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Abstract 11 

Quantifying the impact of changes or stimuli in the external and internal environment 12 

that are challenging (“stressors”) to whole organisms is difficult. To date, physiological 13 

ecologists and ecological physiologists have mostly used measures of glucocorticoids 14 

(GCs) to assess the impact of stressors on animals. This is of course too simplistic as 15 

Hans Seyle himself characterized the response of organisms to “noxious stimuli” using 16 

multiple physiological responses. Possible solutions include increasing the number of 17 

biomarkers to more accurately characterize the “stress state” of animal or just 18 

measuring different biomarkers to more accurately characterize the degree of acute or 19 

chronic stressors an animal is experiencing. We focus on the latter and discuss how 20 

heart rate (HR) heart rate variability (HRV) may be better predictors of the degree of 21 

activation of the sympathetic-adrenal-medullary system and complement or even 22 

replace measures of GCs as indicators of animal health, welfare, fitness, or their level of 23 

exposure to stressors. The miniaturization of biological sensor technology (“bio-sensors” 24 

or “bio-loggers”) presents an opportunity to reassess measures of stress and develop 25 

new approaches. We describe some modern approaches to gathering these HR and 26 

HRV data in free-living animals with the aim that heart dynamics will be more integrated 27 

with measures of GCs as bio-markers of stress and predictors of fitness in free-living 28 

animals. 29 
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Introduction 31 

There is a growing appreciation that measures of “stress” are problematic. In 32 

vertebrate physiological ecology and ecological physiology, researchers have almost 33 

exclusively relied on glucocorticoids (GCs) for assessing how stressors impact animals 34 

(Romero et al. 2015; MacDougall-Shackleton et al. 2019). For example, in a review of 35 

how to measure “stress” in wildlife using measures of GCs, Sheriff et al. (2011) stated 36 

that “Measuring GC levels does not equate to measuring ‘‘stress’’, but they are a critical 37 

component of the stress response and, when taken together with other indices of stress 38 

(e.g., measures of immune function, metabolism, nitrogen balance), they offer 39 

considerable insight into how animals perceive and adapt to their environment.”. 40 

Measuring GCs is nonetheless useful because they seem to play a major role in 41 

facilitating organismal resilience through environmental challenges (Sapolsky et al., 42 

2000; Vitousek et al., 2018). However, this is problematic because of its simplicity as 43 

the stress response is multifaceted, composed of autonomic, neuroendocrine, and 44 

behavioral responses. In fact, glucocorticoids are not necessarily symptomatic of stress, 45 

nor do they reliably predict individual animal fitness in nature (Breuner 2008; Bonier et 46 

al. 2009; Crespi et al. 2013). 47 

Other than altering our terminology and verbiage so that we are more careful to not 48 

equate “an increase in GCs” with “an increase in stress levels”, where do we go from 49 

here? One solution is to make our measures of “stress” more multifaceted than they 50 

have been in the past. Interestingly, this is similar to what Seyle (Selye 1936; Selye 51 

1943; Selye 1956) described when he characterized the stress response as the 52 
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“general adaptation syndrome” or “general alarm reaction”. Seyle measured not just one 53 

feature of the stress response but the “syndrome” that was composed of multiple 54 

physiological responses and endpoints indicative of exposure to noxious stimuli. The 55 

suggestion to expand how we quantify the stress response has been called for recently. 56 

For example, Breuner et al. (2013) highlighted the need for other metrics to quantify 57 

exposure to chronic stress such as glucose or free-fatty acid levels or the production of 58 

heat shock proteins. Dickens and Romero (2013) emphasized that there is not one 59 

single physiological variable that one could use to characterize individuals as being 60 

