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Abstract 

The Price equation has been entangled with social evolution theory from the start. It has been 
used to derive the most general versions of kin selection theory, and Price himself produced a 
multilevel equation which provides an alternative formulation of social evolution theory, 
dividing selection into components between and within groups. In this sense, the Price 
equation forms a basis for both kin and group selection, so often pitted against each other in 
the literature. Contextual analysis and the neighbour approach are prominent alternatives for 
analysing group selection. I discuss these four approaches to social evolution theory and their 
connections to the Price equation, focusing on their similarities and common mathematical 
structure. Despite different notations and modelling traditions, all four approaches are 
ultimately linked by a common set of mathematical components, revealing their underlying 
unity in a transparent way. The Price equation can similarly be used in the derivation of 
streamlined, weak selection social evolution modelling methods. These weak selection 
models are practical and powerful methods for constructing models in evolutionary and 
behavioural ecology, they can clarify the causal structure of models, and can be easily 
converted between the four social evolution approaches just like their regression counterparts.  
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1. The (single-level) Price equation and social evolution theory 

From its inception, the price equation has been entangled with social evolution theory. Price 
was largely motivated by Hamilton’s work on altruism [1, P320], wanting to verify the result 
that to him seemed very grim in the limited way that it seemed to allow ‘true’ altruism 
beyond nepotism to evolve [2, P142, 3]. By taking a very different and at the time unique 
approach [4, 5], Price found Hamilton’s results to be correct in their main findings. 
Furthermore, he found that not only were Hamilton’s results correct, but that exactly the same 
underlying mathematical foundation describes the evolution of altruistic traits and any other 
naturally selected traits, including spiteful ones [3, P209]. At the level of pure, bare-bones 
mathematical description of selection, there really seemed to be nothing special about 
altruism. Nevertheless, his derivation of what is now known as the Price equation has proven 
valuable for social evolution theory and beyond [6-12]. The Price equation can be presented 
in a handful of equivalent forms, with the form of equation 1 being perhaps the most 
common.  

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) + 𝐸𝐸[𝑤𝑤∆𝑔𝑔]        (1) 

Here w is individual fitness, g is an individual’s character value, overbars denote population 
averages, and ∆𝑔𝑔 denotes change in character value between parent and offspring. While a 
charitable interpretation might suggest that the Price equation (equation 1) in its generality is 
all we need to understand social evolution, it seems unlikely that the single-level Price 
equation alone would have been recognised as a solution to the problem of altruism had it 
been available prior to the publication of kin selection theory by Hamilton [13-15]. Although 
both scientists were interested in similar questions, in some ways equation (1) and kin 
selection theory are very different: Hamilton’s aim was to find an explicitly causal 
explanation for altruism [16-19]. Price’s approach, on the other hand, is completely 
indifferent to the various causal processes that may affect fitness. Equation (1) by itself can, 
at best, be described as a very ‘coarse grained’ analysis [20] of altruism. In this case the finer 
grained analysis (kin selection) came first [13-15], and later merged with the coarse-grained 
Price equation [16, 21]. The single-level Price equation (1) nevertheless shows that what 
matters for the evolution of a trait (assuming no transmission bias, i.e. focusing on the first 
term of equation 1) is the statistical association between the trait and fitness, regardless of 
causal effects. In particular, with some biological insight, one might see in the statistical 
formalism of equation (1) that it is not only the direct effect of the trait on the actor’s personal 
fitness that matters for character change – any causal pathway, direct or indirect, that 
generates positive covariance between the trait and fitness is sufficient. But the Price equation 
shows this in hindsight, with the benefit of Hamilton’s highly intuitive formulations of kin 
selection. 

This is analogous to later debate surrounding kin selection theory. One of the criticisms 
against kin selection is that kin selection theory is not needed, because the same calculations 
can always be done with the tools of standard natural selection [22]. Analogously, one might 
claim that kin selection or multilevel selection are not needed because all the results that 
could possibly be derived using those methods could be derived using the single-level Price 
equation. While these claims may be true to some extent, many find the causally more 
explicit tools of kin selection and multilevel selection helpful.  
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The aim of this article is to provide a synthesis of four core approaches to social evolution 
theory, of their relationships to each other, and to the Price equation. Several articles have 
sought unified perspectives to various aspects of social evolution theory [e.g. 23, 24-27]. The 
main novel contribution of the current article is to seek a simple unified mathematical 
foundation for all four central social evolution approaches at their most general level of 
definition, providing transparency in their relationships, as well as tools for transitioning from 
one model type to another. This general foundation is then related to weak selection models. 
As we will see, all social evolution methods are to some extent connected to the Price 
equation. Price himself would not live to see the influence his work now has. He is said to 
have had a mixed reaction to his discovery of the equation that now bears his name. On one 
hand, he was shocked by the implication that at the most fundamental level, altruism doesn’t 
really exist, or at least it is described by exactly the same mathematics as selfishness, spite, or 
any other trait [3]. But he also saw it as a miracle that he (having not been trained as a 
biologist) should discover such a fundamental and previously undiscovered equation 
describing evolution [1, P322-323]. Sadly, Price’s life was characterised by internal conflicts 
of this sort until its untimely end by his own hand [1-3, 28, Harman in this issue].  

 

 

2. General models: their meaning and their value 

In this article we will initially examine four different kinds of models of social evolution at 
the most general, genic regression level of analysis [16, 25, 29-31]. In other words, we carry 
out derivations ‘as if’ we knew the genes for a trait we are interested in and the relevant gene-
fitness relationships. Of course we do not really need to know all this to be able to derive the 
models – we simply need to know certain mathematical facts about regression and 
covariance. Covariances and regression coefficients in these models are measures of 
relationships between genetic value (e.g. allele frequency, breeding value) and fitness and 
they are population statistics as Price emphasised [5], not sample statistics. These 
relationships exist and obey the mathematical rules of regression regardless of whether 
someone is around to estimate them or not [18]. The value of such general and somewhat 
abstract models is one of many highly divisive issues related to social evolution theory. In 
brief, perhaps the main criticism is that they cannot make testable predictions [32]. The main 
line of defence is that prediction is not the aim of this type of model, and instead the most 
general, regression-based formulation  forms a robust conceptual and theoretical foundation 
[29], and provides an organising framework for social evolution theory [18]. In practice, 
when working with biological questions, we typically use less general and more practical 
methods [16, 29]. While this criticism and discussion regarding testable predictions has 
usually revolved around kin selection, it applies equally (to the extent that it is true) to any of 
the other modelling approaches in this article when formulated using general regression 
models.  

There is no doubt that for many researchers these general models have value, despite their 
limited value as predictive modelling tools. Their limitations in this regard are the same as 
those of the Price equation in its most general form: a general model of this kind, based on 
statistical associations, cannot make predictions without additional assumptions, regardless of 
whether it is couched in the covariance formalism of the Price equation [4, 5] or the multiple 
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regression formalism of general kin selection models [16]. The models could in principle be 
applied to any relevant dataset, and model parameters can be calculated from the dataset 
retrospectively, making the model true almost by definition. But because of this 
‘retrospective’ generality, they provide a very general organising framework for models that 
make more specific assumptions.  In a hypothetical world where all we had to work with was 
the Price equation and the resulting general models with no further biological or 
mathematical insight to guide us, they might indeed not be very useful. They are valuable in 
conjunction with biological insight and with simplifying assumptions that we can make as a 
consequence. Queller (whom the general model of kin selection is credited to) was in some 
ways ahead of the critics in writing  that the “real value of this genetic version is that it serves 
to provide a broader context for inclusive fitness theory”, and noted that in practice it will 
often be necessary to use less general models [16].  

Another strength of general models, and one that has been exploited in previous studies [e.g. 
30, 31, 33, 34] is that they provide a natural framework for studying the equivalence of 
different social evolution methods and their connections. Some articles pointing out 
limitations of one method or another have in fact compared, say, a general model of 
multilevel selection to a less general model of kin selection, guaranteeing from the outset that 
the former will emerge as the winner in a comparison of generality. Again, this was stated 
succinctly early on in a defence of the equivalence of kin selection and the multilevel Price 
equation: “Conclusions to the contrary are due to setting up unfair competitions between the 
two models” [33]. Using general models to study equivalences between methods is the 
approach that will be taken below in section 4. 

