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Abstract

Multivariate mixed models (MMM) are generalized linear models with both fixed and random effect having multiple response variables.  MMM allow partitioning of total (phenotypic) (co)variances for multiple traits into (co)variances on hierarchically lower levels. We outline why ecologists and evolutionary biologists should be interested in such partitioning as well as the levels of analyses that arise when making inferences on multi-level covariance structures. We consider biological levels of interest to be genes (e.g. GWAS, genomic selection), genotypes (genetic (co)variances), individual or other subject (e.g. between-individual (co)variances) and phylogenetic taxa (phylogenetic (co)variances). All of these biological levels can be modelled in a MMM and we distinguish several demand levels of using MMM of increasing complexity. We present an overview of current open-access software implementations of MMM in the open software R with respect to these demand levels, and present example scripts aimed at getting started with MMM on all biological levels. We describe four freely available R packages for MMM, two using Bayesian (Monte Carlo and Hamiltonian Markov Chains) and two using a likelihood framework. Depending on the need of the analyst, there are a number of freely available R-based MMM implementations of relevance to the field of ecology and evolution.

Introduction

Mixed models have in the last decades become an essential tool in ecology and evolution research and teaching (e.g. Pinheiro & Bates 2000, McCulloch & Neuhaus 2001, Bolker et al. 2009, Crawley 2002, Zuur & Ieno 2012, Mrode 2014). The term “mixed” refers to inclusion of both fixed and random effects. From a statistical perspective, random effects are used to model non-independence across subjects. Such non-independence arises commonly in ecological and evolutionary data for a variety of reasons. For example, repeated measures taken on the same subject (e.g. cell-lineage, individual, habitat patch in landscape, year) imply a correlation between all measures taken on the same subject. Non-independence across subjects may further arise due to various other processes. For example, spatial structure; measures obtained at close localities may be more similar compared to measures from localities further apart. From an evolutionary perspective, individuals in a population may be relatives or different taxa may be phylogenetically related and hence not fully independent. All of the above are violating the standard statistical assumption of independence thus warranting the inclusion of so-called random effects. 

Apart from this statistical perspective, a biological interpretation of random effects is that of latent variables: random effects infer properties of biological interest that cannot be directly measured. For example, inclusion of “subject ID” in a repeated measures analysis recognizes that subjects have an “intrinsic” latent mean trait value that may differ from the overall fixed-effect mean.  If we have one response variable, it would be a so-called univariate linear mixed model, also called multilevel or hierarchical model. Such linear mixed models are nowadays well established, in terms of textbooks as well as software (e.g. Gelman & Hill 2006, Crawley 2012, Zuur et al. 2012, Finch et al. 2014). Consider, for example, a field study quantifying size at eclosion and development time of a species of insect across multiple habitat patches. We find the expected (Stearns & Koella 1986) decline in the size of an individual as its developmental time is longer (Fig. 1a). These data measurements (phenotypes) can be analysed using a univariate linear mixed model with size as the response variable, developmental time as the fixed effect and subject as a random effect (Fig. 1b). Variation between the subjects (habitat patches in the example) in terms of the intercept is clear (Fig 1b.). The univariate mixed model assumes there are two hierarchical levels: (1) between-subject variance and (2) residual (or within-subject) variance. These levels are hierarchical because the assumption is made that they are independently and identically distributed. It is this assumption that allows us to partition the variance in the measurements (phenotypes) into variance between subjects vs residual variance. In our example (Fig. 2b), developmental time is treated as a fixed-effect covariate and the variance in size is partitioned after adjusting for this fixed effect (Nakagawa & Schielzeth 2010). The univariate mixed model consider only between-subject variance in the intercept (Fig. 2b). Although extension to also consider subject-specific slopes is readily made (Nussey et al. 2007), the main characteristic of the univariate model is that it partitions variance across subjects in terms of the one response variable it considers. The use of developmental time as a fixed effect assumes – by definition – that each subject is (potentially) exposed to the same values of this fixed effect. Consider, however, the alternative scenario where, just as size, developmental time also is a property of the subject. Hence, just as we partition variance in size, we could partition variation in developmental time into between-subject and residual variances. Simultaneous partitioning of between-subject and residual variances in two or more measured variables is what a multivariate mixed model accomplishes. In addition to variances on these levels, the multivariate mixed model will also partition the covariance on these levels. Importantly, covariation in these levels need not align. In our example, habitat patches where individuals eclose at a larger size also have short development time leading to a negative between-habitat patch covariance (Fig. 1c), whereas there is no covariance on the residual level (Fig. 1d). In ecological terms, such a pattern would suggest differences between habitat patches (e.g. in their food supply) is a main driver of the phenotypic covariance rather than within-habitat patch differences between individuals. Note, however, that this example is kept simple for illustration purposes, and that multivariate mixed models in general require considerable replication in terms of the number of subjects and possibly also in terms of measures per subject (see e.g. Dingemanse & Dochterman (2013) for power analyses of this kind of multivariate mixed models).

