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ABSTRACT 16 

Interspecific spatial associations (ISA), which include co-occurrences, segregations, or attractions 17 

among two or more species, can provide important insights into the spatial structuring of 18 

communities. However, ISA has primarily been examined in the context of understanding 19 

interspecific interactions, while other aspects of ISA, including its relations to other biodiversity 20 

facets and how it changes in the face of anthropogenic pressures, have been largely neglected. This is 21 

likely because it is unclear what makes ISA useful in a biodiversity context, little is known about the 22 

theoretical connections between ISA and other biodiversity facets, and there is a confusing variety of 23 

approaches to measuring ISA. Here, we first review the metrics of ISA. These include both spatially 24 

implicit and explicit indices of association for both binary and abundance data. We test and compare 25 

these approaches on empirical and simulated data, and we provide specific recommendations for how 26 

to use and interpret them in biodiversity science. We argue that measurements of ISA are more 27 

informative when they are spatially explicit (i.e. distance dependent). We then review links of ISA to 28 

other classical biodiversity facets, such as alpha, beta, and gamma diversity, and show that they 29 

mostly fail to reflect changes/variation in ISA, with the exception of average pair-wise beta diversity. 30 

This underscores the need for a specific focus on ISA in large-scale biodiversity assessments. Finally, 31 

we argue that there are important, and underappreciated, reasons to study ISA that are unrelated to its 32 
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link to biotic interactions. Specifically, ISA can provide strong tests of biodiversity theories that 33 

require multiple patterns to benchmark against, and it can be explored for potentially predictive 34 

macroecological patterns. 35 

Keywords: C-score, co-occurrence, point process, interspecific, intraspecific, conspecific, 36 

heterospecific, spatial scale, grain, semivariogram, geostatistics 37 

 38 

“... there is no absolutely general measure of the degree of dependence” 39 

  (Cramér 1924, quoted by Goodman and Kruskal 1979, quoted by Hubálek 1982)  40 

INTRODUCTION 41 

Organisms are almost never distributed randomly in space. Instead, they clump together or spread 42 

apart, and such non-random spatial aggregation and segregation occurs both among individuals within 43 

a single species and among species; we call the former the conspecific spatial aggregation (CSA), and 44 

the latter the interspecific spatial association (ISA) (Fig. 1, Appendix S1). Static patterns of CSA and 45 

ISA can be generated by various mechanisms. For example, ISA may result from shared habitat 46 

requirements among species, dispersal limitation, and/or interspecific interactions (Table 1), and there 47 

is a long tradition of inferring these mechanisms from spatial patterns of ISA (Forbes 1907, Cody and 48 

Diamond 1979, Gotelli et al. 2010, Calatayud et al. 2020). However, it is not always possible, nor 49 

useful, to infer causal mechanisms from emergent static patterns (Peters 1991, McGill and Nekola 50 

2010), and this is particularly problematic in the case of ISA for presence-absence data (Blanchet et 51 

al. 2020).  52 

Fortunately, documenting static patterns of spatial aggregation and association has value regardless of 53 

the generative mechanisms, such as in macroecological studies (Currie 2019) and for nature 54 

conservation and forecasts (Ladle and Whittaker 2011). For example, patterns of CSA underpin 55 

widely applied concepts such as species endemism, range size, and rarity (Table 1), and there are well 56 

described connections between CSA and patterns of beta diversity and species-area relationships 57 

(Storch et al. 2008, Wiegand and Moloney 2014). Similarly, patterns of ISA have direct applications 58 

in classifications of communities to coenoses or biomes (Hoekstra et al. 2004), underpin the concepts 59 

of indicator and umbrella species (Roberge and Angelstam 2004), and can improve estimates of site-60 

specific species pools (Karger et al. 2016) and predictions of species distributions (Harris 2016, 61 

Norberg et al. 2019). Further, even though it has not been perceived as such, ISA describes a unique 62 

facet of biodiversity, particularly when biodiversity is defined as “variation of life at all levels of 63 

biological organization” (Gaston and Spicer 2009). Even though biodiversity is typically measured 64 

“per site”, it can indeed also be quantified in other ways, such as “per species” (e.g., a number of 65 
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species associated with a given species). However, the theoretical and empirical connections between 66 

ISA and spatial patterns of biodiversity remain poorly understood. 67 

Only a handful of studies have attempted to empirically document large-scale patterns of ISA (Gotelli 68 

et al. 2010, Lyons et al. 2016, Tóth et al. 2019, Calatayud et al. 2020), and ISA has been missing in 69 

recent high-profile studies of the ongoing biodiversity change (Millenium Ecosystem Assessment 70 

2005, WWF International 2012, Newbold et al. 2015, Blowes et al. 2019, IPBES 2019). To 71 

investigate this potential knowledge gap more systematically, we conducted two literature searches. 72 

First, we manually went through 3,856 abstracts of papers published between 1995 and 2019 in three 73 

journals with a long history of publishing biodiversity studies—American Naturalist, Ecology, and 74 

Ecography. We found that ISA is a marginal topic when compared to patterns of CSA, beta diversity, 75 

and community composition, as well as processes such as biotic interactions (Appendix S2). Second, 76 

we scanned Clarivate Web of Science for all papers mentioning biodiversity in their title or abstract; 77 

among these we looked at frequency of terms associated with ISA and terms associated with other 78 

ecological patterns and processes (Appendix S2). We found that this literature has most often focused 79 

on quantities at sites (e.g. species richness, functional and phylogenetic diversity), or variation among 80 

sites (e.g. beta diversity, Fig. S1). In contrast, biodiversity-related papers paid considerably less 81 

attention to ISA, measured by the total number of published papers per year (Appendix S2). Since 82 

measurement of ISA requires exactly the same data as analysis of beta diversity (see below), the lack 83 

of attention cannot be explained by a lack of data. We propose three reasons for this gap: First, there 84 

is a variety of approaches for measuring ISA, with little clear guidance on the advantages and 85 

disadvantages of each approach. Second, it is not always clear why ISA may be important or useful 86 

when studying biodiversity. Third, little is known about the theoretical connections, or lack thereof, 87 

between ISA and other biodiversity patterns.   88 

In this paper, we first review the current methods to measure ISA. We sort the methods according to 89 

the types of data that ecologists are likely to encounter, and we compare the methods on empirical 90 

datasets and on simulated pairs of species with known ISA. Next, we address why ISA can be an 91 

important facet of biodiversity, and we outline the theoretical links between ISA and other 92 

fundamental facets of biodiversity. We offer guidelines to select the appropriate approach to 93 

analyzing ISA based on the question of interest and particular type of data at hand. We hope that our 94 

overview will stimulate the study of ISA in biodiversity assessments alongside the more traditional 95 

spatial measures. 96 

SCHOOLS OF THOUGHT 97 

Measurement and analysis of ISA has been approached by several schools of thought, with each of 98 

these typically working with a particular data type (Fig. 2) and research agenda. While each of these 99 
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schools of thought has generated conceptually diverse measures of ISA, there has been little cross-100 

fertilization. The first school uses non-spatial information on presence/absence (or abundance) of 101 

species in different sites and has focused on tests of hypotheses related to assembly of ecological 102 

communities (Cody and Diamond 1979) by comparing the observed patterns of ISA with simulations 103 

of null models (Gotelli and Graves 1996, Ulrich and Gotelli 2010, Sanderson and Pimm 2015). The 104 

second school uses similar non-spatial metrics, but has been more descriptive, identifying groups of 105 

species that are frequently observed together, a typical goal in phytocoenology (Braun-Blanquet 106 

1964). It relies on methods such as ordinations and cluster analysis (ter Braak 1987, Šmilauer and 107 

Lepš 2014). The third school comes from the field of geostatistics (Cressie 2010) and uses the spatial 108 

position of the sites to show how covariance between two species changes with spatial distance 109 

(Wagner 2003). The fourth school is the analysis of spatial point patterns (Wiegand and Moloney 110 

2014; Baddeley et al. 2015), which requires the most detailed data on the spatial positions of 111 

individuals, but offers the richest inference. Below we review the specific measures coming from 112 

these diverse schools of thought. 113 

SPATIALLY IMPLICIT MEASURES OF ISA 114 

We begin our review with the simplest and oldest (Forbes 1907) way to measure using indices that 115 

quantify, in a single number, the spatial overlap between two or more species, irrespective of the 116 

spatial distance among sites. This is also the most widely used approach, since it is applicable to any 117 

data that can be expressed as a community matrix Y, which describes the distribution of 𝑆 species 118 

(rows) over 𝑛 sites (columns) (e.g. Gotelli 2000), but others may transpose these. Each element 𝑦𝑖𝑗 119 

contains either binary incidence or some measure of abundance, and 𝑖 ∈ 1: 𝑆 and 𝑗 ∈ 1: 𝑛. Since ISA 120 

measures that only use 𝑌 consider no information on the spatial location of the sites, the approach is 121 

spatially implicit. 122 

To date, nearly 100 indices have been proposed to capture ISA in binary co-occurrence data (Hubálek 123 

1982, Rajagopalan and Robb 2005, Legendre and Legendre 2012, Ulrich and Gotelli 2013, Arita 124 

2017) and for abundance data (Legendre and Legendre 2012, Legendre and De Cáceres 2013), 125 

although many fewer are widely used in ecology. Some of the pairwise indices were developed 126 

specifically to capture ISA while others were adopted from the literature on beta diversity (Hubálek 127 

1982, Legendre and Legendre 2012, Arita 2017). Most of the indices we describe below are available 128 

through R packages, such as vegan (Oksanen et al. 2019), EcoSimR (Gotelli et al. 2015), bipartite 129 

(Dormann et al. 2008), and betapart (Baselga and Orme 2012), as listed in Tables 2 and 3. 130 

Pairwise associations 131 

The conceptually simplest approach is to analyze associations between binary occurrences of two 132 
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species. Table 2 lists some of the typical pairwise indices of association for binary data that have been 133 

widely used, or that represent a unique approach to capturing ISA. They are based on four different 134 

quantities: the number of sites occupied uniquely by species 1 (c) and species 2 (b), the number of 135 

sites where both species co-occur (a), the number of sites where none occurs (d), and 𝑛 = 𝑎 + 𝑏 +136 

𝑐 + 𝑑. These indices vary in their interpretation; the widely used C-score (Cseg = bc), for example, 137 

gives the number of pairs of sites with a “checkerboard” pattern (i.e., one site hosts only species 1, the 138 

other only species 2), and it is a measure of segregation between two species. In contrast, togetherness 139 

(Ctog = ad) is a measure of attraction between species, but the Cseg and Ctog  are not complements (i.e. 140 

low Cseg does not imply high Ctog). Another widely used example is the Jaccard index (of association, 141 

not beta diversity), a measure of spatial overlap, which describes the proportion of sites occupied by 142 

both species among all occupied sites (𝐶𝑗𝑎𝑐𝑐 = 𝑎 (𝑎 + 𝑏 + 𝑐)⁄ ). Further, the indices vary in the range 143 

of possible values, such as [-1, 1], [0, 1], or [0, ∞). Thus, it is important to be familiar with both the 144 

interpretation and interval of these indices, particularly in their raw form (as opposed to their Z-score, 145 

see below) (Hubálek 1982, Legendre and Legendre 2012). 146 

Table 3 lists some commonly used indices for pair-wise ISA in abundance data. The first family 147 

includes both parametric (e.g. CAcor) and non-parametric (e.g. CArho) indices of covariance and 148 

correlation. Another family includes indices that are extensions of the incidence-based similarity 149 

measures; an example is Růžička similarity CAruz, which is one of the abundance-based versions of 150 

