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Highlights 14 

- We apply coevolutionary knowledge to conservation biology. 15 

- We propose a new statistic (Ec) that uses data from cophylogenetic analyses.  16 

- We suggest potential future opportunities for advancing the field. 17 

 18 

  19 



Abstract 20 

Symbionts (i.e., parasites, mutualists, and commensals that interact intimately with their hosts) 21 

have a unique mode of life that has attracted the attention of ecologists and evolutionary 22 

biologists for centuries.  As a result of this attention, these disciplines have produced a mature 23 

body of literature on these interactions.  In contrast, the discipline of symbiont conservation is 24 

still in a foundational stage.  Further, given the particularities of the life-history of symbiont 25 

species, some problems may arise when directly applying knowledge from Conservation Biology 26 

of free-living species to symbiont conservation.  Here, we aim to adapt existing ecological and 27 

evolutionary knowledge of symbionts to the perspective of biological conservation.  Specifically, 28 

we first propose a new statistic “cophylogenetic extinction rate” (Ec) that uses data from event-29 

based cophylogenetic analyses and might be informative to assess relative symbiont extinction 30 

risks.  Then, we outline aspects of ecology or evolution that may be relevant to consider for 31 

assessing symbiont vulnerability to extinction.  Finally, we propose potential future research to 32 

further develop estimation of symbiont extinction risk from cophylogenetic analyses and 33 

continue the integration of this existing knowledge into future symbiont conservation studies and 34 

practices. 35 

   36 

  37 



1.  Introduction 38 

Symbionts (i.e., parasites, mutualists, and commensals that interact intimately with their hosts) 39 

are vital components of ecosystems, comprising up to 75% of all ecological interactions 40 

(Lafferty et al., 2006; Dobson et al., 2008).  A major concern is that conservative estimates 41 

predict that up to 10% of symbiont species are expected to go extinct by 2070 due to climate 42 

change (Carlson et al., 2017a).  However, despite their ecological relevance and the conservation 43 

status, symbiont Conservation Biology is still in a foundational stage (e.g., Windsor, 1995; 44 

Dougherty et al., 2016; Rocha et al., 2016; Cizauskas et al., 2017; this special issue).  Indeed, 45 

apart from these studies, research on symbiont conservation can be summarized as follows: 1) a 46 

few examples of studies on iconic endangered or extinct species (e.g., the California condor 47 

louse Colpocephalum californici; Dunn et al., 2009; Rózsa and Vas, 2015); and 2) theoretical 48 

work on the impact of coextinctions (Koh et al., 2004; Dunn et al., 2009; Strona, 2015).  49 

Contrarily to work on free-living species, studies on symbiont Conservation Biology relating 50 

ecological and evolutionary variables (e.g., dispersal or population dynamics) to conclusions 51 

relevant for conservation are lacking.  52 

 In contrast, many studies of symbionts have covered various aspects of their ecology and 53 

evolution (Poulin, 2011; Clayton et al., 2015), some of which may be useful for assessing 54 

symbiont extinction risks (Soulé, 1980; Groom et al., 2012).  However, the unique life-history of 55 

symbiont species may pose some problems for directly importing knowledge from Conservation 56 

Biology theory of free-living species.  For instance, in symbionts, the mode of dispersal might be 57 

a much better proxy of dispersal capabilities than the mean of dispersal distances.  Overall, these 58 

specific features and the lack of studies integrating the existing ecological and evolutionary 59 

knowledge of symbionts into conservation practices may be inhibiting Conservation Biologists 60 



lacking experience on symbionts from working on symbiont conservation.  Thus, here we aim to 61 

adapt existing knowledge from ecological and evolutionary studies of symbionts into a biological 62 

conservation perspective. As an example of this rationale, there is a likely relationship between 63 

symbiont prevalence and extinction risk. From ecological and evolutionary studies, we expect 64 

symbionts exhibiting low prevalence and intensity to possess an increased probability of 65 

stochastic extinction (Clayton et al., 2015). Consequently, we could use species prevalence data 66 

to classify low-prevalence symbionts as more at risk of extinction.   67 

 In this overview 1) we first propose a new statistic derived from cophylogenetic analyses 68 

to assess symbiont extinction risks; 2) then, we focus on potential ecological and evolutionary 69 

predictors of symbiont vulnerability to extinction, which, although studied in great detail by 70 

ecological and evolutionary biologists, have not been linked directly to Conservation Biology.  71 