In this paper, we focus on mixed models allowing for multiple response variables as exemplified above. This is a multivariate mixed model, from here on termed MMM. There are a number of instructive papers on MMM that are accessible to analysts in ecology and evolution; in particular Wilson et al. (2010), Dingemanse & Dochtermann (2013) and Hadfield & Nakagawa (2010) provide detailed overviews and worked implementations in several software. We here firstly provide only a brief overview of MMM. We then underline why covariance partitioning is of relevance for understanding various organizational levels in ecology and evolution. Third, we present an overview of how analysts in ecology and evolution use MMM, which we categorize in different levels of demands put on analytical and software capacities. Lastly, we review the available statistical packages in R for MMM with respect to the listed organizational and demand levels providing example scripts of each package on all organizational levels in an associated Wiki site.

A brief primer of multivariate mixed models

The main objective of a MMM is to partition the variances and covariances in measured phenotypes of two or more traits into (co)variances occurring on its hierarchically constituent levels. In the example above, we considered size and developmental time and partitioned that data into (co)variances between habitat patches (as subjects) and residual (sometimes called within-subject) (co)variances. Such MMM can be denoted as in the generic form

y = Xb + Zu + e,	(1)

where X and Z are design matrices relating the fixed effect b and random effect u to observations in y and e denotes the residual. Here, the vector y contains potentially information on multiple response variables (Text S1). Typically, u and e are modelled as deviations from the fixed-effect means, and thus have a mean of zero with their values in multivariate mixed models assumed to stem from a multivariate distribution (e.g. Meyer 1985). 

Key to MMM is that the variances and covariances capturing the distribution of subject-specific values u (as plotted in Fig. 1c) and residual values e (as plotted in Fig. 1d) are the focal parameters on which inferences are based. Suppose we have two measured traits (z1 and z2; i.e. size and developmental time in the example above). Data on these traits is gathered under a design where each trait is measured multiple times in a number of subjects (i.e. multiple individuals per habitat patches in the example above). Then (co)variances between subjects (determining u) can be statistically separated from residual (co)variances determining e for these two traits, assuming there is power to separate covariances on these two hierarchical levels, see Dingemanse & Dochtermann (2013) for details). Qualitatively, we can think of the u values as the subject-specific means for the two traits (quantitatively, u will approach the subjects’ mean values as the number of repeated measures per subject increases). In any case, the u values for subject s are assumed to be the same across repeated measures on these subjects. In contrast, the residuals (e values) influence the trait values for each subject s differently during each measuring trial t. That is,

z1st = 1 + u1s + e1st
z2st = 2 + u2s + e2st    ,	(2)

where 1 and 2 denote the fixed-effect (overall) means for trait z1 and z2 respectively. The values of u and e are assumed to stem from a multivariate Gaussian distributions with zero means. In the mixed model framework a central feature is hence to infer the between-subject and residual variance (V) and their covariance (C). In matrix terms, one would specify the deviations (dropping the subscripts for brevity) u1 and u2 and residuals e1 and e2 for trait z1 and z2 respectively as 


,     	(3)
,     


where ID and R contains the variances and covariances on the between-subject and residual levels respectively in matrix form, termed covariance matrix from here on. The phenotype is, in this case, assumed to be the sum of two distinct levels (the between-subject and residual levels). Returning to our example, the variance in the measurements for size (phenotypic variance in size) is the sum of the variance between habitat patches in size and the residual variance in size, and the same applies to the phenotypic variance in developmental time as well as the phenotypic covariance of size and developmental time. In general, therefore, MMM should be viewed as a tool for partitioning of the covariance matrix of the phenotypes (i.e. measured values) of multiple traits into (co)variances occurring on two or more different hierarchically lower levels (e.g. Fig. 1a,c,d). Importantly, these (co)variances are conditional upon the fixed effects in the model (e.g. Wilson 2008) since they partition the (co)variances remaining after the fixed effects have been taken into account. 


Relevance of multivariate mixed models in ecology and evolution

Originally, the MMM is developed as a tool in animal and plant breeding, where the objective is to partition additive genetic (co)variances from other sources of (co)variance.  Nevertheless, a variety of ecological and evolutionary processes may lead to covariance matrices on the various hierarchical levels (as illustrated in Fig. 1 for an ecological example). MMM methods are of relevance for analysts working on covariance partitioning across levels: phylogenetic taxa (e.g. species), genotypes (e.g. families), ecological subjects (e.g. habitat patches, individuals) and genomes (Table 1). The main reason to partition covariances is that there is no a priori reason to assume that across-subject correlations, be it across relatives, across individuals, or across species, align in magnitude – or even in sign – with the correlation in measured traits (phenotypes). In many cases, there could be hypotheses on covariance on a specific level (exemplified in Table 1). For such cases, partitioning out the covariances on these various hierarchical levels presents a powerful approach to test specific ecological and evolutionary hypotheses including biological organizational levels as: 

Genome: When performing a Genome Wide Association Study (GWAS, Table 1 i), the interest may be in the association of markers to multiple phenotypic traits measured on the same subjects, but these traits may be genetically correlated in which case a multivariate approach (where these correlations are included) is superior over a series of separate univariate analyses (Korte et al. 2012, Zhou & Stephens 2014). In terms of our example regarding size and developmental time (Fig. 1), we may have amassed Single Nucleotide Polymorphism (SNP) data across the genomes of many phenotyped individuals and we include the SNP data in a multivariate mixed model on both size and developmental time. 