Jaccard’s index for binary data (Legendre and De Cáceres 2013).  151 

Higher-order, matrix-wise, and per-species indices 152 

When the aim is to quantify the overall magnitude of ISA in the entire matrix 𝑌 in a single number, 153 

one option is to simply use the mean or median of the species-by-species association matrix 𝑍. 154 

However, focusing only on pairwise comparisons ignores interactions of higher order [i.e. interactions 155 

between 3 or more species (Harris 2016)]. Some methods can capture N-wise species associations 156 

when applied to the rows of 𝑌 (Baselga 2017, Arita 2017). The problem with these indices is their 157 

sensitivity to double zeroes and it is still unclear how common the higher-order associations are [i.e., 158 

motifs (Milo 2002)] in the real world (Marion et al. 2017). Finally, Legendre and De Cáceres (2013) 159 

proposed an index of contribution of a single locality to the overall beta diversity in  𝑌. The same 160 

index can be calculated for rows instead of columns of 𝑌, thus becoming a measure of species 161 

contribution to overall association; however, we are unaware of a study that employs such an 162 

approach to species-wise ISA.  163 

Statistical significance, null models, Z-scores 164 

There are several ways to calculate the probability that the observed metric has been produced by 165 

chance given the null expectation that there is no ISA. The simplest test of significance of association 166 
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in a two-species binary matrix is Fisher’s exact test (Arita 2016), which is identical to the 167 

randomization procedure of Veech (2013). However, when more than two species are involved, or 168 

when the data are abundances rather than incidences, a randomization procedure can produce the null 169 

expectation of a given ISA metric (see e.g., Gotelli 2000, Gotelli et al. 2015, Ulrich and Gotelli 2010). 170 

Further, the deviation from the null expectation can also be used as its own ISA metric, such as the 171 

Cforbes and CFETmP metrics (Table 2), and the so-called Z-score (Gotelli and McCabe 2002, Ulrich et al. 172 

2009, Ulrich and Gotelli 2013), defined as (𝐸𝑟𝑎𝑤 − 𝐸𝑒𝑥𝑝) 𝑆𝐷𝑒𝑥𝑝⁄ , and where 𝐸𝑟𝑎𝑤 is the ISA metric 173 

(e.g. from Table 2 or 3) calculated on observed data, 𝐸𝑒𝑥𝑝 is the null expectation of the index, and 174 

𝑆𝐷𝑒𝑥𝑝 is the standard deviation of the null expectation.  175 

SPATIALLY EXPLICIT MEASURES OF ISA 176 

Spatial structure between sites, individuals, and/or geographic ranges can be critical. Consider the 177 

simple example in Figure 3 in which the same community matrix represents either between-species 178 

aggregation or segregation; the aforementioned spatially implicit metrics of ISA conflate these 179 

patterns, and a spatially explicit approach needs to be adopted. When spatial coordinates of sites or 180 

individuals are available, one way to make the ISA spatially explicit is to only consider pairs of sites 181 

that are within a given distance interval when using any of the metrics from the previous section 182 

(Tables 2 and 3), and then to examine a range of distances. This is also the idea behind community 183 

variograms (Wagner 2003) described below. A point pattern-based version of this, when the location 184 

and identity of each individual is known, is to use bivariate pair correlation functions which describe 185 

positive and negative ISA between individuals over continuous distance (Wiegand and Moloney 186 

2014). In the following section, we describe principles of these two approaches, and refer to software 187 

implementations. 188 

Community variograms 189 

Community variograms, borrowed from geostatistics, use the species-by-site community matrix 𝑌 190 

together  with spatial coordinates of each site (Wagner 2003). A community variogram then expresses 191 

the species-by-species variance-covariance matrix 𝑍(𝑟) as a function of spatial distance or lag r 192 

between sites and allows the user to analyze within-species (CSA) and between-species (ISA) 193 

covariances at a single distance and their change over different distances. The covariance calculated 194 

on binary data is closely algebraically tied to the Cseg or Ctog metrics and their scaled versions (Table 195 

2), which summarize only negative or positive covariances respectively. Apart from covariance, many 196 

of the metrics from Tables 2 and 3 can be made distance-dependent by using the community 197 

variogram framework. 198 

To test for non-random patterns of spatial species covariance an appropriate null model is required. 199 
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The distancedistance-dependent Cratio is typically used with a null expectation of Cratio = 1 under 200 

species independence, which can be biased in a number of different ways (Palmer and van der Maarel 201 

1995). In particular, it can be biased by patterns of within-species clumping. Even if species are 202 

arranged independently on a landscape, strong patterns of within-species clumping will create the 203 

appearance of spatial segregation at least up to the scale of the within-species clump size. Therefore, 204 

the most common type of null model is one in which the within-species spatial clumping is held 205 

constant but otherwise species are shuffled randomly (Palmer and van der Maarel 1995, Roxburgh 206 

and Chesson 1998).  207 

Even though the idea of community variograms has been featured in prominent methodological 208 

reviews (Dray et al. 2012), and elements of it occasionally appear in empirical analyses (Wagner et al. 209 

2005, Seabloom et al. 2005, Kikvidze et al. 2005, Ovaskainen et al. 2017), we are unaware of its 210 

direct use estimating distance-dependent ISA. At the same time the method is the closest thing to the 211 

truly spatially-explicit description of ISA for community matrices with additional spatial coordinates, 212 

and we thus see potentially important applications. Two R packages that allow calculation of 213 

community variograms are spacemakeR (Dray 2019) with the function variomultiv, and package vario 214 

(https://github.com/dmcglinn/vario) with the function vario. 215 

Point pattern analysis 216 

Point patterns capture facets of ISA when the position and identity of every individual within a spatial 217 

domain is known, offering the most accurate and spatially explicit quantification of ISA. However, 218 

such detailed data are also costly to get and thus relatively rare, and they have limits when applied to 219 

mobile organisms. Consequently, analyses of ISA based on point patterns are less common than 220 

analyses based on community matrices. Here, we focus on bivariate pair correlation functions and P-221 

M classification scheme (Wiegand et al. 2007b, Wiegand and Moloney 2014). 222 

The bivariate pair correlation function g12(r) measures the association between species at different 223 

spatial scales (Stoyan and Stoyan 1994, Wiegand et al. 2007b); it relates to the density of species 2 at 224 

distance r of the nearest species 1. Positive association (attraction) occurs for g12(r) > 1 (larger than 225 

expected neighborhood density) and negative association (segregation) for g12(r) < 1 (smaller than 226 

expected neighborhood density). Furthermore, the cumulative version of g12(r) is the K-function 227 

K12(r). Popular software to calculate g12(r) and K12(r) are Programita (Wiegand and Moloney 2004, 228 

2014), and R package spatstat (pcfcross function) (Baddeley et al. 2015). 229 

The P-M classification scheme provides a way to further classify a spatial pairwise ISA as either 230 

independent, fully segregated, partially overlapping, or “mixing” at a given spatial lag r using a 231 

combination of the Z-score transformed statistics of nearest neighbor occurrence (P) and 232 

neighborhood density (M) (Wiegand et al. 2007b). This is best used to summarize the overall ISA 233 

https://github.com/dmcglinn/vario
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structure at a given spatial scale (Getzin et al. 2014). It can be calculated using the Programita 234 

software (Wiegand and Moloney 2004, 2014), and we also offer an R implementation in package 235 

spasm that relies heavily on the spatstat package (Baddeley et al. 2015). 236 

Null models for point patterns. A well-developed toolbox is available to those seeking to compare 237 

observed summary statistics [e.g. g12(r), K12(r)] with those expected under the null expectations of 238 

independence (Wiegand and Moloney 2014). These null models are based on breaking the association 239 

between species, while keeping all of the other properties of single-species point patterns (e.g. CSA) 240 

intact. Here, we note that the heterogeneous point process null models (also combined with pattern 241 

reconstruction) can be useful when estimating biotic interaction from occurrence. Notably, this can be 242 

done without environmental data by assuming that the spatial range of biotic interactions is shorter 243 

than the scale of environmental autocorrelation (Wiegand et al. 2007b). Null models for point patterns 244 

are implemented in Programita software (Wiegand and Moloney 2004, 2014) and in the spatstat R 245 

package (Baddeley et al. 2016). 246 

COMPARISON OF THE MEASURES 247 

In order to get a comprehensive basis for recommendations, we compare the performance of the 248 

approaches on a common set of empirical and simulated communities. Our aim is to assess 249 

redundancy among the approaches, as well as their sensitivity to the common variables such as 250 

number of sites, number of species, magnitude of conspecific aggregation, or spatial grain. We are 251 

also interested in how well the different measures capture negative associations (i.e. segregation) 252 

compared to ositive associations (attraction) of ISA. Code and data for these analyses are at in 253 

package spasm (see Code and Data section). 254 

Spatially implicit measures and empirical data 255 

Our goal in this exercise was to calculate the common metrics of ISA for a set of spatially implicit 256 

species-by-site matrices, and to see how the metrics correlate with each other. We evaluated the 257 

metrics in Table 2 using 476 empirical binary community matrices collated by Atmar and Patterson 258 

(1995) and Ulrich and Gotelli (2010), and the metrics in Table 3 using 186 empirical abundance 259 

matrices collated by (Ulrich and Gotelli 2010). We excluded 3 binary matrices and 52 abundance 260 

matrices with too little information to allow meaningful calculation of all of the indices, or with 261 

negative or positive infinity values of some of the metrics. For the pairwise metrics, we averaged 262 

them over the species-by-species association matrix 𝑍 to obtain a single number comparable with the 263 

matrix-wise measures. We subjected the metrics to principal components analysis (PCA), for which 264 

we transformed some of them to have an approximately normal distribution. We plotted the PCA as 265 

an ordination biplot, and we also plotted a graph representation of the correlation matrix of the 266 
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measures (Fig. 4). The raw correlations are provided in Figures S3 and S4. 267 

In both the incidence- and abundance-based spatially implicit indices, we found clear differentiation 268 

along the PCA axes (Fig. 4a, b) and in the graph (Fig. 4c, d), reflecting the different aspects of ISA. In 269 

binary metrics, there was a clear cluster of similarity-based indices (Cjacc, Csor), Alroy’s index (Calroy), 270 

and connectance (Cconn) (Fig. 4a, c, Fig. S1). Two measures that explicitly measure departure from 271 

Poisson randomness are CFETmP and Cforbes, which were grouped together. The C-score (CsegSc) and its 272 

counterpart, togetherness (CtogSc), the matching coefficient (Cmatch), the checkerboard score (Cchecker), 273 

and number of unique combinations (Ccombo) were largely unrelated to the rest of the metrics. In the 274 

abundance-based metrics, we found similar clustering of the similarity-based ISA metrics (CAruz, 275 