It has been stated that while general models serve as an organising framework, they are not 
used to derive more detailed evolutionary models [18]. While this may be a fair description of 
the usual state of affairs, it seems a little restrictive. If any model that makes more specific 
assumptions than the general models counts as a ‘more detailed evolutionary model’, then it 
is possible –  and sometimes useful –  to derive these more specific results using the general 
models as a starting point. It can be helpful to roughly think of the general models as a 
template, or outer layer that contains the less general variants in a nested structure. For 
example, (partial) regression coefficients which appear in general models and (partial) 
derivatives which appear in streamlined methods are analogous and coincide under certain 
conditions [25, 31, 35] (see section 5). When these conditions are fulfilled, one can see the 
structure of a weak selection model based on differentiation directly from the structure of a 
general model based on regression, and ‘derive’ less general formulations from the general 
framework by taking advantage of the equivalences.  This could be visualised as a move 
down in a structure where the most general models are at the top, and less general ones 
further down (Figure 1). As long as one is careful with the simplifying assumptions that are 
being made, it is often possible to move down but not back up once the model has been 
‘degeneralised’. For example, a weak selection model cannot be said to contain a genic 
regression model as a special case even if the opposite is true (although the structure of a less 
general model may give hints as to what a more general model might look like). One can also 
move horizontally to derive equivalence results between different models at similar levels of 
generality. I have previously used this approach to first derive an equivalence result and 
transformation rule between kin selection and multilevel selection at the most general, genic 
regression level (a horizontal move in figure 1), and then relate this equivalence result to the 
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less general weak selection level of models (a vertical move) [31]. We will revisit model 
transformations like this in sections 4-5.  

 
Figure 1. The hierarchy of social evolution methods. MLS=multilevel Price equation; KS=kin 
selection; CA=contextual analysis; NA=neighbour approach. The most general forms of models 
(genic regression models [16]) form a robust foundation for social evolution theory. The different 
approaches are mathematically equivalent when compared at the same level of generality (horizontal 
arrows). The general forms can be thought to contain less general forms as special cases when 
certain conditions are fulfilled [e.g. 33, 34], but the opposite is not true: it is possible to move 
downwards from more to less general, but not vice-versa once simplifying assumptions have been 
made. Note that all possible pairs of models on each row could be connected by a double-headed 
arrow (e.g. MLS ↔ CA). For clarity and simplicity, only arrows between adjacent pairs are included 
in the figure, thus connecting all pairs of models via a series of double-headed arrows.  

 

 

So, to form a unified and mutually comparable basis, all the methods will be initially defined 
as genic regression models. While contextual analysis (section 3c), for example, is commonly 
applied as a phenotypic method [36], there is no fundamental obstacle preventing the same 
general methodology from being specified at a genic level of analysis. Only the nature of the 
independent variables in equations (6) and (7) change when we switch between genotype and 
phenotype, while the logical structure of the underlying model remains the same and its 
relationship to other methods is exposed more clearly. The difference between phenotypic 
and genotypic methods becomes even smaller if we accept the perspective of Rice [7]: 
“alleles and genotypes can be thought of as particular kinds of phenotypes”. Hence, taking 
such a genic perspective [in the sense of 16] in all the modelling alternatives described below, 
we are free to compare alternative approaches to social evolution theory while avoiding the 
inevitable differences that arise from unequal starting points, without straying too far from 
the original meaning of the models. If one chooses to focus on differences between methods, 
one will always find differences. Here the focus is on similarities, in the spirit of the claim 
that debates between methods are often largely about historical differences between 
approaches, not deep logical differences [37].  
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3. Four approaches to social evolution theory 

In this section we will examine four alternative approaches to social evolution theory in their 
most general forms. We begin with the two that are most intimately tied to the Price equation: 
the multilevel Price equation and kin selection. Although the last two methods, contextual 
analysis and the neighbour approach are not as closely linked to it, we will make use of the 
Price equation when converting them from a model of fitness to a model of evolutionary 
change. The aim is to examine all models at equal levels of generality while using the same 
notation (Table 1) as far as possible to expose their similarities with maximum transparency.  

 

Table 1. Notation and definitions.  

Notation Definition Rationale and examples 
𝑔𝑔 Individual character value A characteristic of an individual; in 

this article this denotes a genic 
value, e.g. allele frequency or 
breeding value 

𝐺𝐺 Whole-group mean character 
value 

Mean value of 𝑔𝑔 over the entire 
group that the individual belongs to 

𝐺𝐺� Other-only mean character value Mean value of 𝑔𝑔 over the group that 
the individual belongs to, excluding 
the focal individual itself 

�̅�𝑔 Population mean character Mean value of 𝑔𝑔 over the entire 
population 

𝑤𝑤 Individual fitness Fitness of an individual 
𝑊𝑊 Whole-group mean fitness Mean value of 𝑤𝑤 over the entire 

group that the individual belongs to 
𝑤𝑤�  Population mean fitness Mean value of 𝑤𝑤 over the entire 

population 
𝑏𝑏, 𝑏𝑏� Benefit The ‘benefit’ of Hamilton’s rule, for 

whole-group and other-only models 
respectively 

𝑐𝑐, �̃�𝑐 Cost The ‘cost’ of Hamilton’s rule, for 
whole-group and other-only models 
respectively 

𝑅𝑅,𝑅𝑅� Relatedness Coefficient of relatedness of 
Hamilton’s rule, for whole-group 
and other-only models respectively 

𝛽𝛽𝑎𝑎𝑎𝑎 Simple regression coefficient of 
a on b  

For example, 𝛽𝛽𝐺𝐺𝐺𝐺 is the regression 
coefficient of group mean character 
value on individual character value  

𝛽𝛽𝑎𝑎𝑎𝑎.𝑐𝑐 Partial regression coefficient of 
a on b, with c held constant 

For example, 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺�  is the partial 
regression coefficient of individual 
fitness on individual character value, 
with mean character value of 
everyone else in the group held 
constant 
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a) Group selection 1: The many faces of the multilevel Price equation 

The multilevel version of the Price equation (equation 2 – henceforth termed MLS) is one of 
the central theoretical approaches to social evolution theory. It was briefly presented in a 
follow-up publication by Price himself [5], and later revisited in various forms by several 
other authors [e.g. 1 P318, 33, 38, 39, 40]. Price’s original form for the multilevel equation is 

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝐺𝐺)�������  +   𝐸𝐸[𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘(𝑤𝑤,𝑔𝑔)]���������      (2) 

        between-groups       within-groups      

 

where the index k indicates that the covariances within the expectation term are group-
specific covariances, and the expectation is subsequently taken over all groups. If groups 
differ in size, group-size weighted expectations and covariances must be used (see appendix).  

Where the single-level Price equation can be thought of as a very ‘coarse-grained’ [20] 
analysis of social evolution (see section 1), the MLS equation represents a more fine-grained 
analysis by splitting selection and evolutionary change into two components. It is called a 
multilevel selection model because it handles selection in a hierarchical manner: evolutionary 
change is split into two components that are commonly thought to correspond to selection 
between groups (i.e. group selection), and to selection within groups. Within social evolution 
theory, the MLS equation is perhaps best known as a modern formulation of group selection 
that is not at odds with individual level selection. One of the reasons group adaptation is 
considered the exception rather than the norm in evolution is that in the absence of special 
conditions, a trait that has arisen purely via selection between groups would tend to be 
undermined by selection between individuals, within groups [41-43]. The multilevel Price 
equation accounts for this by including selection within groups alongside selection between 
groups. Of course, this does not imply that conditions where group adaptation can arise are 
never fulfilled. For example, the evolution of multicellularity is closely connected to the 
concept of group adaptation [44], and if we consider multicellular organisms as group 
adapted groups of cells, then group adaptation has taken place relatively often.  