Quantitative genetics: Evolutionary ecologists routinely partition out the genetic (co)variances from other sources of (co)variances (Table 1 ii). Associations between multiple phenotypes in nature will strongly resemble covariances generated by environmental influences acting upon these traits (van Noordwijk & de Jong 1986): Strong positive environmental covariance may even mask causally determined negative trade-off associations which may manifest themselves as negative correlations (but see Cheverud 1988). Non-zero genetic correlations, in particular, may constrain the evolutionary response to selection on multiple traits (Walsh 2007) making their inference relevant to understanding evolutionary dynamics. To this end, a MMM is used in combination with information on the degree of relatedness of individuals, as derived from a pedigree with or without a mating design (Lynch & Walsh 1998), or high-density set of markers (e.g. Wang 2002). In terms of our example (Fig. 1), we may have individuals of known relatedness reared in a common environment where the MMM can calculate the additive genetic variances in size and developmental time as well as the genetic correlation between these traits. Such a MMM answers the question whether a phenotypic correlation in size and developmental time is, either due to pleiotropy or linkage disequilibrium, based on the genetic level.

Repeatedly phenotyped subject: A common feature is that repeated measures are taken on some entity. In the example above, the subjects were habitat patches in which multiple individuals were phenotyped for two traits (Figure 1), although it should be repeated that MMM require many more subjects than in the example (Dingemanse & Dochtermann 2013). Other examples include multiple offspring in broods phenotyped for two or more traits, or multiple phenotypes measured on a number of individuals. In particular, associations between behavioral traits on the level of the individual play a key role in behavioral ecology (Table 1 iii), where multiple behaviors are expected to covary on the level of the individual and are then said to form a “behavioral syndrome” (Dingemanse et al. 2012). Correlations in traits on the between-subject level need not align (in terms of sign or magnitude) on other levels. MMM has also been advocated in novel approaches exploring social interactions (Dingemanse & Araya-Ajoy 2015) and assortative mating (Class et al. 2017). 

Taxa: Lastly, multivariate mixed models are relevant when conducting comparative analyses (Table 1 iv) of multiple traits across different taxa (e.g. species). This is because such models allow inferring the extent to which phylogeny explains trait variation as well as covariation between traits. Typically, phylogenetic analyses are based on published information and thus embedded within a meta-analytical context. Partitioning out the phylogenetic (co)variances is possible using information on species “distances” in an ultrametric phylogeny in procedures analogous to inclusion of relatedness across individuals in a population (Hadfield and Nakagawa 2010).  In terms of our example above (Fig. 1), we may have information on size and developmental time of many species in a resolved phylogeny where the MMM partitions phylogenetic variance between species versus residual (within-species) variance as well as the phylogenetic correlation between species in these traits thereby asking whether species that are larger in size also have shorter developmental time.

Given their potential to address such a wide variety of questions in ecology and evolution, multivariate mixed models appear – at least to us – to be underused. One reason for low usage may be that multivariate mixed models are not implemented in all statistical software. A variety of (specialized) software implements multivariate mixed models (overview by Wilson et al. 2010). In addition, multivariate mixed models can be implemented in generic statistical software such as for example BUGS family (Lunn et al. 2000; Plummer 2003), Stan (Carpenter et al. 2017), and AD Model builder (Fournier et al. 2012). While each software implementation has its strength, multivariate mixed models implemented in freely available so-called “packages” in the program R (R core Team 2017) are likely especially relevant to analysts in ecology and evolution. This is because such packages allow seamless integration with R’s capacity for processing data and model output as currently routinely used by many analysts in the field. 