CAbray, CAchi, CAhell), while the correlation-based metrics (CAcor, CAcor_hell, CArho) formed another 276 

group. 277 

Notably, among the incidence-based metrics, only Ccombo was strongly correlated with the total 278 

number of sites in a matrix (n), while only Cchecker correlated strongly with 𝑆, the total number of 279 

species (Fig. 4, S3). Covariance-based measures (CAcov, CAcov_hell) grouped together with the total 280 

number of sites n, while most metrics correlated only weakly with 𝑆 (Fig. 4, S3, S4). 281 

Spatially implicit measures and spatially explicit simulations 282 

In the second exercise, we devised simulations with known magnitude of ISA between two species 283 

(Fig. 5, S5, Appendix S3) to illustrate how the different approaches recover the known ISA. In 284 

contrast to spatially implicit simulations performed in other studies (Gotelli 2000, Ulrich and Gotelli 285 

2010), we simulated the position of every individual within a bounded domain. In each simulation, we 286 

generated point patterns of two species, with a given magnitude of ISA between them, and with 287 

varying conspecific aggregation and number of individuals per species.  288 

We modelled ISA as dependent on spatial distance (Fig. 5b), and it was controlled by a single 289 

parameter which we call ISA, with negative values for segregation (ISA < 0), zero for independence 290 

(ISA = 0), and positive for attraction (ISA > 0) (Fig. 5). To calculate measures based on incidence or 291 

abundance, we converted the point patterns to grids of varying resolutions (grains). Across 292 

simulations, we measured performance of the metrics from Tables 2 and 3 as their Spearman 293 

correlation with the ISA parameter. We also examined how the performance was affected by spatial 294 

grain (Fig. S7) and magnitude of conspecific spatial aggregation (CSA) (Fig. S8). Detailed description 295 

of the simulations, and their analysis, is in Appendix S3, and complete code is in package spasm (see 296 

Code and Data section below).   297 

We found that the best correlation with overall ISA, as well as correlation with both positive ISA 298 

(attraction) and negative ISA (repulsion), was exhibited by Pearson’s tetrachoric correlation (Cpears), 299 

Forbes index (Cforbes), and the mid-P variant of Fisher’s Exact Test (CFETmP) for binary data, and 300 
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Spearman’s correlation (CArho) and Hellinger distance (CAhell) for abundance data (Fig. 6). The best 301 

overall Spearman correlations between the simulated ISA and its estimated measures were around 302 

0.75 (Fig. 6), which we attribute to the inability of the spatially implicit measures to capture the 303 

distance-dependent part of ISA (Fig. 3). We found no clear indication that either abundance or 304 

incidence-based metrics performed best. We also found that measures based on correlation (Cpears, 305 

CArho, CAcor, CAcov), or on deviation from an expected null association (Cforbes, CFETmP) performed 306 

better in capturing ISA, while similarity measures (Csor, Cjacc, CAbray, CAruz) performed worse. This is 307 

also in line with our supplementary analysis of Z-scores (Figs. S6-S8). We found that refining the 308 

spatial grain of the analysis, and increasing the magnitude of CSA, had mostly negative or no effect 309 

on the performance of the metrics (Figs. S7-S8), although there were exceptions. 310 

Importantly, we found that the spatially implicit metrics tended to saturate at extreme negative (ISA < 311 

10) association (Fig. S6), most likely because the community matrices are identical above these 312 

extreme ISA values (demonstrated in Fig. 3). Thus, most abundance-based metrics showed weak 313 

overall correlation with repulsion (Fig. 6b), with the exception of the distance-based Ruzicka (CAruz) 314 

and percentage difference (CAbray) indices. Lastly, we found that when the metrics were averaged at a 315 

given spatial grain, they varied in their relationship with grain (Fig. S7). 316 

Spatially explicit measures and spatially explicit simulations 317 

Here, we used the 2-species simulations to illustrate community variograms and pair correlation 318 

functions. Our goal was to show the potential of these methods, rather than to perform the same 319 

comprehensive evaluation as above, since these techniques do not measure ISA in a single number, 320 

but as a function of spatial distance r. Because of that, they have the potential to actually recover the 321 

shape of the entire probability density function 𝑓𝑠𝑝2(𝑟) from Figure 5b. For the spatially explicit 322 

techniques, we performed 9 simulations that correspond to the panels of Figure 5a (the only difference 323 

is that we used 200 individuals per species). For the purpose of fitting the community variograms, we 324 

used a single grid resolution with 20 cells along each side of the simulated domain. 325 

Community variograms (Fig. 7a) estimated the relationship between distance r and negative 326 

covariance in a way that matched the shape of the original 𝑓𝑠𝑝2(𝑟) from Figure 5b. However, they 327 

were weak at capturing the spatial pattern of attraction when there was a confounding effect of strong 328 

conspecific dispersion (CSA > 0.01). In contrast to community variograms, pair correlation functions 329 

more accurately estimated the distance-dependent ISA (compare Fig. 5b with Fig. 7b), i.e. the 330 

estimated relationship between distance and pair correlation function closely matches the shape of 331 

𝑓𝑠𝑝2(𝑟) from Figure 5b. Similarly to community variograms, there was a somewhat limited 332 

performance for attraction and high CSA values, but the problem was less severe. Overall, the point 333 

pattern-based bivariate pair correlation functions provided the most complete picture of the “true” 334 
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simulated ISA pattern. 335 

RECOMMENDATIONS 336 

Based on our comparisons of the methods and on the existing literature, we make several 337 

recommendations for capturing ISA from observational data. 338 

Best indices 339 

There is a variety of indices that were designed to capture different aspects of ISA and some of them 340 

are uncorrelated with the others [see our results, but also Hubálek (1982)]. Thus, in empirical 341 

assessments, we recommend not relying on a single metric [see also Ulrich and Gotelli (2013)]. 342 

Overall, we suggest that the most promising indices for spatially implicit analyses are those that can 343 

capture both negative and positive ISA. They should also offer the option to be eventually integrated 344 

into, or compared with, spatially explicit analyses such as community variograms, it should be 345 

possible to contrast them with indices of con-specific aggregation, and they should be applicable in 346 

association matrices of parametric joint species distribution models (Ovaskainen et al. 2017). For 347 

abundance data, these are covariance (CAcov) and Pearson correlation (CAcor), coupled with a data 348 

transformation (e.g. Hellinger or log) if appropriate (Legendre and Legendre 2012). For incidence 349 

data, these are the C-score (Cseg, CsegSc) and togetherness (Ctog, CtogSc), which capture the positive and 350 

negative ISA, respectively, and are mathematically linked to covariance. We caution that that low C-351 

score values do not indicate high togetherness, and vice versa. Thus, both measures should typically 352 

be employed. 353 

From the other indices for pairwise binary data, among the all-purpose metrics that capture both 354 

repulsion and attraction, we recommend the mid-P index (CFETmP), Forbes’s coefficient of association 355 

(Cforbes), or Pearson’s tetrachoric correlation (Cpears); the latter is also recommended by Hubálek 356 

(1982). Jaccard’s index (Cjacc) is a good alternative, since it captures both negative and positive ISA, 357 

and it can easily interpreted as proportional overlap, although it may not reflect the overall ISA as 358 

accurately as the correlation-based indices. For pairwise abundance data, apart from covariance- and 359 

correlation-based parametric indices, we also advocate for the Spearman rank-rank correlation (Crho), 360 

since it requires no prior transformation, and it captures both negative and positive ISA reliably. 361 

Concerning the community-wide measures that quantify the magnitude of ISA for all species in a 362 

single number, an obvious choice is to use summarized pairwise metrics, although one needs to 363 

beware that some summarizations (e.g. averaging) blend repulsions and attractions. One way to avoid 364 

this problem is to decompose the pairwise association matrix to positive vs negative ISA, by 365 

separately summarizing positive vs negative covariances in abundance data (this is also the approach 366 

used in community variograms), or by considering both togetherness and C-score in incidence data.  367 
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ISA is better spatially explicit  368 

Our results highlight a serious limitation of spatially implicit indices of ISA; they fail to consider 369 

spatial proximity of two species when they are already 100% spatially segregated (Fig. 3). The 370 

problem becomes more severe towards finer spatial resolutions. This partly explains why none of the 371 

examined spatially implicit metrics gave a perfect correlation with the simulated distance-dependent 372 

ISA, and why we observed the saturation of performance towards extreme values of ISA in our 373 

simulations (Fig. S6). To address this systematically, we recommend that whenever there is 374 

information on spatial position of the sites, indices of ISA are better considered as a function of 375 

spatial distance. Both the community variograms and point pattern analysis offer straightforward ways 376 

to do that. 377 

Going spatially explicit (when data permit) also makes ISA more biologically interpretable, since it 378 

can identify spatial distances over which biotic interactions really matter. This can be done, for 379 

example, by integrating community variograms into joint species distribution models (JSDM, Warton 380 

et al. 2015, Ovaskainen et al. 2017, Zurell et al. 2018). Specifically, in a JSDM, the spatially implicit 381 

species-by-species covariance (or correlation) matrix 𝑍 can be replaced by distance-dependent 𝑍(𝑟), 382 

as also mentioned by Ovaskainen et al. (2017). Interestingly however, the spatially explicit approach 383 

can also separate ISA caused by short-distance interactions from ISA caused by the environment 384 

without the need of modelling the effect of the environment, as demonstrated by Wiegand et al. 385 

(2012). The trick is to use null models that only randomize individuals locally, i.e. only within 386 

neighborhoods with radius R, which removes potential signals of small-scale interactions at scales r < 387 

R, if we can reasonably assume that environmental conditions within the neighborhood are constant 388 

(Wiegand et al. 2012). 389 

Spatial scale 390 

Most of the commonly studied facets of biodiversity depend on spatial scale. In the case of ISA, scale 391 

has been approached from two angles. The first focuses on ISA as a function of the average area of a 392 

site in a community matrix, which is equivalent to spatial resolution (grain) of a grid (Økland 1994, 393 

Hui 2009, Segurado et al. 2012, Araújo and Rozenfeld 2013, McNickle et al. 2018). These studies 394 

show that ISA is grain-dependent, but neither theory nor empirical observations predict a systematic 395 

direction of the grain dependence; ISA-area relationships can be increasing, decreasing, or hump-396 

shaped. One thing that complicates consensus is the use of various metrics of ISA across studies. Our 397 

simulations (Fig. S7) show that selection of the ISA metric affects the grain dependency; for example, 398 

some metrics may have slightly hump-shaped relationship with grain [e.g. C-score, Fig. S7, see also 399 

McNickle et al. (2018)], while other metrics may monotonically increase or decrease with grain (Fig. 400 

S7). This is something that the field needs to sort out before any empirical scaling of ISA is explored 401 

and interpreted. 402 
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The second approach to spatial scaling of ISA uses distance instead of grain in the form of community 403 

variograms or bivariate pair correlation functions (Wagner 2003, Wiegand and Moloney 2014). One 404 

advantage of this approach is its straightforward biological interpretation, particularly in the context 405 

of biotic interactions. Both the grain-based and distance-based approaches to the scaling of ISA can 406 

be combined in a single analysis [see Wiegand et al. (2012)]. Finally, point-pattern analysis has theory 407 

that links the area-based with the distance-based approaches to ISA (Wiegand and Moloney 2014). 408 

We thus recommend that future investigations of ISA should explicitly embrace the issue of scale 409 

(both the grain and perhaps also extent) by focusing on the ISA-area relationships (Araújo and 410 