Above I wrote that the two components are ‘commonly thought to’ correspond to selection 
between and within groups. The reason for the non-committal phrasing is that simply 
applying the MLS equation to some set of data (real or hypothetical) does not guarantee that 
its two components will correspond to selection between and within groups in a causal and 
biologically meaningful sense [10]. Perhaps the simplest way to see this is to imagine a 
dataset for which we know the value of a trait and fitness for every individual in a population 
with no group structure. Despite the lack of group structure, we can assign the individuals to 
arbitrary, discrete groups if we wish to do so, and compute the between- and within-group 
components of equation 2 arising from this arbitrary structure. But because we started with a 
population without group structure, we know from the outset that there is no biologically 
meaningful selection between groups going on even if the between-group component takes a 
non-zero value. This example does not mean that the MLS equation is not useful. It simply 
illustrates that being able to compute values for the two components of equation 2 for some 
dataset or model does not imply that the mathematical components are meaningful for that 
particular scenario. To be biologically meaningful, it is necessary that the scenario being 
studied has biologically meaningful groups. It is fairly common for models to have this kind 
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of discrete group structure: many models in social evolution make use of the infinite island 
model [45], which entails a natural structure that can often be analysed using the MLS 
equation. However, although the existence of such groups is a necessary requirement for a 
sensible interpretation of the MLS equation, interpretation should be done with caution even 
in the presence of group structure. George Williams emphasised the difference between 
genuine group adaptation on one hand and fortuitous group benefits that are really by-
products of individual level adaptations on the other ([41], see also e.g. [10] for discussion). 
For example, if good eyesight increases the fitness of an individual (without detrimental 
effects on other group members) it will also increase average fitness of the group that the 
individual belongs to: there is a benefit to group fitness, but the group benefit arises as a 
statistical summation of the effects of individual adaptations. This statistical summation 
would similarly appear in the between-groups component of the multilevel Price equation. 
Whether this is a problem depends on what one expects of the equation. If there is variation 
in eyesight between groups, then it is arguably reasonable to speak of selection between 
groups and the MLS equation may correctly identify this group component of selection. But 
one must be cautious in drawing the conclusion that eyesight is a genuine group adaptation. 
Improved eyesight would evolve whether group structure is present or not.  

 

Price originally derived Equation 2 in a ‘downwards’ fashion, by starting from the between-
group level, and working towards the lower, within-groups level [5]. However, in this section 
I will present a very brief and simple ‘upwards’ derivation of the multilevel selection 
equation, starting from the individual level and decomposing selection into components 
between and within groups. Both derivations lead to mathematically equivalent 
decompositions, and both have advantages. One very useful insight from the original 
downwards derivation is that transmission bias (or property change in the words of Price) on 
one level can often be interpreted as selection on a lower level [5]. In other words, selection 
within groups distorts the outcome from what it would be if selection only took place 
between groups, causing a kind of transmission bias when viewed at the group level. On the 
other hand, an advantage of the upwards derivation is that it makes transparent the fact that 
both components of the multilevel Price equation can be written as covariances over all 
individuals in the population (as emphasized by Heisler and Damuth [46]), despite the 
between-groups component looking like a covariance taken only over groups in equation 2. A 
second advantage of the upwards derivation is that it entails no reason to assume absence of 
intergroup migration [40], which was an assumption that Price made in his original 
formulation [5]. The derivation here is indebted to those of Wade [40], Queller [33], and 
Bijma & Wade [47] although it is not identical to any of them.  

 

We begin with the standard, individual level Price equation with no transmission bias (i.e. the 
first term of equation 1): 𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔), where the covariance is taken over the entire 
population.  

Now, if all individuals in the population belong to non-overlapping groups with mean group 
fitness 𝑊𝑊, each individual’s fitness can be decomposed into two components – the group 
mean and individual deviation from the group mean (∆𝑤𝑤):  
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𝑤𝑤 = 𝑊𝑊 + (𝑤𝑤 −𝑊𝑊) = 𝑊𝑊 + ∆𝑤𝑤.  

Substituting this into the first term of equation 1 we get 

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊 + ∆𝑤𝑤,𝑔𝑔)  

Making use of the distributive property of covariance, we can write this as 

 

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝑔𝑔)�������  +   𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑤𝑤,𝑔𝑔)�������        (3) 

       between-groups    within-groups      

 

It can be shown that both terms of equation 3 are mathematically equivalent with those of 
equation 2 (see appendix for derivations). Equations 2 and 3 can both be illuminating. The 
salient question in the historical group selection debate could be phrased in two ways: Are 
traits of individuals adaptations for the benefit of the group, possibly at the cost of individual 
interests (the perspective taken, at least in part, by Williams [41])? Or alternatively, can we 
consider traits of groups adaptations for the benefit of the group (a viewpoint taken by e.g. 
Gardner & Grafen [42])? Equations 2 and 3 show that these partially contrasting questions 
are in some sense the same. The first term of equation 2 is the statistical association between 
group fitness and group mean trait value (a common way to define a group trait). The first 
term of equation 3 is the statistical association between group mean fitness and individual 
trait value. The equivalence of these terms indicates that from the perspective of the 
multilevel Price equation, the two above ways of describing group adaptation are identical(it 
must be conceded, however, that this is only a partial resolution of the contrast described 
above, because statistical associations are not necessarily indicators of causal relationships – 
see section 5b for some further problems associated with causal interpretation). There are in 
fact three ways of writing the first covariance: 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝐺𝐺) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝑔𝑔) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) (see 
appendix). We will return to the last form in section 4. Care must be taken in that for the last 
two forms, the covariance is computed over all individuals, whereas in the first form (which 
appears in the ‘classic’ equation - equation 2) the covariance is computed over all groups and 
must be weighted by group size if they are unequal in size [5] – no such group size weighting 
is needed for the last two alternatives.  

For the second term we already have two equivalent forms, 𝐸𝐸[𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘(𝑤𝑤,𝑔𝑔)] = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑤𝑤,𝑔𝑔). 
Two further alternatives are 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,∆𝑔𝑔) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑤𝑤,∆𝑔𝑔). The last form is from Queller ([33], 
see also [30, 31]). Again, the expectation in equation 2 requires weighting by group size if 
group sizes are unequal, but this is not necessary in the alternative forms.  

 

 

b) Kin selection 

William Hamilton’s theoretical work on the genetical evolution of social behaviour [13-15] 
(later widely known as ‘kin selection’,  a term actually coined by Maynard Smith [48]) was 
published well before the Price equation, and served as a major motivator for Price’s work 
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(see section 1). As the two scientists corresponded prior to the publication of Price’s 1970 
article [4], Hamilton came to see the Price equation as a cleaner and more appropriate way to 
formulate his central findings on social evolution compared to his original rather cumbersome 
derivation [1 P175]. Hamilton published a Price equation-based rederivation of his central 
result immediately following the publication of the Price equation itself. In fact the story goes 
that this was the result of a collusion between the two – Hamilton pressured Nature [1] into 
either publishing Price’s paper [4] or risk losing Hamilton’s own contribution [21], in a move 
that seems unlikely by today’s standards. The derivation I present here nevertheless owes the 
most to Queller [16] who derived this now widely known ‘general’ model of kin selection – 
general in the sense that minimal assumptions are needed in its derivation.  

 

The starting point for this model is a multiple regression equation for fitness: 

 

𝑤𝑤 = 𝛼𝛼 + 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺�𝑔𝑔 + 𝛽𝛽𝑤𝑤𝐺𝐺�.𝐺𝐺𝐺𝐺� + 𝜀𝜀                (4) 

 

This is a direct fitness [49] or neighbour-modulated fitness [14] approach to kin selection, 
where g represents each individual’s genes for the trait being analysed, while 𝐺𝐺� is the average 
of other individuals that the focal individual’s fitness is affected by. 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺�  and 𝛽𝛽𝑤𝑤𝐺𝐺� .𝐺𝐺 are 
partial regression coefficients of w on g controlling for 𝐺𝐺�, and of w on 𝐺𝐺� controlling for g 
respectively. 𝛼𝛼 and 𝜀𝜀 represent the intercept and residuals of the regression. Hamilton’s rule 
can be derived by substituting equation 4 into the first term of the Price equation (equation 1) 
(note that dropping the second term amounts to an assumption of no transmission bias): 

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) = 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺�𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝛽𝛽𝑤𝑤𝐺𝐺� .𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐�𝐺𝐺�,𝑔𝑔�  

