. Evol. Biol. 31, 1599–1606. 
https://doi.org/10.1111/jeb.13351 

Bonett, D.G., 2009. Meta-analytic interval estimation for standardized and 
unstandardized mean differences. Psychol. Methods 14, 225–238. 
https://doi.org/10.1037/a0016619 

Bonett, D.G., 2008. Confidence intervals for standardized linear contrasts of means. 
Psychol. Methods 13, 99–109. https://doi.org/10.1037/1082-989X.13.2.99 

Boogert, N.J., Farine, D.R., Spencer, K.A., 2014. Developmental stress predicts 
social network position. Biol. Lett. 10, 20140561. 
https://doi.org/10.1098/rsbl.2014.0561 

Bürkner, P.-C., 2017. brms: An R Package for Bayesian Multilevel Models Using 
Stan. J. Stat. Softw. 80, 1–28. https://doi.org/10.18637/jss.v080.i01 

Cally, J.G., Stuart-Fox, D., Holman, L., 2019. Meta-analytic evidence that sexual 
selection improves population fitness. Nat. Commun. 10, 2017. 
https://doi.org/10.1038/s41467-019-10074-7 

Cohen, J., 1988. Statistical power analysis for the behavioral sciences, 2nd ed. ed. 
L. Erlbaum Associates, Hillsdale, N.J. 

English, S., Uller, T., 2016. Does early-life diet affect longevity? A meta-analysis 
across experimental studies. Biol. Lett. 12, 20160291. 
https://doi.org/10.1098/rsbl.2016.0291 

Eyck, H.J.F., Buchanan, K.L., Crino, O.L., Jessop, T.S., 2019. Effects of 
developmental stress on animal phenotype and performance: a quantitative 
review. Biol. Rev. 94, 1143–1160. https://doi.org/10.1111/brv.12496 

Grafen, A., 1989. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. 
Sci. 326, 119–157. https://doi.org/10.1098/rstb.1989.0106 

Grunst, A.S., Grunst, M.L., Gonser, R.A., Tuttle, E.M., 2019. Developmental stress 
and telomere dynamics in a genetically polymorphic species. J. Evol. Biol. 32, 
134–143. https://doi.org/10.1111/jeb.13400 

Gurevitch, J., Koricheva, J., Nakagawa, S., Stewart, G., 2018. Meta-analysis and the 
science of research synthesis. Nature 555, 175–182. 
https://doi.org/10.1038/nature25753 



17 
 

Hedges, L.V., 1981. Distribution Theory for Glass’s Estimator of Effect size and 
Related Estimators. J. Educ. Stat. 6, 107–128. 
https://doi.org/10.3102/10769986006002107 

Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The Meta-Analysis of Response 
Ratios in Experimental Ecology. Ecology 80, 1150–1156. 
https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 

Hinchliff, C.E., Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill, L.M., 
Crandall, K.A., Deng, J., Drew, B.T., Gazis, R., Gude, K., Hibbett, D.S., Katz, 
L.A., Laughinghouse, H.D., McTavish, E.J., Midford, P.E., Owen, C.L., Ree, 
R.H., Rees, J.A., Soltis, D.E., Williams, T., Cranston, K.A., 2015. Synthesis of 
phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. 
Sci. 112, 12764–12769. https://doi.org/10.1073/pnas.1423041112 

Hogben, L., Sim, M., 1953. The Self-Controlled and Self-Recorded Clinical Trial for 
Low-Grade Morbidity. Br. J. Prev. Soc. Med. 7, 163–179. 

Houle, D., Pélabon, C., Wagner, G.P., Hansen, T.F., 2011. Measurement and 
Meaning in Biology. Q. Rev. Biol. 86, 3–34. https://doi.org/10.1086/658408 

Iannone, R., Cheng, J., Schloerke, B., 2019. gt: Easily Create Presentation-Ready 
Display Tables. 

Jennions, M.D., Møller, A.P., 2002. Relationships fade with time: a meta-analysis of 
temporal trends in publication in ecology and evolution. Proc. R. Soc. Lond. B 
Biol. Sci. 269, 43–48. https://doi.org/10.1098/rspb.2001.1832 

Kahn, A.T., Livingston, J.D., Jennions, M.D., 2012. Do females preferentially 
associate with males given a better start in life? Biol. Lett. 8, 362–364. 
https://doi.org/10.1098/rsbl.2011.1106 

Knapp, S., Heijden, M.G.A. van der, 2018. A global meta-analysis of yield stability in 
organic and conservation agriculture. Nat. Commun. 9, 1–9. 
https://doi.org/10.1038/s41467-018-05956-1 

Koricheva, J., Gurevitch, J., 2014. Uses and misuses of meta-analysis in plant 
ecology. J. Ecol. 102, 828–844. https://doi.org/10.1111/1365-2745.12224 

Koricheva, J., Kulinskaya, E., 2019. Temporal Instability of Evidence Base: A Threat 
to Policy Making? Trends Ecol. Evol. 0. 
https://doi.org/10.1016/j.tree.2019.05.006 

Lajeunesse, M.J., 2011. On the meta-analysis of response ratios for studies with 
correlated and multi-group designs. Ecology 92, 2049–2055. 
https://doi.org/10.1890/11-0423.1 

Macartney, E.L., Crean, A.J., Nakagawa, S., Bonduriansky, R., 2019. Effects of 
nutrient limitation on sperm and seminal fluid: a systematic review and meta-
analysis. Biol. Rev. 94, 1722–1739. https://doi.org/10.1111/brv.12524 

