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Abstract: Symbionts have a unique mode of life that has attracted the attention of ecologists and 10 
evolutionary biologists for centuries.  As a result of this attention, these disciplines have produced 11 
a mature body of literature on host-symbiont interactions.  In contrast, the discipline of symbiont 12 
conservation is still in a foundational stage.  Here, we aim to integrate methodologies on symbiont 13 
coevolutionary biology with the perspective of conservation.  We focus on host-symbiont 14 
cophylogenies, because they have been widely used to study symbiont diversification history and 15 
contain information on symbiont extinction.  However, cophylogenetic information has never been 16 
used nor adapted to the perspective of conservation.  Here, we propose a new statistic, 17 
“cophylogenetic extinction rate” (Ec), based on coevolutionary knowledge, that uses data from 18 
event-based cophylogenetic analyses, and which could be informative to assess relative symbiont 19 
extinction risks.  Finally, we propose potential future research to further develop estimation of 20 
symbiont extinction risk from cophylogenetic analyses and continue the integration of this existing 21 
knowledge of coevolutionary biology and cophylogenetics into future symbiont conservation 22 
studies and practices. 23 
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Highlights: 28 

- We apply coevolutionary knowledge to symbiont conservation biology. 29 
- We propose a new statistic to assess symbiont extinction risk from cophylogenies.  30 
- We suggest potential future opportunities for advancing the field. 31 

 32 
  33 



1.  Introduction 34 

Symbionts, defined as parasites, mutualists, and commensals that interact intimately with their 35 
hosts (Leung and Poulin, 2008), are highly relevant components of ecosystems, comprising up to 36 
75% of all ecological interactions (Lafferty et al., 2006; Dobson et al., 2008).  A major concern is 37 
that conservative estimates predict that a high percentage of symbiont species are expected to go 38 
extinct due to climate change (e.g., 10 % of parasite species by 2070, Carlson et al., 2017a; Dunn 39 
et al., 2009; Koh et al., 2004).  However,  despite their relevance and conservation status, symbiont 40 
conservation biology is still in a foundational stage (e.g., Windsor, 1995; Dougherty et al., 2016; 41 
Rocha et al., 2016; Cizauskas et al., 2017; this special issue).    42 
 Many studies of symbionts have covered various aspects of their ecology and evolution 43 
(Poulin, 2011; Clayton et al., 2015), some of which may be useful for assessing symbiont 44 
extinction risks (Soulé, 1980; Groom et al., 2012).  However, these studies have not considered 45 
the implications or relevance of their findings for conservation biology.  Host-symbiont 46 
cophylogenies are one example of this rationale.  Host-symbiont cophylogenies have been used to 47 
uncover the diversification history of many symbiont groups.  However, though never used for 48 
assessing symbiont extinction risk, they might also provide valuable information on symbiont 49 
extinctions across phylogeny.  50 
 Symbiont (i.e. affiliated, associated, or dependent species) extinction risk has been 51 
commonly assessed in a coextinction framework, using host information (e.g., host extinction 52 
probabilities) to calculate symbiont extinction probability (Colwell et al., 2012; Dunn et al., 2009; 53 
Koh et al., 2004; Moir et al., 2014, 2010).  Overall, current available approaches to estimate 54 
coextinction rates can be summarized as follows (Colwell et al., 2012; Moir et al., 2010): 1) 55 
Probabilistic models based on host likelihood of becoming extinct (e.g., estimated from historical 56 
data) that may also include some symbiont-specific traits, such as host specificity (Campião et al., 57 
2015; Carlson et al., 2017a; Dunn et al., 2009; Koh et al., 2004).  2) Host-breadth models, which 58 
can handle uncertainty in estimating host-breadth (Vesk et al., 2010), and may be used along with 59 
decision protocols not only to estimate coextinction rates but also identify actions that may 60 
increase the persistence of threatened species (Moir et al., 2012, 2011).  3) Models based on 61 
ecological networks, which are more focused on identifying overall consequences in network 62 
structure after species removal (Bascompte and Stouffer, 2009).  These models can handle more 63 
than two trophic levels, and have been recently improved to model more realistic situations (e.g., 64 
to integrate the variation in the interaction dependence, compensation after species extinctions, 65 
and the formation of new interactions; Baumgartner et al., 2020; Dunne et al., 2002; Vieira and 66 
Almeida-Neto, 2015).  While these approaches have significantly advanced our knowledge of 67 
coextinction of interacting species (Bascompte and Stouffer, 2009; Carlson et al., 2017a; Dunn et 68 
al., 2009; Koh et al., 2004; Taylor and Moir, 2014; Thacker et al., 2006; Vieira and Almeida-Neto, 69 
2015), some improvements in assessing coextinction rates are still needed (see Carlson et al., 2019; 70 
Colwell et al., 2012; Moir et al., 2010; Strona, 2015).   71 
 Important gaps have been identified in the ability to estimate coextinction risk (Colwell et 72 
al., 2012; Moir et al., 2010).  For instance, Moir et al., (2010) identified three categories of gaps: 73 