We most emphasize those predictors covering aspects that are most unique to symbionts and that 72 

have not been extensively reviewed by previous publications.  In addition, we discuss high level 73 

of interrelation among these ecological and evolutionary factors.  Although our examples focus 74 

largely on groups we have studied ourselves, the feather lice and mites of birds, we attempt to 75 

generalize our conclusions.  76 

2.  Obtaining symbiont extinction rates from cophylogenetics  77 

Cophylogenetic analyses are widely used methods in which host and symbiont evolutionary trees 78 

are compared to uncover the processes driving symbiont diversification (Page, 2003; De Vienne 79 

et al., 2013; Clayton et al., 2015; Martínez-Aquino, 2016).  Several cophylogenetic methods 80 

exist, and these can be classified into two main categories: distance-based and event-based 81 

methods (Page, 2003; De Vienne et al., 2013; Martínez-Aquino, 2016). In short, distance-based 82 

methods (e.g., ParaFit; Legendre et al., 2002) measure the topological distance between host and 83 



symbiont trees and statistically evaluate whether the congruence is higher than expected by 84 

chance (Huelsenbeck et al., 2003; De Vienne et al., 2013; Martínez-Aquino, 2016).  In these 85 

methods, significantly high levels of congruence are generally assumed to be the result of 86 

codivergence between host and symbionts (Huelsenbeck et al., 2003; De Vienne et al., 2013; 87 

Martínez-Aquino, 2016).  Event-based methods (e.g., Jane; Conow et al., 2010) use costs for 88 

macroevolutionary events (e.g., cospeciation, host-switches, losses) which must be previously 89 

specified by the user, to reconcile host and symbiont phylogenetic trees (De Vienne et al., 2013; 90 

Charleston and Libeskind-Hadas, 2014; Martínez-Aquino, 2016).  The result of an event-based 91 

cophylogenetic analysis generally includes the best solution to reconcile both trees (i.e., given 92 

the costs specified) and the corresponding number of macroevolutionary evolutionary events of 93 

each category which were needed to reach that solution.  These events typically include 94 

cospeciation, duplication, host switch, loss, and failure to diverge (De Vienne et al., 2013; 95 

Charleston and Libeskind-Hadas, 2014; Martínez-Aquino, 2016).  96 

 Here, we propose using the proportional number of losses (i.e., “sorting events”) from an 97 

event-based cophylogenetic reconstruction to obtain a rough estimate of the relative extinction 98 

rate of a particular symbiont lineage (Fig. 1).  This approach is similar to the current practice of 99 

using the percentage of cospeciation events as a measure of the relative importance of 100 

cospeciation in a symbiont lineage (Johnson and Clayton, 2003; De Vienne et al., 2013; Doña et 101 

al., 2017b).  In cophylogenetic reconstructions, the inferred losses can be interpreted as the 102 

consequence of two distinct processes (Fig. 1; Clayton et al., 2015): (1) as genuine events of 103 

parasite extinctions; or (2) as sorting events (e.g., ‘missing the boat’), when a symbiont fails to 104 

disperse with one host lineage.  Note that even though sorting events are not directly indicative 105 

of symbiont species extinctions, they do inform about symbiont transmission efficiency and 106 



reflect the probability of stochastic extinction, and therefore might be valuable for assessing 107 

symbiont extinction at a species scale (Paterson et al., 1999; MacLeod et al., 2010; Poulin, 2011; 108 

Clayton et al., 2015).   109 

 The estimation of Ec (i.e., cophylogenetic extinction rate) would be as follows: 𝐸𝑐 =110 

$ %
&'(

); where L represents the number of losses, E the total number of macroevolutionary events 111 

(e.g., cospeciation + duplication + losses + host-switches), and S the number of host-switches 112 

which is included as an additional term to account for differences in colonization capabilities, 113 

which should effectively lower the extinction risk.  The parameter Ec increases linearly with the 114 

number of losses, and decreases as host-switching increases (Fig 2).  Consequently, two 115 

symbiont lineages with the same proportion of losses but a different number of switches will 116 

possess different Ec values; so that the lineage with the lowest number of switches will possess 117 

the highest Ec value. We encourage accompanying Ec with a confidence interval to show how 118 

good the estimate is (e.g., the modified Wilson confidence interval for a binomial proportion; 119 

Brown et al., 2001; Signorell et al., 2016; Appendix 1, Supplementary material). To help 120 

calculating Ec and the confidence intervals (modified Wilson), we provide a Shiny app 121 

(https://jdona.shinyapps.io/extinction/). 122 

 As a proof of concept of this approach, we calculated Ec for two symbiont lineages; the 123 

feather mite genera Proctophyllodes and Trouessartia (Acari: Astigmata: Analgoidea and 124 

Pterolichoidea).  As input for the calculations, we used the results of event-based cophylogenetic 125 

reconstructions from Doña et al., (2017b).  In this study, Trouessartia mites were found to have 1 126 

loss and 9 host-switches out of 14 events, and Proctophyllodes mites 1 loss and 32 host-switches 127 

out of 42 events.  From these values, the estimated Ec is slightly higher for Trouessartia (Ec = 128 



0.04; CI = 0-0.21) than for Proctophyllodes (Ec = 0.01; CI = 0-0.07) mites.  This result agrees 129 

with existing comparative knowledge from the Ecology and Evolution of these mites.  130 

Specifically, Trouessartia mites are known to have: 1) a lower species diversity on Passeriformes 131 

(Doña et al., 2016, 2018), 2) lower prevalence and intensity (Fernández-González et al., 2018; 132 

Doña et al., 2019b), 3) lower genetic diversity (Fernández-González et al., 2018; Doña et al., 133 

2019b), and 4) infrapopulations genetically more structured (Doña et al., 2019a). 134 