A key point here is that because g is a predictor in equation 4, it must be uncorrelated with 𝜀𝜀 
according to least square theory (and with the constant 𝛼𝛼) [16]. Division by  𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) yields 

𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺� + 𝛽𝛽𝑤𝑤𝐺𝐺�.𝐺𝐺
𝑐𝑐𝑐𝑐𝑣𝑣(𝐺𝐺�,𝐺𝐺)
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

   

Here 𝑐𝑐𝑐𝑐𝑣𝑣(𝐺𝐺�,𝐺𝐺)
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= 𝛽𝛽𝐺𝐺�𝐺𝐺 is a regression coefficient of relatedness 𝑅𝑅� [29, 50]. If we now denote 

𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺� = −�̃�𝑐 and 𝛽𝛽𝑤𝑤𝐺𝐺�.𝐺𝐺 = 𝑏𝑏� (corresponding to costs and benefits—note the usual sign 
convention with −�̃�𝑐), we recover a version of Hamilton’s rule [14]: the trait is positively 
selected for if  
𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= −�̃�𝑐 + 𝑏𝑏�𝑅𝑅� > 0              (5) 

This general version of Hamilton’s rule gives a cost-benefit condition for gene frequency 
increase, where costs, benefits and relatedness are defined as regression coefficients. This 
formulation of kin selection has recently been discussed at length elsewhere [18, 29, 30]. 
Here I wish to draw attention to one point that will become important later: The group 
average 𝑔𝑔-values in equation 4 can be defined in two ways. The value for the focal individual 
can be either included or excluded from the mean. The latter procedure was followed in the 
derivation above, in line with Queller [16], but both options are frequently used in kin 
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selection models, and in the notation of this paper (Table 1) we could have equally well used 
𝐺𝐺 instead of 𝐺𝐺� in the derivation. These two alternative (but formally equivalent in the domain 
where both are valid) formulations of kin selection models are often termed ‘whole-group’ or 
‘other-only’ models. Other-only models correspond to the classical view of kin selection [14], 
but whole-group models can offer mathematical convenience for certain biological questions. 
A few details regarding other-only and whole-group models are worth noting. For one, other-
only models are in some sense more general: a whole-group relatedness coefficient can only 
be calculated if individuals are structured into discrete and non-overlapping groups, while 
other-only relatedness also applies to a more continuously structured population [51]. 
Second, whole-group relatedness can be thought of as average relatedness to the entire group 
including oneself [50], or as expected relatedness between two randomly chosen group 
members with replacement  [52]. Consequently, because relatedness to self is one, and 
because the focal individual forms a larger fraction of smaller groups, whole-group 
relatedness is group-size dependent. Third, the choice of formulating a model as a whole-
group or other-only model typically changes all three central components (b, c, R). In the 
regression model above this arises because it changes the way the partial regression 
coefficients are computed. In weak selection models making use of partial derivatives 
(section 5) this arises because it changes the way partial derivatives are computed. The 
distinction between other-only and whole-group models will also be central in section 4. 

 

This article focuses on the similarities and common mathematical components of different 
methods. Therefore we set aside some central causal and philosophical characteristics of kin 
selection that distinguish it from other methods discussed in this paper. In particular, here we 
focus on direct or neighbour-modulated fitness instead of inclusive fitness [14, 53]. This is 
not to downplay the importance of the inclusive fitness perspective, which is valuable in its 
own right [18, 53-55] – the reason for this choice of focus is simply that because the inclusive 
fitness perspective is unique to kin selection, commonalities between methods are easier to 
see using the direct fitness perspective.  

 

 

c) Group selection 2: Contextual analysis 

The  origins of contextual analysis lie in the social sciences [56], from which it was adapted 
for use in evolutionary studies [10, 36, 46, 57-59]. Contextual analysis does not 
fundamentally rely on the Price equation. In its simplest form, contextual analysis is not 
necessarily concerned with evolutionary change, and simply makes use of a multiple 
regression model of individual fitness as the dependent variable, and an individual character 
and a contextual character as independent variables [46]. Contrasting contextual analysis with 
the MLS equation (equations 2-3) as a model of social evolution, the former can be simply a 
model of trait-fitness relationship, whereas the latter is always a model of evolutionary 
change.  

In contextual analysis, one independent variable is always individual character, while the 
second predictor can in principle be any kind of group character. However, in evolutionary 
applications the typical group character is the mean character value of the social group. The 
idea is that because the model works with partial regression coefficients, they are intended to 
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isolate the effects of group character and individual character on individual fitness. 
Contextual analysis is conceptually quite a different way to quantify group selection, 
compared to the multilevel Price equation. Contextual analysis deals exclusively with 
individual fitness, and analyses the effect of group character on fitness of individuals. The 
group selection component in the multilevel Price equation (equations 2-3) on the other hand 
can be written purely in terms of group fitness, hence it is intuitive to interpret it as that 
component of evolutionary change that is due to the effect of a trait on group fitness. Neither 
of the components of contextual analysis alone have this interpretation. 

In the notation of this article (Table 1), the regression equation underlying contextual analysis 
is [58]  

 

𝑤𝑤 = 𝛼𝛼 + 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺𝑔𝑔 + 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺𝐺𝐺 + 𝜀𝜀                (6) 

 

Equation (6) can then be converted to one of evolutionary change using the Price equation, 
analogous to the previous section: 

 

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) = 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺,𝑔𝑔) = 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺𝑐𝑐𝑣𝑣𝑣𝑣(𝐺𝐺) (7) 

 

 

d) Group selection 3: The neighbour approach 
 

The neighbour approach is mathematically quite similar to contextual analysis, but despite 
the apparently minimal differences there are justifications for considering it as an alternative 
formulation of group selection [10, 51, 58, 60]. Here I will only briefly introduce the 
mathematical formulation. The neighbour approach can be described as a variant of 
contextual analysis, where the second independent variable is the mean trait value of 
everyone but the focal individual, instead of the mean of the entire group [58]: 

 

𝑤𝑤 = 𝛼𝛼 + 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺�𝑔𝑔 + 𝛽𝛽𝑤𝑤𝐺𝐺�.𝐺𝐺𝐺𝐺� + 𝜀𝜀                (8) 

 

As with contextual analysis, equation (8) can then be converted to one of evolutionary change 
using the Price equation: 

 

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) = 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺�𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝛽𝛽𝑤𝑤𝐺𝐺� .𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐�𝐺𝐺�,𝑔𝑔�               (9) 
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4. A common foundation for the four approaches 

It has been stated repeatedly that the methods of section 3 are formally equivalent [10, 18, 26, 
30, 33, 58, 61] in terms of evolutionary change, while partitioning selection in different ways. 
Although true, this may not be obvious or intuitively clear. It can be helpful to show 
explicitly how they are mathematically equivalent – that is, to find a unifying set of 
mathematical building blocks that underlies all the above methods. There are two advantages 
to such a unified view. Firstly, it makes the equivalence of methods completely transparent 
even with little mathematical training. Second, to the extent that the different formulations 
can be likened to causal decompositions of selection [61], a unified mathematical language 
makes it simple to switch from one causal perspective to another, independent of the 
methodology under which the model was first derived [31]. The benefits of the first point are 
clearest under the abstract and general model definitions described above. The benefits of the 
second point are more relevant under concrete models of specific biological scenarios, where 
the model components (e.g. c, b, and R) gain a more detailed biological meaning.  

Many may have already noted similarities among the regression equations in previous 
sections. In particular, the regression equations underlying kin selection, contextual analysis, 
and the neighbour approach are very similar. The resemblance between kin selection and 
contextual analysis in particular is widely recognised [31, 36, 61]. Here I will describe the 
relationship between contextual analysis, the neighbour approach, and kin selection in more 
detail, and then relate all three to the multilevel Price equation.  Again, an important point in 
this analysis is that we consider the different methods at the same level of generality (see 
section 2).  

Consider first the regression equation underlying the neighbour approach (equation 8), where 
the independent variables are individual character value and the mean character value of 
everyone but the focal individual. Comparing this to the definition of ‘other-only’ kin 
selection models in section 3a reveals an immediate and obvious link between the two 
methods. Recall that in other-only kin selection models the independent variables are again 
individual character value and the mean character value of everyone but the focal individual. 
Hence the regression model underlying other-only kin selection models is identical to that 
underlying the neighbour approach when defined at equivalent levels of analysis. Similarly, 
recall that in an evolutionary context, the independent variables in contextual analysis are 
typically individual character value and mean character value of the entire group, including 
the focal individual. Comparing this formulation of contextual analysis to whole-group kin 
selection models we note that the independent variables are again identical.  