accuracy in 1) host data (e.g., threat of the host status), 2) dependent data (host specificity), and 74 
the 3) interactions between these two components (e.g., differences in the interactions across 75 
geographic regions).  In addition, Colwell et al. (2012) call for incorporating demographic and 76 
evolutionary dynamics, host switching, affiliate phylogeny, and risk factors for affiliate extinction.  77 
Overall, while some of the current gaps in assessing coextinction risk have already been overcome 78 
(e.g., better estimates of host specificity, Vesk et al., 2010; or allowing new interactions to emerge, 79 
Baumgartner et al., 2020), most of these aspects are yet to be implemented in current 80 
methodologies.   81 
 One example of a gap in assessing coextinction risk is that correlated extinctions of host 82 
and symbionts are not currently implemented in coextinction estimation (Colwell et al., 2012; Moir 83 
et al., 2010; Rezende et al., 2007).  Particular groups of species might be more prone to extinction 84 
due to different factors, for example shared life-history traits due to phylogenetic relatedness. 85 
Indeed, current methodologies to assess coextinction risk generally do not consider symbiont 86 
evolutionary history (but see Hoyal Cuthill et al., 2016; Moir et al., 2016).  This lack of 87 
consideration is especially important for traits that might be related to the likelihood of a symbiont 88 
group becoming extinct (Cizauskas et al., 2017; Colwell et al., 2012; Moir et al., 2014).  These 89 
traits could include host-switching capability (Clayton et al., 2015), effective population sizes 90 
(Allendorf, 2017), potential for rapid evolution (Villa et al., 2019), or hybridization dynamics 91 
(Detwiler and Criscione, 2010; Doña et al., 2019c; Vallejo-Marín and Hiscock, 2016).  92 
Accordingly, new approaches able to obtain estimates of symbiont extinction rates, including more 93 
aspects of symbiont evolutionary history, might enhance our ability in assessing symbiont 94 
extinction risk (Colwell et al., 2012; Moir et al., 2010; Strona, 2015).  However, to our knowledge, 95 
these approaches are still non-existent. 96 
 Current cophylogenetic methodologies might offer a possibility to include evolutionary 97 
history in symbiont extinction risk assessments (Section 2).  Cophylogenetic methods have been 98 
useful to disentangle which ecological and evolutionary traits drive the evolutionary history of 99 
symbionts (Clayton et al., 2015, and references therein).  For instance, from cophylogenetics, we 100 
know that at an evolutionary scale, lower dispersal capabilities are associated with higher 101 
cospeciation rates and lower host-switching rates (Clayton et al., 2015; Doña et al., 2017b; Sweet 102 
and Johnson, 2018).  Similarly, cophylogenetic methods could be used to increase our knowledge 103 
of which symbiont traits are behind particular extinction rates (e.g., transmission, aggregation, or 104 
geographic patchiness, see Box 1).  Also, among the most remarkable advantages of a 105 
cophylogenetic-based statistic would be that this statistic would not directly derive from host 106 
extinction probabilities, and thus might allow uncovering symbiont groups with high extinction 107 
probabilities inhabiting hosts with low extinction probabilities, in contrast to current approaches 108 
to estimate coextinction.   109 
 In this overview, we propose a new statistic derived from cophylogenetic analyses 110 
“cophylogenetic extinction rate” (Ec), to assess symbiont extinction risks (Section 2).  As this 111 
statistic derives largely from coevolutionary theory, we list different ecological and evolutionary 112 
variables that are expected to influence this statistic and might be useful to consider when 113 