Implementation and inferences

In this paper, we assume a dataset with multiple response variables measured on subjects (on one or more of the levels outlined in Table 1) with the potential to include random effects to address non-independence of measures. Multivariate mixed models often consider different traits as response variables. In addition, multivariate mixed models are used to analyze what quantitative geneticists term “character states” (Lynch & Walsh 1998). Character states are when the same trait is measured on subjects assumed to be in different states. For example, aggression of a juvenile and adult individual are considered as two character states, and their covariance matrix can be partitioned in a bivariate mixed model. 
The first step in building a multivariate mixed model is typically based on assessment of variance components on the various levels based on univariate mixed models following standard procedures (e.g. Bolker et al. 2009). In particular, assessment of the fixed-effect part of the model is often based on univariate models. Nevertheless, when the primary interest is in inferences of the (co)variances, direct inclusion of any biologically relevant fixed effect and interaction in the model, irrespectively of its statistical significance, is a viable option. In a mixed model, inferred (co)variances are always conditional on the fixed-effect structure of the model. Thus, retaining also non-significant fixed effects will present an arguably “cleaner” inference of the covariance matrix. It is in any case important to note that adding or removing fixed effects, especially when their effect size is non-negligible, alters the covariance matrices. 
A type of “generic” R script could be
mmm(z1~observer,random=~box) ,
where the hypothetical function mmm for a MMM is used to specify a univariate mixed model with z1 the response variable and observer is the fixed effect. This hypothetical R script uses the function-style notation of R (~) to specify the random effect; box is the random effect and could denote in this example variance across boxes used to rear the individuals measured. 
Based on exploring these univariate mixed models and deciding on the fixed-effect structure, multivariate mixed models are constructed in a second step, typically including all traits with non-zero between-subject variance. Importantly, software for multivariate mixed models are of course equally capable of handling univariate mixed models. Thus, analysts can work out their univariate mixed model structure using the same software implementation as they use for running the multivariate mixed models. 
A “generic” example R script could look like
mmm(cbind(z1, z2)~ trait:observer,randomcov=~us(trait):box,residualcov=~us(trait):units) ,
where one main difference is that now there are multiple response variables (z1 and z2) that are column binded (using cbind()). Furthermore, the specification for the fixed and random terms need to be adjusted. In this example, the reserved term trait is used to specify that certain parameters are specific to the multiple traits (response variables) specified in the model. Thus, trait:observer specifies that an intercept and fixed effect of observer are to be inferred for both z1 and z2. The random effect now specifies that a so-called unstructured (us) covariance matrix with the dimension of trait (i.e. 2x2) is to be inferred. This matrix contains the covariances between box. Similarly for the residual covariance residualcov the covariances in residuals for z1 and z2 are inferred. 
Until here, examples have concerned partitioning of the covariance matrix on what we here term the ecological level (iii in Table 1). Analyses on other levels (i, ii and iv in Table 1) require that additional information specifying the relationship between the subjects are to be taken into account. For example, we have phenotyped multiple individuals and we know (e.g. because of the use of a breeding design) the average relatedness between all the individuals. We can denote this relatedness between all individuals in matrix form in what is often termed the A matrix (more formally, the A matrix contains what is called the identitity by descent coefficient between individuals, Lynch & Walsh 1998). Under the assumption that many genes of small effect determine part of the expressed phenotype (Lynch & Walsh 1998), we expect that the phenotypes of close relatives (e.g. mother and daughter) resemble each other more than the phenotypes of more distant relatives (e.g. second cousins). We can use that information to infer the additive genetic covariance matrix in a MMM (detailed in Lynch & Walsh 1998, Wilson et al. 2010). In terms of the practicalities, introducing this additional information typically requires model specification as follows:
mmm(cbind(z1, z2)~ trait:observer,randomcov=~us(trait):ped(individual),G=list(individual=A),residualcov=~us(trait):units) ,
where a reserved term (ped) is used to specify that there are relationships between the subjects (individual), and the matrix containing the relationships are provided as a list in an additional argument (G=list(individual=A)). The above is used to infer the additive genetic covariance matrix. Similarly, the non-additive genetic covariance matrix can be inferred by using a relatedness matrix that allows inferring this covariance matrix (Wolak et al. 2012). Similar approaches are employed for the other organizational levels (i and iv in Table 1). For example, for analyses where the interest is primarily on inferring marker-specific effects on the phenotypes (level i in Table 1), a high-density set of markers can provide information for Genomic Relatedness Matrix (GRM) between individuals. The GRM contains a measure of identity by state (or realized relatedness) between individuals, which can be computed in several ways (see Gienapp et al. (2017) for an overview of this approach in ecology and evolution). For analyses on the phylogenetic level, the subjects are taxa (e.g. species), the relationship matrix between species is specified by an ultrametric phylogeny (Hadfield & Nakagawa 2010). These examples are not exhaustive. The important aspect here is that the MMM has the capacity to include additional information on the subjects allowing the MMM to be useful across organizational levels (Table 1). 
Lastly, we note that more specific hypothesis testing typically requires further analysis. Analyses may proceed by considering the covariance matrix on the level of interest involving e.g. matrix properties (evolutionary constraint, Hansen & Houle 2008), matrix comparison approaches (Phillips & Arnold 1999), or structural equation models (Dingemanse & Dochtermann 2010). We focus in this paper on drawing inferences in the covariance matrices directly. We distinguish two levels of complexity in refining inferences of the covariance matrix.
Unstructured covariance matrices
The default multivariate mixed model (demand level 1 in Table 1) will assume covariance matrices are unstructured as in the generic R script provided above. In such a model, both variances and covariances are inferred on all levels (cf. eq.(1-3)). Further processing is typically required because the interest is in parameters derived from these (co)variances, such as the phenotypic variance (sum of all inferred variances), the proportion of phenotypic variance explained by a specific random factor, or a correlation (scaled covariances) on the various hierarchical level(s) of interest (Table 1). For example, based on eq. (2) one would be interested (cf. Fig. 1) in the between-subject correlation   , the residual correlation  and the phenotypic correlation . 
For Bayesian implementations, the point estimates and uncertainty of the (co)variances as well as of any function of these (co)variances, such as correlations, can directly be inferred from the posteriors (Gelman et al. 2014). For example, posteriors of a correlation are calculated using the posteriors for the covariance and the relevant variances. The posterior mode (or mean) of the posteriors of this correlation is used as the point estimate of the correlation and its credible interval is computed either using the posteriors directly or based on a density kernel. The possibility to use the posteriors to infer uncertainty around any function of the (co)variances is a major advantage of Bayesian statistics as no further assumptions regarding the distribution of this uncertainty is required. For likelihood implementations, however, uncertainty around functions of the inferred variances and covariances are derived directly from the likelihood following standard frequentist assumptions. Typically, the delta method is used (Lynch & Walsh 1998, Text S2). Alternatively, the likelihood-profile is used to obtain confidence intervals (typically for inferred variances) (Wolak 2012). 
Structured covariance matrices
For a number of analyses, however, the covariance matrix can be assumed to be structured (demand level 2 in Table 2). The covariance matrix may be structured by design: For example, when repeated measures of subjects are obtained at different trials, the residual covariance matrix may be assumed structured with covariances being unestimable (e.g. Careau et al. 2015). That is, in terms of eq(2), the residual covariance matrix has a diagonal structure with only variances to be inferred while assuming uncorrelated residuals (covariance of zero), 
 . 	(4)
Here, the “0” is said to constrain the multivariate mixed model. The constraint here means that a model with Rd does not infer the residual covariance, not that the residuals values (in e) are constrained to have a covariance of zero. In absence of any other random effect in the model, a multivariate mixed model with Rd will make the same inference about the residual variances as two univariate models with the same fixed effect structure. 