Rozenfeld 2013, McNickle et al. 2018), or by focusing on the spatially explicit approaches to ISA 411 

which handle scale more naturally than the spatially implicit ones. 412 

Null models and Z-scores 413 

Most of the literature on ISA emphasizes the importance of null models, be it spatially implicit 414 

(Ulrich and Gotelli 2013) or explicit (Wiegand and Moloney 2014). In Figures S7 and S8, we show 415 

that transforming ISA indices to Z-scores makes them more robust against the confounding effects of 416 

conspecific aggregation or varying resolution, while (Ulrich et al. 2018) show that null models also 417 

account for the confounding effect of total species richness (𝛾). The same sentiment underlies 418 

Wiegand and Moloney (2014): to analyze spatially explicit patterns of ISA, one should contrast them 419 

against a null expectation of no ISA. However, null can be computationally demanding, which can be 420 

a problem for large biodiversity data; in such cases analytical shortcuts may be handy. For example, 421 

in spatially implicit methods, measures such as CFETmP or Cforbes already have the deviation from the 422 

expected randomness implicit in their definition.  423 

Measuring macroecological patterns of ISA 424 

To empirically document patterns of ISA, and their generality or variation over broad spatial and 425 

temporal scales, we need analytical approaches designed specifically to measure ISA over broad 426 

scales. From all of the reviewed approaches, we see community variograms as the most promising, 427 

since: (1) Community variograms are spatially explicit, offering rich biological interpretation. (2) 428 

Community variograms are applicable to a wide range of data types, including structured site-by-429 

species datasets, such as the US North American Breeding Bird Survey (Sauer et al. 2017), datasets of 430 

metacommunity-level pattern and process (e.g., the CESTES database, Jeliazkov 2019), as well as 431 

classical large-scale data such as the IUCN Red List biodiversity data. (3) Calculation of community 432 

variograms is computationally feasible.  433 

Given that there is an ever increasing availability of biodiversity data from large spatial extents (Jetz 434 

et al. 2012), we see an exciting opportunity here for exploration of empirical macroecological patterns 435 

of ISA, particularly through community variograms. Some of the possible macroecological patterns to 436 
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explore with community variograms are latitudinal or altitudinal gradients of ISA, and their 437 

relationship with patterns such as distance decay of compositional similarity, with distance-dependent 438 

con-specific aggregation, or with broad geographic patterns of species richness and rarity. This is has 439 

not yet been done, yet bringing ISA to macroecology may provide new explanations for old patterns, 440 

for example through the hypothetical (albeit controversial) link between ISA and biotic interactions, 441 

or through a completely unexplored link between ISA and diversification. 442 

ISA IN THE CONTEXT OF BIODIVERSITY 443 

Now that we have demonstrated the ways that ISA can or should be measured, we return to our earlier 444 

argument that ISA deserves  more attention in biodiversity research. To study ISA in the context of 445 

biodiversity, one should be aware of how it does, or does not, relate to other biodiversity metrics. In 446 

the sections below, we will show that although there are biodiversity facets that are affected by ISA, 447 

such as pairwise measures of beta diversity, others are insensitive to ISA, including local and regional 448 

diversity, and their ratio (i.e., Whittaker’s index [1960], and , and  diversity). 449 

ISA and alpha diversity 450 

First, we show that local species richness at any given site can be sensitive to changes in ISA, while 451 

mean local richness (ᾱ-diversity) is insensitive to changes in ISA. This argument was also made by 452 

Plotkin et al. (2000) and Storch (2016), and is inherent in connections between occupancy and species 453 

richness (e.g., Arita 2017, Šizling and Storch 2004). 454 

Let 𝛼𝑗 be local species richness at a site 𝑗, where  𝑗 ∈ 1: 𝑛, and where 𝑛 is the total number of sites 455 

within a given spatial domain. Let 𝑂𝑖 be the number of occupied sites (i.e. occupancy) by species 𝑖, 456 

where 𝑖 ∈ 1: 𝑆, and where 𝑆 is the total number of species (i.e. gamma diversity) present among sites. 457 

When we manipulate ISA in the system but keep CSA constant, values of 𝛼𝑗 change as a result. For 458 

example, in Figure 8a, a change from interspecific segregation to attraction results in corresponding 459 

changes in each site’s 𝛼𝑗 (one site gains species and two sites lose species).  460 

Let us now consider the average local number of speices, ᾱ, across all sites, which can also be 461 

calculated as the sum of prevalences 𝑂𝑖 𝑛⁄  (Šizling and Storch 2004) as: 462 

ᾱ =
∑ 𝛼𝑗

𝑛
𝑗=1

𝑛
= ∑

𝑂𝑖

𝑛
𝑆
𝑖=1  (1) 463 

Importantly, 𝑂𝑖 and 𝑂𝑖 𝑛⁄  are spatially implicit, meaning that it does not matter which sites are 464 

occupied, or whether species are spatially attracted or segregated; as long as 𝑂𝑖 is constant, no re-465 

arrangement of occupied cells in space has an effect on ᾱ. That is, ᾱ is insensitive to ISA. In contrast, 466 

ᾱ is sensitive to changes in 𝑂𝑖 𝑛⁄ , which is a measure of conspecific aggregation ( CSA). For example, 467 
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consider the scenario in Figure 8a in which there was a shift in the ISA from segregated to attracted. 468 

Because Oi, 𝑛 and 𝑆 remain constant, ᾱ will not be affected by the change in ISA. Hence, an empirical 469 

assessment of biodiversity which summarizes net change of  ᾱ over many locations may be blind to 470 

changes of ISA. Further, this insensitivity of ᾱ propagates to species-area relationships and to species 471 

accumulation curves diversity, as we mention below. 472 

ISA and gamma diversity 473 

From a purely geometrical perspective, simply rearranging mutual positions (ISA) of species within a 474 

given spatial domain has no effect on total number of species 𝑆 (gamma diversity) in the domain 475 

(given that 𝑛 is constant). A more interesting question is what happens when the effect is reversed, 476 

such as how ISA changes when 𝑆 increases or decreases. This has biological implications, since 𝑆 477 

limits the magnitude of ISA within a given domain, which can also limit biotic interactions. It also has 478 

methodological implications, since variation in 𝑆 across spatial domains can hinder direct 479 

comparisons of ISA within these domains, which may require statistical treatment (Ulrich et al. 2018). 480 

Several propositions about the relationship between ISA and 𝑆 have been made and some of them 481 

have been empirically tested. 482 

The first was summarized by McGill (2010); as 𝑆 in the metacommunity increases, the weaker the 483 

associations will appear even in the presence of strong associations. This can be seen by considering 484 

that the total number of possible pairwise associations in the domain is 𝑆 (𝑆 − 1) 2⁄ . If every species 485 

is significantly spatially associated with 𝑘 species in a symmetric fashion, then the total number of 486 

significant spatial associations in the domain is (𝑆𝑘) 2⁄ . Thus, for any given 𝑘 < (𝑆 − 1), the total 487 

number of all possible pairwise associations increases faster with S than the number of actually 488 

significant associations.  489 

The second proposition operates on relative abundances. If the total area and density of individuals 490 

are constant, but there is an increase of the total 𝑆, then the average per-species abundance must 491 

decrease, which will reduce the likelihood of detecting inter-specific co-occurrences in communities 492 

(Hubbell and Foster 1986, Lieberman and Lieberman 2007, Wiegand et al. 2007b, 2012, Volkov et al. 493 

2009, Rajala et al. 2019). 494 

The third proposition exposes the mathematical constraint on the possible values of negative 495 

associations in a species-by-species association matrix (Brown et al. 2004). Simply put, if species A 496 

and B have strong negative association, then it is mathematically impossible for a third species C to 497 

have strong negative association with both A and B (Brown et al. 2004). Fox (2012) also showed that, 498 

under the assumption that all species have the same negative correlation with each other (e.g. due to 499 

competition-induced compensatory dynamics), the minimum possible value of the correlation 500 

approaches 0 as species richness increases. Thus, on average, the more competing species are added 501 
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to the metacommunity, the weaker their observed average negative association gets.  502 

The fourth proposition suggests that communities with more species may only be stable  if the 503 

interactions get weaker on average, as found by May (1972) in an analysis of the stability of Lotka-504 

Voltera type multispecies models. Stone (2016) generalized this proposition by showing that stability 505 

and feasibility under increasing species richness requires a reduction in the mean and standard 506 

deviation of the value of the interspecific competition coefficients. 507 

Based on these arguments, we should expect the overall ISA to weaken as 𝑆 increases. Indeed, 508 

Wiegand et al. (2012) found that species associations were significantly weaker in rich forest 509 

communities compared to species poor ones, even after the null-expected associations were taken into 510 

account. 511 

ISA and beta diversity 512 

Here we show how ISA is conceptually related to aspects of beta diversity (i.e. the differentiation of 513 

species composition in space). We also demonstrate how one particularly popular matrix-wise 514 

measure of beta diversity, Whittaker’s index, is insensitive to ISA, while pairwise indices of beta 515 

diversity can be sensitive to ISA (Fig. 8). Although we still lack the exact mathematical theory for the 516 

latter, we show that point pattern analysis may offer the right toolbox to build such a theory. 517 

The connection between ISA and beta-diversity is best illustrated on a spatially implicit site-by-518 

species community matrix 𝑌. In short, ISA is the association among species (Simberloff and Connor 519 

1979, Hubálek 1982, Bell 2005, Legendre and Legendre 2012), whereas beta diversity is the 520 

similarity among sites. In this simplified case, both ISA and beta diversity are calculated using exactly 521 

the same data and indices (Tables 2, 3); the only difference between them is whether they are applied 522 

to the rows (“R-mode” of Legendre & Legendre 2012) or columns of 𝑌 (“Q-mode”). In other words, 523 

any index of beta diversity that is normally applied to sites can be applied to species and can be 524 

meaningfully interpreted as an index of ISA, and vice versa (Legendre and Legendre 2012, Arita 525 

2017). For example, Araújo and Rozenfeld (2013) define a “co-occurrence score” as the “ratio of the 526 

number of geographical cells where species A and B co-occur to the total number of occupied cells”. 527 

Although not stated, this is equivalent to the classic Jaccard index for comparing site similarity. Thus, 528 

the list of measures that have been typically used to measure ISA (Tables 2 and 3) can be expanded 529 

with Jaccard or Sørensen-type indices (Arita 2017). Inversely, the list of commonly used measures of 530 

beta diversity (Koleff et al. 2003) can be expanded by some typical ISA indices. Here we see a 531 

potential for Cforbes (Table 2) which explicitly quantifies the deviation of the observed ISA (or beta 532 

diversity) from the ISA (or beta diversity) expected under random distribution of incidences (Forbes 533 

1907). One exception is the Whittaker index (
𝑆

�̄�
=

𝑛

�̄�
, where �̅� is the average number of occupied sites 534 
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per species), which is identical for both the analysis by sites (
𝑆

�̄�
) and by species (

𝑛

�̄�
); however, this 535 

index is different from the pairwise indices of both beta diversity and ISA since it does not capture the 536 

within-matrix similarity between sites or species; instead, it only reflects the proportional matrix fill, 537 

i.e. the fraction of cells in Y filled with 1s (Arita 2017).  538 

However, little has been written about the actual relationship between beta diversity and ISA within a 539 

given spatial domain, i.e. given constant n, S, and CSA. In other words, what happens with beta 540 

diversity if we vary ISA and keep everything else intact? We know that Whittaker’s index ( 
𝑆