interpreting Ec values (Box 1, Figure 1).  Moreover, given the novelty of the approach, we propose 114 
potential future research to further develop estimation of cophylogenetic symbiont extinction risks 115 
and the inclusion of these data into current modeling practices. 116 
 117 
 118 
Box 1. Ecological and evolutionary variables influencing cophylogenetic extinction rate (Ec) 119 

The variables listed below, along with their predictions regarding extinction risk, are derived from 120 
well-studied topics in coevolutionary, coextinction, and conservation biology.  Note that we place 121 
the most emphasis on those variables that are the most unique and relevant to symbionts (e.g., we 122 
do not include a "habitat" variable, apart from the host, because it might be less relevant for 123 
symbionts than for other interacting systems, such as plant-pollinator or predator-prey systems). 124 
Some of these variables have already been reviewed in depth (Colwell et al., 2012; Moir et al., 125 
2014, 2010; Strona, 2015).  Cophylogenetic extinction risk (Ec) derives mostly from 126 
coevolutionary biology theory; therefore, the value of this parameter is expected to be congruent 127 
with predictions from this theory.   128 

1. Host specificity: In the most basic sense, host specificity can be defined as the number of 129 
recorded hosts for a given symbiont species (Lymbery, 1989).  Also, it can include the 130 
phylogenetic relationships among hosts (phylogenetic host specificity) and the variation across the 131 
geographic range (geographic host-specificity) (Poulin et al., 2011; Wells and Clark, 2019).  This 132 
variable has been widely integrated in coextinction models (Colwell et al., 2012; Moir et al., 2010; 133 
Strona, 2015).  In short, highly host-specific symbionts are expected to have a higher extinction 134 
risk.  However, Strona et al., (2013) found that host-stability instead of host-specificity was the 135 
main determinant of the risk of becoming extinct.   136 

2. Mode of transmission: The mode of transmission of a symbiont species (e.g., vertically: from 137 
parents to offspring vs. horizontally: between individual hosts that are not parents and offspring) 138 
is associated with major ecological and evolutionary aspects that may be relevant to consider in 139 
symbiont extinction risk assessments (Lipsitch et al., 1995; Whiteman et al., 2004; Huyse et al., 140 
2005; Barrett et al., 2008; Clayton et al., 2015; Doña et al., 2017b; Sweet and Johnson, 2018; 141 
Poulin, 2011; Antonovics et al., 2017; Fisher et al., 2017; Doña et al., 2019c).  All else being equal, 142 
vertically-transmitted symbionts would be predicted to have a higher probability of extinction 143 
given their level of specialization and other relevant features that increase extinction risk (e.g., 144 
high virulence or low levels of genetic diversity). 145 

3. Virulence: Virulence can be defined as the reduction of host fitness caused by the symbiont 146 
(Cressler et al., 2016; Herre, 1993; Read, 1994).  More virulent parasites might increase the risk 147 
of extinction of the host, because of the morbidity of host individuals that harbor virulent parasites.  148 
This process will lead to a greater chance of coextinction of the host and parasite, because there 149 
may be no time for natural selection to adjust virulence. 150 