Typically, structure is included in a MMM by specifying it. For example, continuing our “generic” R scripts as the example above, we could specify
mmm(cbind(z1, z2)~ trait:observer,randomcov=~us(trait):box,residualcov=~diag(trait):units) ,
to indicate a MMM where the between-box covariances are unstructured (us) but the residual covariances are structured such that only the diagonal (i.e. the variances) in the residual covariance matrix are inferred (diag; matrix is diagonal).
A second example of a similarly diagonally structured residual covariance matrix is when traits are measured in individuals that are related to each other, but never so that multiple traits are measured on the same individual. Under such a design, the genetic covariance matrix is unstructured (as information of phenotypes of relatives are available), but the residual covariance matrix is diagonal. Such a design can, for example, occur when considering sex-specific traits in organisms which cannot change sex, whenever measurement of one trait requires destructive sampling excluding measurement of other traits on the same subject or perhaps in an effort to optimize measurement time. Suppose, for example, we have broods of half-sibs for which we also know the relatedness between the broods (either through pedigree or breeding design). We can then measure trait z1 in half of each brood and trait z2 in the other half and infer an unstructured genetic covariance matrix between these traits in a MMM, but only a (diagonally) structured residual covariance matrix. In our hypothetical R script, such a MMM could be specified as
mmm(cbind(z1, z2)~ trait:observer, =~us(trait):ped(individual),G=list(individual=A),residualcov=~diag(trait):units) ,
where the data on the two traits contains a missing value for one trait if the other is measured. Apart from being structured by design, multivariate mixed models with structured covariance matrices are often used to construct a likelihood-based test by comparing the likelihood of models allowing covariances on one or more hierarchical levels to models where the covariance matrix is assumed to be diagonal. For example, when operating within a likelihood framework, the likelihood ratio test (LRT) between a model with unstructured   compared to one with a diagonal (variances only) structure with constitutes a test for assessing the statistical significance of the covariance term (and hence the correlation) differing from zero. In our “generic” R script, the latter model would be coded
mmm(cbind(z1, z2)~ trait:observer,randomcov=~diag(trait):box,residualcov=~us(trait):units) .
When more than two traits are included, a comparison between a fully unstructured matrix and a diagonally structured one will inform the analyst on the overall strength of the covariances. Clearly, the likelihood comparison described above would only apply to MMM solved in a frequentist framework. In a Bayesian framework, non-zero covariances /correlations are typically inferred on the basis of their 95% credible interval (CRI) not overlapping with zero (Gelman et al. 2014). 
Structured covariance matrices are not restricted to the above outlined diagonal structure, but can take various forms. Structured covariance matrices are particularly frequently used when modeling characters states. For example, aggression is repeatedly measured on individuals at different age classes, such that aggression as a juvenile is modelled as one character state and aggression as an adult as a second character state. Clearly, there can be more than two character states, but we here consider two states for simplicity.  Measures taken on these two character states are then possible to analyze in a multivariate mixed model (e.g. Wilson et al. 2010). In a character state analysis, one may impose structure on the inferred variances rather than the covariances: Variances for some or all of these different character states may be hypothesized to be equal (homogenous) or not (heterogeneous). Inferring whether variances are heterogeneous across character states is interesting as this signals heterogeneity in the trait studied across subjects over the character states. For example, if repeated measures are taken of a behavior in individuals at different ages, heterogeneity in between-individual variances of a behavior across ages indicates that trait values change differently for the different individuals during ageing (individual-age interaction). Similarly, measurement of the same trait in families reared in different environments can be used to study whether changes in additive genetic variances occur across environments (genotype-environment interaction). Again, Bayesian analysists will typically use the credible intervals to make inferences on whether character-state variances are heterogeneous or not. Frequentist analysts could compare likelihoods of models with an unstructured covariance matrix to one where the between-subject variances are constrained to be the same over all character states. Comparison of non-nested models can be performed in a model selection framework, including model averaging. 
More advanced examples of structured covariance matrices build on the notion of using functions to estimate all or part of the elements in the covariance matrix. Instead of inferring each (co)variance term in the covariance matrix, these so-called function- valued approaches infer the parameters of the functions assumed to determine the covariance matrix (Stinchcombe et al. 2012). For example, the covariance terms may be modelled as an autoregressive (AR) or other function of a measure of distance between the subjects (Pletcher & Geyer 1999). Random regression (Hendersson 1982) is another function-valued approach to reduce the dimensionality of the covariance matrix which is useful in ecology and evolution (Nussey et al. 2007), and can be applied within a multivariate mixed model framework also to different traits (e.g. Robinson et al. 2009). However, reduction of the dimensionality of the covariance matrix critically relies on assuming the function-valued approach captures all essential aspects of the covariance matrix. At best, this assumption is valid, but at worse, findings can be seriously misleading. Their use therefore requires careful analysis, the detailing of which falls outside the scope of this paper. We however include a basic description and listing of this more advanced demand level of using MMM.
R packages for multivariate mixed models
We searched CRAN, Github and Google for multivariate mixed models in R. We found four active and supported R packages which were suitable for the implementation of multivariate mixed model as described above (Table 3). To facilitate comparison, we provide a Wiki with example scripts for analyses on all organizational levels (Table 1) and several demand levels (level 1.1,1.2, and 2.1 in Table 2) in all four packages (https://github.com/JonBrommer/Multivariate-Mixed-Models-in-R/wiki). The above discussed types of analyses for which a “generic” code is provided, can on this Wiki be found with working code for each R package. Because these packages are actively developed, content of packages are likely to be extended. Indeed, many package authors list specific developments. Interestingly, the packages present a variety of approaches for making inferences: Two Bayesian approaches (Markov Chain Monte Carlo MCMC and Hamiltonian Monte Carlo HMC with No U-Turn Sampling NUTS) as well as two frequentist approaches (with different likelihood solvers). A major difference between the Bayesian and frequentist packages is that the former allowed non-Gaussian response variables, but likelihood-based packages did not. In terms of the fixed-effect part of the multivariate mixed models, brms, MCMCglmm and sommer allowed the different response variables to have different fixed effect structures (Table 3). 
All packages can be used for analyses on repeated measures (organizational level 3 in Table 2).  Package sommer is developed to in particular accommodate inclusion of genetic marker information for GWAS analysis (organizational level 1 in Table 1). Interestingly, inclusion of information from a pedigree (for analyses on organizational level 2 in Table 1) was implemented in all four packages. Phylogenetic analyses (organizational level 4 in Table 1) were explicitly implemented in MCMglmm and brms, with both phylogenetic relationships and meta-analysis capacity. Phylogenetic analysis can be implemented in sommer by constructing the phylogenetic “pedigree”. This package also includes the capacity for meta-analysis as required for more advanced phylogenetic analyses (Hadfield & Nakagawa 2010). 
With respect to the demand levels (Table 2), all packages allowed making inferences on unstructured and basic structured covariance matrices (level 1.1). Of the two packages implementing frequentist approaches, only sommer had functions for calculating the uncertainty of derived parameters (level 1.2), although breedR will provide the uncertainty of heritability in analyses on organizational level 2. All packages included the possibility for at least one basic structure (fitting a diagonal (variances-only) matrix) for inferred covariance matrices (level 2.1 in Table 2). In fact, MCMCglmm and sommer offered multiple pre-defined covariance matrix structures. The package breedR employed a flexible, although more demanding, approach where the analyst can specify the structure of the covariance matrix for the random-effect terms. Both frequentist packages hence allowed analyses of demand level 2.2 (Table 2). Some packages had implemented advanced level of structuring such as autoregressive and random regression functionality (demand level 2.3 in Table 2). 