“under chronic stress”. Recent studies (e.g., Romero et al. (2009)) have also 61 

endeavored to quantify the multitude of effects stressors have on behavior, the 62 

hypothalamic-pituitary-adrenal (HPA) axis, and the sympathetic-adrenal-medullary 63 

system. 64 

Those of us that study free-living animals have been historically constrained by the 65 

field environment to the extent that concurrent toolsets are difficult to implement. Thus, 66 

the reliance on GCs as an accessible and proximate measure of stress has become 67 

prominent, though flawed. The miniaturization of biological sensor technology (“bio-68 

sensors” or “bio-loggers”) presents an opportunity to reassess measures of stress and 69 

develop new approaches—potentially animal-borne—that can be united with the vast 70 

work on measures of GCs in free-living animals. One such route of investigation 71 

focuses on the brain-heart axis as they are bi-directionally connected to the 72 

sympathetic-adrenal-medullary system. Here, the electrical activity of the central 73 

nervous system modulates the catecholaminergic tone onto the heart, causing changes 74 
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in heart rate (HR) and heart rate variability (HRV, Fig. 1). This link between the brain 75 

and the rest of the body is potentially significant with respect to stress. We aim to 76 

describe the physiological mechanisms involved in the sympathetic stress response, 77 

their significance in animal physiological ecology and ecological physiology, and present 78 

modern approaches to gathering these data in free-living animals. In doing so, we hope 79 

to present a balanced comparison, and perhaps, integration of heart dynamics with GCs 80 

as bio-markers of stress and predictors of fitness in free-living animals. 81 

82 

The Autonomic Stress Response 83 

The common caricature of the immediate response to adversity or environmental 84 

challenges (“fight or flight”) is accompanied by a cascade of physiological changes. In 85 

mammals, the limbic system is highly conserved and serves as a neural substrate for 86 

fears and emotions (Jänig 1985), controlling sympathetic outflow systems to eventually 87 

activate the cardiac muscle and adrenal glands (Porges 1995; Chapleau and  Abboud; 88 

Jansen et al. 1995). This is how and why GCs remain a valid surrogate measure for 89 

stress, and although the effect of GCs on the body are relatively slow, they play an 90 

important role in responding and adapting by regulating glucose production and 91 

temporarily suppressing the immune system (Padgett and Glaser 2003). 92 

More immediate are the effects catecholamines, namely, epinephrine and 93 

norepinephrine, which agonize ß1-receptors on the heart enhancing contractility while 94 

increasing heart rate (Cyr and  Romero 2009; Lacombe and  Jones 1990). Meanwhile, 95 

the parasympathetic pathway (i.e. “rest and digest”) is inhibited, which is why the stress 96 
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response is said to be “sympathetic-dominant”. The heart also naturally accelerates 97 

during inhalation due to the inhibition of vagal outflow, which is restored via the release 98 

of acetylcholine following exhalation (Eckberg and  Eckberg 1982). 99 

Prolonged activation of the sympathetic system can be due to emotional and 100 

neural dysregulation, environmental uncertainty, consistent threats, lingering noxious 101 

stimuli, or irregular breathing, and should ultimately be detrimental and maladaptive. For 102 

example, one of the best cardiac risk factors in humans remains an elevated heart rate 103 

(greater than 90 beats per minute) due to sympathetic over-activation (Zhang et al. 104 

2016; Curtis and  O'Keefe Jr 2002) and similar, negative implications of an elevated 105 

heart rate has been found in other animals (Umana et al. 2003). ß-blockers are 106 

competitive antagonists that compete with endogenous catecholamines on ß-receptors107 

and can reduce heart rate and normalize blood pressure (Amer 1977). Importantly, 108 

significant positive outcomes relating to cardiac events and mortality from the use of ß-109 

blockers suggest heart dynamics as the crucial physiological measure (Arnold et al. 110 

2008) rather than systemic catecholamines. 111 

112 

Heart Rate 113 

HR has historical significance as one of the best measures to assess the health 114 

and behavioral status across taxa (Levine 1997). HR is often used to characterize the 115 

autonomic response to stress as it can reflect the balance between the sympathetic and 116 

parasympathetic systems that elevate and depress heart rate, respectively. The 117 

autonomic influence over HR has been directly tested by co-administering a beta-118 
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blocker (propranolol) and anticholinergic (atropine), therefore exposing the spontaneous 119 

HR generated intrinsically by the sinoatrial node (Jose and  Collison 1970). Somewhat 120 

surprisingly, the heart beats faster when the autonomic inputs are blocked in this 121 

fashion, suggesting that the parasympathetic branch, which depresses heart rate 122 

through the vagal nerve, is normally dominating. In contrast to sympathetic activation, 123 

these findings have led researchers to alternatively focus on vagal “tone” as a health 124 

indicator (Levy and  Schwartz 1994). 125 

Acute stressors (e.g., an immediate, novel, or unpredictable stimulus) seem to 126 

affect humans, and free-living birds and mammals in similar ways, although direct 127 

comparisons are difficult and often necessitate captivity. In wild birds, anthropogenic 128 

disturbances such as exposure to humans can elevate heart rates (Viblanc et al. 2015; 129 

