2 3	1	Quantifying the autonomic response to stressors – one way to expand the definition of
4 5 6	2	"stress" in animals
7 8	3	
9 10		Matt Osidia al Dav Davta al 2
11	4	Matt Galdica', Ben Dantzer' ^{,2} ,
12	5	
14 15	6	¹ Department of Psychology, University of Michigan, Ann Arbor, MI, USA
16 17 18	7	² Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor,
19 20	8	MI, USA
21 22 23	9	*Corresponding author: dantzer@umich.edu
24 25	10	
26		
27		
28 29		
30		
31		
32		
33		
34		
35		
30 27		
38		
39		
40		
41		
42		
43		
44 45		
46		
47		
48		
49		
50		
51		
52		
53		
54 55		
56		
57		
58		
59		1
60		·

Page 2 of 40

11 Abstract

Quantifying the impact of changes or stimuli in the external and internal environment that are challenging ("stressors") to whole organisms is difficult. To date, physiological ecologists and ecological physiologists have mostly used measures of glucocorticoids (GCs) to assess the impact of stressors on animals. This is of course too simplistic as Hans Seyle himself characterized the response of organisms to "noxious stimuli" using multiple physiological responses. Possible solutions include increasing the number of biomarkers to more accurately characterize the "stress state" of animal or just measuring different biomarkers to more accurately characterize the degree of acute or chronic stressors an animal is experiencing. We focus on the latter and discuss how heart rate (HR) heart rate variability (HRV) may be better predictors of the degree of activation of the sympathetic-adrenal-medullary system and complement or even replace measures of GCs as indicators of animal health, welfare, fitness, or their level of exposure to stressors. The miniaturization of biological sensor technology ("bio-sensors" or "bio-loggers") presents an opportunity to reassess measures of stress and develop new approaches. We describe some modern approaches to gathering these HR and HRV data in free-living animals with the aim that heart dynamics will be more integrated with measures of GCs as bio-markers of stress and predictors of fitness in free-living animals.

Introduction

There is a growing appreciation that measures of "stress" are problematic. In vertebrate physiological ecology and ecological physiology, researchers have almost exclusively relied on glucocorticoids (GCs) for assessing how stressors impact animals (Romero et al. 2015; MacDougall-Shackleton et al. 2019). For example, in a review of how to measure "stress" in wildlife using measures of GCs, Sheriff et al. (2011) stated that "Measuring GC levels does not equate to measuring "stress", but they are a critical component of the stress response and, when taken together with other indices of stress (e.g., measures of immune function, metabolism, nitrogen balance), they offer considerable insight into how animals perceive and adapt to their environment.". Measuring GCs is nonetheless useful because they seem to play a major role in facilitating organismal resilience through environmental challenges (Sapolsky et al., 2000: Vitousek et al., 2018). However, this is problematic because of its simplicity as the stress response is multifaceted, composed of autonomic, neuroendocrine, and behavioral responses. In fact, glucocorticoids are not necessarily symptomatic of stress, nor do they reliably predict individual animal fitness in nature (Breuner 2008; Bonier et al. 2009; Crespi et al. 2013). Other than altering our terminology and verbiage so that we are more careful to not

equate "an increase in GCs" with "an increase in stress levels", where do we go from here? One solution is to make our measures of "stress" more multifaceted than they have been in the past. Interestingly, this is similar to what Seyle (Selve 1936; Selve 1943; Selye 1956) described when he characterized the stress response as the

Page 4 of 40

> "general adaptation syndrome" or "general alarm reaction". Seyle measured not just one feature of the stress response but the "syndrome" that was composed of multiple physiological responses and endpoints indicative of exposure to noxious stimuli. The suggestion to expand how we quantify the stress response has been called for recently. For example, Breuner et al. (2013) highlighted the need for other metrics to quantify exposure to chronic stress such as glucose or free-fatty acid levels or the production of heat shock proteins. Dickens and Romero (2013) emphasized that there is not one single physiological variable that one could use to characterize individuals as being "under chronic stress". Recent studies (e.g., Romero et al. (2009)) have also endeavored to quantify the multitude of effects stressors have on behavior, the hypothalamic-pituitary-adrenal (HPA) axis, and the sympathetic-adrenal-medullary system.

Those of us that study free-living animals have been historically constrained by the field environment to the extent that concurrent toolsets are difficult to implement. Thus, the reliance on GCs as an accessible and proximate measure of stress has become prominent, though flawed. The miniaturization of biological sensor technology ("bio-sensors" or "bio-loggers") presents an opportunity to reassess measures of stress and develop new approaches-potentially animal-borne-that can be united with the vast work on measures of GCs in free-living animals. One such route of investigation focuses on the brain-heart axis as they are bi-directionally connected to the sympathetic-adrenal-medullary system. Here, the electrical activity of the central nervous system modulates the catecholaminergic tone onto the heart, causing changes

in heart rate (HR) and heart rate variability (HRV, Fig. 1). This link between the brain and the rest of the body is potentially significant with respect to stress. We aim to describe the physiological mechanisms involved in the sympathetic stress response, their significance in animal physiological ecology and ecological physiology, and present modern approaches to gathering these data in free-living animals. In doing so, we hope to present a balanced comparison, and perhaps, integration of heart dynamics with GCs as bio-markers of stress and predictors of fitness in free-living animals. The Autonomic Stress Response The common caricature of the immediate response to adversity or environmental challenges ("fight or flight") is accompanied by a cascade of physiological changes. In mammals, the limbic system is highly conserved and serves as a neural substrate for fears and emotions (Jänig 1985), controlling sympathetic outflow systems to eventually activate the cardiac muscle and adrenal glands (Porges 1995; Chapleau and Abboud; Jansen et al. 1995). This is how and why GCs remain a valid surrogate measure for

stress, and although the effect of GCs on the body are relatively slow, they play an

important role in responding and adapting by regulating glucose production and

temporarily suppressing the immune system (Padgett and Glaser 2003).

More immediate are the effects catecholamines, namely, epinephrine and norepinephrine, which agonize B1-receptors on the heart enhancing contractility while increasing heart rate (Cyr and Romero 2009; Lacombe and Jones 1990). Meanwhile, the parasympathetic pathway (i.e. "rest and digest") is inhibited, which is why the stress

Page 6 of 40

97 response is said to be "sympathetic-dominant". The heart also naturally accelerates
98 during inhalation due to the inhibition of vagal outflow, which is restored via the release
99 of acetylcholine following exhalation (Eckberg and Eckberg 1982).

Prolonged activation of the sympathetic system can be due to emotional and neural dysregulation, environmental uncertainty, consistent threats, lingering noxious stimuli, or irregular breathing, and should ultimately be detrimental and maladaptive. For example, one of the best cardiac risk factors in humans remains an elevated heart rate (greater than 90 beats per minute) due to sympathetic over-activation (Zhang et al. 2016; Curtis and O'Keefe Jr 2002) and similar, negative implications of an elevated heart rate has been found in other animals (Umana et al. 2003). B-blockers are competitive antagonists that compete with endogenous catecholamines on B-receptors and can reduce heart rate and normalize blood pressure (Amer 1977). Importantly, significant positive outcomes relating to cardiac events and mortality from the use of B-blockers suggest heart dynamics as the crucial physiological measure (Arnold et al. 2008) rather than systemic catecholamines. Heart Rate HR has historical significance as one of the best measures to assess the health

and behavioral status across taxa (Levine 1997). HR is often used to characterize the
 autonomic response to stress as it can reflect the balance between the sympathetic and
 parasympathetic systems that elevate and depress heart rate, respectively. The
 autonomic influence over HR has been directly tested by co-administering a beta-

blocker (propranolol) and anticholinergic (atropine), therefore exposing the spontaneous
HR generated intrinsically by the sinoatrial node (Jose and Collison 1970). Somewhat
surprisingly, the heart beats faster when the autonomic inputs are blocked in this
fashion, suggesting that the parasympathetic branch, which depresses heart rate
through the vagal nerve, is normally dominating. In contrast to sympathetic activation,
these findings have led researchers to alternatively focus on vagal "tone" as a health
indicator (Levy and Schwartz 1994).