�̄�
=

𝑛

�̄�
) 541 

must be insensitive to ISA, which is demonstrated in Fig. 8, and which follows from the 542 

aforementioned insensitivity of ᾱ to ISA (eq. 1). However, we are unaware of any study directly 543 

focusing on the link between ISA and pair-wise beta diversity. In Figure 8 we show a case of average 544 

pairwise between-site Jaccard beta diversity being sensitive to ISA, and this is new. Šizling et al. 545 

(2011) and McGlinn and Hurlbert (2012) hint on a potential explanation by showing the relationship 546 

between average pairwise Jaccard beta diversity and the Whittaker’s index, which is modulated by the 547 

occupancy frequency distribution [see also McGeoch and Gaston (2002)]. This reasoning could 548 

perhaps be extended to provide a link between pairwise beta diversity and ISA. 549 

In contrast to the spatially implicit indices for binary and abundance data, the connection between ISA 550 

and beta diversity is well known in analyses of point patterns (Wiegand and Moloney 2014). The ISA-551 

beta connection can be demonstrated in the spatially-explicit version of Simpson’s evenness index 552 

𝛽(𝑟) (Shimatani 2001, Wiegand and Moloney 2014 section 3.1.5.1). Unlike the traditional spatially 553 

implicit version of the Simpson’s index (Simpson 1949) (i.e., the probability that two randomly 554 

selected individuals are heterospecifics), which is a measure of evenness, 𝛽(𝑟) is a measure of beta 555 

diversity, since it captures dissimilarity over a given distance (Shimatani 2001) (i.e., the probability 556 

that two randomly selected individuals distance r apart are heterospecifics). The index is defined as: 557 

𝛽(𝑟) = ∑ ∑ 𝑓𝑖𝑓𝑗
𝑔𝑖𝑗(𝑟)

𝑔(𝑟)
= 1 − ∑

𝑓𝑚
2 𝑔𝑚𝑚(𝑟)

𝑔(𝑟)
𝑆
𝑚=1

𝑆
𝑗=1
𝑗≠𝑖

𝑆
𝑖=1  (2) 558 

Note the two alternative but equivalent definitions. In the first definition in eq. 2, 𝑓𝑖 and 𝑓𝑗 are the 559 

relative abundances of species 𝑖 and 𝑗, 𝑔𝑖𝑗(𝑟) is the bivariate pair correlation function describing the 560 

spatially explicit ISA and 𝑔(𝑟) is the pair correlation function of all individuals of species i and j. As 561 

expected, if there are no spatial patterns of ISA (i.e. when 𝑔𝑖𝑗(𝑟) = 1), we obtain the non-spatial 562 

Simpson index, and depending on the abundances and ISA of the different species, beta diversity will 563 

be larger or smaller than this point of reference. The second definition in eq. 2 operates purely with 564 

con-specific aggregation (CSA), measured by within-species pair correlation function 𝑔𝑚𝑚(𝑟). We 565 

can see that the spatially explicit 𝛽(𝑟) depends on the balance between the ISA and CSA, whose 566 

overall effect sums up to 1. 567 
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We thus conclude that point pattern analysis, through 𝛽(𝑟), offers a comprehensive framework that 568 

can link abundances, CSA, ISA, gamma diversity and alpha diversity, each with an exactly defined 569 

and mathematically tractable metrics. Not only does it stress the importance of making all of the 570 

diversity facets spatially explicit, but it also potentially offers a roadmap for future unification 571 

macroecology that deals with spatially implicit data on abundances or incidences. 572 

ISA, species-area relationships and species-accumulation curves 573 

Here, we demonstrate that species-area relationships and rarefaction curves are insensitive to ISA. We 574 

have stated that ᾱ and 𝑆 in a given domain are insensitive to ISA, given that spatial extent or a study 575 

remains constant. These are the two components of Whittaker’s index of beta diversity (Whittaker 576 

1960), which is 𝑆 ᾱ⁄ , and so Whittaker’s index is insensitive to ISA. It means that nested species-area 577 

relationships (SAR), which are exactly related the Whittaker index over a continuous range of ᾱ and 𝑆 578 

(Crist and Veech 2006) must also be insensitive to ISA (Fig. 2).  579 

When every individual’s spatial position and identity is known, point pattern analysis also makes it 580 

clear that there is no direct link between ISA and SAR. The relevant equation is (Shimatani and 581 

Kubota 2004):  582 

𝑆(𝑟) = ∑ 𝐻𝑖(𝑟)𝛾
𝑖=1 ,  (3) 583 

where 𝑆(𝑟) is number of species present within 𝑟 from an arbitrarily chosen “test” location, 𝐻𝑖 is the 584 

spherical contact distribution function for species 𝑖, which is the probability that the first neighbor of 585 

species 𝑖 is distance r away from the test location. 𝑆(𝑟) becomes a species-area curve when 𝑟 is 586 

converted to 𝜋𝑟2. Importantly, the 𝐻𝑖 is insensitive to ISA, since it is only based on the locations of 587 

species 𝑖. We note that point pattern analysis also has a scaling curve that is sensitive to ISA: the 588 

individual species-area relationship (ISAR; Wiegand et al. 2007) which always focuses on a focal 589 

species 𝑓: 590 

𝐼𝑆(𝑟) = ∑ 𝐷𝑓𝑖(𝑟)𝛾
𝑖=1 ,  (4) 591 

where 𝐷𝑓𝑖(𝑟) is the bivariate nearest neighbor distribution function, and 𝐼𝑆(𝑟) is the probability that a 592 

point of species 𝑖 is distance 𝑟 away from an average point of focal species 𝑓. Again, 𝑟 can be 593 

converted to area as 𝜋𝑟2. 594 

Finally, we turn to species-accumulation curves, from which the classical examples are the spatially 595 

implicit individual-based and sample-based rarefaction curves (Gotelli and Colwell 2001), and their 596 

spatially-explicit versions (McGlinn et al. 2019). In the former, individuals or samples are 597 

accumulated randomly, irrespectively to their spatial position, which effectively breaks any pattern of 598 

both CSA or ISA, making the spatially implicit curves indeed insensitive to ISA. In the latter spatially 599 
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explicit case, samples (plots) are accumulated by nearest neighbors, which makes these curves closely 600 

related to SARs, which we have shown to be sensitive to CSA, but insensitive to ISA. This is in line 601 

with the core idea of partitioning of rarefaction curves to their components (McGlinn et al. 2019), 602 

which are the regional species-abundance distribution, density of individuals, and con-specific 603 

aggregation, but not ISA. 604 

WHY SHOULD BIODIVERSITY SCIENTISTS CARE ABOUT ISA? 605 

Why, in the context of biodiversity, should we consider ISA patterns in space and time? And why 606 

should we care about ISA, when we have just demonstrated that many of the key biodiversity metrics 607 

are not affected by it? We argue that if we aim to describe a more complete picture of the multi-608 

faceted nature of biodiversity, we need to consider approaches designed specifically to capture ISA, 609 

precisely because it is not captured by the traditional measures. Any biodiversity assessment that 610 

relies only on simple per-site measures of diversity and composition runs into a risk of missing 611 

variation, or temporal change, in ISA. Below we give more specific reasons for why capturing ISA as 612 

a facet of biodiversity may be useful. 613 

ISA as evidence for interactions. Perhaps the best-known, albeit perennially controversial, reason for 614 

analyzing patterns of ISA is a notion that they give hints about biotic interactions among species 615 

(Gotelli et al. 2010, Blois et al. 2014, Harris 2016, Morueta-Holme et al. 2016, Thurman et al. 2019, 616 

Calatayud et al. 2020). The effort that gained traction in the 1980’s and 1990’s (Cody and Diamond 617 

1979, Connor and Simberloff 1979), and has recently been revived with the promise of joint species 618 

distribution models as a tool to disentangle interactions from shared environmental requirements 619 

among species (Warton et al. 2015, Ovaskainen et al. 2017, Zurell et al. 2018). The various 620 

approaches of revealing interactions from presence-absence co-occurrence data, as well as a suite of 621 

cautionary arguments against the endeavor, has been summarized recently by Blanchet et al. (2020).  622 

While some of the arguments presented in Blanchet et al. (2020) on presence-absence data can be 623 

remedied by analysis of abundance or point pattern data, we agree that the utility of ISA as a direct 624 

evidence for interactions is limited. Nevertheless, we argue that there are other reasons for measuring 625 

ISA, which we give below. 626 

ISA when interactions are given. Sometimes biotic interactions are not what we want to infere from 627 

the data, because we already know how the species interact. Examples are well documented trophic 628 

interactions or mutualistic interactions. These known interspecific relationships can generate 629 

hypotheses concerning geographic patterns of ISA. For example, a large-scale assessment of 630 

biodiversity change may specifically look at patterns of ISA among pairs of pollinators and plants; if 631 

there is a significant trend of spatial segregation over time, it may indicate a potential disruption of 632 

pollination services, a finding that could be further investigated with additional data or experiments. 633 



Keil et al. / Spatial associations and biodiversity 

20 

Here we see a particularly exciting prospect in bringing together network ecology with biogeography. 634 

ISA improves forecasts and predictions. ISA and its patterns are useful even when assuming no 635 

mechanistic underpinning, because patterns can improve predictions and forecasts based on inductive 636 

logic, rather than causality. Examples of classical predictive biodiversity patterns are the endemic-637 

area relationship predicting extinctions due to habitat loss (Keil et al. 2015), or richness-environment 638 

correlations that can be used for spatial interpolations and predictions of diversity patterns (Algar et 639 

al. 2009). Similarly, measurements of ISA can potentially improve estimates of other metrics, for 640 

example estimates of site-specific species pools (Karger et al. 2016, Bruelheide et al. 2020) or 641 

predictions of species distributions in joint species distribution models (Harris 2016, Norberg et al. 642 

2019). In both cases, the reason for why ISA can improve the predictions is not only as a proxy for 643 

species interactions, but also because co-occurring species can act as proxies for suitable 644 

environments which we may be difficult to measure in the field. 645 

ISA as a summary statistic. ISA captures a unique spatial pattern of communities, on a par with other 646 

popular summary statistics such as species richness or beta diversity. Simply reporting how richness 647 

or beta diversity vary geographically repeatedly proved to be among the most powerful starting 648 

stimuli in the field, generating countless explanatory and testable hypotheses (Brown 1995, Gaston 649 

2000, Lomolino et al. 2010), and such patterns can be as useful for our understanding as the processes 650 

that generated them (Currie 2019). An example is the very existence of latitudinal and altitudinal 651 

diversity patterns, which have fascinated ecologists for centuries. Similar approach has recently 652 

gained traction in summarizing empirical patterns of co-occurrence. For example, Lyons et al. (2016), 653 

Tóth et al. (2019) and Calatayud et al. (2020) have documented broad-scale patterns of ISA, and 654 

although they do offer interpretations involving biotic interactions, these are part of the post hoc 655 

interpretation of the documented patterns, rather than the main goal of the analyses. 656 