Viblanc et al. 2012a) as can exposure to agonistic interactions between neighbors 130 

(Viblanc et al. 2012b). Black bears have a significant increase in HR associated with the 131 

perceived threat of road crossings (Ditmer et al. 2018). Similar elevations in HR are 132 

found in captive birds and mammals where restraint or noxious stimuli are presented 133 

(Nephew et al. 2003; Ellen et al. 2014). The startle response is also associated with an 134 

immediate elevation in HR following the disturbance (Young and  Leaton 1994; Nephew 135 

and  Romero 2003; Johnson and  Mayers 2001; Laferton et al. 2018). 136 

How chronic stress impacts HR is less clear. For example, 4 weeks of exposure 137 

to a chronic stress paradigm causes sustained elevations in baseline HR in laboratory 138 

rats (Grippo et al. 2003). In female prairie voles (Microtus ochrogaster), social isolation 139 

is a type of chronic stressor and voles experiencing 4 weeks of social isolation exhibited 140 
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substantial increases in resting HR (Grippo et al. 2007; Grippo and  Johnson 2009). In 141 

captive birds, baseline HR is initially elevated for the first 30 hours but declines to 142 

control levels after 10-14 months (Dickens and  Romero 2009) Fischer and  Romero 143 

(2016). Interestingly, the daytime increase in HR during chronic stress exposure (15-16 144 

days) was met with a nighttime decrease during that same period (Romero et al. 2009). 145 

However, this counterbalancing effect to a chronic stressor (wounding) is abolished if 146 

the birds are moulting (Kostelanetz et al. 2009), which in itself may be a stressful life 147 

history stage in birds as it is often associated with elevated GCs. 148 

Heart rhythm is still one of the first vital signs examined by a physician, but as we 149 

expect with other species, it is not interpreted without greater context (e.g., did the 150 

patient drink a cup of coffee in the waiting room?). Even then, the prognostic quality of 151 

HR itself is tenuous in clinical medicine. In humans, a typical standard deviation of heart 152 

rate can be up to 10 beats per minute, which is not itself significantly different from 153 

some disease conditions (Albanese et al. 2016). HR associations with chronic 154 

conditions like depression are mixed, sometimes showing higher resting HR 155 

(Krittayaphong et al. 1997) and sometimes lower (Hu et al. 2016). Conditions such as 156 

depression are often accompanied by a sedentary lifestyle and metabolic syndrome 157 

(Licht et al. 2011; Thayer et al. 2010), which taken together represent a unique, 158 

maladaptive condition that is, of course, rare in wild animals. Socioemotional conditions 159 

like anxiety are not met with the same physiological adaptations as physical stressors 160 

(Watkins et al. 1998), although primates may have specially adapted neural machinery 161 

for these situations (Cameron and  Schoenfeld 2018). The problem with using HR as a 162 
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window into the stress state of an animal is challenging from a taxonomic, 163 

environmental, circadian, and life history perspective, as they are all factors that affect 164 

HR and HR-associated adaptations (Viblanc et al. 2015). Therefore, a cardiac measure 165 

that provides more resolution into the underlying physiology is required and may be 166 

found in HRV. 167 

168 

Heart Rate Variability 169 

In 1965 it was found that the inter-beat interval of the heart was an earlier 170 

predictor of fetal distress than HR itself (Hon and  Lee 1963). Overlapping with the rise 171 

of accessible computing power, statistical measures of HRV were soon pioneered 172 

(Akselrod et al. 1981). By the late 1980s HRV gained clinical relevance as a detector of 173 

autonomic neuropathy in diabetic patients (Ewing et al. 1985) and as a strong predictor 174 

of mortality following an acute myocardial infarction (Wolf et al. 1978; Bigger Jr et al. 175 