Hence we can conclude that the regression equation foundation of other-only kin selection 
models is identical to that underlying the neighbour approach when defined at equivalent 
levels of analysis. Similarly, we can conclude that the foundation of whole-group kin 
selection regression models is identical to that underlying a typical contextual analysis model. 
Of course, the underlying mathematical similarity doesn’t mean that these approaches are 
identical in every way. For example, in kin selection models the focus is often on relatedness, 
which may not be explicitly specified in other types of models (although as we will see, 
relatedness is implicitly present in all four approaches). Second, and perhaps more 
importantly, the kin selection models discussed in this article are direct fitness [49] or 
neighbour-modulated fitness [14] models, whereas kin selection is perhaps better known for 
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the inclusive fitness perspective it affords [14, 53]. A further complication is that kin 
selection and group selection models are often seen as competing alternatives [48, 62], while 
both neighbour approach and contextual analysis (which we have just noted to be all but 
identical to kin selection) have been described as possible ways of modelling group selection 
[58, 60, 63]. It is not too surprising then that similarities in the foundations of models are 
easily overlooked in the face of differences in interpretation and terminology.  

Nevertheless, we are now in a position to choose a common set of model components which 
we can use to write the foundations of different modelling approaches in a unified language 
to make their connections clearer. The b-c-R notation we employ is adapted from kin 
selection, in part because of its simplicity, and partly due to its sufficiency for our purposes: 
all four approaches to social evolution described above can be written using these 
mathematical components, without making any additional simplifying assumptions. Keeping 
in mind that we need to differentiate between other-only and whole-group models, the aim is 
now to write all of the four methodologies above using only 𝑏𝑏, 𝑐𝑐, 𝑅𝑅 (corresponding to 
regression coefficients 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺, -𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺 and 𝛽𝛽𝐺𝐺𝐺𝐺) or their other-only equivalents 𝑏𝑏� , �̃�𝑐 and 𝑅𝑅� 
(corresponding to 𝛽𝛽𝑤𝑤𝐺𝐺� .𝐺𝐺, -𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺�  and 𝛽𝛽𝐺𝐺�𝐺𝐺).  

For contextual analysis and the neighbour approach this is very straightforward. As noted 
above, the regression equations underlying other-only kin selection models (equation 4) and 
the neighbour approach (equation 8) are identical, and (using the b,c,R notation of Table 1) 
can both be written as  

 

𝑤𝑤 = 𝛼𝛼 − �̃�𝑐𝑔𝑔 + 𝑏𝑏�𝐺𝐺� + 𝜀𝜀                (10) 

 

which can be converted to an equation for evolutionary change using the Price equation: 

 

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) = −�̃�𝑐 𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝑏𝑏� 𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺�,𝑔𝑔)     (11) 

 

Similar equations corresponding to contextual analysis and other-only kin selection are: 

 

𝑤𝑤 = 𝛼𝛼 − 𝑐𝑐𝑔𝑔 + 𝑏𝑏𝐺𝐺 + 𝜀𝜀                (12) 

and 

𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) = −𝑐𝑐 𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺,𝑔𝑔) = −𝑐𝑐 𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝑏𝑏 𝑐𝑐𝑣𝑣𝑣𝑣(𝐺𝐺) (13) 

 

Until now there is no difference between the other-only kin selection versus neighbour 
approach models on one hand, and whole-group kin selection versus contextual analysis 
models on the other. Further division of equations (11) and (13) by 𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) yields the typical 
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presentation of Hamilton’s rule written in terms of either other-only or whole-group 
relatedness: 

𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= −�̃�𝑐 + 𝑏𝑏� 𝑐𝑐𝑐𝑐𝑣𝑣(𝐺𝐺�,𝐺𝐺)
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺) = −�̃�𝑐 + 𝑏𝑏�𝑅𝑅�       (14) 

𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= −𝑐𝑐 + 𝑏𝑏 𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺) = −𝑐𝑐 + 𝑏𝑏𝑅𝑅       (15) 

 

So although relatedness is generally not explicitly used in contextual analysis or neighbour 
approach models, it is in fact implicitly contained in the regression equations, just as it is in 
the general kin selection models. In terms of the underlying logic of the models, there is very 
little difference between kin selection, contextual analysis and the neighbour approach. The 
similarity between kin selection and contextual analysis has been discussed previously in 
reference [36], and the relationship of other-only and whole-group models to contextual 
analysis and the neighbour approach has been noted in reference [31]. 

Moreover, if individuals are in groups that are all equal in size (n), simple relationships can 
be found between the whole-group and other-only model components [31, 50, 58]: 𝑅𝑅 =
1+(𝑛𝑛−1)𝑅𝑅�

𝑛𝑛
,  𝑏𝑏 = 𝑛𝑛

𝑛𝑛−1
𝑏𝑏� and 𝑐𝑐 = �̃�𝑐 + 1

𝑛𝑛−1
𝑏𝑏�. Therefore relatively simple transitions between any 

of the aforementioned methods are possible  if we are willing to accept the assumption of 
equal group sizes.  
 
This still leaves open the question of the exact relationship of these methods to the multilevel 
Price equation. The associations among the other methods were simplified by their basis in 
regression model, whereas the multilevel Price equation is quite a different looking 
covariance equation, without an obvious relation to the 𝑏𝑏, 𝑐𝑐, and 𝑅𝑅 components. However, if 
we maintain the same, genic regression level of models, the multilevel Price equation can 
also be written purely in terms of the whole-group kin selection components, making no 
simplifying assumptions and allowing arbitrary variation in group sizes:  
𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= (𝑏𝑏 − 𝑐𝑐)𝑅𝑅�������         −𝑐𝑐(1 − 𝑅𝑅)�������            (16) 

           between-groups    within-groups 

Readers are referred to box 2 of ref. [31]  for a brief derivation, and the supplemental material 
of ref. [31] for a more general treatment. The key to the derivation of equation 16 is noting 
that the MLS equation can be written entirely in terms of individual fitness (section 3a): 
𝑤𝑤�∆�̅�𝑔 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺)  +   𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔 − 𝐺𝐺). Substituting the regression equation 12 into this form 
of the MLS equation obtains equation 16. If all groups are equal in sizes, we can make use of 
the relationships between whole-group and other-only model components described above 
and write the multilevel Price equation in terms of the latter: 

 

 𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= �𝑏𝑏� − �̃�𝑐� �1
𝑛𝑛

+ (𝑛𝑛−1)𝑅𝑅�

𝑛𝑛
��������������       −𝑎𝑎�+(𝑛𝑛−1)𝑐𝑐̃

𝑛𝑛
(1 − 𝑅𝑅�)�������������            (17) 

                    between-groups                within-groups 
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When comparing equations 2-3 and 16-17, note that the latter two have been divided by 
𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) for clarity. This is a notational preference, and the equations are mathematically 
equivalent. In equations 2-3 the variance is subsumed in the covariances on the right hand 
side. Note also that R in equation 16 is whole-group relatedness, and hence takes on a 
minimum value of 1/n even in groups of unrelated individuals. In equation 17, on the other 
hand, 𝑅𝑅� is other-only relatedness, and 1/n is included as a separate component. Thus both 
equations indicate that the between-groups component can take on non-zero values even if 
group members are not related to each other, particularly in small groups.  

The overall outcome of this section then is that any of the four methods of sections 3a-3d can 
often be converted to any other. They all have a similar foundation which can be written in 
terms of a common set of regression coefficients. Although typical applications of, say kin 
selection and contextual analysis might differ [36], this section also shows that the 
differences are generally not due to any inherent limitations or strengths of particular models, 
and more due to the different ways in which researchers choose to apply them. 
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Table 2. Equations for evolutionary change under alternative approaches to social evolution theory, 
and relationships between model components using the c-b-R notation (see table 1).  