Acute stressors (e.g., an immediate, novel, or unpredictable stimulus) seem to affect humans, and free-living birds and mammals in similar ways, although direct comparisons are difficult and often necessitate captivity. In wild birds, anthropogenic disturbances such as exposure to humans can elevate heart rates (Viblanc et al. 2015; Viblanc et al. 2012a) as can exposure to agonistic interactions between neighbors (Viblanc et al. 2012b). Black bears have a significant increase in HR associated with the perceived threat of road crossings (Ditmer et al. 2018). Similar elevations in HR are found in captive birds and mammals where restraint or noxious stimuli are presented (Nephew et al. 2003; Ellen et al. 2014). The startle response is also associated with an immediate elevation in HR following the disturbance (Young and Leaton 1994; Nephew and Romero 2003; Johnson and Mayers 2001; Laferton et al. 2018).

How chronic stress impacts HR is less clear. For example, 4 weeks of exposure
to a chronic stress paradigm causes sustained elevations in baseline HR in laboratory
rats (Grippo et al. 2003). In female prairie voles (*Microtus ochrogaster*), social isolation
is a type of chronic stressor and voles experiencing 4 weeks of social isolation exhibited

substantial increases in resting HR (Grippo et al. 2007; Grippo and Johnson 2009). In captive birds, baseline HR is initially elevated for the first 30 hours but declines to control levels after 10-14 months (Dickens and Romero 2009) Fischer and Romero (2016). Interestingly, the daytime increase in HR during chronic stress exposure (15-16) days) was met with a nighttime decrease during that same period (Romero et al. 2009). However, this counterbalancing effect to a chronic stressor (wounding) is abolished if the birds are moulting (Kostelanetz et al. 2009), which in itself may be a stressful life history stage in birds as it is often associated with elevated GCs.

Heart rhythm is still one of the first vital signs examined by a physician, but as we expect with other species, it is not interpreted without greater context (e.g., did the patient drink a cup of coffee in the waiting room?). Even then, the prognostic quality of HR itself is tenuous in clinical medicine. In humans, a typical standard deviation of heart rate can be up to 10 beats per minute, which is not itself significantly different from some disease conditions (Albanese et al. 2016). HR associations with chronic conditions like depression are mixed, sometimes showing higher resting HR (Krittayaphong et al. 1997) and sometimes lower (Hu et al. 2016). Conditions such as depression are often accompanied by a sedentary lifestyle and metabolic syndrome (Licht et al. 2011; Thayer et al. 2010), which taken together represent a unique, maladaptive condition that is, of course, rare in wild animals. Socioemotional conditions like anxiety are not met with the same physiological adaptations as physical stressors (Watkins et al. 1998), although primates may have specially adapted neural machinery for these situations (Cameron and Schoenfeld 2018). The problem with using HR as a

window into the stress state of an animal is challenging from a taxonomic,
environmental, circadian, and life history perspective, as they are all factors that affect
HR and HR-associated adaptations (Viblanc et al. 2015). Therefore, a cardiac measure
that provides more resolution into the underlying physiology is required and may be
found in HRV.

169 Heart Rate Variability

In 1965 it was found that the inter-beat interval of the heart was an earlier predictor of fetal distress than HR itself (Hon and Lee 1963). Overlapping with the rise of accessible computing power, statistical measures of HRV were soon pioneered (Akselrod et al. 1981). By the late 1980s HRV gained clinical relevance as a detector of autonomic neuropathy in diabetic patients (Ewing et al. 1985) and as a strong predictor of mortality following an acute myocardial infarction (Wolf et al. 1978; Bigger Jr et al. 1992; Malik et al. 1989; Kleiger et al. 1987). Since then, there has been a relatively lengthy body of research showing that HRV is an accurate measurement of the activity of the autonomic stress response (Thaver et al. 2012) and signifies a state of heightened vigilance (Thayer and Lane 2000). A reduction in HRV (i.e., a more regular heartbeat) is a result of vagal withdrawal and sympathetic activation (Schiweck et al. 2019) characteristic of exposure to stressors (Stauss 2003; von Borell et al. 2007; Cyr and Romero 2009; Koolhaas et al. 1999; Perini and Veicsteinas 2003), which can result in unfavorable health outcomes. The regularity between heartbeats under sympathetic dominance is likely advantageous for survival, as it guarantees a consistent

Page 10 of 40

blood circulation and delivery of nutrients and glucose to peripheral organs. However,
maintaining such a mode of operation may be biophysically maladaptive, as it can
render the organism impervious to changing circumstances (Thayer and Sternberg
2006). An autonomic blockade not only increases HR but decreases HRV in humans
(Camm et al. 1996) and rodents (e.g., Lakin et al. 2018, Cyr et al. 2008) highlighting the
important influence of vagal tone on regulating HRV.

Across different types of species, exposure to stress is associated with a reduction in HRV. For example, transportation or acute restraint (e.g., during grooming) of agricultural animals is associated with a reduction in their HRV (Schmidt et al. 2010; Reefmann et al. 2009). Lameness in cows (characterized as abnormalities of the feet that cause pain when moving and may lead to infection and sepsis) is a type of chronic stressor and cows that exhibit lameness had lower HRV than those that did not exhibit these symptoms (Kovacs et al., 2015). In laboratory rats, 4 weeks of exposure to a chronic stress paradigm resulted in reductions in HRV (Grippo et al. 2003). Female prairie voles exposed to social isolation for 4 weeks exhibited reductions in HRV (Grippo et al. 2007; Grippo and Johnson 2009). It is less clear how stress and HRV are related in non-mammals although many findings are consistent (Fischer and Romero 2016; Müller et al. 2017). Acute stress (trauma associated with surgery) in snakes almost eliminates HRV for the first 10 days following surgery (Sanches et al. 2019). In contrast, studies in captive birds exposed to a chronic stress paradigm for 16 or 18 d, HRV was unaffected (Cyr and Romero 2009; Kostelanetz et al. 2009).

Page 11 of 40

1

2	
3 4	206
5 6	207
7 8 0	208
9 10 11	209
12 13	210
14 15	211
16 17	010
18 19	212
20 21	213
22 23	214
24 25	215
26 27 28	216
28 29 30	217
31	
32 33	218
34 35	219
36 37	220
38 39 40	221
41 42	222
43 44	223
45 46	
47	224
49 50	225
51 52	226
53 54	227
55 56	
57	
58 59	
60	

The causes and consequences of variation in HRV have been best investigated in humans. In humans, HRV decreases with age (Reardon and Malik 1996; Padgett and Glaser 2003) and many pathophysiological conditions including heart failure, diabetes, and hypertension (Xhyheri et al. 2012) as well as obesity (Mazurak et al. 2016). It is unclear how mental stress manifests in non-humans, however patients with depression have a lower HRV (Krittayaphong et al. 1997) which is unrelated to existing cardiovascular disease (Carney and Freedland 2009) and worsening symptoms further decrease HRV (Kemp et al. 2010; Krittayaphong et al. 1997). HRV is negatively correlated with exposure to stressful experiences (Porges 2003; Stauss 2003; von Borell et al. 2007) and self-reported anxiety (Berntson and Cacioppo 2004) or increased work-related stress (Chandola et al. 2008; Thayer et al. 2010). Experimental application of standardized psychological stress tests (e.g., Stroop or speech task paradigm) to humans also decreases their HRV during wakefulness (Delaney and Brodie 2000) and subsequently during sleep (Hall et al. 2004).

HRV may also be a window into the reactiveness and integration capacity of the central nervous system (CNS) to deal with challenges and coordinate context-specific responses in the periphery (Thayer et al. 2012). However, the central site responsible for these adaptations has been challenged by the fact that the sinoatrial node is also plastic (Stein et al. 2002). The finding that adaptations to HRV in response to physical exercise are abolished during an autonomic block (e.g., propranolol hydrochloride and atropine) support the former hypothesis, that the CNS modulates HRV through the parasympathetic pathway (Lakin et al. 2018).

Page 12 of 40

Compared to individuals with high resting HRV, those with low resting HRV do not recover as quickly from psychological stressors based on cardiovascular, endocrine, and immune markers (Weber et al. 2010). One meta-analysis showed that poor recovery following laboratory stressors is associated with cardiovascular risk status (e.g., elevated blood pressure, hypertension, clinical cardiac events), although subjects also exhibited heightened reactivity (Chida and Steptoe 2010). Indeed, biological responses to stressors or threats can be exaggerated, leading to anxiety or aggression (Valiente et al. 2003; Carthy et al. 2010). For example, studies on severely depressed individuals are mixed, albeit consistently atypical, showing both higher reactivity or a blunted response to stressors (Hamilton and Alloy 2016; Schiweck et al. 2019) similar to the inverted U performance-arousal curve of the Yerkes-Dodson Law (Yerkes and Dodson 1908; Cohen 2011). Physical exercise is one way to decrease resting HRV while establishing normal/optimal autonomic reactivity (Kiss et al. 2016). Unlike psychological stressors, transient activation of the autonomic system from exercise is followed by an augmentation of vagal tone (Pardo et al. 2000).