1992; Malik et al. 1989; Kleiger et al. 1987). Since then, there has been a relatively 176 

lengthy body of research showing that HRV is an accurate measurement of the activity 177 

of the autonomic stress response (Thayer et al. 2012) and signifies a state of 178 

heightened vigilance (Thayer and  Lane 2000). A reduction in HRV (i.e., a more regular 179 

heartbeat) is a result of vagal withdrawal and sympathetic activation (Schiweck et al. 180 

2019) characteristic of exposure to stressors (Stauss 2003; von Borell et al. 2007; Cyr 181 

and  Romero 2009; Koolhaas et al. 1999; Perini and  Veicsteinas 2003), which can 182 

result in unfavorable health outcomes. The regularity between heartbeats under 183 

sympathetic dominance is likely advantageous for survival, as it guarantees a consistent 184 
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blood circulation and delivery of nutrients and glucose to peripheral organs. However, 185 

maintaining such a mode of operation may be biophysically maladaptive, as it can 186 

render the organism impervious to changing circumstances (Thayer and  Sternberg 187 

2006). An autonomic blockade not only increases HR but decreases HRV in humans 188 

(Camm et al. 1996) and rodents (e.g., Lakin et al. 2018, Cyr et al. 2008) highlighting the 189 

important influence of vagal tone on regulating HRV. 190 

Across different types of species, exposure to stress is associated with a 191 

reduction in HRV. For example, transportation or acute restraint (e.g., during grooming) 192 

of agricultural animals is associated with a reduction in their HRV (Schmidt et al. 2010; 193 

Reefmann et al. 2009). Lameness in cows (characterized as abnormalities of the feet 194 

that cause pain when moving and may lead to infection and sepsis) is a type of chronic 195 

stressor and cows that exhibit lameness had lower HRV than those that did not exhibit 196 

these symptoms (Kovacs et al., 2015). In laboratory rats, 4 weeks of exposure to a 197 

chronic stress paradigm resulted in reductions in HRV (Grippo et al. 2003). Female 198 

prairie voles exposed to social isolation for 4 weeks exhibited reductions in HRV (Grippo 199 

et al. 2007; Grippo and  Johnson 2009). It is less clear how stress and HRV are related 200 

in non-mammals although many findings are consistent (Fischer and  Romero 2016; 201 

Müller et al. 2017). Acute stress (trauma associated with surgery) in snakes almost 202 

eliminates HRV for the first 10 days following surgery (Sanches et al. 2019). In contrast, 203 

studies in captive birds exposed to a chronic stress paradigm for 16 or 18 d, HRV was 204 

unaffected (Cyr and  Romero 2009; Kostelanetz et al. 2009). 205 
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The causes and consequences of variation in HRV have been best investigated 206 

in humans. In humans, HRV decreases with age (Reardon and  Malik 1996; Padgett 207 

and  Glaser 2003) and many pathophysiological conditions including heart failure, 208 

diabetes, and hypertension (Xhyheri et al. 2012) as well as obesity (Mazurak et al. 209 

2016). It is unclear how mental stress manifests in non-humans, however patients with 210 

depression have a lower HRV (Krittayaphong et al. 1997) which is unrelated to existing 211 

cardiovascular disease (Carney and  Freedland 2009) and worsening symptoms further 212 

decrease HRV (Kemp et al. 2010; Krittayaphong et al. 1997). HRV is negatively 213 

correlated with exposure to stressful experiences (Porges 2003; Stauss 2003; von 214 

Borell et al. 2007) and self-reported anxiety (Berntson and  Cacioppo 2004) or 215 

increased work-related stress (Chandola et al. 2008; Thayer et al. 2010). Experimental 216 

application of standardized psychological stress tests (e.g., Stroop or speech task 217 

paradigm) to humans also decreases their HRV during wakefulness (Delaney and 218 

Brodie 2000) and subsequently during sleep (Hall et al. 2004). 219 

HRV may also be a window into the reactiveness and integration capacity of the 220 

central nervous system (CNS) to deal with challenges and coordinate context-specific 221 

responses in the periphery (Thayer et al. 2012). However, the central site responsible 222 

for these adaptations has been challenged by the fact that the sinoatrial node is also 223 

plastic (Stein et al. 2002). The finding that adaptations to HRV in response to physical 224 

exercise are abolished during an autonomic block (e.g., propranolol hydrochloride and 225 

atropine) support the former hypothesis, that the CNS modulates HRV through the 226 

parasympathetic pathway (Lakin et al. 2018). 227 
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Compared to individuals with high resting HRV, those with low resting HRV do 228 

not recover as quickly from psychological stressors based on cardiovascular, endocrine, 229 

and immune markers (Weber et al. 2010). One meta-analysis showed that poor 230 

recovery following laboratory stressors is associated with cardiovascular risk status 231 