Discussion
Use of multivariate mixed models for partitioning (co)variances between multiple traits has its basis in the field of quantitative genetics (e.g. Henderson 1982, Meyer 1985). Nevertheless, multivariate mixed models are of relevance to address various interests in the fields of ecology and evolution. Because multivariate mixed models are versatile and have a wide range of applications, research and teaching in ecology and evolution benefits strongly from increased inclusion of these approaches. In this paper, we present an overview of how analysts use multivariate mixed models in ecology and evolution, as well as how to implement such analyses in freely available software in R. We find that apart from the first-launched and much-used package MCMCglmm (Hadfield 2010), multivariate mixed models can be implemented in three other more recently launched packages. All these packages have their specific strengths; the possibility to choose from multiple options is clearly a great asset. To facilitate comparison in practice, we refer the reader to the wiki (https://github.com/JonBrommer/Multivariate-Mixed-Models-in-R/wiki) accompanying this paper where scripts and datasets allow direct comparison between the packages.
For a user looking for accessible implementations of multivariate mixed models, a clear division of the packages we here describe is between frequentist (likelihood-based) packages (breedR, sommer) and Bayesian packages (MCMCglmm, brms). Frequentist implementations are probably more familiar to most users and will typically take less computing time when making inferences. Nevertheless, both Bayesian packages allow one or more response variables to have a non-Gaussian distribution whereas the frequentist implementations presently both assume Gaussian response variables. The two frequentist packages use different algorithms, where the algorithm of the package sommer (based on Direct-Inversion, Lee & van der Werf 2006) performs faster than the MME algorithm (Henderson 1982) used in the package breedR when the number of predictions (Best Linear Unbiased Prediction BLUP and Best Linear Unbiased Estimator BLUE) to be made exceeds the sample size (p ≥n) or when dense covariance structures are used. This situation is unlikely to occur in most ecological and evolutionary analyses except when analyzing marker data stemming from high-throughput genetic analysis (such as GWAS analysis and Genomic Selection). On the other hand, run times on datasets typical in most studies in ecology and evolution are unlikely to be prohibitively long for either frequentist algorithm. 
We believe that a major impulse for the incorporation of multivariate mixed models in ecology and evolution is the recent development of open-source software allowing these analyses to be carried out in a user-oriented setting where the mixed model equations can be specified by the analyst using generic “function style” language. Several of the packages reviewed here are under active development, promising an increase in their functionality. Given there are multiple options for implementing multivariate mixed models, we hope for an increased uptake of these models in ecology and evolution research and teaching.     
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Fig. 1. Illustration of univariate versus multivariate mixed model analyses. We consider two traits, size at eclosion of an insect and time. (a) There is a negative covariance for the measured traits (phenotypes). (b) A univariate mixed model analysis infers the fixed-effect slope describing the decrease in size with developmental time that is assumed to be equal for each subject but where the intercept can differ across subjects (subjects and the fixed-effect intercept and slope are denoted in color). (c) A multivariate mixed models views both size and developmental time as subject-specific and partitions the phenotypic (co)variances into between subject (co)variances, and (d) residual, or within-subject, (co)variances. For clarity this illustration only considers three subjects each phenotyped twice, but typical analyses are conducted on more data. 