⁴² 244 Associations between GCs & HRV

Given that most studies to date have focused on measuring "stress" using only GCs, it is useful to briefly look at the associations between GCs and HRV. Some studies that employ captivity as a chronic stressor show that the period following initial captivity is associated with an increase in GCs and HR and a decline in HRV but as the time from initial captivity increases, GCs and HR decline and HRV increases (Dickens

and Romero 2009). Following the transportation of agricultural animals (a type of acute stressor), GCs are elevated and HRV is reduced (Schmidt et al. 2010). However, other studies find no association between HRV and measures of GCs or even the opposite association where both GCs and HRV are elevated. For example, lameness in cows (a type of chronic stressor) was associated with reduced HRV but no change in fecal glucocorticoid metabolites compared to non-lame cows (Pacifici et al. 2015). In wild birds brought into captivity, HRV and plasma GCs were reduced at the beginning of captivity compared to 6-7 days after captivity was initiated (Fischer et al. 2016: Fischer et al. 2018). These latter studies suggest that the lag time from the initiation of the stressor (in these studies it was captivity) affects their impact on HRV or GCs; HRV is low immediately after the start of captivity and then increases whereas GCs are low immediately after captivity and then increase.

In humans, HRV does not directly correlate with the cortisol waking response (Stalder et al. 2011) highlighting the potential nuance of HRV. Interpreting HRV may benefit from the context of the three-stage response model originally proposed by Selve (Selve 1956). That is, HRV measured during the alarm, resistance, and exhaustion stages of the stress response should be assumed to communicate different information about the state of an animal.

269 Tools and Methods to Measure HR and HRV

As a relatively young field of investigation, the tools and methods used to record
 As a relatively young field of investigation, the tools and methods used to record
 HR and HRV are actively undergoing standardization, which may account for conflicting

Page 14 of 40

results. An electrocardiogram (ECG, sometimes called an EKG from the German word *Elektro-kardiographie*) is the gold standard method for measuring heart rhythms and requires an amplifier and electrodes to be strategically placed near the heart muscle. Ample resolution on an ECG will provide information about atrial and ventricular depolarization and repolarization. Ventricular depolarization is the largest deflection in the signal and can be identified as the R-wave in the QRS-wave complex. The inter-beat interval (IBI) is synonymous with the normal-to-normal R-R interval (NN) and is the basis for calculating time-series measures like mean NN interval or HR, as well as statistical operations that are used in HRV analyses. HR and HRV measures can be affected by a subject's head or body position, respiration rate or pace, sex, age, and aerobic fitness level, and interrelate with natural biophysical rhythms (e.g., circadian, metabolic, hormonal). Clinicians and researchers alike should be aware of the relatively extensive list of best practices and caveats when approaching HR and HRV measurements (Shaffer and Ginsberg 2017; Camm et al. 1996). Here, we focus our discussion on the potential utility of HRV analyses based on "short-term" 5-minute recordings, as this is a well-documented standard, reasonable to

achieve in animals from battery-powered devices, and applicable to 24-hour recordingsthat are chunked into smaller time windows.

Common time-series HRV measures include the standard deviation of all NN intervals (SDNN, measured in ms), the root mean square of successive differences of the NN interval (RMSSD), and the percentage of adjacent NN intervals that differ by more than 50 ms (pNN50) (Camm et al. 1996). SDNN measurements reflect both

1 2		
2 3 4	294	sympathetic and parasympathetic activity, but in short-term recordings, the primary
5 6 7	295	source of variation is parasympathetically-mediated respiratory sinus arrhythmia,
7 8 9	296	making this measure extremely sensitive to respiratory status (Shaffer et al. 2014).
10 11	297	RMSSD and pNN50 are correlated with each other and closely with parasympathetic
12 13 14	298	activity. Although time-series analyses are conceptually straight forward, they fail to
15 16	299	correlate with the same measures over 24 hours (Shaffer and Ginsberg 2017), making
17 18	300	their interpretation context-dependent. Studies have also found that short-term
19 20 21	301	recordings are prognostically insufficient (Kleiger et al. 2005).
22 23	302	Analyses in the frequency-domain may offer more insight for short-term
24 25 26 27 28	303	recordings. This often begins by subjecting the time-series data (i.e., the entire 5
	304	minutes) to a form of spectral analysis where the power contributions from different
29 30	305	frequency bands can be viewed in two dimensions (power \times frequency). A generalized
31 32 33	306	approach has been to quantify low-frequency (LF, $0.04 - 0.15$ Hz) and high-frequency
34 35	307	(HF, 0.15 – 0.4 Hz) power which are correlated with sympathetic and parasympathetic
36 37 29	308	tone, respectively (Xhyheri et al. 2012). Therefore, the LF/HF ratio has been suggested
39 40	309	as an index of the interaction between sympathetic and vagal activity (Pagani et al.
41 42	310	1986), but this notion has been challenged, primarily because the LF band is
43 44 45	311	multifaceted. For example, during resting conditions LF power represents baroreflex
46 47	312	rhythms, and may only approximate sympathetic tone when subjects are ambulating
48 49 50 51 52	313	(Shaffer and Ginsberg 2017).

2 3 4	314
5 6 7	315
8 9 10	316
11 12 13	317
14 15	318
16 17	319
18 19 20	320
21 22	321
23 24 25	322
25 26 27	323
28 29	324
30 31 32	325
32 33 34	326
35 36	327
37 38 39	328
40 41	329
42 43	330
44 45 46	331
47 48	332
49 50 51	333
52 53	334
54 55	
56 57	
58 59	

1

5 Bio-loggers to Record HR and HRV

In recent years, the use of miniaturized bio-loggers to make physiological and environmental measurements from free-ranging animals has radically transformed scientific capabilities. Technological strides in battery, computation, memory, and sensor technology continue to support a rich suite of bio-logging tools that are not only becoming smaller and longer-lasting, but providing multi-featured, high-resolution data (Williams et al. 2019).

22 Natural stressors imposed by natural environments may better approximate the 23 physiological capabilities of an animal to respond and adapt than stressors applied in 24 the laboratory (Williams et al. 2016). However, being multifaceted, accurately measuring 25 the stress response using an attachable, or implantable bio-logger is challenging. Some 26 of the first attempts in this vein used accelerometers to identify behavioral patterns in 27 response to stressors (Kröschel et al. 2017). Accelerometry has also been used to map 28 micro-movements onto specific internal (Wilson et al. 2008) or disease states (Downey 29 et al. 2017; Cancela et al. 2014). The dynamic relationship between HR and respiration 30 has been characterized using bio-loggers in diving birds (Butler and Woakes 1979) and 31 again examined in penguins with a device capable of identifying unique body functions 32 such as defecation (Wilson et al. 2004). Self-contained, automated hemodynamic 33 measurement units have been used to sample blood during a physical challenge to 34 analyze changes in GCs and other hormones (Takei et al. 2016; Landry et al. 2014).

Page 17 of 40

Cardiac rhythms have been a central focus of bio-logging as HR accurately predicts energy expenditure (Weimerskirch et al. 2002) and metabolic rate (Green 2011), and both HR and HRV are becoming widely appreciated surrogates of stress and resilience (see above). Some bio-loggers perform on-board HR estimation (Pulopulos et al. 2018; Bevan et al. 1997; Chaise et al. 2017) which is more efficient from a power and memory standpoint, but limits HRV analyses. Beat-to-beat signals are useful for time-series analyses, as the periodically measured RMSSD of inter-beat intervals in free-ranging, pregnant horses correlate with changing seasons, which may be due to environmental, pregnancy, or metabolic pressures (Pohlin et al. 2017). However, to perform proper short-term HRV spectral analyses the entire, raw waveform must be analyzed, and to our knowledge has so-far relied on post hoc, rather than on-board computation in battery-powered bio-loggers (although this is not true for consumer 'wearables' designed for humans). For example, bar-headed geese have been fitted with bio-loggers that record long-duration, raw ECG patterns during a trans-Himalayan migration (Spivey and Bishop 2014).

350 It should be recognized that bio-loggers have additional constraints compared to
351 biotelemetry systems, where data is or transmitted rather than directly saved (Fu et al.
352 2011), and wireless charging might be an option (Young-Ho et al. 2004 Nov).
353 Telemetered heart rhythms have been applied to mammals (Arnold et al. 2004; O'Mara
354 et al. 2017), birds (Cyr et al. 2008), fish (Cooke et al. 2004), and reptiles (Butler et al.