(e.g., elevated blood pressure, hypertension, clinical cardiac events), although subjects 232 

also exhibited heightened reactivity (Chida and  Steptoe 2010). Indeed, biological 233 

responses to stressors or threats can be exaggerated, leading to anxiety or aggression 234 

(Valiente et al. 2003; Carthy et al. 2010). For example, studies on severely depressed 235 

individuals are mixed, albeit consistently atypical, showing both higher reactivity or a 236 

blunted response to stressors (Hamilton and  Alloy 2016; Schiweck et al. 2019) similar 237 

to the inverted U performance-arousal curve of the Yerkes-Dodson Law (Yerkes and 238 

Dodson 1908; Cohen 2011). Physical exercise is one way to decrease resting HRV 239 

while establishing normal/optimal autonomic reactivity (Kiss et al. 2016). Unlike 240 

psychological stressors, transient activation of the autonomic system from exercise is 241 

followed by an augmentation of vagal tone (Pardo et al. 2000). 242 

243 

Associations between GCs & HRV 244 

Given that most studies to date have focused on measuring “stress” using only 245 

GCs, it is useful to briefly look at the associations between GCs and HRV. Some 246 

studies that employ captivity as a chronic stressor show that the period following initial 247 

captivity is associated with an increase in GCs and HR and a decline in HRV but as the 248 

time from initial captivity increases, GCs and HR decline and HRV increases (Dickens 249 
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and  Romero 2009). Following the transportation of agricultural animals (a type of acute 250 

stressor), GCs are elevated and HRV is reduced (Schmidt et al. 2010). However, other 251 

studies find no association between HRV and measures of GCs or even the opposite 252 

association where both GCs and HRV are elevated. For example, lameness in cows (a 253 

type of chronic stressor) was associated with reduced HRV but no change in fecal 254 

glucocorticoid metabolites compared to non-lame cows (Pacifici et al. 2015). In wild 255 

birds brought into captivity, HRV and plasma GCs were reduced at the beginning of 256 

captivity compared to 6-7 days after captivity was initiated (Fischer et al. 2016; Fischer 257 

et al. 2018). These latter studies suggest that the lag time from the initiation of the 258 

stressor (in these studies it was captivity) affects their impact on HRV or GCs; HRV is 259 

low immediately after the start of captivity and then increases whereas GCs are low 260 

immediately after captivity and then increase. 261 

In humans, HRV does not directly correlate with the cortisol waking response 262 

(Stalder et al. 2011) highlighting the potential nuance of HRV. Interpreting HRV may 263 

benefit from the context of the three-stage response model originally proposed by Selye 264 

(Selye 1956). That is, HRV measured during the alarm, resistance, and exhaustion 265 

stages of the stress response should be assumed to communicate different information 266 

about the state of an animal. 267 

268 

Tools and Methods to Measure HR and HRV 269 

As a relatively young field of investigation, the tools and methods used to record 270 

HR and HRV are actively undergoing standardization, which may account for conflicting 271 
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results. An electrocardiogram (ECG, sometimes called an EKG from the German word 272 

Elektro-kardiographie) is the gold standard method for measuring heart rhythms and 273 

requires an amplifier and electrodes to be strategically placed near the heart muscle. 274 

Ample resolution on an ECG will provide information about atrial and ventricular 275 

depolarization and repolarization. Ventricular depolarization is the largest deflection in 276 

the signal and can be identified as the R-wave in the QRS-wave complex. The inter-277 

beat interval (IBI) is synonymous with the normal-to-normal R-R interval (NN) and is the 278 

basis for calculating time-series measures like mean NN interval or HR, as well as 279 

statistical operations that are used in HRV analyses. 280 

HR and HRV measures can be affected by a subject’s head or body position, 281 

respiration rate or pace, sex, age, and aerobic fitness level, and interrelate with natural 282 

biophysical rhythms (e.g., circadian, metabolic, hormonal). Clinicians and researchers 283 

alike should be aware of the relatively extensive list of best practices and caveats when 284 

approaching HR and HRV measurements (Shaffer and  Ginsberg 2017; Camm et al. 285 

1996). Here, we focus our discussion on the potential utility of HRV analyses based on 286 