4. Straggling and host-switching: Straggling (i.e., symbiont dispersal to a novel host) seems to be 151 



frequent at an ecological scale, whereas successful host-switches (i.e., not only reaching a new 152 
host but also reproducing on the new host) are comparatively rare (Whiteman et al., 2004; Rivera-153 
Parra et al., 2017; Doña et al., 2019b, 2018).  Higher straggling and host-switching capabilities 154 
might be associated with a higher likelihood of escaping from host extinctions (Agosta et al., 2010; 155 
Agosta and Klemens, 2008; Clayton et al., 2015; Engelstädter and Fortuna, 2019).  However, the 156 
low rate of successful host colonization suggests that it is probably unrealistic to think that host-157 
switching may save symbiont species from becoming extinct (Settele et al., 2014; Carlson et al., 158 
2017a; Cizauskas et al., 2017).   159 

5. Symbiont population genetic structure: Intermediate degrees of population subdivision 160 
generally yield the highest adaptive potential (Allendorf et al., 2007; Futuyma, 2013).  Most 161 
symbiont species have levels of gene flow between populations that are often higher than between 162 
host populations, and therefore extreme levels of population subdivision are not expected to be the 163 
norm (Clayton et al., 2015; Doña et al., 2019a; Huyse et al., 2005; Mazé-Guilmo et al., 2016; 164 
McCoy et al., 2003; Poulin, 2011).  However, symbiont populations are theoretically expected to 165 
become more fragmented due to anthropogenic causes (Pickles et al., 2013; Carlson et al., 2017a), 166 
leading to situations in which worrisome levels of subdivision can become more frequent.  167 

6. Aggregation: Symbionts are generally aggregated among the available hosts so that most host 168 
individuals are inhabited by few to no symbionts, while many symbionts inhabit just a few host 169 
individuals (Poulin, 2011; Rózsa et al., 2000).  Aggregation can be an important parameter for 170 
symbiont persistence (Clayton et al., 2015; Cornell et al., 2003; Criscione and Blouin, 2005; 171 
Dhamarajan, 2015; Montarry Josselin et al., 2019), affecting levels of genetic diversity and 172 
increasing the probability of stochastic extinction. 173 

7. Host population size: Symbionts from hosts with small population sizes (and low-density) are 174 
expected to be more vulnerable because they typically have lower abundances (Arneberg Per et 175 
al., 1998; Ellis et al., 2017), higher coextinction risks (Strona, 2015), and even higher probabilities 176 
of extinction than that of their hosts because of the aggregated distributions of symbionts. 177 

8. Symbiont effective population size: Symbionts often have life-history features that may reduce 178 
the effective population size (Ne) (Criscione and Blouin, 2005; Dabert et al., 2015; Dobson, 1986; 179 
Doña et al., 2015; Monsion et al., 2008).  Obtaining precise estimates of symbionts Ne is a 180 
complicated task (Crellen et al., 2016; Thiele et al., 2018; Criscione, 2013; Strobel et al., 2019).  181 
Large and small Ne may be expected in symbionts depending on conditions (Seger et al., 2010; 182 
Criscione, 2013; Strobel et al., 2019; Hughes and Verra, 2001), and factors such as aggregation, 183 
bottlenecks, prevalence, and intensity influence Ne(Criscione and Blouin, 2005; Dabert et al., 184 
2015; Dobson, 1986; Doña et al., 2015; Monsion et al., 2008).  Knowledge of these parameters 185 
may provide useful insights regarding symbiont Ne.  186 

9. Geographic patchiness: The geographic ranges of symbionts and hosts do not always match 187 
perfectly, with some symbionts almost mirroring the whole distribution of their hosts and others 188 
restricted to some small areas of host distribution (Krasnov et al., 2004; Bush et al., 2009; Poulin, 189 
2011; Clayton et al., 2015; Wells and Clark, 2019; Bush and Kennedy, 1994; Bush et al., 2013).  190 



Symbionts restricted to reduced areas of host distribution may be expected to have a higher 191 
vulnerability of becoming extinct. 192 