ISA as a benchmark for theories or mechanistic models. Rosenzweig and Abramsky (1997) describe 657 

the idea of “dipswitch theory”, i.e. a theory that makes a bundle of unique predictions, which are then 658 

compared with different empirical patterns. The ability of the theory to fit not just one, but multiple 659 

patterns, is then a step towards a “stronger” test of the theory (McGill 2003). Here we argue that ISA 660 

can allow for stronger tests of theories by providing a unique biodiversity pattern that a theory needs 661 

to fit. For instance, it has been demonstrated that neutral theory (Hubbell 2001) or the maximum 662 

entropy theory (Harte 2011) both reproduce realistic species-area relationships, but patterns of ISA, 663 

along with other features, might help to distinguish among theories [see e.g. Ulrich (2004) and Bell 664 

(2005)]. Here, ISA seems particularly promising since it is largely independent on some of the 665 

classical patterns such as species-area relationship, or patterns of beta diversity, as we have 666 

demonstrated. ISA can also be used together with inverse approaches in individual-based models 667 

where known (or hypothesized) individual-level interactions are explicitly modeled and ISA patterns 668 
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emerge at the community level (Grimm et al. 2005). The underlying processes structuring the 669 

community can then be inferred by testing how closely the emerging patterns of the model match the 670 

observed data. For example May et al. (2015) used a neutral individual-based model to quantitatively 671 

predict patterns observed in a 50 ha tropical forest plot, including beta-diversity (eq. 2). Surprisingly, 672 

the model was able to match five emerging patterns simultaneously, but was unable to match the 673 

species-area relationship and beta-diversity simultaneously, pointing to missing processes. The ability 674 

to explain patterns of ISA can thus provide useful information for validating theories and mechanistic 675 

models.  676 

CONCLUSION 677 

We have argued that inter-specific spatial associations (ISA) are an underrepresented topic in 678 

biodiversity science and macroecology, and that this is an important knowledge gap worth exploring. 679 

Apart from its connection to biotic interactions, ISA can also provide a benchmark for judging 680 

different types of ecological theories, and it can serve as a summary statistic capturing unique 681 

properties of nature. This is underscored by the fact that many of the biodiversity statistics that have 682 

been monitored are insensitive to ISA. We provide an overview of the main approaches to measure 683 

ISA, which we sorted into three main schools of thought, based on the data that they use: spatially 684 

implicit indices, community variograms, and bivariate pair correlation functions. One of our main 685 

conclusions is that considering space, and particularly spatial distance, is vital for the progress of the 686 

field, and for any broad-scale assessment of patterns of ISA in geographic space and in time. In all, 687 

we hope that our overview of ISA, its measures, and its utility provides a starting point for researchers 688 

interested in broadening the scope of biodiversity facets that they study. 689 

CODE AND DATA 690 

Code and data used for this study are archived in R package ‘spasm’. The version submitted with this 691 

publication is at Zenodo (10.5281/zenodo.3944504). The latest development version is at GitHub 692 

(https://github.com/petrkeil/spasm). 693 
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Table 1 Brief summary of processes that generate CSA and ISA, biodiversity patterns that are linked 700 

to CSA and ISA, and the approaches to measure them. 701 

Question Conspecific spatial aggregation (CSA) Interspecific spatial association 

(ISA) 

What generates it? species-specific dispersal limitations, 

conspecific interactions among 

individuals, interplay between niche 

width and spatial aggregation of 

environmental conditions 

dispersal limits common to 2 or 

more species, interspecific 

interactions among individuals, 

interplay between niche overlap 

and aggregation of 

environmental conditions 

Which biodiversity 

facets and patterns 

are sensitive to it? 

neta diversity and its distance decay, 

species-area and some species-

accumulation curves, altitudinal and 

latitudinal gradients of range size and 

endemism, spatial gradients of diversity 

(Storch et al. 2008) 

still mostly unclear 

Approaches to 

measure it. 

spatial over- or under-dispersion using 

Poisson or Negative Binomial 

distribution (He and Legendre 2002), 

spatial Taylor’s law (Taylor 1961), 

occupancy-area relationship (OAR) and 

fractal dimension (Kunin 1998), 

univariate pair correlation function 

(Wiegand and Moloney 2014) 

this paper 
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Table 2 Measures of ISA for binary community data. From more than 70 measures (Hubálek 1982, 703 

Legendre and Legendre 2012, Keil 2019) we have included those that have either been popular, 704 

recommended based on suitable properties, or that represent a distinct approach to ISA.  705 

Measure Reference Symbol Formula or description R code in 

A) Pairwise     

C-score (Stone and Roberts 1990) Cseg 𝑏𝑐 bipartite::C.score 

EcoSimR::c_score 

vegan::designdist 

Scaled C-score (Ulrich and Gotelli 2013) CsegSc 𝑏𝑐

𝑛 (𝑛 − 1) 2⁄
 

vegan::designdist 

Togetherness (Stone and Roberts 1992) Ctog 𝑎𝑑 bipartite::togetherness 

vegan::designdist 

Scaled 

togetherness 

(Ulrich and Gotelli 2013) CtogSc 𝑎𝑑

𝑛 (𝑛 − 1) 2⁄
 

vegan::designdist 

Jaccard 

similarity 

(Jaccard 1901) Cjacc 𝑎

𝑎 + 𝑏 + 𝑐
 betapart::betapart 

vegan::betadiver 

Dice-Sorensen 

similarity (Dice 1945, Sørensen 

1948) 

Csor 2𝑎

2𝑎 + 𝑏 + 𝑐
 

betapart::beta.pair 

vegan::betadiver 

Coefficient of 

association 

(Forbes 1907) Cforbes 𝑎𝑛

(𝑎 + 𝑏)(𝑎 + 𝑐)
 vegan::designdist 

Alroy’s 

coefficient (a 

new take on 

Cforbes) 

(Alroy 2015) Calroy 𝑎(𝑧 + √𝑧)

(𝑎 + 𝑏)(𝑎 + 𝑐) + 𝑎√𝑧 +
𝑏𝑐
2

 

where 𝑧 = 𝑎 + 𝑏 + 𝑐 

vegan::designdist 

Pearson 

tetrachoric 

correlation 

(Pearson and Heron 1913) Cpears 𝑎𝑑 − 𝑏𝑐

[(𝑎 + 𝑏)(𝑐 + 𝑑)(𝑎 + 𝑐)(𝑏 + 𝑑)]0.5
 

 

vegan::designdist 

Mid-P variant of 

Fisher’s exact 

test 

(Kallio et al. 2011, Tóth 

et al. 2019) 

CFETmP 

( ∑
(𝑖¦𝑥)(𝑛 − 𝑖¦𝑗 − 𝑥)

𝑛¦𝑗
𝑥𝑚𝑖𝑛≤𝑥≤𝑥𝑚𝑎𝑥

)

− 

(𝑖¦𝑎)(𝑛 − 𝑖¦𝑏)

2(𝑛¦𝑗)
 

Where i = a+b, j = a+c, and x is 

the possible number of overlaps, 

with xmin = max(a-d, 0) and xmax = 

min(i, j). The symbol ¦ denotes the 

‘choose’ operation. 

https://github.com/anikobtoth/FCW 

Matching 

coefficient 

(Sokal and Michener 

1958) 

Cmatch 𝑎 + 𝑑

𝑛
 

vegan::designdist 

B) Matrix-wise     

Variance ratio (Schluter 1984) Cratio 𝑆𝑇
2 ∑ 𝜎2⁄ , where 𝑆𝑇

2is the variance 

of per-site species richness and 𝜎2 

is the sum of per-species variances 

of incidences. 

EcoSimR:v_ratio 

https://github.com/mcglinnlab/vario 

https://github.com/anikobtoth/FCW
https://github.com/mcglinnlab/vario
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Checker score (Gotelli 2000) Cchecker Number of species pairs forming 

perfect checkerboard distributions. 

EcoSimR::checker 

Number of 

unique species 

combinations 

(Gotelli 2000) Ccombo Number of species that always co-

occur. 

EcoSimR::species_combo 

Network 

connectance 

(Dormann et al. 2009) Cconn 
𝐹

𝛾𝑛
, where F is the number of all co-

occurrences 

bipartite::networklevel 

Notes: For pairwise indices, a is the number of sites where both species co-occur, c and b are numbers 706 

of sites occupied uniquely by each species respectively, d is the number of sites where none of the 707 

species occur, n = a + b + c + d. For matrix-wise indices, where �̄� and �̿� are the mean number of 708 

occupied sites per species the mean number of species per site respectively, and S and n are numbers 709 

of all species and sites in the matrix respectively. 710 
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Table 3 Select measures of ISA for abundance data. From the plethora of existing measures we have 712 

included those that have been popular, recommended, or that represent a distinct approach to ISA. 713 

Specifically, we selected three correlation-based indices, two distance-based indices, two abundance-714 

based variants of the binary indices, and two matrix-wise indices. 715 

Measure Reference Symbol Formula or description Notes R code in 

A) Pairwise      

Covariance (Legendre and 

Legendre 2012) 

CAcov, 

CAcov_hell 

 

1

𝑛
∑(𝑥𝑖 − �̄�)

𝑛

𝑖=1

(𝑦𝑖 − �̄�) 

With optional 

transformation 

(Hellinger, log, 

sqrt) of raw 

abundances. 

stats::cov 

Pearson 

correlation 

(scaled 

covariance) 

(Legendre and 

Legendre 2012) 

CAcor, 

CAcor_hell 

𝐶𝐴𝑐𝑜𝑣(𝑥𝑦)

𝜎𝑥𝜎𝑦

 
With optional 

transformation 

(Hellinger, log, 

sqrt) of raw 

abundances. 

stats::cor 

Spearman’s 

Rho 

(Legendre and 

Legendre 2012) 

CArho CAcor between the rank values of x 

and y 

 stats::cor 

Chi-squared 

distance (Lebart and 

Fénelon 1971, 

Legendre and 

De Cáceres 

2013) 

CAchi 

√(𝑥+ + 𝑦+) ∑
1

𝑥𝑖 + 𝑦𝑖

𝑛

𝑖=1

(
𝑥𝑖

𝑥+

−
𝑦𝑖

𝑦+

)

2

 

 vegan::decostand 

with stats::dist 

Hellinger 

distance (Rao 1995, 

Legendre and 

De Cáceres 

2013) 

CAhell 

√∑ (√
𝑥𝑖

𝑥+

− √
𝑦𝑖

𝑦+

)

𝑛

𝑖=1

2

 

 vegan::decostand with 

stats::dist 

Percentage 

difference 

(former 

“Bray-

Curtis” 

index) 

(Odum 1950, 

Legendre and 

De Cáceres 

2013) 

CAbray ∑ |𝑥𝑖 − 𝑦𝑖|𝑛
𝑖=1

𝑥+ + 𝑦+

 
One of the 

abundance-based 

variants of Csor. 

vegan::vegdist 

Ruzicka 

similarity (Růžička 1958, 

Oksanen et al. 