“short-term” 5-minute recordings, as this is a well-documented standard, reasonable to 287 

achieve in animals from battery-powered devices, and applicable to 24-hour recordings 288 

that are chunked into smaller time windows. 289 

Common time-series HRV measures include the standard deviation of all NN 290 

intervals (SDNN, measured in ms), the root mean square of successive differences of 291 

the NN interval (RMSSD), and the percentage of adjacent NN intervals that differ by 292 

more than 50 ms (pNN50) (Camm et al. 1996). SDNN measurements reflect both 293 
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sympathetic and parasympathetic activity, but in short-term recordings, the primary 294 

source of variation is parasympathetically-mediated respiratory sinus arrhythmia, 295 

making this measure extremely sensitive to respiratory status (Shaffer et al. 2014). 296 

RMSSD and pNN50 are correlated with each other and closely with parasympathetic 297 

activity. Although time-series analyses are conceptually straight forward, they fail to 298 

correlate with the same measures over 24 hours (Shaffer and  Ginsberg 2017), making 299 

their interpretation context-dependent. Studies have also found that short-term 300 

recordings are prognostically insufficient (Kleiger et al. 2005). 301 

Analyses in the frequency-domain may offer more insight for short-term 302 

recordings. This often begins by subjecting the time-series data (i.e., the entire 5 303 

minutes) to a form of spectral analysis where the power contributions from different 304 

frequency bands can be viewed in two dimensions (power × frequency). A generalized 305 

approach has been to quantify low-frequency (LF, 0.04 – 0.15 Hz) and high-frequency 306 

(HF, 0.15 – 0.4 Hz) power which are correlated with sympathetic and parasympathetic 307 

tone, respectively (Xhyheri et al. 2012). Therefore, the LF/HF ratio has been suggested 308 

as an index of the interaction between sympathetic and vagal activity (Pagani et al. 309 

1986), but this notion has been challenged, primarily because the LF band is 310 

multifaceted. For example, during resting conditions LF power represents baroreflex 311 

rhythms, and may only approximate sympathetic tone when subjects are ambulating 312 

(Shaffer and  Ginsberg 2017). 313 
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314 

Bio-loggers to Record HR and HRV 315 

In recent years, the use of miniaturized bio-loggers to make physiological and 316 

environmental measurements from free-ranging animals has radically transformed 317 

scientific capabilities. Technological strides in battery, computation, memory, and 318 

sensor technology continue to support a rich suite of bio-logging tools that are not only 319 

becoming smaller and longer-lasting, but providing multi-featured, high-resolution data 320 

(Williams et al. 2019). 321 

Natural stressors imposed by natural environments may better approximate the 322 

physiological capabilities of an animal to respond and adapt than stressors applied in 323 

the laboratory (Williams et al. 2016). However, being multifaceted, accurately measuring 324 

the stress response using an attachable, or implantable bio-logger is challenging. Some 325 

of the first attempts in this vein used accelerometers to identify behavioral patterns in 326 

response to stressors (Kröschel et al. 2017). Accelerometry has also been used to map 327 

micro-movements onto specific internal (Wilson et al. 2008) or disease states (Downey 328 

et al. 2017; Cancela et al. 2014). The dynamic relationship between HR and respiration 329 

has been characterized using bio-loggers in diving birds (Butler and  Woakes 1979) and 330 

again examined in penguins with a device capable of identifying unique body functions 331 

such as defecation (Wilson et al. 2004). Self-contained, automated hemodynamic 332 

measurement units have been used to sample blood during a physical challenge to 333 

analyze changes in GCs and other hormones (Takei et al. 2016; Landry et al. 2014). 334 
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Cardiac rhythms have been a central focus of bio-logging as HR accurately 335 

predicts energy expenditure (Weimerskirch et al. 2002) and metabolic rate (Green 336 