 
Other only kin selection 
 

 
𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= −�̃�𝑐 + 𝑏𝑏�𝑅𝑅�  
 

 
Neighbour approach 
 

 
𝑤𝑤�∆�̅�𝑔 = −�̃�𝑐 𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝑏𝑏� 𝑐𝑐𝑐𝑐𝑐𝑐�𝐺𝐺�,𝑔𝑔�  
or  
𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= −�̃�𝑐 + 𝑏𝑏�𝑅𝑅�  
 

 
Whole-group kin selection 
 

 
𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= −𝑐𝑐 + 𝑏𝑏𝑅𝑅  
 

 
Contextual analysis 
 

 
𝑤𝑤�∆�̅�𝑔 = −𝑐𝑐 𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) + 𝑏𝑏 𝑐𝑐𝑣𝑣𝑣𝑣(𝐺𝐺)  
or  
𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= −𝑐𝑐 + 𝑏𝑏𝑅𝑅  
 
Multilevel Price equation 
 

 
𝑤𝑤�∆𝐺𝐺�
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

= (𝑏𝑏 − 𝑐𝑐)𝑅𝑅�������         −𝑐𝑐(1 − 𝑅𝑅)�������                  
          between-groups     within-groups 
 

 
Relatedness 
 

 
𝑅𝑅� = 𝑐𝑐𝑐𝑐𝑣𝑣(𝐺𝐺�,𝐺𝐺)

𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺) = 𝛽𝛽𝐺𝐺�𝐺𝐺  

𝑅𝑅 = 𝑐𝑐𝑐𝑐𝑣𝑣(𝐺𝐺,𝐺𝐺)
𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺) = 𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺)

𝑣𝑣𝑎𝑎𝑣𝑣(𝐺𝐺) = 𝛽𝛽𝐺𝐺𝐺𝐺  
 

 
Relationship between whole-group and 
other-only model components (n=group 
size) 

 
𝑅𝑅 = 1+(𝑛𝑛−1)𝑅𝑅�

𝑛𝑛
   

𝑏𝑏 = 𝑛𝑛
𝑛𝑛−1

𝑏𝑏�  

𝑐𝑐 = �̃�𝑐 + 1
𝑛𝑛−1

𝑏𝑏�  
 

Note that whether we retain 𝑐𝑐𝑣𝑣𝑣𝑣(𝑔𝑔) and 𝑤𝑤�  on the left or right side of the equations for evolutionary change is somewhat arbitrary and 
depends on notational preferences and the requirements of the question we are studying. If we are mainly interested in the direction of 
change, it may be clearest to retain these factors on the left side (both are non-negative and hence do not influence direction), while 
moving them to the right side yields rates of change, regardless of which approach we are using [37].  

 

 

 

  



18 
 

5. Weak selection models, additive models 
 

a) Regression coefficients versus derivatives 

While genic regression models have the advantage of being very general and as such 
providing robust structure to social evolution theory, they are by themselves not practical for 
many modelling applications. Gardner et al discuss the distinction between “the general 
theory of kin selection that forms the foundations of social evolution vs. the streamlined kin 
selection methodologies that are used to solve specific problems” [29]. To some extent a 
similar division into general and streamlined methods can be applied to all social evolution 
methods described above in their general form.  

For a modeller in evolutionary or behavioural ecology, perhaps the most practical methods 
are weak selection models (more precisely, 𝛿𝛿-weak selection in the terminology of Wild and 
Traulsen [64]) at the interface of game theory and social evolution theory [8]. Powerful and 
flexible kin selection modelling techniques under weak selection are presented in detail 
elsewhere [19, 35, 49, 65], allowing for complications such as class structured models. The 
aim here is not to present the full methodology with all its extensions, but instead to focus on 
its connection to the general models described above, and on how the four social evolution 
approaches described in previous sections can be viewed from a weak selection perspective. 

Streamlined weak selection methods can be thought to approximate partial regression 
coefficients with partial derivatives [25, 35], and it is helpful to have a visual understanding 
of why and when this works. Partial regression coefficients tell us something about the effect 
of one independent variable on the dependent variable while holding the other independent 
variables constant, regardless of how much variation in present in the population. Partial 
derivatives on the other hand tell us about the effect of small variation in one variable on a 
function, with other variables held constant. There is therefore a clear intuitive analogy 
between partial regression coefficients and partial derivatives. Visualising some aspects of 
this connection nevertheless becomes much easier if we consider fitness as a non-linear 
function of one trait and corresponding simple regression coefficients and derivatives, 
illustrated in Figure 2. As phenotypic variation reduces, the relevant portion of the 
phenotype-fitness relationship becomes closer and closer to a straight line, the slope of which 
is given by the derivative of the fitness function. On the other hand, when we fit a regression 
model to data generated from a straight line, the regression coefficient is exactly the slope of 
this line. Hence, under small phenotypic variation (𝛿𝛿-weak selection [64]), derivatives and 
regression coefficients coincide. A two-variable equivalent with partial regression 
coefficients and partial derivatives is analogous, but more difficult to visualise: it would 
consist of a fitness surface in 3-dimensional coordinates, approximated by a plane (a higher-
dimensional analogue of a straight line). The plane can be defined using partial regression 
coefficients, or partial derivatives, and again under small variation the two coincide. 
Replacing (partial) regression coefficients with (partial) derivatives, the latter can be 
computed using only the population mean value instead of the full phenotypic distribution, 
taking advantage of the powerful methods of calculus [8]. 



19 
 

 
Figure 2. A simplified visualisation of approximating a regression coefficient with a derivative. The 
curve represents a hypothetical phenotype-fitness relationship, here for clarity assumed to be 
deterministic so that phenotype determines fitness exactly. If there is very little phenotypic variation in 
the population at any given time (𝛿𝛿-weak selection), the phenotype-fitness relationship is very close to 
a straight line for any set of phenotypes simultaneously undergoing selection (the zoomed in section, 
with blue circles representing individuals). The derivative gives the slope of the tangent line to the 
curve. A regression coefficient gives the slope of a straight line that best fits the phenotype-fitness 
data points. As phenotypic variation decreases (the blue circles get closer together), the difference 
between 𝛽𝛽𝑤𝑤𝑤𝑤 and 𝑑𝑑𝑤𝑤

𝑑𝑑𝑤𝑤
 becomes smaller and smaller. If there is wide phenotypic variation, the 

derivative can be a very poor approximation of the regression coefficient due to the non-linearity of 
the phenotype-fitness relationship – in such a case, regression will give the correct outcome while 
differentiation will not. An analogous explanation applies to partial regression coefficients and 
partial derivatives but is more difficult to visualise: the curve would be replaced by a surface and the 
straight line with a plane, both embedded in three-dimensional space. 

 

Figure 2 depicts a phenotype-fitness relationship, whereas all the preceding equations are 
concerned with genotype-fitness relationships. There are alternative ways to reconcile these 
views. First, suppose we are mainly concerned with ultimate evolutionary equilibria that arise 
over very long timescales. In this case, when a wide range of potential mutations is 
considered, theory suggests that the long-term stable state can be characterised at the 
phenotypic level [66]. Genetic constraints that temporarily prevent a phenotypic maximum 
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from being reached are eventually broken by altered genetic systems (e.g. variation in scale 
of mutation effects or dominance), until the final equilibrium is reached. This justifies the use 
of phenotypic differentiation methods when characterising evolutionary equilibria. 
Alternatively (or to complement a static analysis of equilibria), if we want to approximate 
evolutionary trajectories, we can make the simplifying assumption of additive genetic effects 
and small variation at any given time [8], which implies that phenotype maps onto genotype 
in a simple way even outside of equilibria. Though obviously a simplification, this may not 
be too far from reality: mutations on quantitative traits are expected to often have small 
phenotypic effects, particularly in polygenic traits, where the combined small effects of 
multiple genes determine the value of a continuous phenotypic trait [29,  see 67 for a review 
of recent empirical evidence]. Either way, phenotypic weak selection models arguably expose 
selection and the explanation for the appearance of 'design' in a very transparent way. It is a 
separate question whether genetic constraints can prevent the suggested equilibrium form 
being reached in the short term. 