3.  Potential ecological and evolutionary predictors of symbiont vulnerability to extinction 135 

Mode of transmission 136 

Symbionts transmit (or disperse) from one host to another in different ways (Poulin, 2011; 137 

Clayton et al., 2015; Antonovics et al., 2017). Among the many individual strategies, symbiont 138 

transmission strategies can be classified into two main modes: vertical and horizontal (Poulin, 139 

2011; Clayton et al., 2015; Antonovics et al., 2017).  140 

 Vertically-transmitted symbionts tend to be more specialized to their hosts than 141 

symbionts that are horizontally-transmitted (Douglas, 1998; Poulin, 2011; Clayton et al., 2015).  142 

This level of specialization is often manifested by, among other things, populations genetically 143 

more structured. Vertically transmitted parasites also tend to have lower dispersal capabilities, 144 

virulence, levels of genetic diversity, rates of straggling and host-switching, and levels of 145 

introgression from other symbiont species (Lipsitch et al., 1995; Whiteman et al., 2004; Huyse et 146 

al., 2005; Barrett et al., 2008; Clayton et al., 2015; Doña et al., 2017b; Sweet and Johnson, 2018; 147 

Doña et al., 2019c).  148 

 Conversely, horizontally-transmitted symbionts are often less specialized to their hosts 149 

(Douglas, 1998; Poulin, 2011; Clayton et al., 2015) and have less genetically structured 150 

populations. In addition, horizontal transmission favors higher dispersal capabilities, virulence, 151 

rates of straggling and host-switching, and levels of introgression from other symbiont species 152 

(Lipsitch et al., 1995; Whiteman et al., 2004; Huyse et al., 2005; Barrett et al., 2008; Clayton et 153 



al., 2015; Doña et al., 2017b; Sweet and Johnson, 2018; Doña et al., 2019c).  154 

 Overall, the mode of transmission of a symbiont species is associated with major 155 

ecological and evolutionary aspects which may be relevant to consider in symbiont extinction 156 

risk assessments.  All else being equal, vertically-transmitted symbionts would be predicted to 157 

have a higher probability of extinction given their level of specialization and other relevant 158 

features that increase extinction risk (e.g., high virulence or low levels of genetic diversity).        159 

Virulence 160 

Virulence can be defined as the reduction of host fitness caused by the symbiont (i.e., parasites, 161 

Herre, 1993; Read, 1994). Different factors, such as the mode of transmission (i. e., horizontally-162 

transmitted parasites are typically more virulent) or parasite-parasite competition (i. e., the higher 163 

the competition between distantly-related parasites, the higher the virulence), are known to drive 164 

the evolution of virulence in parasites (Cressler et al., 2016).   165 

 In a scenario of host vulnerability due to climate change, more virulent parasites might 166 

increase the risk of extinction of the host, because of the morbidity of host individuals that 167 

harbor virulent parasites.  This process will lead to a greater chance of co-extinction of the host 168 

and parasite, as there may be no time for natural selection to adjust virulence intensity. 169 

Straggling and host-switching  170 

Symbionts, even though highly specialized to their particular hosts, can sometimes colonize new 171 

hosts (Agosta et al., 2010; Clayton et al., 2015).  Ecological and evolutionary factors, such as 172 

dispersal ability, can determine the potential for straggling (i.e., dispersal to a novel host) and 173 

host-switching (i.e., not only reaching a new host but also reproducing on the new host) 174 

(Whiteman et al., 2004; Clayton et al., 2015). Vertically-transmitted symbionts tend to exhibit 175 

lower rates of straggling and host-switching.  However, most symbiont lineages, even those with 176 



relatively low dispersal capabilities, have at least modest capacities to colonize new hosts (Doña 177 

et al., 2019b, 2017b).    178 

 In general, straggling seems to be frequent at an ecological scale, whereas successful 179 

host-switches are comparatively rare (Whiteman et al., 2004; Rivera-Parra et al., 2017; Doña et 180 

al., 2019b).  This pattern can be explained by the fact that successful colonization requires many 181 

conditions to be met for survival and reproduction on a novel host species (Clayton et al., 2015; 182 

Doña et al., 2019b).  Thus, most successful host-switches are clade limited (i.e., to closely related 183 

hosts) in which symbiont traits fit ecologically to those of the host (Agosta and Klemens, 2008; 184 

Agosta et al., 2010; Engelstädter and Fortuna, 2019, but see Host effect).  In contrast, major host-185 

switches (i.e., switches to phylogenetically distant hosts) are infrequent at an ecological scale but 186 

can be observed at evolutionary time scales (Doña et al., 2018).  Interspecific interactions (e.g., 187 

competition against other symbiont species, or hybridization) and the availability of potential 188 

hosts are also relevant factors that influence straggling and host-switching dynamics (Harbison et 189 

al., 2008; Johnson et al., 2009; Harbison and Clayton, 2011; Doña et al., 2019c).          190 