355 2002). Telemetry systems have outpaced bio-loggers in both capability and use across
356 model systems, although there are notable synergies, and indeed mixed capabilities, as

Page 18 of 40

in the form of marine "pop-up" tags (Musyl et al. 2011) and RFID-enabled devices (Williams et al. 2016). Bio-loggers that can record neural data with the resolution to identify single action potentials (> 20 kHz) have been implemented in behaving animals with the option to perform short-term experiments free of a recording tether (Massot et al. 2019). Brain rhythms that are present during sleep can be identified through much slower sampling rates (Aulsebrook et al. 2016; Rattenborg et al. 2008), thereby extending the lifetime and utility of neuro-based bio-loggers. The discovery that great frigatebirds (Fregrata minor) sleep mid-flight used bio-loggers that constantly recorded electroencephalography (at 200 Hz) over 10 days (Rattenborg et al. 2016). Similar devices have been implemented in pigeons and represent a powerful toolset when paired with other onboard sensors (Vyssotski et al. 2006). Indications that sleep states affect physical performance and recovery (Shapiro et al. 1981) and that stress has a bidirectional relationship with sleep (Hall et al. 2004; Martire et al. 2019) makes the neural toolset an exciting new direction for bio-logging technology. HR/HRV may be a key marker for the efficiency and effectiveness of autonomic regulatory processes like sleep and can, therefore, be examined in association with physical and reproductive fitness.

The future of bio-logging to quantify how animals respond and recover from exposure to stressors may rely on smarter and more clever recording techniques to mitigate power and memory constraints (Woakes et al. 1995; Clark et al. 2009; Spivey and Bishop 2014; Cox et al. 2018). For example, accelerometry and time-of-day data could augment ECG recording routines, as some cardiac measurements are only

2	
3 4	379
5 6	380
/ 8 0	381
9 10 11	382
12 13	383
14 15	384
16 17	385
18 19 20	000
20 21	386
22 23	387
24 25 26	388
27 28	389
29 30	390
31 32	391
33 34 35	392
36 37	393
38 39	394
40 41	001
42 43	395
44 45	396
46 47 48	397
48 49 50	398
50 51 52	399
53 54	400
55 56	400
57	
58 59	

60

rhythm data not only pairs well with accelerometry data for the ability to distinguish between active, rest, and sleep state but could also coordinate low-power modes on the bio-logger so that the neural recording circuitry is idle when the animal is moving. Although onboard computation is power-intensive, algorithms that perform HRV statistics (Park et al. 2018), detect sleep states (Allocca et al. 2019), extract neuronal spiking rates (Dragas et al. 2013), or discretize any other physiologic variables could be valuable depending on the experimental recording strategy. The largest challenge to monitoring HR and HRV in free-living animals to obtain an index of their exposure to stress is that it can be more invasive than the collecting of blood samples and other tissues that can be used to measure GCs non-invasively (feces, urine, feathers, hair). However, they may provide much higher quality and informative data than measures of GCs alone (e.g., Aimie-Salleh et al. (2019)). Researchers must also consider whether intervening on either end of an experiment to implant and explant a bio-logger is altogether less disruptive to the population and other species in the community than the consistent or frequent presence of humans, which is often required to collect samples to measure GCs.

relevant following a period of rest or in the morning (Shaffer and Ginsberg 2017). Brain

397 Conclusions & Why HRV?

398 HRV appears to occur in all vertebrate taxa (sensu Sanches et al. 2019) and
399 there are several similarities to studies that use measures of GCs to measure how an
400 animal perceives its world and the degree of environmental challenges it is facing. For

Page 20 of 40

example, GCs (Schoenle et al. 2018) and HRV (Muller et al. 2018) both show repeatable individual differences, suggesting that these traits can exhibit an evolutionary response to natural selection. Although there are challenges associated with measuring HRV compare to GCs, we think there are several clear advantages. First, GCs play a role in the mobilization of glucose to fuel behavioral activities and so elevated GCs may be a biomarker of elevated energetic expenditure in wild animals. However, by measuring HRV, measures of HR are also available. It is quite likely that measures of HR better reflect actual energetic expenditure than measures of GCs given that they can be used to estimate oxygen consumption and therefore energetic expenditure (Groscolas et al. 2010; Ellenberg et al. 2013), although they require careful validation (e.g., Hicks et al. (2017)). Second, measures of GCs have been used to investigate how anthropogenic activities impact wildlife (Dantzer et al., 2014) but measures of HR and perhaps HRV in wild animals may provide a more in-depth view of how they affect wildlife. For example, wild animals may not exhibit a behavioral response to anthropogenic activities but still exhibit an increase in HR (Ditmer et al. 2015). Measures of HR may also provide insights into the unexpected impacts of humans on animals such as the presence of wildlife photographers provoking a stronger increase in HR in penguins than did the capture and handling (Ellenberg et al. 2013). Finally, as we noted above, HRV may better reflect the stress state of an animal as well as the amount of acute or chronic stressors the animal has been exposed to compared to measures of GCs. This is reflected by the ability of HRV to predict human health (Thayer and Lane 2000; Lane et al. 2009) and health/welfare in other animals (von Borell et al. 2007). For

1 2		
3 4	423	example, there is a strong interest in understanding how social interactions affect the
5 6 7	424	health and fitness of all animals including humans ("sociality-health-fitness" nexus).
 8 9 10 11 12 13 14 15 16 17 18 19 	425	Interestingly, social interactions may increase oxytocin (Uvnas-Moberg 1998) and
	426	experimental administration of oxytocin increases HRV (Romero et al. 2014). Moreover,
	427	social isolation in prairie voles reduces HRV but these effects are abolished if oxytocin
	428	is administered during the period of isolation (Grippo and Johnson 2009). These
	429	studies suggest one way by which social interactions increase health, well-being, and
20 21	430	fitness in animals through its effects on oxytocin and HRV.
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	431	Studies of the relationship between HRV and measures of fitness in wild animals
	432	are clearly needed here but these previous studies suggest that HRV may more reliably
	433	predict past or current exposure to stress and may more reliably predict fitness. The
	434	obvious limitation here is that measuring HR and HRV is still difficult and much more
	435	invasive to the individual compared with measures of GCs. However, a comprehensive
	436	picture of the stress response to environmental challenges, as Seyle advocated, is
	437	going to require data on the autonomic stress response in addition to measures of GCs
39 40 41	438	and HRV may be the most reliable biomarker.
42 43	439	
44 45 46	440	Acknowledgements
47 48 49 50 51	441 442 443	Thank you to Elizabeth Addis for inviting us to contribute this manuscript. BD was funded by NSF IOS-1749627.
52 53 54 55 56 57 58	444	
59 60		21

1 2		
3	453	Literature Cited
5 6 7	454	Aimie-Salleh, N, Malarvili, MB et al. (2019) Fusion of heart rate variability and salivary
8 9	455	cortisol for stress response identification based on adverse childhood experience.
10 11 12	456	Med Biol Eng Comput 57:1229–1245.
13 14	457	Akselrod, S, Gordon, D et al. (1981) Power spectrum analysis of heart rate fluctuation: a
15 16 17	458	quantitative probe of beat-to-beat cardiovascular control. American Association for
17 18 19	459	the Advancement of Science,
20 21	460	Albanese, M, Neofytou, M et al. (2016) Evaluation of heart rate measurements in clinical
22 23 24	461	studies: a prospective cohort study in patients with heart disease. Eur J Clin
25 26 27 28 29 30 31 32 33 34	462	Pharmacol 72:789–795.
	463	Allocca, G, Ma, S et al. (2019) Validation of 'Somnivore', a Machine Learning Algorithm
	464	for Automated Scoring and Analysis of Polysomnography Data. Front Neurosci
	465	13:207.
34 35 36	466	Amer, MS (1977) Mechanism of action of beta-blockers in hypertension. Biochemical
37 38	467	pharmacology 26:171–175.
39 40 41	468	Arnold, JM, Fitchett, DH et al. (2008) Resting heart rate: a modifiable prognostic
41 42 43	469	indicator of cardiovascular risk and outcomes. Can J Cardiol 24 Suppl A:3A-8A.
44 45	470	Arnold, W, Ruf, T et al. (2004) Nocturnal hypometabolism as an overwintering strategy
46 47 48	471	of red deer (Cervus elaphus). American Journal of Physiology-Regulatory,
49 50	472	Integrative and Comparative Physiology 286:R174–R181.
51 52	473	Aulsebrook, AE, Jones, TM et al. (2016) Sleep Ecophysiology: Integrating Neuroscience
53 54 55	474	and Ecology. Trends Ecol Evol 31:590–599.
56 57 58		
59		23