Michonneau, F., Brown, J.W., Winter, D.J., 2016. rotl: an R package to interact with 
the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481. 
https://doi.org/10.1111/2041-210X.12593 

Nakagawa, S., Lagisz, M., Hector, K.L., Spencer, H.G., 2012. Comparative and 
meta-analytic insights into life extension via dietary restriction. Aging Cell 11, 
401–409. https://doi.org/10.1111/j.1474-9726.2012.00798.x 

Nakagawa, S., Poulin, R., Mengersen, K., Reinhold, K., Engqvist, L., Lagisz, M., 
Senior, A.M., 2015. Meta-analysis of variation: ecological and evolutionary 
applications and beyond. Methods Ecol. Evol. 6, 143–152. 
https://doi.org/10.1111/2041-210X.12309 



18 
 

Nakagawa, S., Santos, E.S.A., 2012. Methodological issues and advances in 
biological meta-analysis. Evol. Ecol. 26, 1253–1274. 
https://doi.org/10.1007/s10682-012-9555-5 

Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 
from generalized linear mixed-effects models. Methods Ecol. Evol. 133–142. 
https://doi.org/10.1111/j.2041-210x.2012.00261.x@10.1111/(ISSN)2041-
210X.STATSTOO 

Noble, D.W.A., Lagisz, M., O’dea, R.E., Nakagawa, S., 2017. Nonindependence and 
sensitivity analyses in ecological and evolutionary meta-analyses. Mol. Ecol. 
26, 2410–2425. https://doi.org/10.1111/mec.14031 

O’Dea, R.E., Lagisz, M., Hendry, A.P., Nakagawa, S., 2019. Developmental 
temperature affects phenotypic means and variability: A meta-analysis of fish 
data. Fish Fish. 20, 1005–1022. https://doi.org/10.1111/faf.12394 

O’Dea, R.E., Lagisz, M., Jennions, M.D., Nakagawa, S., 2018. Gender differences in 
individual variation in academic grades fail to fit expected patterns for STEM. 
Nat. Commun. 9, 1–8. https://doi.org/10.1038/s41467-018-06292-0 

Paradis, E., Schliep, K., 2019. ape 5.0: an environment for modern phylogenetics 
and evolutionary analyses in R. Bioinformatics 35, 526–528. 
https://doi.org/10.1093/bioinformatics/bty633 

R Core Team, 2018. R: A language and environment for statistical computing. R 
Foundation for Statistical   Computing, Vienna, Austria. 

Rees, J., Cranston, K., 2017. Automated assembly of a reference taxonomy for 
phylogenetic data synthesis. Biodivers. Data J. 5, e12581. 
https://doi.org/10.3897/BDJ.5.e12581 

Rowiński, P.K., Rogell, B., 2017. Environmental stress correlates with increases in 
both genetic and residual variances: A meta-analysis of animal studies. 
Evolution 71, 1339–1351. https://doi.org/10.1111/evo.13201 

Sánchez-Tójar, A., Moran, N.P., O’Dea, R.E., Reinhold, K., Nakagawa, S., 2019. 
Materials for “Illustrating the importance of meta-analysing variances 
alongside means in ecology and evolution.” Open Sci. Framew. 
https://doi.org/10.17605/OSF.IO/YJUA8 

Sánchez-Tójar, A., Nakagawa, S., Sánchez-Fortún, M., Martin, D.A., Ramani, S., 
Girndt, A., Bókony, V., Kempenaers, B., Liker, A., Westneat, D.F., Burke, T., 
Schroeder, J., 2018. Meta-analysis challenges a textbook example of status 
signalling and demonstrates publication bias. eLife 7, e37385. 
https://doi.org/10.7554/eLife.37385 

Senior, A.M., Gosby, A.K., Lu, J., Simpson, S.J., Raubenheimer, D., 2016. Meta-
analysis of variance: an illustration comparing the effects of two dietary 
interventions on variability in weight. Evol. Med. Public Health 2016, 244–255. 
https://doi.org/10.1093/emph/eow020 

Senior, A.M., Nakagawa, S., Lihoreau, M., Simpson, S.J., Raubenheimer, D., 2015. 
An Overlooked Consequence of Dietary Mixing: A Varied Diet Reduces 
Interindividual Variance in Fitness. Am. Nat. 186, 649–659. 
https://doi.org/10.1086/683182 

Senior, A.M., Nakagawa, S., Raubenheimer, D., Simpson, S.J., Noble, D.W.A., 
2017. Dietary restriction increases variability in longevity. Biol. Lett. 13, 
20170057. https://doi.org/10.1098/rsbl.2017.0057 

Senior, A.M., Viechtbauer, W., Nakagawa, S., in preparation. Revisiting and 
expanding meta-analysis of variation: the log coefficient of variation ratio, 
lnCVR. 



19 
 

Stewart, G., 2009. Meta-analysis in applied ecology. Biol. Lett. 6, 78–81. 
https://doi.org/10.1098/rsbl.2009.0546 

Tschirren, B., Rutstein, A.N., Postma, E., Mariette, M., Griffith, S.C., 2009. Short- 
and long-term consequences of early developmental conditions: a case study 
on wild and domesticated zebra finches: Life-history strategies of wild and 
domestic birds. J. Evol. Biol. 22, 387–395. https://doi.org/10.1111/j.1420-
9101.2008.01656.x 

Viechtbauer, W., 2010. Conducting Meta-Analyses in R with the metafor Package. J. 
Stat. Softw. 36, 1–48. https://doi.org/10.18637/jss.v036.i03 

Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, 2nd ed, Use R! 
Springer International Publishing. 

 