10. Host effects: Not all hosts are equally suitable for the symbionts.  Apart from host extinction 193 
risk (which may lead to coextinction processes), several host features also have a substantial effect 194 
on symbiont traits when there is an intimate association (Clayton et al., 2015).  This effect might 195 
derive from coadaptative (e.g., arm-races dynamics) or non-coadaptive processes (e.g., host-196 
density influencing parasite abundance) (Clayton and al, 2010; Clayton et al., 2015; Bush and 197 
Clayton, 2018; Villa et al., 2016, 2018; Bush et al., 2019; Arneberg Per et al., 1998; Ellis et al., 198 
2017; Clausen, 1939; Hall et al., 2014).  Furthermore, hosts may possess traits that hamper 199 
symbiont colonization (Poulin et al., 2012).  Taken together these host features may be related to 200 
the likelihood of a symbiont becoming extinct. 201 

11. Symbiont body size and life-cycle: Large bodied symbionts tend to have smaller effective 202 
population sizes and to depend on larger hosts, which are also more vulnerable to extinction (Bush 203 
and Clayton, 2006; Clayton et al., 2015; Ripple et al., 2017).  Also, symbionts with complex life-204 
cycles and limited climatic tolerances (e.g., ectotherms, Cizauskas et al., 2017) might be at an 205 
increased risk of extinction (Colwell et al., 2012; Koh et al., 2004; Lafferty, 2012; Poulin and 206 
Morand, 2004). 207 

12. Trait matching: Due to the coevolutionary process, symbionts tend to possess traits that match 208 
very tightly those of their hosts (Clayton et al., 2015).  All else being equal, highly host-specific, 209 
and specialized symbionts might be predicted to be more endangered because they depend more 210 
upon their hosts, and their odds of successfully colonizing a new host species in ecological time 211 
are lower than that of multi-host and often more generalist species (Agosta et al., 2010; Remold, 212 
2012; Thompson, 1994).  However, factors such as overestimates of the level of host specificity 213 
(Braga et al., 2018; Dallas et al., 2017; Doña et al., 2019b), ability for rapid evolution (Bush et al., 214 
2019; Koch et al., 2014; Villa et al., 2019), and host stability (Strona et al., 2013) may counteract 215 
this prediction.   216 

13. Inter- and intraspecific competition: Symbionts not only interact with their hosts, but they also 217 
interact with diverse communities (including other symbionts) with whom they share their host 218 
(Bush and Malenke, 2008; Clayton et al., 2015; Doña et al., 2017a; Harbison et al., 2008; Johnson 219 
et al., 2009; Perez and Atyeo, 1984; Proctor, 2003).  Overall, competitively superior species are 220 
expected to be less vulnerable to extinction than competitively inferior species (Clayton et al., 221 
2015).  However, due to asymmetries in resource distribution and competition, competitively 222 
superior species, counterintuitively, may not necessarily be the winners in a rapidly changing 223 
climate scenario (Northfield and Ives, 2013; Van Den Elzen et al., 2017). 224 

2.  Obtaining symbiont extinction rates from cophylogenies  225 

In cophylogenetic analyses, host and symbiont evolutionary trees are compared to uncover the 226 
processes driving symbiont diversification (Page, 2003; De Vienne et al., 2013; Clayton et al., 227 
2015; Martínez-Aquino, 2016).  Several cophylogenetic methods exist, and these can be classified 228 