 

For a more mathematical perspective of the connection between derivatives and regression 
coefficients we can take advantage of Taylor polynomials [68] in conjunction with the Price 
equation. As long as the fitness function satisfies certain mathematical conditions (namely, it 
is analytic), it can be approximated by a Taylor polynomial. For social evolution models 
where we need to account for both individual character and that of the social environment, we 
can approximate fitness using a first order multivariable Taylor polynomial [see reference 8 
for details]. In either case, the Price equation can be applied to the Taylor polynomial, 
yielding an expression for evolutionary change in terms of derivatives. To further convince 
ourselves that partial derivatives correspond to partial regression coefficients, we could use 
the first order multivariable Taylor polynomial as an approximate, linear function for fitness 
and explicitly calculate the partial regression coefficients of previous sections corresponding 
to the linear approximation (using e.g. the formulas in box 4 of reference [29]). 

 

Whichever way we choose to approach the question, the outcome is that the partial regression 
coefficients of previous sections have partial derivative counterparts: 

𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺 = −𝑐𝑐 ≈ 𝜕𝜕𝑤𝑤
𝜕𝜕𝐺𝐺

 and 𝛽𝛽𝑤𝑤𝐺𝐺.𝐺𝐺 = 𝑏𝑏 ≈ 𝜕𝜕𝑤𝑤
𝜕𝜕𝐺𝐺

 for whole-group models, and similar for their other-

only equivalents. And given that these partial regression coefficients appear in all four social 
evolution approaches of sections 3-4, we can write weak selection approximations for all of 
them by replacing the partial regression coefficients with their partial derivative counterpart. 
The point of this is that even though the weak selection optimality approach is typically 
applied to kin selection models [36], the difference is again one of historical differences in 
approach, rather than one relating to fundamental differences in logic [37]. In many cases we 
could interpret a weak selection social evolution model from any perspective we choose for a 
particular model and biological question, and arguably, in some cases such a change of 
viewpoints can be useful. 
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b)  Causal interpretation in regression, additive, and weak selection models  

Causality is a slippery concept, and one that has been a source of debate in evolutionary 
biology for several decades [e.g. 54, 69, 70, 71]. The concept of causality and how it connects 
with evolutionary theory raises many questions. On a very general scale, we can ask whether 
adaptive evolution, as described by mathematical evolutionary theory is a causal process in 
the first place [72]. When examining more specific evolutionary scenarios, we may want to 
consider what are valid and useful ways of breaking the model into finer grained causal 
structures [e.g. kin selection versus multilevel Price equation: 61]. Fairly recently, there have 
been great strides forwards in causal modelling in general [e.g. 73, 74], and these 
developments provide a rigorous framework in which to tackle such questions. There has also 
been much interest in the validity of causal interpretation of regression coefficients, 
particularly in Hamilton’s rule [25, 75]. Here I would like to emphasise the perhaps 
underappreciated counterpoint that weak selection models and associated derivatives and 
partial derivatives can be a powerful aid for fine-grained causal analysis of natural selection 
that can supplement causal interpretation using other methods. 

What do weak selection models permit in terms of causal interpretation that additive models 
or regression models do not? An additive model makes the strong assumption that fitness is 
mediated by additive effects of phenotype. A regression model, on the other hand, ‘forces’ a 
nonlinear model into additive components by fitting a model of best linear fit to the data (in 
the sense of minimising the sum of squares). Both methods have their place and can be 
valuable, but in some sense, both are a compromise. The assumption of additivity in trait-
fitness relationships is known to commonly be broken – additivity is likely the exception 
rather than the rule in nature. Regression gets around this by extracting statistical summaries 
from the data that superficially seem additive. But as a downside, because they force a non-
additive model into an additive mould, the regression coefficients themselves may not have a 
clear causal meaning unless the underlying causal model is additive itself [75].   

Derivatives and partial derivatives fall somewhere in between, making a third sort of 
compromise. Differentiation too can extract a type of additive effect from a non-additive 
model, but in a very different way than regression. It is an effect that is valid only in a 
specific domain of small variation (Figure 2). But within this limited domain it can represent 
the real causal structure defined by a potentially non-linear model of fitness.  

There is something that may seem puzzling about this. Weak selection methods are typically 
used to analyse models constructed by researchers themselves. If the causal effects in the 
model are entirely specified by the modeller, how can differentiation and some sort of causal 
analysis of the derivatives yield any additional understanding (particularly since, if anything, 
differentiation removes information because all constant terms have the same derivative)? 
One reason for this is that mere differentiation can be thought of as shorthand for steps that 
are implicitly taking place behind the scene: first, we derive an additive, weak selection 
model for fitness by computing a Taylor polynomial for a potentially non-linear and 
frequency-dependent fitness function, and then apply the Price equation to the resulting 
approximate additive model of fitness [8], thus obtaining an approximate model for 
evolutionary change. So, if we break down the process into steps, what looks like 
differentiation of the fitness function is in fact something relatively complex and by no means 
obvious. We have gone from a static description of fitness to a model that tracks change of 
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phenotype over time under weak selection. From this perspective, it no longer seems very 
puzzling that differentiation reveals aspects of causal structure that may not be obvious when 
we write down the initial fitness function.  

Another reason for differentiation being a potentially useful aid in causal analysis is that 
weak selection methods based on differentiation (e.g. game theory of continuous traits, 
quantitative genetics under weak selection, adaptive dynamics, the direct fitness approach to 
kin selection, all of which lead to fairly similar equations [8, 35, 76-80]) are often used to 
model complex scenarios which can incorporate rich ecological detail. This means that the 
resulting function for fitness can be quite complex, and the potentially simpler expressions 
that arise from differentiation may be easier to interpret. The fitness function may include 
multiple components and complicated nonlinear interactions which can be difficult to 
disentangle intuitively. Linearising the fitness function using a Taylor approximation can 
separate the causal components neatly into additive components that are easier to interpret.  

An early example of using differentiation to clarify the causal structure of an evolutionary 
model is Taylor’s 1981 analysis of sex ratio models [81]. Since Hamilton’s publication of the 
local mate competition sex ratio model in 1967 [82], there had been much debate and 
confusion on what it is that really drives the evolution of skewed sex ratios in this model – 
again, despite the fact that these causal processes are ultimately completely specified by the 
modeller. Taylor differentiated a simple equation for fitness, and gave a causal interpretation 
to the partial derivatives that arise from this model, greatly clarifying our understanding of 
the question using this fairly simple procedure. Therefore using differentiation and 𝛿𝛿-weak 
selection models as a type of causal analysis is not new, even if it has not necessarily been 
described using those words. But 𝛿𝛿-weak selection could potentially be a powerful aid in the 
ongoing discussion of the causal structure of evolutionary theory. A thorough investigation of 
these models as an aid in causal analysis, and of the limitations of such an analysis would 
also help bring philosophical and biological aspects of causal analysis closer to each other. 
Philosophical contributions often focus on additive or regression models [e.g. 72, 75], while 
𝛿𝛿-weak selection is one of the most important modelling methods in evolutionary biology, at 
least in social evolution theory [29]. 

In evolutionary models, it is typically possible to decompose the total model into component 
causes in many different ways [19]. From this perspective, kin selection is one kind of causal 
analysis [19], while other approaches to social evolution can be thought of as alternative 
causal perspectives [61] (although as we have seen, direct fitness kin selection models, 
contextual analysis, and the neighbour approach are very similar). The mathematical terms of 
different approaches can carry different causal meanings, some more appropriate to particular 
biological questions than others. Mathematical translation rules between different social 
evolution approaches are then in an informal sense simultaneously translations between 
different causal perspectives that can be applied under regression, additive and weak 
selection models. I have previously argued that although perhaps easiest to initially derive 
using direct fitness kin selection formalism [35], models of gamete evolution under gamete 
competition and gamete limitation [31], as well as local mate competition sex allocation 
models [83] can both benefit from an MLS interpretation. It is not that the MLS perspective 
is in some absolute sense the correct interpretation for these questions, but rather that in both 
models there are ecological factors that map nicely onto the between-groups and within-
groups components of the MLS equation. In models of gamete evolution, variation in the 
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total fertilisation success of a spawning group (modelled with a ‘fertilisation function’ [84]) 
corresponds to between-groups selection, while competition between spawners (gamete or 
sperm competition [85]) within each group corresponds to within-groups selection. This 
clarifies the relationship of early group selectionist models of gamete evolution [86, 87] to 
later individual selection models [88]. Similarly, models of sex allocation with local mate 
competition have occasionally been given a group selection interpretation [89, 90]. From an 
MLS perspective, the total reproductive output of a local reproductive group corresponds to 
between-groups selection which can select for a female-biased sex ratio, while the within-
groups component mirrors standard Fisherian selection [91] for a 50:50 sex ratio [83]. These 
examples simply illustrate the ease with which one can analyse a single model from multiple 
perspectives under detailed evolutionary models, while table 2 shows how different social 
evolution approaches relate to each other under a more general framework.  

