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Abstract Long-term monitoring programs are a fundamental part of both understanding
system dynamics and making management decisions. Yet, monitoring programs are often
created without considering statistical power, site selection, or the full costs and benefits
of monitoring. Further, data from monitoring programs with di↵erent goals and protocols
are now being combined for comparative analyses. Key considerations can be incorporated
into the optimal design of a management program with simulations and experiments. Here,
we advocate for the expanded use of a third approach: non-random sampling of previously
collected data. This approach conducts experiments with available data to understand the
consequences of di↵erent monitoring approaches. We first illustrate this approach in the
context of monitoring programs to assess species trends. We then apply the approach to a
pair of additional, more general case studies.
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Long-term environmental monitoring

Long-term species monitoring programs are an essential piece of modern ecological
research and conservation science (Hughes et al. 2017; Bahlai et al., in review). Numer-
ous studies have demonstrated that long-term monitoring can have disproportionately large
contributions in terms of advancing scientific understanding and policy (Giron-Nava et al.
2017). Species monitoring programs, like the USA-based Long Term Ecological Research
(LTER) Network, as well as compilations of time series, like the Living Planet Index, show
the scope of long-term datasets now available (Magurran et al. 2010, Foundation 2016).
Furthermore, with the advent of infrastructure that connects and stores data collected
by a wide variety of professional and amateur naturalists, monitoring should continue to
become more feasible and cost-e↵ective. Large-scale citizen science programs, like iNatu-
ralist (https://www.inaturalist.org/) and eBird (https://ebird.org/home), allow for
increased data collection as well as data use and resuse (Sullivan et al. 2009, Joppa 2017).
Similarly, numerous new technologies, including eDNA and drones, will bring down the cost
of monitoring through automation and increasing the sheer taxonomic, temporal, and spatial
resolution of observations(Bohmann et al. 2014, Hodgson et al. 2018). All of these e↵orts
will lead to increases in the number of species monitored as well as the quantity and quality
of the data collected, to previously unimaginable levels.
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Panel 1: Key considerations when designing monitoring programs

A long-term monitoring program should be evaluated and designed with several key consid-
erations in mind (Legg and Nagy 2006, Lindenmayer and Likens 2010, White 2019):

• Precision and accuracy of monitoring approach
• The number of sites to monitor
• Correlations between sites (e.g. species biology that will a↵ect the movement of indi-
viduals)

• Spatial scale at which to monitor
• The frequency and length of monitoring
• The cost (both fiscally and in terms of person-hours) that should be devoted to moni-
toring

• System dynamics (e.g. autocorrelation, cycles, trends) that will a↵ect variability in
observations

• Changes in the system dynamics over time (e.g. management action that a↵ects species
trend)

• The complexity and specifics of the question of interest, e.g. it will take longer to
detect rare events than to measure year-to-year variability

• Changes in sampling design over time or variability between observers/sensors

Species monitoring program design

Despite the recognized importance of long-term monitoring programs, key questions
remain. Are long-term monitoring programs designed in a way to address key questions
of interest (Legg and Nagy 2006, Nichols and Williams 2006, Field et al. 2007, McDonald-
Madden et al. 2010, Lindenmayer and Likens 2010, Lindenmayer et al. 2012)? For instance,
suppose that a monitoring site was chosen originally to monitor long-term changes in a bird
population near a university. A long-term study could certainly reveal the population trend
for that specific location. However, the site may have been chosen specifically because it was
at high abundance at the beginning of the study—this causes a site-selection bias (Fournier
et al. 2019). Populations naturally vary, both in time and in space, so the very act of initially
selecting a site to monitor with particular population attributes can potentially confound the
very patterns they seek to monitor. Suppose the birds in this population undergo a cyclic
dynamic related to resource exploitation, or rotate between di↵erent patches for nesting
from year to year. Thus, when we ask new questions of long-term monitoring data, we have
to think carefully about how the monitoring program was originally designed and whether
or not we have adequate statistical power (Lindenmayer and Likens 2010, White 2019; and
Panel 1). Furthermore, an understanding of the spatial and temporal scale at which the data
is taken—and how that relates to the life history and ecology of the species—is essential.
These considerations, amongst others (Panel 1), are especially relevant when data from
di↵erent sources are combined for comparisons—which is increasingly performed (Maguran
et al. 2010, Keith et al. 2015, Giron-Nava et al. 2017, White 2019, Saunders et al. 2019).
Lastly, the tradeo↵ between information gained from monitoring and the cost of monitoring
has to be considered (Bennett et al. 2018).