1 2		
3 4 5 6 7 8 9	475	Berntson, GG, Cacioppo, JT (2004) Heart rate variability: Stress and psychiatric
	476	conditions. Dynamic electrocardiography 57–64.
	477	Bevan, Boyd et al. (1997) Heart rates and abdominal temperatures of free-ranging
10 11	478	South Georgian shags, Phalacrocorax georgianus. J Exp Biol 200:661–675.
12 13	479	Bigger Jr, JT, Fleiss, JL et al. (1992) Frequency domain measures of heart period
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	480	variability and mortality after myocardial infarction. Circulation 85:164–171.
	481	Bonier, F, Martin, PR et al. (2009) Do baseline glucocorticoids predict fitness? Trends in
	482	ecology \& Evolution 24:634–642.
	483	Breuner, C (2008) Maternal stress, glucocorticoids, and the maternal/fetal match
	484	hypothesis. Hormones and Behavior 54:485.
	485	Breuner, CW, Delehanty, B et al. (2013) Evaluating stress in natural populations of
	486	vertebrates: total CORT is not good enough. Functional Ecology 27:24-36.
	487	Butler, PJ, Woakes, AJ (1979) Changes in Heart Rate and Respiratory Frequency
	488	During Natural Behaviour of Ducks, with Particular Reference to Diving. The
	489	Company of Biologists Ltd,
	490	Butler, PJ, Frappell, PB et al. (2002) The relationship between heart rate and rate of
41 42	491	oxygen consumption in Galapagos marine iguanas (Amblyrhynchus cristatus) at
43 44 45	492	two different temperatures. Journal of Experimental Biology 205:1917-1924.
46 47	493	Cameron, HA, Schoenfeld, TJ (2018) Behavioral and structural adaptations to stress.
48 49 50	494	Frontiers in neuroendocrinology 49:106–113.
51 52		
53 54 55		
56 57		
58 59		24
60		

1 2		
2 3 4	495	Camm, AJ, Malik, M et al. (1996) Heart rate variability: standards of measurement,
5 6 7	496	physiological interpretation and clinical use. Task Force of the European Society of
, 8 9	497	Cardiology and the North American Society of Pacing and Electrophysiology.
10 11 12	498	Cancela, J, Pastorino, M et al. (2014) Feasibility study of a wearable system based on a
12 13 14	499	wireless body area network for gait assessment in Parkinson's disease patients.
15 16	500	Sensors 14:4618–4633.
17 18 19	501	Carney, RM, Freedland, KE (2009) Depression and heart rate variability in patients with
20 21	502	coronary heart disease. Cleveland Clinic journal of medicine 76:S13.
22 23	503	Carthy, T, Horesh, N et al. (2010) Emotional reactivity and cognitive regulation in
24 25 26	504	anxious children. Behaviour research and therapy 48:384–393.
27 28	505	Chaise, LL, Paterson, W et al. (2017) Implantation of subcutaneous heart rate data
29 30 31	506	loggers in southern elephant seals (Mirounga leonina). Polar Biology 40:2307–
32 33	507	2312.
34 35	508	Chandola, T, Britton, A et al. (2008) Work stress and coronary heart disease: what are
36 37 38	509	the mechanisms? European heart journal 29:640–648.
39 40	510	Chapleau, M, Abboud, F Neuro-Cardiovascular Regulation: From Molecules to Man.
41 42 43	511	Annals New York Academic of Sciences
44 45	512	Chida, Y, Steptoe, A (2010) Greater cardiovascular responses to laboratory mental
46 47	513	stress are associated with poor subsequent cardiovascular risk status: a meta-
48 49 50	514	analysis of prospective evidence. Hypertension 55:1026–1032.
51 52		
53 54		
55 56 57		
58 59		25
60		

2		
3 4	515	Clark, TD, Hinch, SG et al. (2009) Sex differences in circulatory oxygen transport
5 6	516	parameters of sockeye salmon (Oncorhynchus nerka) on the spawning groun
/ 8 0	517	Journal of Comparative Physiology B 179:663-671.
10 11	518	Cohen, RA (2011) Yerkes–Dodson Law. Encyclopedia of clinical neuropsychology
12 13	519	2737–2738.
14 15 16	520	Cooke, SJ, Thorstad, EB et al. (2004) Activity and energetics of free-swimming fish
17 18	521	insights from electromyogram telemetry. Fish and Fisheries 5:21–52.
19 20 21	522	Cox, SL, Orgeret, F et al. (2018) Processing of acceleration and dive data on-board
22 23	523	satellite relay tags to investigate diving and foraging behaviour in free-ranging
24 25 26	524	marine predators. Methods Ecol Evol 9:64–77.
26 27 28	525	Crespi, EJ, Williams, TD et al. (2013) Life history and the ecology of stress: how do
29 30	526	glucocorticoid hormones influence life-history variation in animals? Functional
31 32 33	527	Ecology 27:93–106.
34 35	528	Curtis, BM, O'Keefe Jr, JH (2002) Autonomic tone as a cardiovascular risk factor: t
36 37 28	529	dangers of chronic fight or flight. Mayo Clinic Proceedings 77:45–54.
38 39 40	530	Cyr, NE, Dickens, MJ et al. (2008) Heart rate and heart-rate variability responses to
41 42	531	acute and chronic stress in a wild-caught passerine bird. Physiological and
43 44 45	532	Biochemical Zoology 82:332–344.
46 47	533	Cyr, NE, Romero, LM (2009) Identifying hormonal habituation in field studies of stre
48 49	534	General and comparative endocrinology 161:295-303.
51		
52 53		
54		
55 56		
57		
58 50		
59 60		26

1 2		
3 4	535	Delaney, JPA, Brodie, DA (2000) Effects of short-term psychological stress on the time
5 6 7 8 9	536	and frequency domains of heart-rate variability. Perceptual and motor skills
	537	91:515–524.
10 11	538	Dickens, MJ, Romero, LM (2009) Wild European starlings (Sturnus vulgaris) adjust to
12 13	539	captivity with sustained sympathetic nervous system drive and a reduced fight-or-
14 15 16	540	flight response. Physiol Biochem Zool 82:603–610.
17 18	541	Dickens, MJ, Romero, LM (2013) A consensus endocrine profile for chronically stressed
19 20 21	542	wild animals does not exist. General and comparative endocrinology 191:177-189.
22 23	543	Ditmer, MA, Rettler, SJ et al. (2018) American black bears perceive the risks of crossing
24 25 26 27 28 29 30 31 32 33 34 35 26	544	roads. Behavioral Ecology 29:667–675.
	545	Ditmer, MA, Vincent, JB et al. (2015) Bears show a physiological but limited behavioral
	546	response to unmanned aerial vehicles. Current Biology 25:2278-2283.
	547	Downey, LA, Tysse, B et al. (2017) Psychomotor tremor and proprioceptive control
	548	problems in current and former stimulant drug users: An accelerometer study of
36 37 38	549	heavy users of amphetamine, MDMA, and other recreational stimulants. The
39 40	550	Journal of Clinical Pharmacology 57:1330–1337.
41 42	551	Dragas, J, Jäckel, D et al. (2013) An unsupervised method for on-chip neural spike
43 44 45	552	detection in multi-electrode recording systems. 2013 35th Annual International
46 47	553	Conference of the IEEE Engineering in Medicine and Biology Society:2535-2538.
48 49 50	554	Eckberg, DWAINL, Eckberg, MARYAJ (1982) Human sinus node responses to
50 51 52	555	repetitive, ramped carotid baroreceptor stimuli. American Journal of Physiology-
53 54 55 56	556	Heart and Circulatory Physiology 242:H638–H644.
57 58		
59		27

3 4	55
5 6 7	55
7 8 9	55
10 11	56
12 13	56
14 15 16	56
17 18	56
19 20 21	56
22 23	56
24 25 26	56
26 27 28	56
29 30	56
31 32 33	56
34 35	57
36 37	57
38 39 40	57
41 42	57
43 44 45	57
46 47	57
48 49	57
50 51 52	57
53 54	
55 56	
57 58 59	
60	