 Host-switches have been considered as a way for symbionts to escape extinction.  Indeed, 191 

symbionts with higher straggling and host-switching rates may be predicted to have a lower 192 

probability of becoming extinct.  However, even though the frequency of host-switches at an 193 

ecological scale is likely underestimated (Brooks and Hoberg, 2007; Doña et al., 2019b), the 194 

unusual speed of current climate change may make host-switching ineffective for mitigating 195 

short-term extinction risks, especially considering the limited success in overcoming climate 196 

change effects that most free-living species are already projected to have (Settele et al., 2014; 197 

Carlson et al., 2017a; Cizauskas et al., 2017).  In other words, while host-switching could 198 

potentially be helpful for symbionts to escape from host extinctions, the low rate of successful 199 



host colonization suggests that it is probably unrealistic to think that host-switching may save 200 

symbiont species from becoming extinct.   201 

Symbiont population genetic structure  202 

Intermediate degrees of population subdivision generally yield the highest adaptive potential, 203 

with possibilities for local adaptation to local environments, yet with occasional gene flow and 204 

large enough local effective size to prevent rapid inbreeding and loss of variation (Allendorf et 205 

al., 2007).  Populations of symbionts tend to be subdivided in nature (Huyse et al., 2005; Poulin, 206 

2011; Clayton et al., 2015).  Populations of symbionts can also be further subdivided because 207 

individual symbionts are grouped into infrapopulations (i.e., multiple symbionts on an individual 208 

host). At higher level, different infrapopulations which maintain gene flow form a 209 

metapopulation (Huyse et al., 2005; Poulin, 2011; Clayton et al., 2015).  An important 210 

consequence of such a level of population subdivision is that it is expected to increase the 211 

effective population size, according to population genetics theory (Futuyma, 2013).  Indeed, 212 

symbiont species usually show high levels of genetic diversity (e.g., Doña et al., 2015).  On the 213 

other hand, if the level of subdivision is extreme, new beneficial mutations that arise will not 214 

readily spread across the species and populations may lose adaptive potential on an evolutionary 215 

time scale (Allendorf et al., 2007).  Overall, different factors have been identified as major 216 

drivers of levels of symbiont population structure.   217 

 The dispersal mode of symbionts has a profound impact on the population structure of 218 

symbionts (Clayton et al., 2015; Sweet and Johnson, 2018).  Vertically-transmitted symbionts 219 

typically accumulate genetic differences that lead to population genetic structure (Clayton et al., 220 

2015; Sweet and Johnson, 2018). In contrast, in horizontally-transmitted symbionts, dispersal 221 

tends to erode the population genetic structure among infrapopulations (Clayton et al., 2015; 222 



Sweet and Johnson, 2018).  Nonetheless, host vagility also influences the degree of symbiont 223 

population genetic structure (McCoy et al., 2003).  Thus, vertically-transmitted symbionts can 224 

sometimes show low levels of population genetic structure (Doña et al.  2019).  225 

 Metapopulation structure is also important in shaping the population genetic structure of 226 

symbiont populations (Gandon, 2002; Huyse et al., 2005).  For instance, infrapopulations that are 227 

part of a metapopulation, have a higher probability of recolonization and thus are less likely to 228 

become extinct (Futuyma, 2013; Clayton et al., 2015).   229 

 Lastly, infrapopulation parameters can also affect the degree of genetic structure overall 230 

(Clayton et al., 2015).  Specifically, symbiont species which possess larger infrapopulation sizes 231 

are expected to show less evidence of inbreeding, less population structure, and higher levels of 232 

genetic diversity (Nadler, 1995; Futuyma, 2013; Doña et al., 2015).  233 

 In summary, most symbiont species have levels of gene flow between populations that are 234 

often higher than between host populations, and therefore extreme levels of population 235 

subdivision are not expected to be the norm (Mazé-Guilmo et al., 2016). This pattern is true even 236 

for symbiont species with minimal dispersal capabilities (Doña et al 2019).  Nonetheless, 237 

symbiont populations are theoretically expected to become more fragmented due to 238 

anthropogenic causes (Pickles et al., 2013; Carlson et al., 2017a); leading to situations in which 239 

worrisome levels of subdivision can become more frequent.  240 

Aggregation 241 

Just as free-living organisms are not evenly distributed across their geographic range (Dallas et 242 

al., 2017a); symbionts are not uniformly distributed among their hosts (Poulin, 2011; Clayton et 243 

al., 2015).  Indeed, symbionts are generally aggregated among the available hosts, so that most 244 

host individuals are inhabited by no or few symbionts, while many symbionts inhabit just a few 245 



host individuals (Rózsa et al., 2000; Poulin, 2011).   246 

  The level of aggregation may affect the levels of genetic diversity of symbiont 247 

populations (e.g., a high level of aggregation may lead to smaller effective population sizes or 248 

influence the spread of rare alleles through populations, Cornell et al., 2003; Criscione and 249 

Blouin, 2005; Dhamarajan, 2015; Montarry Josselin et al., 2019).  Also, symbionts exhibiting a 250 

higher level of aggregation may be more sensitive to go extinct due to stochastic host mortality 251 

(Clayton et al., 2015).  That is, if the host individuals harboring most of the symbionts die, the 252 

symbiont species will lose most of its population.  253 

 Thus, aggregation can be an important parameter for symbiont persistence, affecting 254 

levels of genetic diversity and increasing the probability of stochastic extinction. 255 