To address these issues, there are three classes of tools available to design and evalu-
ate monitoring programs. First, the most commonly used approach are simulation models
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(Gerrodette 1987, Rhodes and Jonzen 2011). Using prior knowledge about the system un-
der question, simulation models can be constructed to incorporate key factors that a↵ect
species dynamics. With an appropriate model, simulations can then be run for a variety of
scenarios, including changing the number of samples taken per year, altering the number of
sites sampled, and sampling for di↵erent lengths of time (Rhodes and Jonzen 2011, Barry
et al. 2017, White 2019, Christie et al. 2019). Although powerful, this approach is limited
to systems in which many aspects of the biology are already known to some extent.

Second, experiments can also be used to test the e↵ect of di↵erent sampling protocols.
As in the case of simulation models, experiments with di↵erent levels of monitoring, or dif-
ferent monitoring approaches, can be used. A related approach would simply be to compare
di↵erent sampling regimes across systems to evaluate which are the most successful. Indeed,
integrated population modelling was developed as an analytical approach to identify and ad-
dress data discrepancies between data taken by di↵ering methodologies or at di↵ering times
in a species’s life history (Saunders et al. 2019). This method has been applied with great
success to advance understanding of the trajectories of populations of well-monitored taxa
such as waterfowl (Arnold et al. 2018). However, the key disadvantage of this approach is,
like simulation models, integrative modelling approaches are reliant on the availability of
large amounts of data, documenting multiple facets of a species’ biology. Of course, these
types of experiments providing multi-faceted data are often infeasible or impossible for many
systems.

Here, we advocate for the expanded use of a third approach: non-random sampling
of previously collected monitoring data (White 2019). This concept leverages existing
information by starting with long-term monitoring data already collected for a system. The
data can then be subsampled, or divided, in various ways depending on the question of
interest (Fig. 1a). Then a metric (for example, a mean or a slope) could be calculated for
each subsample. Each subsample metric would then be compared to the metric for complete
data (all the data combined). The complete data acts as a “true value” for comparison. This
is analogous to simulation studies where the true parameters are known (Bolker 2008). We
learn about the elements of a good monitoring program by examining which subsamples of
the data are most influential and the number of subsamples needed to have a high probability
of detecting the true value of the metric.

This approach is best described with a simple example (Fig. 1b). White (2019) studied
how many years of monitoring were required to detect population trends. For each time
series, White (2019) examined all possible subsamples of di↵erent lengths of time. He then
calculated the population trend for each subsample. The fraction of subsamples of a par-
ticular length, that had the same overall trend as the complete time series (i.e. the “true
trend”), is the statistical power. Thus, the minimum time series required was the time series
length that met a high enough threshold of statistical power. (White 2019) was able to use
this approach on 822 time series, allowing for comparison across species and systems. Using
a similar approach, (Wauchope et al. 2019) examined both the minimum time and frequency
of sampling required to be confident in determining species trends. Using resampling of
the breeding bird survey, they found that sampling for a short period, or infrequently, was
adequate to determine the species trend direction, i.e. positive or negative. However, more
frequent and longer monitoring was required to estimate the percent changes over time.
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Figure 1: (a) The general process of non-random sampling of past data from left to right
(i.e. sequentially, starting with data from farthest into the past) includes: dividing data into
subsamples, calculating metrics on those subsamples, and comparing the subsample metrics
to the combined (i.e. “true metric”) dataset, (b) same process as panel (a), but for specific
example of examining the minimum number of years required to detect long-term population
trends (White 2019). The pair of figures on the bottom right show how the (c) average slope
and the (d) probability of correcting identifying a trend change with the number of years
monitored.
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Non-random sampling in other contexts