7 Ellen, ED, Rodenburg, TB et al. (2014) The prospects of selection for social genetic 8 effects to improve welfare and productivity in livestock. Frontiers in genetics 5:377. 9 Ellenberg, U, Mattern, T et al. (2013) Heart rate responses provide an objective 60 evaluation of human disturbance stimuli in breeding birds. Conservation 1 Physiology 1 62 Ewing, DJ, Martyn, CN et al. (1985) The Value of Cardiovascular Autonomic Function 63 Tests: 10 Years Experience in Diabetes. American Diabetes Association, 64 Fischer, CP, Franco, LA et al. (2016) Are novel objects perceived as stressful? The 65 effect of novelty on heart rate. Physiology \& behavior 161:7-14. 6 Fischer, CP, Wright-Lichter, J et al. (2018) Chronic stress and the introduction to 67 captivity: how wild house sparrows (Passer domesticus) adjust to laboratory 8 conditions. General and comparative endocrinology 259:85-92. 69 Fischer, CP, Romero, LM (2016) The use of α - or β -blockers to ameliorate the chronic 0 stress of captivity in the house sparrow (Passer domesticus). Conserv Physiol 4:cow049. 1 2 Fu, X, Chen, W et al. (2011) A wireless implantable sensor network system for in vivo ΄3 monitoring of physiological signals. IEEE Trans Inf Technol Biomed 15:577–584. '4 Green, JA (2011) The heart rate method for estimating metabolic rate: review and '5 recommendations. Comp Biochem Physiol A Mol Integr Physiol 158:287–304. 6 Grippo, AJ, Beltz, TG et al. (2003) Behavioral and cardiovascular changes in the 7 chronic mild stress model of depression. Physiology & behavior 78:703–710.

1 2		
3 4	578	Grippo, AJ, Gerena, D et al. (2007) Social isolation induces behavioral and
5 6 7 8 9	579	neuroendocrine disturbances relevant to depression in female and male prairie
	580	voles. Psychoneuroendocrinology 32:966–980.
10 11	581	Grippo, AJ, Johnson, AK (2009) Stress, depression and cardiovascular dysregulation: a
12 13 14	582	review of neurobiological mechanisms and the integration of research from
15 16	583	preclinical disease models. Stress 12:1–21.
17 18	584	Groscolas, R, Viera, V et al. (2010) Heart rate as a predictor of energy expenditure in
19 20 21	585	undisturbed fasting and incubating penguins. Journal of Experimental Biology
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	586	213:153–160.
	587	Hall, M, Vasko, R et al. (2004) Acute stress affects heart rate variability during sleep.
	588	Psychosomatic medicine 66:56–62.
	589	Hamilton, JL, Alloy, LB (2016) Atypical reactivity of heart rate variability to stress and
	590	depression across development: Systematic review of the literature and directions
	591	for future research. Clin Psychol Rev 50:67–79.
	592	Hicks, O, Burthe, S et al. (2017) Validating accelerometry estimates of energy
	593	expenditure across behaviours using heart rate data in a free-living seabird.
41 42 42	594	Journal of Experimental Biology 220:1875–1881.
43 44 45	595	Hon, EH, Lee, ST (1963) Electronic evaluation of the fetal heart rate. VIII. Patterns
46 47	596	preceding fetal death, further observations. American journal of obstetrics and
48 49 50	597	gynecology 87:814–826.
51 52		
53 54 55		
56 57		
58 59		29
60		

3 4	5
5 6 7	5
7 8 9	6
10 11	6
12 13 14	6
15 16	6
17 18 19	6
20 21	6
22 23	6
24 25 26	6
27 28	6
29 30 21	6
31 32 33	6
34 35	6
36 37 38	6
39 40	6
41 42 43	6
43 44 45	6
46 47	6
48 49 50	6
51 52	6
53 54 55	6
56 57	

> 98 Hu, W, Jin, X et al. (2016) Deceleration and acceleration capacities of heart rate 99 associated with heart failure with high discriminating performance. Scientific 00 reports 6:23617.

01 Jänig, W (1985) Das vegetative Nervensystem. (ed) Physiologie des Menschen. 02 Springer, pp 119–157.

03 Jansen, ASP, Van Nguyen, X et al. (1995) Central command neurons of the 04 sympathetic nervous system: basis of the fight-or-flight response. Science

05 270:644-646.

06 Johnson, D, Mayers, I (2001) Multiple organ dysfunction syndrome: a narrative review.

07 Canadian Journal of Anesthesia 48:502–509.

80 Jose, AD, Collison, D (1970) The normal range and determinants of the intrinsic heart 09 rate in man. Cardiovascular research 4:160–167.

10 Kemp, AH, Quintana, DS et al. (2010) Impact of depression and antidepressant

- 11 treatment on heart rate variability: a review and meta-analysis. Biological
- 12 psychiatry 67:1067–1074.
- 13 Kiss, O, Sydó, N et al. (2016) Detailed heart rate variability analysis in athletes. Clinical 14 Autonomic Research 26:245–252.

15 Kleiger, RE, Miller, JP et al. (1987) Decreased heart rate variability and its association

- 16 with increased mortality after acute myocardial infarction. The American journal of 17 cardiology 59:256-262.
- 18 Kleiger, RE, Stein, PK et al. (2005) Heart rate variability: measurement and clinical

19 utility. Annals of Noninvasive Electrocardiology 10:88-101.

59

60

1 2		
- 3 4	620	Koolhaas, JM, Korte, SM et al. (1999) Coping styles in animals: current status in
5 6 7 8 9 10 11 12	621	behavior and stress-physiology. Neuroscience \& Biobehavioral Reviews 23:925-
	622	935.
	623	Kostelanetz, S, Dickens, MJ et al. (2009) Combined effects of molt and chronic stress
12 13 14	624	on heart rate, heart rate variability, and glucocorticoid physiology in European
14 15 16	625	Starlings. Comparative Biochemistry and Physiology Part A: Molecular &
17 18	626	Integrative Physiology 154:493-501.
19 20 21	627	Krittayaphong, R, Cascio, WE et al. (1997) Heart rate variability in patients with
22 23	628	coronary artery disease: differences in patients with higher and lower depression
24 25 26 27 28 29 30 31 32 33	629	scores. Psychosom Med 59:231–235.
	630	Kröschel, M, Reineking, B et al. (2017) Remote monitoring of vigilance behavior in large
	631	herbivores using acceleration data. Animal Biotelemetry 5:10.
	632	Lacombe, AMA, Jones, DR (1990) The source of circulating catecholamines in forced
34 35	633	dived ducks. General and comparative endocrinology 80:41-47.
36 37 38	634	Laferton, JAC, Stenzel, NM et al. (2018) The Beliefs About Stress Scale (BASS):
39 40	635	Development, reliability, and validity. International Journal of Stress Management
41 42	636	25:72.
43 44 45	637	Lakin, R, Guzman, C et al. (2018) Changes in Heart Rate and Its Regulation by the
46 47	638	Autonomic Nervous System Do Not Differ Between Forced and Voluntary Exercise
48 49 50	639	in Mice. Front Physiol 9:841.
50 51 52	640	Landry, MP, Kruss, S et al. (2014) Experimental tools to study molecular recognition
53 54	641	within the nanoparticle corona. Sensors (Basel) 14:16196-16211.
55 56 57		
58 59		31
60		

2		
- 3 4	642	Lane, JE, Boutin, S et al. (2009) Sexually selected behaviour: red squirrel males search
5 6 7	643	for reproductive success. Journal of Animal Ecology 78:296–304.
7 8 9	644	Lattin, CR, Romero, LM (2015) Seasonal variation in glucocorticoid and
10 11	645	mineralocorticoid receptors in metabolic tissues of the house sparrow (Passer
12 13	646	domesticus). General and comparative endocrinology 214:95-102.
14 15 16	647	Levine, HJ (1997) Rest heart rate and life expectancy. J Am Coll Cardiol 30:1104–1106.
17 18	648	Levy, MN, Schwartz, PJ (1994) Vagal control of the heart: Experimental basis and
19 20 21	649	clinical implications. Futura Publishing Company,
22 23	650	Licht, CMM, Penninx, BW et al. (2011) To Include or Not to Include? A Response to the
24 25	651	Meta-Analysis of Heart Rate Variability and Depression. Biological Psychiatry
26 27 28	652	69:e1.
29 30	653	MacDougall-Shackleton, SA, Bonier, F et al. (2019) Glucocorticoids and "Stress" Are
31 32 33	654	Not Synonymous. Integrative Organismal Biology 1
 34 35 36 37 38 39 40 41 42 	655	Malik, M, Farrell, T et al. (1989) Heart rate variability in relation to prognosis after
	656	myocardial infarction: selection of optimal processing techniques. European heart
	657	journal 10:1060–1074.
	658	Martire, VL, Caruso, D et al. (2019) STRESS & SLEEP: A RELATIONSHIP LASTING A
43 44 45	659	LIFETIME. Neuroscience & Biobehavioral Reviews
46 47	660	Massot, B, Arthaud, S et al. (2019) ONEIROS, a new miniature standalone device for
48 49	661	recording sleep electrophysiology, physiology, temperatures and behavior in the
50 51 52	662	lab and field. J Neurosci Methods 316:103–116.
53 54		
55 56		
57 58		
59 60		32