into two main categories: distance-based and event-based methods (Page, 2003; De Vienne et al., 229 
2013; Martínez-Aquino, 2016).  In short, distance-based methods (e.g., ParaFit;  Legendre et al., 230 
2002) measure the topological distance between host and symbiont trees and statistically evaluate 231 
whether the congruence is higher than expected by chance (Huelsenbeck et al., 2003; De Vienne 232 
et al., 2013; Martínez-Aquino, 2016).  In these methods, significantly high levels of congruence 233 
are generally assumed to be the result of codivergence between host and symbionts (Huelsenbeck 234 
et al., 2003; De Vienne et al., 2013; Martínez-Aquino, 2016).  Event-based methods (e.g., Jane; 235 
Conow et al., 2010) use costs for macroevolutionary events (i.e., events such as cospeciation, host-236 
switches, and losses that occur at a macroevolutionary scale, see below) which must be previously 237 
specified by the user, to reconcile host and symbiont phylogenetic trees (De Vienne et al., 2013; 238 
Charleston and Libeskind-Hadas, 2014; Martínez-Aquino, 2016).  The result of an event-based 239 
cophylogenetic analysis generally includes the optimal solution to reconcile both trees (i.e., given 240 
the costs specified) and the corresponding number of macroevolutionary evolutionary events of 241 
each category that were needed to reach that solution.  These events typically include cospeciation, 242 
duplication, host-switching, loss, and failure to diverge (De Vienne et al., 2013; Charleston and 243 
Libeskind-Hadas, 2014; Martínez-Aquino, 2016).  244 

 Here, we propose a way to obtain a rough estimate of the relative extinction rate of a 245 
particular symbiont lineage using the proportional number of losses (i.e. “sorting events”) from an 246 
event-based cophylogenetic reconstruction (Fig. 2).  This approach is similar to the current practice 247 
of using the percentage of cospeciation events as a measure of the relative importance of 248 
cospeciation in a symbiont lineage (Johnson and Clayton, 2003; De Vienne et al., 2013; Doña et 249 
al., 2017b).  In cophylogenetic reconstructions, the inferred losses can be interpreted as the 250 
consequence of two distinct processes (Fig. 2;  Clayton et al., 2015): (1) as genuine events of 251 
parasite extinctions; or (2) as sorting events (e.g., ‘missing the boat’), when a symbiont fails to 252 
disperse along with one host lineage.  Note that even though sorting events are not directly 253 
indicative of symbiont species extinctions, they do contain information regarding symbiont 254 
transmission efficiency and reflect the probability of stochastic extinction, and therefore might be 255 
valuable for assessing symbiont extinction at a species scale (Paterson et al., 1999; MacLeod et 256 
al., 2010; Poulin, 2011; Clayton et al., 2015).   257 

 The estimation of Ec (i.e., cophylogenetic extinction rate) would be as follows: 𝐸𝑐 =258 

% &
'()*

+; where L represents the number of losses, E the total number of macroevolutionary events 259 

other than host-switches (i.e., cospeciation + duplication + losses), and S the number of host-260 
switches.  The number of host-switches (S) is included twice because, in contrast to the other 261 
macroevolutionary events, it should effectively lower the extinction risk (Carlson et al., 2017a; 262 
Cizauskas et al., 2017; Clayton et al., 2015; Colwell et al., 2012; Dunn et al., 2009; Koh et al., 263 
2004; Moir et al., 2010, 2014).  Consequently, Ec can discriminate between two symbiont groups 264 
with the same ratio of losses (L) vs. all the other events (E+S) but differing in the number of host-265 
switches; so that the lowest Ec will be that of the group with a higher number of host-switches.  266 
The parameter Ec increases linearly with the number of losses, and decreases as host-switching 267 



increases (Fig 3).  We encourage accompanying Ec with a confidence interval to show the level of 268 
precision in the estimate (e.g., the modified Wilson confidence interval for a binomial proportion; 269 
(Brown et al., 2001; Signorell et al., 2019).  To aid in calculating Ec and confidence intervals 270 
(modified Wilson), we provide a Shiny app (https://jdona.shinyapps.io/extinction/). 271 