2019) 

CAruz 
2𝐶𝐴𝑏𝑟𝑎𝑦

1 + 𝐶𝐴𝑏𝑟𝑎𝑦

 

One of the 

abundance-based 

variants of Cjacc. 

vegan::vegdist 

B) Matrix-

wise 

     

N-wise 

Ruzicka 

(Baselga 2017) CAruzN Long formula, see Baselga (2017). Multi-species 

version of CAruz. 

betapart::beta.multi.abund 

Variance 

ratio 

(Ulrich and 

Gotelli 2010) 

CAratio The same principle as the binomial 

Cratio. 
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Notes:  x and y are the vectors of abundance of two species, �̄� and �̄� are their means,  𝑥+ and 𝑦+are 716 

their sums, 𝜎𝑥 and 𝜎𝑦 are their standard deviations, 𝑥𝑖 and 𝑦𝑖are abundances at site i, and n is the total 717 

number of sites. 718 
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 720 

 721 

 722 

Figure 1 The difference between con-specific spatial association (CSA, vertical gradient) and inter-723 

specific association (ISA, horizontal gradient), where the latter is the subject of this paper. Points are 724 

individuals, colors mark species.  725 
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 726 

 727 

Figure 2 Approaches to capturing inter-specific spatial association (ISA) among species, classified by 728 

the broad ecological schools of thought, together with typical data that are used in the approaches. 729 

Note that there is a gradient of the amount of spatial information (detail) in the data. With the 730 

exception of Programita, all the listed software consists of R packages.  731 
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 732 

Figure 3 The fundamental importance of spatial distance in ISA. A single community matrix (a) can 733 

potentially reflect two different spatial arrangements of the community (b), each with a different 734 

magnitude of ISA - the two species in the left spatial matrix are more attracted, while on the right they 735 

are more segregated, yet this spatial arrangement is not reflected in the community matrix.  736 
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737 

Figure 4 Comparison of ISA metrics calculated on empirical community matrices of Atmar and 738 

Patterson (1995) and Ulrich and Gotelli (2010). Panels (a-b) use the binary measures from Table 2, 739 

and are based on binary (presence/absence) version of all matrices. Panels (c-d) use the abundance-740 

based measures of Table 3, and use only the abundance matrices of Ulrich and Gotelli (2010). Panels 741 

(a-b) show first two axes of principal components analysis (PCA), panels (c-d) show a graph 742 

representations of correlation matrices between the metrics. Red indicates variables that are not ISA 743 

metrics. 744 
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 746 

Figure 5 (a) Simulated spatial distributions of individuals (points) of two species (sp1 and sp2) in a 747 

square domain under 3 levels of con-specific aggregation (CSA) of sp1 and 5 levels of inter-specific 748 

aggregation (ISA). (b) Truncated exponential probability density function [𝑓𝑠𝑝2(𝑟) (Keil 2014, 2019)] 749 

describes how likely we are to observe an individual of sp2 at a given distance from any individual of 750 

sp1. This 𝑓𝑠𝑝2(𝑟) is convenient since its shape depends on a single parameter (here called ISA) which 751 

represents various magnitudes of inter-specific repulsion (left) and attraction (right) and their 752 

relationship with distance. 753 
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 755 

Figure 6 Ability of pairwise spatially implicit metrics from Tables 2 and 3 to recover the magnitude 756 

of ISA from spatially explicit simulations. Panel (a) shows overall correlation between the true ISA 757 

and the metric. Panels (b) and (c) show the correlation when only inter-specific repulsion is 758 

considered (ISA < 0) or when only positive attraction is considered (ISA > 0). Given are absolute 759 

values of Spearman correlation coefficients. Note that some metrics very well separate negative from 760 

positive associations (i.e. they have good correlation with overall ISA), but within these two 761 

categories they have weak correlation with the underlaying ISA parameter, e.g. covariance-based 762 

measures (CAcov, CAcov_hell). See Fig. S6 for details of these relationships. 763 
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765 

Figure 7. Ability of two spatially explicit approaches to recover ISA patterns of the two species from 766 

Figure 4b. (a) Community variograms calculated on abundance data obtained by aggregation of the 767 

point pattern in a 20 x 20 pixel grid. Also, 200 points were simulated for each species, instead of the 768 

100 points in Figure 5. (b) Bivariate pair correlation function calculated directly from the point 769 

patterns. 770 
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 771 

Figure 8 Insensitivity of species-area relationships and Whittaker’s index to ISA, as also mentioned 772 

by Plotkin et al. (2000) and Storch (2016). (a) Two communities consist of 4 square sites each, with 4 773 

species (A, B, C, D) either present or absent. The communities differ in the magnitude of pairwise 774 

ISA; species in the left one are segregated, those in the right one are attracted to each other. (b) These 775 

communities can be described by spatially implicit community matrices Y from which metrics of ISA 776 

(c) can be calculated. While the Whittaker index remains constant in both communities, the mean 777 

pairwise Cjacc correctly reflects ISA. (d) The same logic applies when beta diversity measures such as 778 

βw and βjacc, where the former is simply a ratio of gamma diversity (total richness of a community) and 779 

mean alpha diversity (mean richness across sites), which is also the slope of slope of SAR, which 780 

remains constant even though ISA changes (e).  781 
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Appendix S1 - Glossary 
Several attempts have been made to clarify the terminology of spatial associations and resemblance in the 

sites vs. species context (Hubálek 1982, Legendre and Legendre 2012), but the consensus is not entirely 

clear and many of the offered definitions are author- or study-specific. Here we provide what we see as 

the signal across the literature that we have reviewed:  

 Inter-specific and hetero-specific are used synonymously for relationships among individuals of 

two or more species. Inter-specific has also been more popular than hetero-specific (Fig. S1). 

 Intra-specific and con-specific are used synonymously for relationships among individuals 

within a single species.  

 Association is a general term that describes mutual arrangement of spatial positions of two or 

more species, irrespectively to its direction, range of values, or particular interpretation.  

 Resemblance is more general than association. Legendre and Legendre (2012) use association 

for relationships among species, while resemblance is the more general term applicable to both 

compositional similarity among sites and association among species. 

 Co-occurrence can be used for occurrence of two or more species at a given site, or it can be 

used for a magnitude of the observed inter-specific association. It is usually reserved for binary 

(presence/absence) data. 

 Similarity (and its mathematical complement, dissimilarity) are measures of resemblance that 

always take values between 0 and 1, are not metric, but can be converted/re-scaled to metric 

distances. 

 Distances are measures of resemblance that have a minimum at 0, but can have various upper 

bounds (including infinity), depending on the constraints of the space in which they are measured. 

 Correlation-based metrics of resemblance are centered around 0 (no relationship), with values 

> 0 for positive relationship, and < 0 for negative relationship. They can be converted/re-scaled to 

take values between 0 and 1. 

 Repulsion or segregation vs attraction or aggregation. These usually refer to negative vs 

positive spatial associations among species, but they are sometimes used for con-specific patterns. 

A typical example is aggregation, which is often used for spatial clumping among conspecific 

individuals. We thus urge authors to clearly state which type (inter- vs intra-specific) they use, 

particularly in titles and abstracts of papers. 

 Biotic interaction or inter-specific interaction is an effect of individuals of one species on 

individuals of other species (it can also be mutual). Examples are predation, mutualism, 

parasitism, or competition. Interactions may influence interspecific spatial associations, but 

usually together with other factors.  



Appendix S2 – Literature search 
We performed two literature searches in order to (i) assess the relative representation of ISA in papers 

dealing with biodiversity, and (ii) assess the relative representation of ISA in three specific ecological 

journals. Below we provide details on these searchers.  

Web of Science search 

The goal of our first search was to assess which terms, metrics, and ecological patterns are most often 

associated with biodiversity papers, and how the relative frequency of ISA-related terms in biodiversity 

papers compares with the other topics. We searched Clarivate Web of Science (WoS) using the formula 

“biodiversity AND TERM” in the “Topic” field of the WoS search engine, where TERM is one of the 

search terms described below. When using the “Topic” field the engine searches for the TERM in titles, 

abstracts, author keywords, and Keywords Plus. We restricted the search to all papers published between 

1996 and 2019. The search was done on 19 Sep 2019, with the exception of “trophic” and “competiti*” 

terms that were added on 15 June 2020. This is the list of the search TERMs: 

 TERMs associated with ISA: attraction*, C-score, ecosim*, repulsion*, segregation*, variance 

NEAR/0 ratio*, cooccurr* OR co-occurr*, checker*, JSDM OR (joint NEAR/0 species), co-

distrib* OR codistrib*, *coenos* or *cenos* 

 TERMs associated with biotic interactions and networks: trophic, competiti*, network*, 

biotic NEAR/0 interact* 

 TERMs associated with classic biodiversity patterns: beta NEAR/0 diversit*, eveness, jaccard, 

nestedness, simpson, species-area, species NEAR/0 richness, species NEAR/0 turnover, relative 

NEAR/0 abundance*, SAD, extinct*, shannon, invasi* OR invad*, geograph* NEAR/0 range*, 

functional, phylogenetic 

 General TERMs: heterospecific* OR hetero-specific*, conspecific* OR con-specific*, inter-

specific* OR interspecific*, intra-specific* OR intraspecific* 

 TERMs associated with spatially explicit approaches: point NEAR/0 pattern* OR point-

pattern*, variogram* or semivari*, pair NEAR/0 correl*, K-function, kriging, spatial* NEAR/0 

autocor*, nearest NEAR/0 neighbor*, distance NEAR/0 decay* 

Data generated by this search are at: 

https://github.com/petrkeil/spasm/blob/master/data/wos_trends.csv 

The code that we used to produce the figures is at: 

https://github.com/petrkeil/spasm/blob/master/analyses/wos_trends_analysis.r.  

Results. In Figure S1, we show that terms associated with biotic interactions (e.g. networks, competition, 

trophic interactions), as well as classic biodiversity patterns, are more frequent by about an order of 

magnitude in biodiversity literature than terms associated with ISA. Even general ISA-related terms such 

as “co-occurrence” are considerably less common than some quite specific biodiversity terms such as 

“shannon” or “evenness”. In addition, in the general terms, the prefixes “inter-” and “intra-” are more 

common than “con-” and “hetero-”, which is in line with our decision to use the term “inter-specific 

associations”, rather than “hetero-specific associations”. Finally and unsurprisingly, we found that terms 

associated with spatially explicit analyses are rare, relatively to other terms. The reason is that spatially 

explicit analyses require considerably more data and expertise than implicit ones. 

https://github.com/petrkeil/spasm/blob/master/data/wos_trends.csv
https://github.com/petrkeil/spasm/blob/master/analyses/wos_trends_analysis.r


 

 

Figure S1 Temporal trends in frequency of particular TERMs in biodiversity-related papers. Y-axis shows the total 

number of papers published in a given year that are listed on Clarivate Web of Science, and that contain the given 

search TERM AND “biodiversity” in the “Topic” field. Note the log10 scale of the y-axis. Left plot (red lines) shows 

terms related to biotic interactions and networks among species. Second to the left plot (blue lines) shows terms 

associated with classic biodiversity patterns in space and time. Second to the right plot (green lines) shows general 

terms used to distinguish between a within-species and across-species analyses. Second to the right plot (purple 

lines) shows terms related to ISA, and the right plot (orange) shows terms related to spatially explicit analytical 

approaches.  

 

Manual search through Ecology, Ecography, and American Naturalist 

In order to alleviate potential concerns about our selection of TERMs in the previous search, we 

conducted a second search that entirely avoids the use of WoS or search terms. One specific concern was 

that “biodiversity” as a term was coined as late as in 1988, which could have affected the trends. Thus, 

our goal here was to assess the popularity of ISA in a broader ecological context, rather than in the 

context of biodiversity only. We chose three ecological journals that have been important in the field for 

many decades and represent the breadth of current ecological research. These were: 

 Ecology (Ecological Society of America), since it is a general and widely read ecological journal 

representing all facets of the discipline, from theoretical to applied. 