Host population size 256 

Organisms exhibit population sizes which can vary in orders of magnitude and that are 257 

experiencing drastic changes in the Anthropocene (McArdle et al., 1990; Dornelas et al., 2019). 258 

 Host densities are known to influence, to some extent, symbiont abundance (Arneberg 259 

Per et al., 1998; Ellis et al., 2017).  In addition, abundant hosts tend to harbor both generalist and 260 

specialist symbionts, whereas less abundant hosts tend to more often harbor only generalist 261 

symbionts, a pattern that is known as asymmetry of interactions (Vázquez et al., 2005). It is still 262 

unclear whether generalists or specialist symbionts are more vulnerable to climate change, as 263 

specialists may be inhabiting hosts with a lower probability of becoming extinct (Strona et al., 264 

2013). Nonetheless, hosts with small population sizes can increase the likelihood that the host 265 

and the symbiont become co-extinct (Strona, 2015).  Similarly, low host population sizes can 266 

increase the likelihood of the symbiont becoming extinct even if the host does not go extinct 267 

(e.g., because of the aggregated distributions of the symbiont). 268 



 Overall, symbionts from hosts with small population sizes (and low-density) are expected 269 

to be more vulnerable because they typically have lower abundances, higher coextinction risks, 270 

and higher probabilities of extinction than that of their hosts because of the aggregated 271 

distributions of symbionts.  272 

Symbiont effective population size 273 

The effective population size (Ne ) is a relevant factor determining rates of genetic drift, loss of 274 

genetic variability, and modulating the effectiveness of selection (Waples, 2016; Ryman et al., 275 

2019). Symbionts often have life-history features that may reduce Ne (Criscione and Blouin, 276 

2005).  Examples of these features include (but are not restricted to): 1) frequent bottlenecks, 277 

which can erode genetic diversity (Monsion et al., 2008; Dabert et al., 2015; Doña et al., 2015) 278 

or 2) aggregated distributions in which, due to inequalities in reproduction, Ne  may be closer to 279 

the number of infected hosts than to the total number of symbionts (Dobson, 1986; Criscione and 280 

Blouin, 2005).  Most studies of the Ne  of symbionts have focused on coalescence-based 281 

estimations of long-term Ne (Crellen et al., 2016; Thiele et al., 2018), and whilst promising, only 282 

a few studies have been carried out over short time spans (Criscione, 2013; Strobel et al., 2019).  283 

Overall, studies of symbiont Ne have found Ne to be small (Seger et al., 2010; Criscione, 2013; 284 

Strobel et al., 2019). However, there are some cases where the effective population size is large 285 

(Hughes Austin L. and Vierra Federica, 2001).  In general, the factors shaping symbiont Ne are 286 

not yet well understood and warrant further study (Criscione et al., 2005; Criscione and Blouin, 287 

2005; Criscione, 2016). 288 

 Among the factors shaping symbiont Ne, several studies have found strong relationships 289 

between variables related to symbiont census size (e.g., genetic diversity or host body size) and 290 

Ne (Criscione et al., 2005; Doña et al., 2015; Strobel et al., 2019).  For instance, median species 291 



infrapopulation size has been found to correlate with genetic diversity (which is expected to 292 

correlate with Ne; Kimura, 1968, 1983; Romiguier et al., 2014; Grundler et al., 2019) in some 293 

symbiont groups (Criscione et al., 2005; Doña et al., 2015).  Even though the generality of this 294 

prediction in other symbiont groups is yet to be studied (Doña et al., 2015; Criscione, 2016), 295 

these results may suggest that parameters that are easy to calculate, such as mitochondrial 296 

genetic diversity may provide crude estimates of species Ne in symbionts.   297 

   Overall, the effective population size is still a central parameter in conservation biology, 298 

and different methods to estimate Ne from molecular data have been extensively used and tested 299 

(Gilbert and Whitlock, 2015; Wang, 2016). However, recent research support that estimations of 300 

contemporary Ne could be consistently underestimated in subdivided populations, and that 301 

different population structures may require different sample sizes to reach a similar level of 302 

accuracy (Barbosa et al., 2018).  An alternative strategy may be to concentrate on levels of 303 

inbreeding and reduce the focus on Ne (Ryman et al., 2019). In summary, obtaining precise 304 

estimates of symbionts Ne is a complicated task.  Large and small Ne can be expected in 305 

symbionts, and factors such as aggregation, bottlenecks, prevalence, and intensity, influence Ne, 306 

and therefore, may provide useful insights of symbiont Ne.  307 

Geographic patchiness 308 

While symbionts often possess adaptations to be highly successful on their host species (e.g., a 309 

high reproductive potential), the geographic ranges of symbionts and hosts do not always match 310 

perfectly, with some symbionts almost mirroring the whole distribution of their hosts and others 311 

restricted to some small areas of host distribution (Krasnov et al., 2004; Bush et al., 2009; 312 

Poulin, 2011; Clayton et al., 2015).  The reasons for these patchy distributions are varied. For 313 

example, environmental conditions external to the host may make symbiont survival impossible. 314 