Page 33 of 40

1 2		
2 3 4	663	Mazurak, N, Sauer, H et al. (2016) Effect of a weight reduction program on baseline and
5 6 7	664	stress-induced heart rate variability in children with obesity. Obesity 24:439–445.
, 8 9	665	Muller, MS, Vyssotski, AL et al. (2018) Individual differences in heart rate reveal a broad
10 11 12	666	range of autonomic phenotypes in a free-living seabird population. Journal of
12 13 14	667	Experimental Biology 221:jeb182758.
15 16	668	Müller, MS, Vyssotski, AL et al. (2017) Heart rate variability reveals that a decrease in
17 18 19	669	parasympathetic ('rest-and-digest') activity dominates autonomic stress responses
20 21	670	in a free-living seabird. Comp Biochem Physiol A Mol Integr Physiol 212:117–126.
22 23 24	671	Musyl, MK, Domeier, ML et al. (2011) Performance of pop-up satellite archival tags.
25 26	672	Marine Ecology Progress Series 433:1–28.
27 28	673	Nephew, BC, Kahn, SA et al. (2003) Heart rate and behavior are regulated
29 30 31	674	independently of corticosterone following diverse acute stressors. General and
32 33	675	comparative endocrinology 133:173-180.
34 35 36	676	Nephew, BC, Romero, LM (2003) Behavioral, physiological, and endocrine responses
37 38	677	of starlings to acute increases in density. Hormones and Behavior 44:222–232.
39 40	678	O'Mara, MT, Wikelski, M et al. (2017) Cyclic bouts of extreme bradycardia counteract
41 42 43	679	the high metabolism of frugivorous bats. elife 6:e26686.
44 45	680	Pacifici, M, Foden, WB et al. (2015) Assessing species vulnerability to climate change.
46 47 48	681	Nature climate change 5:215.
49 50	682	Padgett, DA, Glaser, R (2003) How stress influences the immune response. Trends in
51 52 53 54	683	immunology 24:444–448.
55 56 57		
59 60		33

3 4	684	Pagani, M, Lombardi, F et al. (1986) Power spectral analysis of heart rate and arterial
5 6 7	685	pressure variabilities as a marker of sympatho-vagal interaction in man and
7 8 9	686	conscious dog. Circulation research 59:178–193.
10 11	687	Pardo, Y, Noel Merz, CB et al. (2000) Exercise conditioning and heart rate variability:
12 13 14	688	evidence of a threshold effect. Clinical Cardiology 23:615-620.
15 16	689	Park, D, Lee, M et al. (2018) Determination of Optimal Heart Rate Variability Features
17 18	690	Based on SVM-Recursive Feature Elimination for Cumulative Stress Monitoring
19 20 21	691	Using ECG Sensor. Sensors (Basel) 18
22 23	692	Perini, R, Veicsteinas, A (2003) Heart rate variability and autonomic activity at rest and
24 25 26	693	during exercise in various physiological conditions. European journal of applied
20 27 28	694	physiology 90:317–325.
29 30	695	Pohlin, F, Brabender, K et al. (2017) Seasonal Variations in Heart Rate Variability as an
31 32 33	696	Indicator of Stress in Free-Ranging Pregnant Przewalski's Horses (E. ferus
34 35	697	przewalskii) within the Hortobágy National Park in Hungary. Front Physiol 8:664.
36 37 38	698	Porges, SW (1995) Orienting in a defensive world: Mammalian modifications of our
39 40	699	evolutionary heritage. A polyvagal theory. Psychophysiology 32:301-318.
41 42	700	Porges, SW (2003) The polyvagal theory: Phylogenetic contributions to social behavior.
43 44 45	701	Physiology \& behavior 79:503–513.
46 47	702	Pulopulos, MM, Vanderhasselt, M-A et al. (2018) Association between changes in heart
48 49 50	703	rate variability during the anticipation of a stressful situation and the stress-induced
51 52	704	cortisol response. Psychoneuroendocrinology 94:63–71.
53 54		
55 56 57		
58 59		34
60		

2 3	705	Rattenborg, NC, Voirin, B et al. (2016) Evidence that birds sleep in mid-flight. Nat
4 5 6	706	Commun 7:12468.
7 8	707	Rattenborg, NC, Voirin, B et al. (2008) Sleeping outside the box:
9 10	700	electro encombele membio recommende electro in elettro inholoitica e minforment. Diel
11 12	708	electroencephalographic measures of sleep in sloths inhabiting a rainforest. Biol
13 14	709	Lett 4:402–405.
15 16	710	Reardon, M, Malik, M (1996) Changes in heart rate variability with age. Pacing and
17 18 19	711	clinical electrophysiology 19:1863–1866.
20 21	712	Reefmann, N, B\"utikofer, FK et al. (2009) Physiological expression of emotional
22 23	713	reactions in sheep. Physiology \& behavior 98:235–241.
24 25 26	714	Romero, LM, Platts, SH et al. (2015) Understanding stress in the healthy animal
27 28	715	potential paths for progress. Stress 18:491–497.
29 30 21	716	Romero, LM, Dickens, MJ et al. (2009) The Reactive Scope Model - a new model
32 33	717	integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389.
34 35	718	Romero, T, Nagasawa, M et al. (2014) Oxytocin promotes social bonding in dogs.
36 37 38	719	Proceedings of the National Academy of Sciences 111:9085–9090.
39 40	720	Sanches, PVW, Taylor, EW et al. (2019) Respiratory sinus arrhythmia is a major
41 42 43	721	component of heart rate variability in undisturbed, remotely monitored rattlesnakes,
43 44 45	722	Crotalus durissus. Journal of Experimental Biology 222:jeb197954.
46 47	723	Schiweck, C, Piette, D et al. (2019) Heart rate and high frequency heart rate variability
48 49 50	724	during stress as biomarker for clinical depression. A systematic review. Psychol
50 51 52 53	725	Med 49:200–211.
54 55		
56 57		
58 59 60		35

1 2		
3 4 5 6 7 8 9	726	Schmidt, A, M\"ostl, E et al. (2010) Cortisol release and heart rate variability in horses
	727	during road transport. Hormones and behavior 57:209–215.
	728	Schoenle, LA, Zimmer, C et al. (2018) Understanding context dependence in
10 11	729	glucocorticoidfitness relationships: the role of the nature of the challenge, the
12 13 14	730	intensity and frequency of stressors, and life history. Integrative and comparative
15 16	731	biology 58:777–789.
17 18	732	Selye, H (1943) Encyclopedia of endocrinology. AWT Franks Publishing Company,
19 20 21	733	Selye, H (1956) The stress of life.
22 23	734	Selye, H, others (1936) A syndrome produced by diverse nocuous agents. Nature
24 25 26 27 28	735	138:32.
	736	Shaffer, F, McCraty, R et al. (2014) A healthy heart is not a metronome: an integrative
29 30 21	737	review of the heart's anatomy and heart rate variability. Front Psychol 5:1040.
31 32 33 34 35	738	Shaffer, F, Ginsberg, JP (2017) An Overview of Heart Rate Variability Metrics and
	739	Norms. Frontiers in Public Health 5
36 37 38	740	Shapiro, CM, Bortz, R et al. (1981) Slow-wave sleep: a recovery period after exercise.
39 40	741	Science 214:1253–1254.
41 42 42	742	Sheriff, MJ, Dantzer, B et al. (2011) Measuring stress in wildlife: techniques for
43 44 45	743	quantifying glucocorticoids. Oecologia 166:869-887.
46 47	744	Spivey, RJ, Bishop, CM (2014) An implantable instrument for studying the long-term
48 49 50	745	flight biology of migratory birds. Rev Sci Instrum 85:014301.
51 52	746	Stalder, T, Evans, P et al. (2011) Associations between the cortisol awakening
53 54 55	747	response and heart rate variability. Psychoneuroendocrinology 36:454–462.
55 56 57		
58 59		36
00		