  

 

 

6. Conclusion 

The main point of this article has been to bring a unified perspective to alterative (and often, 
seemingly competing) approaches to social evolution theory. We began with the standard, 
‘single-level’ Price equation, noting that under a broad interpretation it can accommodate the 
evolution of altruism, spite, or any other kind of trait typically investigated using social 
evolution theory. But it does not do this by providing a causal explanation for the evolution 
of these traits, but rather by being completely causally agnostic: any process that creates 
positive covariance between a trait and fitness entails selection for that trait, no matter what 
and how complicated the intermediate causal pathways are. Depending on one’s perspective, 
this causal indifference can be seen as a positive or negative feature of the Price equation.  

Examining four more ‘fine-grained’ approaches to social evolution we found that under very 
broad conditions, they can all be written using a unified set of mathematical components, 
allowing easy translations from one methodology to another. This unification can be derived 
under the most general, genic regression models. But because regression coefficients can be 
identified with derivatives under weak selection, this unification also applies to the very 
practical and streamlined weak selection models. A similar argument works for additive 
models.  From this perspective, the differences between alternative approaches are minimal, 
while each still retains specific strengths as modelling methods and causal interpretations of 
evolution.  

Finally, I have argued that weak selection models can be a powerful aid in causal analysis. 
Typically, weak selection models are used to estimate evolutionary equilibria and 
evolutionary trajectories. However, the derivatives that make up such a model are often 
amenable to causal interpretation. Such causal interpretation has proven helpful in clarifying 
causal relationships in e.g. sex ratio models. Because the translation rules established in this 
article apply to weak selection models, we are free to view a weak selection model from the 
alternative causal perspectives that different social evolution approaches afford.  
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Appendix  
Here we prove some identities needed in the main text. Below, i is an index running over all 
individuals in the global population, ignoring groups. k, in turn, indexes the groups, j indexes 
individuals within a group and n indicates group size. Instead of the short notation 𝐸𝐸 and 𝑐𝑐𝑐𝑐𝑐𝑐 
used in the main text, we will explicitly indicate group-size weighted averages and 
covariances following Price [5]: 

𝑣𝑣𝑐𝑐𝑎𝑎𝑛𝑛𝑊𝑊 = ∑ 𝑛𝑛𝑘𝑘𝑊𝑊𝑘𝑘𝑘𝑘
∑ 𝑛𝑛𝑘𝑘𝑘𝑘

         (A1) 

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑊𝑊,𝐺𝐺) = ∑ 𝑛𝑛𝑘𝑘(𝑊𝑊𝑘𝑘𝑘𝑘 −𝑎𝑎𝑣𝑣𝑎𝑎𝑛𝑛𝑊𝑊)(𝐺𝐺𝑘𝑘−𝑎𝑎𝑣𝑣𝑎𝑎𝑛𝑛𝐺𝐺)
∑ 𝑛𝑛𝑘𝑘𝑘𝑘

      (A2) 

 

The aim is to prove 

 

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑊𝑊,𝐺𝐺) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝑔𝑔)      (A3) 

and 

𝑣𝑣𝑐𝑐𝑎𝑎𝑛𝑛[𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘(𝑤𝑤,𝑔𝑔)] = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑤𝑤,𝑔𝑔) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,∆𝑔𝑔) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑤𝑤,∆𝑔𝑔)   (A4) 

 

The proof for equation A3 is as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑊𝑊,𝐺𝐺) = ∑ 𝑛𝑛𝑘𝑘(𝑊𝑊𝑘𝑘𝑘𝑘 −𝑎𝑎𝑣𝑣𝑎𝑎𝑛𝑛𝑊𝑊)(𝐺𝐺𝑘𝑘−𝑎𝑎𝑣𝑣𝑎𝑎𝑛𝑛𝐺𝐺)
∑ 𝑛𝑛𝑘𝑘𝑘𝑘

=
∑ 𝑛𝑛𝑘𝑘(

∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑘𝑘
𝑛𝑛𝑘𝑘

𝑘𝑘 −𝑤𝑤�)(𝐺𝐺𝑘𝑘−𝐺𝐺�)

∑ 𝑛𝑛𝑘𝑘𝑘𝑘
=

∑ �∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑘𝑘 −𝑛𝑛𝑘𝑘𝑤𝑤��𝑘𝑘 (𝐺𝐺𝑘𝑘−𝐺𝐺�)
∑ 𝑛𝑛𝑘𝑘𝑘𝑘

=
∑ ∑ (𝑤𝑤𝑘𝑘𝑘𝑘𝑘𝑘 −𝑤𝑤�𝑘𝑘 )(𝐺𝐺𝑘𝑘−𝐺𝐺�)

∑ 𝑛𝑛𝑘𝑘𝑘𝑘
= ∑ (𝑤𝑤𝑖𝑖−𝑤𝑤�𝑖𝑖 )(𝐺𝐺𝑖𝑖−𝐺𝐺�)

𝑁𝑁
= 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺)  

Due to symmetry, this also implies that  𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝑔𝑔) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) =  𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛(𝑊𝑊,𝐺𝐺). Since this 
holds for weighted covariance, it naturally also holds for unweighted covariance which is a 
special case of the former. A further useful consequence of the above identity is 𝑐𝑐𝑣𝑣𝑣𝑣(𝐺𝐺) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺,𝐺𝐺) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺,𝑔𝑔). 

 

Next we derive the equivalence A4: 

𝑣𝑣𝑐𝑐𝑎𝑎𝑛𝑛�𝑐𝑐𝑐𝑐𝑐𝑐�𝑤𝑤𝑘𝑘𝑘𝑘,𝑔𝑔𝑘𝑘𝑘𝑘�� = 𝑣𝑣𝑐𝑐𝑎𝑎𝑛𝑛�𝑐𝑐𝑐𝑐𝑐𝑐�𝑤𝑤𝑘𝑘𝑘𝑘 −𝑊𝑊𝑘𝑘,𝑔𝑔𝑘𝑘𝑘𝑘 − 𝐺𝐺𝑘𝑘�� =
∑ 𝑛𝑛𝑘𝑘�

∑ (𝑤𝑤𝑘𝑘𝑘𝑘−𝑊𝑊𝑘𝑘𝑘𝑘 −0)(𝑔𝑔𝑘𝑘𝑘𝑘−𝐺𝐺𝑘𝑘−0)
𝑛𝑛𝑘𝑘

�𝑘𝑘

∑ 𝑛𝑛𝑘𝑘𝑘𝑘
=

∑ ∑ (𝑤𝑤𝑘𝑘𝑘𝑘−𝑊𝑊𝑘𝑘𝑘𝑘 −0)(𝐺𝐺𝑘𝑘𝑘𝑘−𝐺𝐺𝑘𝑘−0)𝑘𝑘

𝑁𝑁
= ∑ (𝑤𝑤𝑖𝑖−𝑊𝑊𝑖𝑖−0𝑖𝑖 )(𝐺𝐺𝑖𝑖−𝐺𝐺𝑖𝑖−0)

𝑁𝑁
= 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤 −𝑊𝑊,𝑔𝑔 − 𝐺𝐺) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑤𝑤,∆𝑔𝑔) =  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝑔𝑔) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝐺𝐺) =    (**) 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) =       

𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔 − 𝐺𝐺) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,∆𝑔𝑔)  

Alternatively, following from (**): 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝑔𝑔) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝐺𝐺) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤,𝑔𝑔) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑊𝑊,𝑔𝑔) =       

𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤 −𝑊𝑊,𝑔𝑔) = 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝑤𝑤,𝑔𝑔)  