2011), and both HR and HRV are becoming widely appreciated surrogates of stress and 337 

resilience (see above). Some bio-loggers perform on-board HR estimation (Pulopulos et 338 

al. 2018; Bevan et al. 1997; Chaise et al. 2017) which is more efficient from a power 339 

and memory standpoint, but limits HRV analyses. Beat-to-beat signals are useful for 340 

time-series analyses, as the periodically measured RMSSD of inter-beat intervals in 341 

free-ranging, pregnant horses correlate with changing seasons, which may be due to 342 

environmental, pregnancy, or metabolic pressures (Pohlin et al. 2017). However, to 343 

perform proper short-term HRV spectral analyses the entire, raw waveform must be 344 

analyzed, and to our knowledge has so-far relied on post hoc, rather than on-board 345 

computation in battery-powered bio-loggers (although this is not true for consumer 346 

‘wearables’ designed for humans). For example, bar-headed geese have been fitted 347 

with bio-loggers that record long-duration, raw ECG patterns during a trans-Himalayan 348 

migration (Spivey and  Bishop 2014). 349 

It should be recognized that bio-loggers have additional constraints compared to 350 

biotelemetry systems, where data is or transmitted rather than directly saved (Fu et al. 351 

2011), and wireless charging might be an option (Young-Ho et al. 2004 Nov). 352 

Telemetered heart rhythms have been applied to mammals (Arnold et al. 2004; O'Mara 353 

et al. 2017), birds (Cyr et al. 2008), fish (Cooke et al. 2004), and reptiles (Butler et al. 354 

2002). Telemetry systems have outpaced bio-loggers in both capability and use across 355 

model systems, although there are notable synergies, and indeed mixed capabilities, as 356 
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in the form of marine “pop-up” tags (Musyl et al. 2011) and RFID-enabled devices 357 

(Williams et al. 2016). Bio-loggers that can record neural data with the resolution to 358 

identify single action potentials (> 20 kHz) have been implemented in behaving animals 359 

with the option to perform short-term experiments free of a recording tether (Massot et 360 

al. 2019). Brain rhythms that are present during sleep can be identified through much 361 

slower sampling rates (Aulsebrook et al. 2016; Rattenborg et al. 2008), thereby 362 

extending the lifetime and utility of neuro-based bio-loggers. The discovery that great 363 

frigatebirds (Fregrata minor) sleep mid-flight used bio-loggers that constantly recorded364 

electroencephalography (at 200 Hz) over 10 days (Rattenborg et al. 2016). Similar 365 

devices have been implemented in pigeons and represent a powerful toolset when 366 

paired with other onboard sensors (Vyssotski et al. 2006). Indications that sleep states 367 

affect physical performance and recovery (Shapiro et al. 1981) and that stress has a 368 

bidirectional relationship with sleep (Hall et al. 2004; Martire et al. 2019) makes the 369 

neural toolset an exciting new direction for bio-logging technology. HR/HRV may be a 370 

key marker for the efficiency and effectiveness of autonomic regulatory processes like 371 

sleep and can, therefore, be examined in association with physical and reproductive 372 

fitness. 373 

The future of bio-logging to quantify how animals respond and recover from 374 

exposure to stressors may rely on smarter and more clever recording techniques to 375 

mitigate power and memory constraints (Woakes et al. 1995; Clark et al. 2009; Spivey 376 

and  Bishop 2014; Cox et al. 2018). For example, accelerometry and time-of-day data 377 

could augment ECG recording routines, as some cardiac measurements are only 378 
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relevant following a period of rest or in the morning (Shaffer and  Ginsberg 2017). Brain 379 

rhythm data not only pairs well with accelerometry data for the ability to distinguish 380 

between active, rest, and sleep state but could also coordinate low-power modes on the 381 

bio-logger so that the neural recording circuitry is idle when the animal is moving. 382 

Although onboard computation is power-intensive, algorithms that perform HRV 383 

statistics (Park et al. 2018), detect sleep states (Allocca et al. 2019), extract neuronal 384 

spiking rates (Dragas et al. 2013), or discretize any other physiologic variables could be 385 

valuable depending on the experimental recording strategy. 386 

The largest challenge to monitoring HR and HRV in free-living animals to obtain 387 

an index of their exposure to stress is that it can be more invasive than the collecting of 388 

blood samples and other tissues that can be used to measure GCs non-invasively 389 