Alternatively, interspecific interactions, such as competition, may play a role (Clayton et al., 315 

2015; Wells and Clark, 2019).  However, given the adaptations of symbionts to population 316 

fragmentation, the lack of a symbiont in a specific place should not compromise the species on a 317 

global scale (Bush and Kennedy, 1994).  Nonetheless, the accelerated anthropogenic 318 

fragmentation of host populations may increase the number of local extinctions of parasite 319 

populations (Bush et al., 2013), thus increasing the likelihood of the symbiont species to become 320 

extinct on a global scale.   321 

 Overall, symbionts restricted to reduced areas of host distribution may be expected to 322 

present a higher vulnerability of becoming extinct. 323 

Host effects 324 

Not all hosts are equally suitable for the symbionts.  Indeed, several host features have a 325 

substantial effect on symbiont traits (Clayton et al., 2015).  This effect may be the outcome of a 326 

co-adaptative process (e.g., arm-races dynamics).  In host-parasite systems, for instance, hosts 327 

usually have evolved strategies that impose a direct effect on parasites such as avoidance, 328 

tolerance, and resistance strategies (Clayton and al, 2010; Clayton et al., 2015; Bush and 329 

Clayton, 2018).  Examples of these strategies include chemical compounds (e.g., batrachotoxins 330 

in the skin and feathers of some species of New Guinea birds; Dumbacher et al., 1992), 331 

behavioral responses (e.g., preening; Villa et al., 2016, 2018; Bush et al., 2019), or 332 

immunological responses (e.g., inflammatory responses; Owen et al., 2009).  Also, host traits 333 

may impose effects on symbiont traits which may not be the result of coadaptation (Clayton et 334 

al., 2015).  Examples of these kind of effects of hosts on symbionts traits include, host-density 335 

influencing parasite abundance (Arneberg Per et al., 1998; Ellis et al., 2017), host-body size 336 

influencing the sex-ratio of the parasites (Clausen, 1939), or migratory hosts lowering parasite 337 



survival (Hall et al., 2014).  338 

 As discussed above (see Straggling and host-switching), host-switches could potentially 339 

serve as escape routes for symbionts to avoid co-extinction with their hosts. Though symbionts 340 

exhibit phenotypic plasticity and can often survive across varied phylogenetically related hosts, 341 

some hosts may possess key traits (which may not be present in closely related hosts) that 342 

hamper symbiont colonization.  These traits could be host adaptations that exert a direct or 343 

indirect negative effect on particular symbiont taxa. For example, a new host with a migratory 344 

behavior, that the “original” host did not possess, may make symbiont survival difficult (Poulin 345 

et al., 2012).  That is to say, hosts that are not inhabited by a particular symbiont lineage that is 346 

present in closely related hosts may be free of the symbiont lineage because that particular host is 347 

not suitable for that particular symbiont lineage, and not because of a lack of colonization 348 

opportunities.  Notably, this highlights the need for understanding the basic biology of symbionts 349 

when using modeling approaches to assess potentially suitable hosts.  350 

 In sum, host features exert pressure on symbiont traits when there is an intimate 351 

association.  Also, hosts may possess traits that hamper symbiont colonization.  Altogether, 352 

these host features may be related to the likelihood of a symbiont becoming extinct. 353 

Trait matching 354 

Due to the coevolutionary process, symbionts tend to possess traits that match very tightly those 355 

of their hosts (Clayton et al., 2015).  Matching traits are not always the result of co-adaptation 356 

(i.e., microevolution of two or more interacting species in response to reciprocal selection 357 

between them; Janzen, 1980).  Indeed, many traits fit ecologically (i.e., due to ecological fitting;  358 

Janzen, 1985) even though they have evolved due to historical interactions with entirely different 359 

species.  360 



 Independently of the process behind the evolution of the matching traits, highly host-361 

specific symbionts (i.e., those inhabiting a single or just a few host species) are expected to be 362 

more specialized to their hosts, and therefore to possess traits exhibiting a higher degree of 363 

matching (Agosta et al., 2010; Thompson, 1994).  This level of matching may constrain their 364 

capabilities to colonize new hosts (Remold, 2012).  Nonetheless, several non-mutually exclusive 365 

factors may act against this prediction and need to be considered.  First, many highly host-366 

specific and specialized symbionts are revealed as less host-specific and specialized after careful 367 

study (Dallas et al., 2017b).  This finding is supported by recent large-scale molecular field 368 

studies that have found that straggling is much more frequent than predicted in supposedly 369 

highly host-specific symbionts (Doña et al., 2019b).  In addition, theoretical studies have found a 370 

generalized evolutionary signal of intimate herbivores continuously probing new hosts (Braga et 371 

al., 2018).  Recent studies are also demonstrating that host-specific symbionts can become 372 

quickly adapted to new hosts (i.e., rapid evolution; Koch et al., 2014; Bush et al., 2019; Villa et 373 

al., 2019).  Third, highly host-specific symbionts may inhabit hosts with low vulnerability to 374 

extinction, as a result of specialism been favored as an evolutionary strategy on hosts with less 375 

demographic stochasticity (Strona et al., 2013).    376 

 Therefore, all else being equal, highly host-specific and specialized symbionts might be 377 

predicted to be more endangered because they depend more upon their hosts and their odds of 378 

successfully colonizing a new host species in ecological time are lower than that of multi-host 379 

and often more generalist species.  However, factors such as overestimates of host specificity 380 

levels, rapid evolution, and host stability may act to counter this prediction.   381 