[image: ]


1

Table 1. Brief outline of examples where multivariate mixed models are relevant in ecology and evolution. For the various organizational levels a reference is provided that details how MMM are useful on these levels. The examples provided are not exhaustive and include the size/developmental time association (Fig. 1). The covariance as derived from the MMM is either a covariance based on the Genomic Relatedness matrix CGRM, an additive genetic covariance CA, on the level of the phenotyped subject CID or phylogenetic taxon Cphylo.

	Organisational level
	Example(s)
	Subject Example
	Example z1,z2
	Hypothesis on MMM covariance
	Verbal hypothesis verbal

	i Population Genetics (Zhou & Stephens 2014, Gienapp & ) 
	GWAS / Genomic selection
	Individuals genotyped with high-density SNP marker data
	Size,
Developmental time
	
	Effect of SNPs associated to the two traits while  taking into account the non-independence of these traits (based on the Genomic Relatedness matrix)

	ii Evolutionary quantitative genetics (Wilson et al. 2010)
	genetic constraint
	Individuals of known relatedness
	Size, Developmental time
	
	The effect of genes for size across the genome are negatively correlated to the effect of genes for developmental time

	
	genetic constraint
	Related individuals reared in a breeding design
	Reproduction, Survival
	
	Genes upregulating resource allocation to fecundity are detrimental for survival

	iii Ecology (Dingemanse & Dochtermann 2010)
	Plasticity across an environmental gradient
	Habitat patches
	Size, Developmental time
	
	Across habitats of varying quality, longer developmental time is associated with smaller sizes.

	
	Behavioral syndrome
	Individuals
	Aggression, boldness
	
	The level of aggression of an individual in one test covaries with its boldness in another test

	iv Phylogeny (Hadfield & Nakagawa 2010)
	phylogenetic  constraint
	Species
	Size, Developmental time 
	

	Species with larger size have a longer developmental time

	
	phylogenetic  constraint
	
	Fecundity, body size
	
	Larger bodied species have lower fecundity across the phylogeny





Table 2. Description of demand levels of using multivariate mixed models in ecology and evolution for both frequentist and Bayesian implementations. This categorization is made in order to compare the various software implementations of MMM, as well as to recognize that the demands of the analyst performing the MMM may vary . The terms listed in italics in the top half of the table are explained in the glossary in the bottom half of this table.

	
	
	

	Demand level
	Example


	1. Estimate covariance matrix as unstructured
	Total variance in trait z1 and z2 conditional on the fixed effects is partitioned in between-subject and residual (co)variances

	Frequentist
	Bayesian
	 

	1.1. Uncertainty of variance components based on likelihood
	Uncertainty of variance components and derived parameters based on calculation of these parameters using the posteriors directly
	SE (or 95% CRI) of the variances and the covariances on the between-subject and residual levels

	1.2. Calculate uncertainty of derived parameters using delta method
	
	Standard error or 95% CRI of the proportion of summed variance in traits z1 and z2 explained by between-subject variance

	2. Estimate covariance matrix as structured on one or more levels
	One or more (co)variances are constrained to either not be inferred or to have a certain value or follow a user-specified function

	Frequentist
	Bayesian
	 

	2.1 Certain (co)variances are not inferred as required by design
	Trait z1 and trait z2 are not measured at the same trial and residual covariance is hence not estimated and constrained to zero. The residual matrix becomes structured as a diagonal (variances only) matrix