 American Naturalist (The American Society of Naturalists), since it has emphasized theoretical 

papers, it also encompasses evolution, and it was prominent in the 1980s when ISA gained a 

particular prominence in ecology. 

 Ecography (Nordic Society Oikos) since unlike the previous journals, it is not American, and it 

embraces pattern-oriented and macroecological approaches that may be under-represented in the 

more process- and hypotheses-oriented journals. 



From these journals, we downloaded titles and abstracts of all papers published in 1995, 1999, 2003, 

2007, 2011, 2015, and 2019, representing 3,858 papers in total. We read each of them and characterized 

the papers using 12 binary variables, as follows: 

 ISA. Papers that describe, or explain, static patterns of ISA, as defined in this paper. 

 CSA. Papers that describe, or explain, static patterns of conspecific spatial aggregation, which 

includes geographic range limits, abundance-occupancy relationships, occupancy-area 

relationships, fractal occupancy patterns, spatial autocorrelation of species distributions, 

measurements of deviations from complete spatial randomness, and patterns of endemism. 

 Spec_interaction. Papers that deal with biotic interactions in a broad sense, which includes 

competition, mutualism, trophic interactions (herbivory, predation), parasitism, defense 

mechanisms, trophic networks, pollination, commensalism, complementarity, or facilitation. 

 Spec_coexistence. Papers that deal with mechanisms of species coexistence.  

 Comm_assembly. Papers that deal with community assembly. This is a rather vague category, 

and so we marked this for all papers that simply use the term community assembly in the abstract 

or title, or that deal with priority effects, assembly rules, community filters, environmental filters, 

metacommunities, and related subjects.  

 Relative_commonness. Papers that describe, or explain, patterns of relative species abundances, 

which includes range-size distributions, species-abundance distributions, or occupancy 

distributions. We use the term commonness since it encompasses both abundance and range size. 

 Diversity. Papers that describe, or explain, patterns of biological diversity within discrete spatial 

units, measured by various diversity measures such as species richness, species density, Simpson 

and Shannon indices, evenness, alpha or gamma diversity, functional diversity, genetic diversity, 

or phylogenetic diversity. 

 Species_accumulation. Papers that describe, or explain, patterns of species accumulation with 

area, volume, sample size, or number of individuals, which includes species-area and species-

volume relationships, ratios or regional to local richness, and rarefaction curves. 

 Beta. Papers that describe, or explain, spatial patterns of species compositional dissimilarity 

among sites, which includes beta diversity, species turnover, nestedness, and distance-decay of 

similarity. 

 Beta_related. Papers encompassing the two above-mentioned categories, i.e. both species 

accumulation and beta diversity.  

 Comm_comparison. All papers that describe, or explain, composition and diversity across sites. 

This is a very broad category that encompasses all papers from the aforementioned three 

categories. 

 Div_comp_gradient. All papers that describe diversity, beta diversity, and community 

composition as a function of environmental or spatial (geographic) gradients. 

Results. Figure S2 shows that, among the 3,858 papers examined, there are fewer ISA-related papers than 

papers in other categories. The only categories that are similarly marginal are community assembly, 

relative commonness, and species accumulation. The most common topics among papers are species 

interactions, followed by a suite of topics that focus on comparisons of species diversity and composition 

among sites. Even beta diversity, which often requires the same data as an analysis of ISA, has been a 

more common topic than ISA. 



 

Figure S2 Temporal trends in counts of papers dealing with a given subject, published in Ecology, American 

Naturalist, and Ecography. Grey lines are number of papers dealing with ISA, black lines correspond to the topic in 

the header of each facet. Panel (a) gives counts in all three journals pooled together, panel (b) separates them be 

journal. 

 



 

Figure S3 Correlations between ISA metrics for binary data from Table 2 applied to the empirical community 

matrices by Atmar and Patterson (1995) and Ulrich and Gotelli (2010). In case of the pairwise metrics, each point 

represents the mean value of the entire matrix. N, Gamma, and Tot.incid are numbers of sites, species, and 

incidences (i.e. matrix fill) respectively. Cforbes, Cw, Ccombo, Cratio, n, gamma, and Tot.incid were were log-

transformed. CsegSc, CtogSc, Cchecker, were log(x+1) transformed. Numbers in the upper triangular section are Pearson 

correlations, with size and grey intensity proportional to the magnitude of the correlation. 

  



 

Figure S4 Correlations between ISA metrics for abundance data from Table 2 applied to the empirical community 

matrices by Ulrich and Gotelli (2010). In case of the pairwise metrics, each point represents a mean value of the 

entire matrix. n, gamma, and Tot.abu are numbers of sites, species, and the total number of individuals in the entire 

community matrix respectively. CAratio, CAcov, CAcov_hell, n, gamma, and Tot.abu were were log-transformed. 

Numbers in the upper triangular section are Pearson correlations, with size and grey intensity proportional to the 

magnitude of the correlation. 

  



Appendix S3 - Simulation procedure 

 

Why only pairs? We refrained from simulating spatially explicit spatial association between more than 

two species, since the simulated patterns would need to achieve specified spatial association between each 

pair of species simultaneously, as well as the decay (or increase) of each of these associations with 

distance. Although the most recent advances in multivariate geostatistics may enable this (Genton and 

Kleiber 2015), these methods are still young, not widely available, and are computationally challenging to 

simulate cross-covariance structures of more than 3 layers (species). Further, there is the limit on the 

magnitude of negative associations in multi-species matrices (Brown et al. 2004) which would prevent us 

from exploring scenarios with strong negative ISA. As a result, we only evaluated pairwise measures of 

ISA. For each ISA metric we measured its correlation with the ISA parameter across all simulation 

setting.   

Simulations. We simulated spatially explicit distributions of two species, sp1 and sp2 with abundances 

N1 and N2 respectively, as two point patterns in a square domain with side of 1 (Fig. 5a in the main text). 

One simulation proceeded as follows:  

 (Fig. S5a) We chose a random point with coordinates 𝜇𝑥 and 𝜇𝑦 within the domain, with uniform 

probability density across the domain; this point was the center of distribution of sp1.  

 (Fig. S5b) We created 2-dimensional probability density of points of sp1 as a bivariate normal 

distribution 𝑓𝑠𝑝1(𝜇, 𝛴), where 𝛴 is the covariance matrix with marginal variances 𝜎𝑥 = 𝜎𝑦 =

𝐶𝑆𝐴and with covariance 𝜎𝑥𝑦 = 0. 𝜇 is the vector of coordinates 𝜇𝑥 and 𝜇𝑦.  

 (Fig. S5c) We drew N1 points from that probability density surface. These are individuals of 

species 1. 

 (Fig. S5d) For every location in the domain we calculated its distance r from the nearest point of 

sp1. 

 (Fig. S5e) We transformed r using a truncated exponential function (Keil 2014) 𝑓𝑠𝑝2(𝑟) =
𝛼𝑒𝛼𝑟

𝑒𝛼𝑏−𝑒𝛼𝑎
 where 𝑟 ∈ [𝑎, 𝑏], where 𝑎 = 0 and 𝑏 = 1, but these truncation points can be set to any 

value depending on the size of the domain. We use the negative value of parameter 𝛼 as the 

strength of interspecific association (𝐼𝑆𝐴 = −𝛼), with 𝐼𝑆𝐴 < 0 being segregation, 𝐼𝑆𝐴 = 0 for 

independence, and 𝐼𝑆𝐴 > 0 being positive attraction between species.  

 (Fig. 5b) We drew N2 points from from the 𝑓𝑠𝑝2(𝑟). These are individuals of species 2. 

We repeated this procedure for each combination of the following parameter values:𝐶𝑆𝐴 ∈

{0.001,0.01,0.1}, 𝑁1 ∈ {10,100,1000,10000},𝑁2 ∈ {10,100,1000,10000}, and for 𝐼𝑆𝐴 ∈

{−20,−17.5,−15, . . . ,0, . . . ,15,17.5,20}, which we then aggregated to square spatial grids with 

{32,16,8,4} grid cells along each side. Thus, the value of 32 represents the finest (smallest) grain, and 4 

the coarsest (largest) grain. Altogether, this produced 3264 simulated pairs of species, each represented by 

either a point pattern or a grid, and we further converted to 3264 community matrices 𝑌, with either 

abundance or incidence values, and with known exact spatial position of each grid cell. 



 

Figure S5 Simulation of two point patterns of two species, sp1 and sp2. The procedure is described in  the main 

text. Briefly, point pattern of sp1 is simulated as a point process with bivariate normal probability density 𝑓𝑠𝑝1(𝜇, 𝛴) 

with zero covariance and marginal variances describing the con-specific aggregation (CSA) of sp1. Point pattern of 

sp2 is then simulated as a point process with  𝑓𝑠𝑝2(𝑟)describing the magnitude of ISA, where 𝑟 is distance to the 

nearest point of sp1. This figure was also used in Keil (2019). 

 

 

Analysis of the simulations. For each of the simulated community matrices 𝑌 (each with 2 species) we 

calculated the pairwise incidence-based ISA measures from Table 2, and the abundance-based measures 

from Table 3. In some of the measures we also tested their Z-score variant, calculated as 

s(𝐸𝑟𝑎𝑤 − 𝐸𝑒𝑥𝑝) 𝑆𝐷𝑒𝑥𝑝⁄ , where 𝐸𝑟𝑎𝑤 is the ISA metric (from Tables 2 and 3) calculated on observed data, 

𝐸𝑒𝑥𝑝 is the null expectation of the index, and 𝑆𝐷𝑒𝑥𝑝 is the standard deviation of the null expectation 

calculated over a set of community matrices obtained by 200 randomizations of 𝑌. The randomizations 

were as follows: For the incidence matrices, we took the total number of incidences of each species, 

randomly assigned each of the incidence to a new site with uniform probabilities for each site, which 

corresponds to the “sim2” algorithm of EcoSimR package (Gotelli et al. 2015). For abundance-based 

measures, we randomly re-assigned each individual to a new site with uniform probability. Thus, in both 

algorithms, incidences or individuals are reshuffled only within each row of 𝑌, irrespective of the matrix 

column totals. In case of the abundance data, we also ran the simulations with the IT algorithm of Ulrich 

and Gotelli (2010), but the results were similar. To evaluate performance of each metric, we calculated its 

Spearman’s Rho (rank-rank correlation) with the ISA parameter across all 4,080 simulations. All 

functions and scripts for the simulations and their analysis are provided at 

https://github.com/petrkeil/spasm. 

https://github.com/petrkeil/spasm


 

 

 

 

Figure S6 Relationships between the magnitude of ISA in artificial 2-species point pattern communities, and indices 

(measures) of ISA. These plots are the basis for Figure 6 in the main text. 



 

Figure S7 Relationship between the performance of ISA metrics and spatial grain that was used to aggregate point 

patterns. The performance is the absolute value of Spearman correlation between the parameter ISA and the average 

metric. 

 

 



 

Figure S8 Relationship between the performance of ISA metrics and the magnitude of con-specific aggregation of 

species 1 in the simulations. The performance is the absolute value of Spearman correlation between the parameter 

ISA and the average metric. 
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