Non-random sampling of past data can be applied to a variety of contexts beyond
estimating long-term population trends. For example, consider the importance of studying
data-poor fisheries (Dowling et al. 2015 and Table 1 of Chrysafi and Kuparinen 2015). Using
mostly simulation models, a lot of work has been done to develop tools when observational
data is limited. To study data-poor fisheries using non-random sampling, one should instead
study data-rich fisheries. The goal would be to artificially degrade the data-rich examples
until the point that the fishery would be considered data-poor (Fig. 2). We can then see
how various methods of data-poor fisheries perform given that we have the full data set to
act as a true comparison. The idea is the same as in simulation studies where we know the
parameter values of simulated data exactly. As an example, we took data on darkblotched
rockfish (Sebastes crameri) from the U.S. West Coast Groundfish Bottom Trawl Survey
data (Keller et al. 2017, Stock et al. 2019). We then played two “experiments” with the
data. First, we suppose we only had access to shallow or deep data because of technology
limitations. We show that regression estimates of parameters di↵ers di↵ers based on which
depths were included 2b). We also examine the e↵ect of degrading the data to only a fraction
of the totals records we have available. We see that model estimates for the e↵ect of being
within a rockfish conservation area are not accurate until a large fraction of the original data
is included (Fig. 2c).

A practical example of the application of non-random sampling applied to management
decision-making can be found in Cusser et al. (2019). Agricultural management recommen-
dations are often based on conclusions from short to medium-term field trials (ca. 1-5 years),
and it is common to observe contradictory findings between trials. In this study, the authors
applied Bahlai’s (2019) non-random sequential sampling algorithm to long-term data exam-
ining the e↵ects of tillage practice on productivity and return-on investment. They found
that, because of high natural variability in the system, 10 years of data was required to ob-
serve the “true” pattern of di↵erence between treatments, and that more than a third of the
sampled sequences shorter than 10 years led to outright misleading results (i.e. statistically
significant trends which showed the opposite relationship between treatments). Whereas it
is unlikely that practitioners making management decisions can consistently rely on a decade
of data to guide them, the results of the non-random sequential sampling of long-term data
provide guidance on reconciling apparently di↵ering trends between trials.
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Figure 2: Subsampling process for darkblotched rockfish (Sebastes crameri) catch in kg
in U.S. West Coast Groundfish Bottom Trawl Survey data from 2003-2012. (a) Bivariate
kernel density estimate showing smoothed density of fishing e↵ort (7,161 haul locations)
(Keller et al. 2017, Stock et al. 2019) (b) Parameter estimations for linear regression of three
subsamples of data: deep trawls, shallow trawls, and all combined data (Note: the number
of records was kept consistent for the three groups). (c) Estimate for the e↵ect of being in
a rockfish conservation area (inRCA) on catch for di↵erent amounts of data included. The
horizontal, dashed line is the “true” estimate which is the estimate when 100% of the data
is included.

7



Panel 2: Example questions that could be addressed using non-random sam-
pling

Question Non-random sampling approach

How many test wells are needed to
understand subsurface water flow?

We would start with an example system
where a large number of test wells produced
accurate dynamics. Then, we artificially
degrade this data using less test wells. Last,
we would examine when the predicted
dynamics change as a result of less test
wells.

What is the e↵ect of not being able
to identify microorganisms to the
species level?

We first select data from a well-resolved
tree that does identify organisms to the
species level. Then, we artificially degrade
the data in a way where we pretend a tree is
only resolved to the genus or family level.
We could then study the e↵ect of not
identifying organisms to the species level.

What is the e↵ect of scuba diving
depth limitations on estimates of
biological diversity?

We would use high-quality diver survey
data that was collected along a gradient of
depths. We would then artificially degrade
the data by removing deeper dives. We
could then compare the diversity metrics
when all the data is included versus only
shallow dives.

Conclusions

Data from long-term monitoring programs are used in assessing trends in environ-
mental observations, understanding system dynamics, and making management decisions.
It is critical that these monitoring programs be designed in order to address our questions
of interest. This is particularly relevant when new questions are asked of monitoring data
or data from disparate monitoring programs are combined. We show that non-random sam-
pling of past monitoring programs can be used to understand sampling requirements and the
consequences of bias (Figs. 1,2). This approach can be applied to a variety of systems and
questions (Panel 2). Combined with simulations and experimental approaches, we argue that
non-random sampling of past data should be used more widely to study questions related to
sampling design. More work in this area will allow scientists and managers to better evaluate
past e↵orts and to design new monitoring programs using evidence-based approaches.
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