Inter- and intraspecific competition 382 

Symbionts not only interact with their hosts, they also interact with diverse communities 383 



(including other symbionts) with whom they share their host.  On the one hand, symbionts can 384 

obtain benefits from interacting with other organisms.  For instance, feather mites molt inside the 385 

empty eggshells of feather lice (with whom they coexist on wing feathers).  By doing so, they get 386 

protection from predation, reduce the loss of moisture, and obtain a frictional surface against 387 

which to rub off their old exoskeleton (Perez and Atyeo, 1984; Proctor, 2003).  In other cases, 388 

however, interactions with other organisms on the host have a negative effect due to (direct or 389 

indirect) competition for limiting resources (Clayton et al., 2015).  Competition is known to 390 

produce numerical effects (e.g., exclusion, reduced growth, survival) or niche shifts (e.g., 391 

resource partitioning, character displacement) in symbionts (Clayton et al., 2015).  Importantly, 392 

competition is linked to ecological and evolutionary traits relevant to assess symbiont extinction 393 

risks, such as host-specificity or the mode of dispersal (Harbison et al., 2008; Johnson et al., 394 

2009; Doña et al., 2017a).  For example, on pigeons, body lice compete for resources (food and 395 

space) with wing lice (Bush and Malenke, 2008).  Body lice are competitively superior, and 396 

coexistence is mediated by a competition-colonization trade-off in which wing lice (i.e., the 397 

competitively inferior species) possess higher dispersal capabilities (Harbison et al., 2008).  In 398 

other cases, intraspecific competition can be more important. For example, the magnitude of 399 

vertical transmission in feather mites has been found to respond to the degree of intraspecific 400 

competition.  Specifically, by transmitting vertically, feather mites abandon a more stable host 401 

(i.e., the adult bird), but reduce intraspecific competition for resources and space by dispersing to 402 

young birds (Doña et al., 2017a). 403 

 Overall, a deep understanding of the interaction dynamics of symbiont species can be 404 

highly valuable to forecast symbiont extinction risk (Lau and terHorst, 2019).  However, for 405 

most species, not only is this information not yet available but also seems unlikely to be 406 



available any time soon given the difficulties in conducting experiments that collect this type of 407 

data.  Nonetheless, some patterns of competition related to climate change, such as condition-408 

dependent competition, can be extracted from existing data.  In condition-dependent competition, 409 

inferior competitors that can withstand harsh environmental conditions can minimize or avoid 410 

competition by exploiting environments that are unsuitable for superior competitors (Clayton et 411 

al., 2015).  In other words, condition-dependent competition is expected to produce a pattern of 412 

symbiont co-exclusion correlated to environmental conditions, and this kind of information can 413 

be extracted/analyzed from global host-symbiont datasets (e.g., Gibson et al., 2005; Doña et al., 414 

2016).  Condition-dependent competition is generally not included in current symbiont extinction 415 

predictions, thus suggesting that these predictions may, therefore, underestimate symbiont loss 416 

(Clayton et al., 2015; Carlson et al., 2017a).  This increased rate of losses would be because 417 

symbionts experiencing condition-dependent competition may go extinct long before their hosts 418 

show any evidence of decline.  419 

 Overall, competitively superior species are expected to be less vulnerable to extinction 420 

than competitively inferior species.  However, including competition into symbiont extinction 421 

assessments is a complicated task.  Modeling studies are still starting to develop theoretical 422 

predictions on the impact of climate change on interacting species.  For instance, depending on 423 

the form that coevolution takes between species (e.g., whether selection is acting to increase or 424 

avoid competition), coevolution may increase or decrease the effect of environmental change 425 

(Northfield and Ives, 2013).  Besides, due to asymmetries in resource distribution and 426 

competition, competitively superior species, counterintuitively, may not necessarily be the 427 

winners in a rapidly changing climate scenario (Van Den Elzen et al., 2017).  428 

4.  Future opportunities 429 



We anticipate the following four areas as valuable for future research efforts to advance 430 

symbiont conservation theory from cophylogenetics and coevolutionary theory:  431 

4. 1.  Meta-analyses of current cophylogenetic data: To date, several cophylogenetic studies on 432 

symbionts have been carried out (e.g., De Vienne et al., 2013; Clayton et al., 2015, and 433 

references therein). These studies usually report the number of reconstructed macroevolutionary 434 

events of each type.  Accordingly, Ec, may be calculated from already published studies and 435 

compared between studies in a meta-analytic framework.  By doing so, lineage-specific Ec will 436 

be generated and available for symbiont initiatives that list their conservation status (e.g., 437 