 As a proof of concept of this approach, we calculated Ec for two symbiont lineages; the 272 
feather mite genera Proctophyllodes and Trouessartia (Acari: Astigmata: Analgoidea and 273 
Pterolichoidea).  As input for the calculations, we used the results of event-based cophylogenetic 274 
reconstructions from Doña et al., (2017b).  In this study, Trouessartia mites were found to have 1 275 
loss and 9 host-switches out of 14 events, and Proctophyllodes mites 1 loss and 32 host-switches 276 
out of 42 events.  From these values, the estimated Ec is slightly higher for Trouessartia (Ec = 277 
0.04; CI = 0-0.21) than for Proctophyllodes (Ec = 0.01; CI = 0-0.07) mites.  This result agrees with 278 
existing comparative knowledge from the ecology and evolution of these mites.  Specifically, 279 
Trouessartia mites are known to have: 1) a lower species diversity on Passeriformes (Doña et al., 280 
2016, 2018), 2) lower prevalence (i.e., the proportion of individuals inhabited by a symbiont 281 
species within a host sample; Reiczigel et al., 2019) and intensity (i.e., the number of individual 282 
symbionts inhabiting a particular host; Reiczigel et al., 2019) (Fernández-González et al., 2018; 283 
Doña et al., 2019b), 3) lower genetic diversity (Fernández-González et al., 2018; Doña et al., 284 
2019b), and 4) infrapopulations genetically more structured (i.e., with lower gene flow among 285 
infrapopulations —all the individual symbionts inhabiting an individual host—, than 286 
Proctophyllodes species (Doña et al., 2019a). 287 

3.  Future opportunities 288 

Global symbiont diversity is at a high risk of extinction (Carlson et al., 2017a; Dunn et al., 2009; 289 
Koh et al., 2004).  The situation is highly concerning because symbionts have not received 290 
appropriate scientific and public attention, especially when compared to free-living species (see 291 
this special issue; Carlson et al., 2020).  Here, we have proposed the first cophylogenetic-based 292 
statistic (Ec) for assessing symbiont extinction risk.  Previous studies on coextinctions have 293 
repeatedly called for including evolutionary information in symbiont extinction risk assessments, 294 
and Ec allows one to do so.  Also, in contrast to most methods to estimate coextinction, Ec does 295 
not rely upon host extinction probabilities, and therefore, it allows uncovering symbionts with a 296 
high extinction risk associated with hosts with a low extinction risk.  Overall, we believe that Ec 297 
represent a highly valuable addition to current methods in assessing symbiont extinction rates.  298 
Moreover, the calculation of this parameter can act as a first step, thus stimulating further advance 299 
in symbiont conservation biology and cophylogenetics.  In this vein, we anticipate the following 300 
three areas as valuable for future research efforts to advance symbiont conservation theory towards 301 
better extinction risk assessments:  302 

3. 1.  Meta-analyses of current cophylogenetic data: To date, several cophylogenetic studies on 303 
symbionts have been carried out (De Vienne et al., 2013; Clayton et al., 2015).  These studies 304 
usually report the number of reconstructed macroevolutionary events of each type.  Accordingly, 305 



Ec, may be calculated from already published studies and compared between studies in a meta-306 
analytic framework.  These studies might allow obtaining new information on the drivers of 307 
symbiont extinction (Cizauskas et al., 2017; Moir et al., 2014), similarly as how it has been done 308 
to uncovers the drivers of cospeciation and host-switching (Clayton et al., 2015 and references 309 
therein).  Moreover, by doing so, lineage-specific Ec will be generated and available for symbiont 310 
initiatives that list their conservation status (e.g., PEARL; (Carlson et al., 2017b), and future 311 
conservation-focused studies.   312 

3. 2. Integrating symbiont conservation biology into coevolutionary and cophylogenetic research 313 
agenda: Future studies are encouraged to improve how extinction rates are estimated from 314 
cophylogenetic comparisons.  For example, some types of host-switches often imply that an 315 
extinction event has happened on the old host (i.e., host-switching with extinction or host-316 
switching with speciation and extinction).  On the other hand, host-switching can save a symbiont 317 
from extinction (i.e., if the host goes extinct after the switch).  To our knowledge, current event-318 
based cophylogenetic methods do not allow computing these types of host-switches.  Future 319 
research is needed here.  Lastly, given that the extinction rate is likely not constant throughout the 320 
evolution of a lineage, providing information on the variation of the extinction rate through time 321 
would be useful.  However, to our knowledge, no event-based cophylogenetic method allows for 322 
use as an input fully-dated phylogenies nor produces as a result dated macroevolutionary events.  323 
Future improvements in cophylogenetic methods may allow providing extinction rate estimations 324 
through time.  325 