(feces, urine, feathers, hair). However, they may provide much higher quality and 390 

informative data than measures of GCs alone (e.g., Aimie-Salleh et al. (2019)). 391 

Researchers must also consider whether intervening on either end of an experiment to 392 

implant and explant a bio-logger is altogether less disruptive to the population and other 393 

species in the community than the consistent or frequent presence of humans, which is 394 

often required to collect samples to measure GCs. 395 

396 

Conclusions & Why HRV? 397 

HRV appears to occur in all vertebrate taxa (sensu Sanches et al. 2019) and 398 

there are several similarities to studies that use measures of GCs to measure how an 399 

animal perceives its world and the degree of environmental challenges it is facing. For 400 
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example, GCs (Schoenle et al. 2018) and HRV (Muller et al. 2018) both show 401 

repeatable individual differences, suggesting that these traits can exhibit an evolutionary 402 

response to natural selection. Although there are challenges associated with measuring 403 

HRV compare to GCs, we think there are several clear advantages. First, GCs play a 404 

role in the mobilization of glucose to fuel behavioral activities and so elevated GCs may 405 

be a biomarker of elevated energetic expenditure in wild animals. However, by 406 

measuring HRV, measures of HR are also available. It is quite likely that measures of 407 

HR better reflect actual energetic expenditure than measures of GCs given that they 408 

can be used to estimate oxygen consumption and therefore energetic expenditure 409 

(Groscolas et al. 2010; Ellenberg et al. 2013), although they require careful validation 410 

(e.g., Hicks et al. (2017)). Second, measures of GCs have been used to investigate how 411 

anthropogenic activities impact wildlife (Dantzer et al., 2014) but measures of HR and 412 

perhaps HRV in wild animals may provide a more in-depth view of how they affect 413 

wildlife. For example, wild animals may not exhibit a behavioral response to 414 

anthropogenic activities but still exhibit an increase in HR (Ditmer et al. 2015). 415 

Measures of HR may also provide insights into the unexpected impacts of humans on 416 

animals such as the presence of wildlife photographers provoking a stronger increase in 417 

HR in penguins than did the capture and handling (Ellenberg et al. 2013). Finally, as we 418 

noted above, HRV may better reflect the stress state of an animal as well as the amount 419 

of acute or chronic stressors the animal has been exposed to compared to measures of 420 

GCs. This is reflected by the ability of HRV to predict human health (Thayer and  Lane 421 

2000; Lane et al. 2009) and health/welfare in other animals (von Borell et al. 2007). For 422 
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example, there is a strong interest in understanding how social interactions affect the 423 

health and fitness of all animals including humans (“sociality-health-fitness” nexus). 424 

Interestingly, social interactions may increase oxytocin (Uvnas-Moberg 1998) and 425 

experimental administration of oxytocin increases HRV (Romero et al. 2014). Moreover, 426 

social isolation in prairie voles reduces HRV but these effects are abolished if oxytocin 427 

is administered during the period of isolation (Grippo and  Johnson 2009). These 428 

studies suggest one way by which social interactions increase health, well-being, and 429 

fitness in animals through its effects on oxytocin and HRV. 430 

Studies of the relationship between HRV and measures of fitness in wild animals 431 

are clearly needed here but these previous studies suggest that HRV may more reliably 432 

predict past or current exposure to stress and may more reliably predict fitness. The 433 

obvious limitation here is that measuring HR and HRV is still difficult and much more 434 

invasive to the individual compared with measures of GCs. However, a comprehensive 435 

picture of the stress response to environmental challenges, as Seyle advocated, is 436 

going to require data on the autonomic stress response in addition to measures of GCs 437 

and HRV may be the most reliable biomarker. 438 
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Figures 445 

Fig 1. Stressors modulate cardiac rhythms through descending autonomic 446 

pathways. Sympathetic branch activity is indicative of exposure to stressors and causes 447 

an increase in heart rate (HR) and decrease in heart rate variability (HRV), 448 

while parasympathetic branch activity decreases HR and increases HRV. 449 

450 

451 

452 
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