PEARL; Carlson et al., 2017b), and future conservation-focused studies.   438 

4. 2. Integrating Conservation Biology into cophylogenetic research agenda: Future studies are 439 

encouraged to improve how extinction rates are estimated from cophylogenetic comparisons.  440 

For example, some types of host-switches often imply that an extinction event has happened on 441 

the old host (i.e., host-switching with extinction or host-switching with speciation and 442 

extinction). On the other hand, host-switching can save a symbiont from extinction (i.e., if the 443 

host goes extinct after the switch).  To our knowledge, current event-based cophylogenetic 444 

methods do not allow computing these types of host-switches.  Future research is needed here.  445 

Also, levels of host-specificity can influence extinction probabilities (Cizauskas et al., 2017; see 446 

Trait matching).  Accordingly, further research is needed so that future statistics of symbiont 447 

extinction rate from cophylogenetic comparisons could include current host-specificity levels 448 

into extinction rate predictions. Lastly, given that the extinction rate is likely not constant 449 

throughout the evolution of a lineage, providing information on the variation of the extinction 450 

rate through time would be useful. However, to our knowledge, no event-based cophylogenetic 451 

method allows for use as an input fully-dated phylogenies nor produces as a result dated 452 



macroevolutionary events.  Future improvements in cophylogenetic methods may allow 453 

providing extinction rate estimations through time.  454 

4. 3.  Expanding symbiont extinction rate modeling practices: Species distribution and 455 

evolutionary models are often used to calculate species extinction risk (Carlson et al., 2018).  456 

These models usually accommodate different variables to improve their predictions.  Examples 457 

of these variables include dispersal, rescue processes, demography, genetic data, and 458 

coextinction probabilities (Carlson et al., 2018).  Indeed, in symbionts, studies using species 459 

distribution models, including coextinction probabilities and the possibility of dispersal have 460 

been conducted (Carlson et al., 2017a).  On the other hand, lineage-specific extinction rates can 461 

be calculated from time-calibrated phylogenies (Beaulieu and O’Meara, 2015; Rabosky, 2016). 462 

These methods are based on the notion that speciation and extinction processes leave distinct 463 

signatures on the branching structure of a phylogeny (Nee et al., 1994).  While these approaches 464 

have been extensively used in free-living species, to our knowledge, extinction rates from 465 

phylogenies have almost not been yet used in symbiont studies (but see Alcala et al., 2017). 466 

Thus, even though these estimates should be treated with caution (Rabosky, 2016), the increasing 467 

availability of robust-comprehensive phylogenetic trees offers an opportunity to use these 468 

methods to estimate extinction rates of symbionts (Johnson, 2019).  Future studies on symbiont 469 

extinctions should ideally combine information on extinction rates obtained from phylogenies 470 

and cophylogenetic comparisons.  In the same vein, species distribution and evolutionary models 471 

would benefit from including these estimates in their predictions. 472 

4. 4.  Advancing the knowledge on drivers of symbiont extinction: The ecological and 473 

evolutionary drivers highlighted in this perspective (see section 3) are connected to symbiont 474 

extinction risks based on existing knowledge of symbiont species and Conservation Biology 475 



theory of free-living species.  However, dedicated studies investigating the relationship of these 476 

factors with symbiont extinction risks are nonexistent though highly encouraged.  In-depth 477 

investigations of these drivers across symbiont species will help to obtain a more detailed picture 478 

that will allow, for example, measuring the relative contribution of each of the different drivers 479 

to symbiont extinction risk.  In addition, drivers that have not been covered in this perspective 480 

but have been identified as predictors of symbiont vulnerability by previous studies (e.g., 481 

symbiont metabolic strategies or host body size; Cizauskas et al., 2017) should be considered for 482 

studies on symbiont conservation. Last but not least, additional drivers that may play a role in 483 

symbiont extinction but no covered by us nor by previous studies should require further 484 

attention.  Among the most obvious candidates are processes and factors which are becoming to 485 

be acknowledged as important for the ecology and evolution of symbionts and known to be 486 

associated with the extinction of free-living species, such as hybridization and introgression 487 

(Vallejo-Marín and Hiscock, 2016), microbiomes (Trevelline et al., 2019) or epigenetic 488 

processes (Bossdorf et al., 2008).  489 
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Appendix A. Supplementary data 494 

A shiny application to directly calculate Ec and confidence intervals from the number of 495 

macroevolutionary events estimated from an event-based cophylogenetic reconstruction can be 496 



found here (https://jdona.shinyapps.io/extinction/). The R function is also available at GitHub 497 

(https://github.com/Jorge-Dona/cophylogenetic_extinction_rate). 498 
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Fig. 1. Diagram depicting symbiont losses in an event-based cophylogenetic reconstruction.  843 
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Fig. 2.  Results of simulations showing the behavior of Ec under different numbers of losses and 857 

host-switches.  The number of total events (E) is 200 in both plots. 858 
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Fig. 3. Diagram depicting predictions of symbiont extinction derived from ecological and 861 

evolutionary drivers.  Note that this is a highly simplified summary, with greater detail provided 862 

in the text.  Thicker lines represent a higher extinction risk.   863 
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