2 3 4	748	Stauss, HM (2003) Heart rate variability. Am J Physiol Regul Integr Comp Physiol
5 6 7	749	285:R927–31.
7 8 9	750	Stein, R, Medeiros, CM et al. (2002) Intrinsic sinus and atrioventricular node
10 11 12	751	electrophysiologic adaptations in endurance athletes. Journal of the American
12 13 14	752	College of Cardiology 39:1033–1038.
15 16	753	Takei, Y, Suzuki, I et al. (2016) Development of an animal-borne blood sample
17 18 19	754	collection device and its deployment for the determination of cardiovascular and
20 21	755	stress hormones in phocid seals. American Journal of Physiology-Regulatory,
22 23	756	Integrative and Comparative Physiology 311:R788–R796.
24 25 26	757	Thayer, JF, Lane, RD (2000) A model of neurovisceral integration in emotion regulation
27 28	758	and dysregulation. Journal of affective disorders 61:201–216.
29 30 31	759	Thayer, JF, Sternberg, E (2006) Beyond heart rate variability: vagal regulation of
32 33	760	allostatic systems. Annals of the New York Academy of Sciences 1088:361-372.
34 35 26	761	Thayer, JF, Åhs, F et al. (2012) A meta-analysis of heart rate variability and
30 37 38	762	neuroimaging studies: Implications for heart rate variability as a marker of stress
39 40	763	and health. Neuroscience & Biobehavioral Reviews 36:747-756.
41 42 43	764	Thayer, JF, Yamamoto, SS et al. (2010) The relationship of autonomic imbalance, heart
44 45	765	rate variability and cardiovascular disease risk factors. International Journal of
46 47	766	Cardiology 141:122–131.
48 49 50	767	Umana, E, Solares, CA et al. (2003) Tachycardia-induced cardiomyopathy. The
51 52 53 54	768	American journal of medicine 114:51–55.
56 57		
58 59 60		37

3 4	76
5 6	77
7 8 9	77
10 11	77
12 13 14	77
15 16	77
17 18 19	77
20 21	77
22 23 24	77
24 25 26	77
27 28	77
29 30 31	78
32 33	78
34 35 36	78
37 38	78
39 40 41	78
42 43	78
44 45 46	78
40 47 48	78
49 50	78
51 52 53	78
54 55	
57 58	
59 60	

769	Uvnas-Moberg, K (1998) Oxytocin may mediate the benefits of positive social
770	interaction and emotions. Psychoneuroendocrinology 23:819-835.
771	Valiente, C, Eisenberg, N et al. (2003) The relations of effortful control and reactive
772	control to children's externalizing problems: A longitudinal assessment. Journal of
773	personality 71:1171–1196.
774	Viblanc, VA, Smith, AD et al. (2012a) Coping with continuous human disturbance in the
775	wild: insights from penguin heart rate response to various stressors. BMC ecology
776	12:10.
777	Viblanc, VA, Smith, AD et al. (2015) Modulation of heart rate response to acute
778	stressors throughout the breeding season in the king penguin Aptenodytes
779	patagonicus. Journal of Experimental Biology 218:1686–1692.
780	Viblanc, VA, Valette, V et al. (2012b) Coping with social stress: heart rate responses to
781	agonistic interactions in king penguins. Behavioral Ecology 23:1178–1185.
782	von Borell, E, Langbein, J et al. (2007) Heart rate variability as a measure of autonomic
783	regulation of cardiac activity for assessing stress and welfare in farm animals a
784	review. Physiol Behav 92:293–316.
785	Vyssotski, AL, Serkov, AN et al. (2006) Miniature neurologgers for flying pigeons:
786	multichannel EEG and action and field potentials in combination with GPS
787	recording. Journal of neurophysiology 95:1263–1273.
788	Watkins, LL, Grossman, P et al. (1998) Anxiety and vagal control of heart rate.
789	Psychosomatic medicine 60:498–502.
	38

1 2		
- 3 4	790	Weber, CS, Thayer, JF et al. (2010) Low vagal tone is associated with impaired post
5 6 7	791	stress recovery of cardiovascular, endocrine, and immune markers. Eur J Appl
 7 8 9 10 11 12 13 14 15 16 17 18 10 	792	Physiol 109:201–211.
	793	Weimerskirch, H, Shaffer, SA et al. (2002) Heart rate and energy expenditure of
	794	incubating wandering albatrosses: basal levels, natural variation, and the effects of
	795	human disturbance. J Exp Biol 205:475–483.
	796	Williams, CT, Barnes, BM et al. (2016) Integrating physiology, behavior, and energetics:
20 21	797	Biologging in a free-living arctic hibernator. Comp Biochem Physiol A Mol Integr
22 23	798	Physiol 202:53–62.
24 25 26	799	Williams, HJ, Taylor, LA et al. (2019) Optimizing the use of bio-loggers for movement
27 28 29 30	800	ecology research. J Anim Ecol
	801	Wilson, RP, Scolaro, A et al. (2004) To the bottom of the heart: cloacal movement as an
32 33	802	index of cardiac frequency, respiration and digestive evacuation in penguins.
34 35	803	Marine Biology 144:813–827.
36 37 38	804	Wilson, RP, Shepard, ELC et al. (2008) Prying into the intimate details of animal lives:
39 40	805	use of a daily diary on animals. Endangered Species Research 4:123–137.
41 42 42	806	Woakes, AJ, Butler, PJ et al. (1995) Implantable data logging system for heart rate and
43 44 45	807	body temperature: its application to the estimation of field metabolic rates in
46 47	808	Antarctic predators. Med Biol Eng Comput 33:145–151.
48 49 50	809	Wolf, MM, Varigos, GA et al. (1978) Sinus Arrhythmia in Acute Myocardial Infarction.
51 52	810	Medical Journal of Australia 2:52–53.
53 54		
56 57		
58 59 60		39

3 4 5 6 7 8 9 10 11 23 14 15 16 17 8 9 20 21 22 32 4 25 26 27 28 29 30 1 22 33 4 35 36 37 8 9 40 41 20 12 23 24 25 26 27 28 29 31 23 34 35 36 37 8 9 40 41 45 46 7 8 9 0 11 22 32 45 26 27 28 29 31 23 34 35 36 37 8 9 40 41 45 46 7 8 9 40 51 22 33 45 56 7 8 9 40 41 45 16 7 8 9 20 21 22 32 45 26 27 28 29 31 23 34 35 36 37 8 9 40 41 42 34 45 67 8 9 40 41 45 46 7 8 9 40 41 45 46 7 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 40 41 45 8 9 45 56 7 8 9 40 41 42 33 45 56 7 8 9 40 41 42 33 45 56 7 8 9 40 41 45 56 7 8 9 40 41 45 56 7 8 9 40 41 45 56 7 8 9 40 41 45 56 7 7 8 9 45 56 7 7 8 9 40 41 45 56 7 7 8 9 40 41 45 56 7 7 8 9 40 41 45 56 7 7 8 9 40 5 7 8 9 4 5 5 7 8 9 4 5 7 7 8 9 4 5 7 7 8 9 4 5 7 7 8 9 4 5 7 7 8 9 4 5 7 7 8 9 4 5 7 7 8 9 4 5 7 7 8 9 4 5 7 7 8 9 4 5 7 7 8 9 8 9 4 5 7 7 8 9 8 9 7 7 8 9 8 9 7 7 8 9 8 9 7 7 8 9 8 9	811	Xhyheri, B, Manfrini, O et al. (2012) Heart Rate Variability Today. Progress in
	812	Cardiovascular Diseases 55:321-331.
	813	Yerkes, RM, Dodson, JD (1908) The relation of strength of stimulus to rapidity of habit-
	814	formation. Journal of comparative neurology and psychology 18:459–482.
	815	Young-Ho, Y, Eui-Sung, J et al. (2004 Nov) 30th Annual Conference of IEEE Industrial
	816	Electronics Society, 2004. IECON 2004 Design of implantable wireless biomedical
	817	signals telemetry system. 3:2982–2986 Vol. 3.
	818	Young, BJ, Leaton, RN (1994) Fear potentiation of acoustic startle stimulus-evoked
	819	heart rate changes in rats. Behavioral Neuroscience 108:1065.
	820	Zhang, D, Shen, X et al. (2016) Resting heart rate and all-cause and cardiovascular
	821	mortality in the general population: a meta-analysis. Cmaj 188:E53–E63.
	822	
59 60		40