3. 3.  Expanding modeling of symbiont extinction (and coextinction) rates: As stated above, 326 
cophylogenies might offer an opportunity to include data from evolutionary history in coextinction 327 
assessments.  One way to do so would be, for example, to incorporate cophylogenetic extinction 328 
rate data as a proxy of the evolutionary propensity of extinction of a given group of symbionts into 329 
current coextinction models.  Indeed, species distribution and evolutionary models that are often 330 
used to calculate species extinction risk of free-living species, already accommodate different 331 
variables (e.g., dispersal, demography, genetic data) to improve their predictions (Carlson et al., 332 
2019).  On the other hand, because cophylogenetic methods still do not allow using time-calibrated 333 
phylogenies (see section 3.2), another related avenue for improvement would be to also incorporate 334 
lineage-specific extinction rates from time-calibrated phylogenies (Beaulieu and O’Meara, 2015; 335 
Rabosky, 2016).  These methods are based on the notion that speciation and extinction processes 336 
leave distinct signatures on the branching structure of a phylogeny (Nee et al., 1994).  While these 337 
approaches have been extensively used in free-living species, to our knowledge, extinction rates 338 
from phylogenies have almost not been yet used in symbiont studies (but see Alcala et al., 2017). 339 
Thus, even though these estimates on extinction risk from phylogenies should be treated with 340 
caution (particularly when including non-sequenced species; Rabosky, 2016), the increasing 341 
availability of robust-comprehensive phylogenetic trees offers an opportunity to use these 342 
phylogenetically based methods in symbionts (Johnson, 2019).     343 
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Appendix A. Supplementary data 348 

A shiny application to directly calculate Ec and confidence intervals from the number of 349 
macroevolutionary events estimated from an event-based cophylogenetic reconstruction can be 350 
found here (https://jdona.shinyapps.io/extinction/). The R function is also available at GitHub 351 
(https://github.com/Jorge-Dona/cophylogenetic_extinction_rate). 352 
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Fig. 1. Diagram depicting predictions of variables influencing Ec (see Box 1).  Note that this is a 727 
highly simplified summary, with greater detail provided in Box 1 and references therein.  Also, to 728 
ease rapid access to these predictions, we have set line thickness to represent different extinction 729 
risk levels (thicker = higher; thinner = lower) according to our interpretation of current knowledge 730 
on these topics.   731 

 732 
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Fig. 2. Diagram depicting symbiont losses in an event-based cophylogenetic reconstruction. 734 
Inferred losses from a cophylogenetic reconstructions can be interpreted as the consequence of 735 
two distinct processes (Clayton et al., 2015): (1) as genuine events of parasite extinctions (top 736 
figure); or (2) as sorting events (e.g., ‘missing the boat’, bottom figure), when a symbiont fails to 737 
disperse with one host lineage.  Note that even though sorting events are not directly indicative of 738 
symbiont species extinctions, they do provide information about symbiont transmission efficiency 739 
and reflect the probability of stochastic extinction, and therefore might be valuable for assessing 740 
symbiont extinction at a species scale (Paterson et al., 1999; MacLeod et al., 2010; Poulin, 2011; 741 
Clayton et al., 2015).   742 
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Fig. 3.  Results of simulations showing the behavior of Ec under increasing numbers of losses and 757 
host-switches.  The number of total events (E) is 200 in both plots. Note that in a) there were no 758 
switches in any iteration while in b), the same number of losses and switches is held across all the 759 
iterations (e.g., one loss and one switch or two losses and two switches) 760 
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