	2.2.  Certain (co)variances are not inferred to test of significance of these (co)variance component(s)
	 
	Likelihood ratio test of model with unconstrained covariance matrix relative to model with between-subject covariance constrained to zero to test whether the covariance term is significantly different from zero

	2.3. function structured (co)variances
	Residual covariances are assumed to depend on the 2-dimensional Euclidian distance between the subjects measured (spatial correlation)

	Glossary of terms used in this table

	unstructured
	Inference is made on each element in the covariance matrix 

	structured
	Certain elements in the covariance matrix are not inferred (constrained)

	derived parameters
	Function of the (co)variances such as proportion of the sum of all variances explained by a specific subject

	delta method 
	Analytical method to provide an estimate of the uncertainty of functions (sum, division) of (co)variance components

	level
	Most MMM are hierarchical in the sense that total variance is partitioned in variation on multiple levels; some levels may be nested. 




Table 3. Overview of the four R packages for multivariate mixed models. Summary of a number of aspects as detailed underneath the table. Demand levels are described in Table 2.
	Package
	MCMCglmm
	breedR
	brms
	sommer

	released1
	2009
	2014
	2015
	2016

	reference
	Hadfield (2010)
	 Muñoz & Sanchez (2017)
	Buerkner (2016)
	Covarrubias-Pazaran (2016)

	on CRAN2
	yes
	no (Github)
	yes
	yes

	function call3
	MCMCglmm
	remlf90
	brm
	mmer2

	version4
	2.24
	0.12-2.
	2.6.0
	3.6

	Inferences5
	Bayesian
	Frequentist
	Bayesian
	Frequentist

	solver6
	MCMC
	AI,EM
	HMC + NUTS
	NR, EM

	Information Criterion7
	DIC
	AIC
	WAIC, LOO
	AIC

	Non-Gaussian8
	yes
	no
	yes
	no

	link for non-Gaussian9
	fixed
	N/A
	user-specified
	N/A

	response-specific fixed effects10
	yes
	no
	yes
	yes

	inferences of fixed effects11
	p(MCMC)
	se(Z)
	95%CrI
	se (Z)

	Structures available for random-effect matrices12
	multiple
	element-wise
	uncorrelated
	multiple

	Structures available for Residual matrices13
	multiple
	element-wise
	diagonal
	multiple

	SE of parameters derived from (co)variances14
	N/A
	no (heritability only)
	N/A
	yes

	Relationships15
	pedigree, phylogeny
	pedigree
	pedigree, phylogeny
	pedigree, (phylogeny)

	Meta-analysis16
	yes
	no
	yes
	yes

	Markers17
	no
	no
	no
	yes (GWAS, pedigree)

	Spatial18
	no
	yes
	yes
	yes (2Dspline)

	Polynomial Random Regression19
	yes
	no
	yes
	no

	Spline Random Regression20
	no
	no
	yes
	no

	Comment
	Current standard package for multivariate mixed models
	Extensive possibilities for analyses related to breeding
	Multivariate mixed models have a long run time
	Primarily developed for inclusion of dense covariance matrices and genetic markers



1. Year of release of first version of package. 2. Can the package be installed from CRAN within R? 3. Name of function in the package for multivariate mixed model. 4. Version on which this table is based. 5. Are the fixed and random effects inferred using Bayesian or frequentist approaches? 6. Algorithm used to make inferences. 7. Information Criterion provided as default. 8. Can response variables be non-Gaussian (e.g. binomial, Poisson)? 9. Is the link to the non-Gaussian response variable fixed or can the user specify this link (N/A when only Gaussian responses are allowed). 10. Can the fixed effects be different for each response variable? 11. Default statistic for inferences regarding the statistical significance of the fixed effects. 12. Available structured for the covariance matrix for the random effects (demand level 2.1, 2.2)? 13. Available structured for the residual covariance matrix (demand level 2.1, 2.2)? 14. Is there a procedure to obtain the standard error (SE) of functions of the inferred covariance matrices (demand level 1.2)? 15. Can infer random effects requiring a relationship matrix (pedigree and/or phylogeny)? 16. Meta-analysis supported? 17. Marker-based information can be used? 18. Spatial independency can be incorporated (demand level 2.3)? 19. Random Regression can be incorporated (demand level 2.3)? 20. Random Regression based on splines can be incorporated?


ELECTRONIC SUPPLEMENT MATERIAL

belonging to the paper “Multivariate mixed models: making inference and implementation in R” by Brommer, Class and Covarrubias-Pazaran
containing
Text S1: From univariate to multivariate mixed models
Text S2: Delta method

Text S1: Multivariate mixed models
The flexibility of mixed models to specify the variance structure of random effects (u=1,…,k) can be easily extended to model the covariance structures at the multi-trait level. For example, consider an univariate mixed model from a multi environment trial with l locations (i=1,..,l) where g genotypes are tested, it would be natural to assume that the genetic covariance matrix takes the form:

Gl =  

The so-called unstructured matrix, and var(u) becomes:
 

where Gl is the unstructured genetic covariance matrix (among environments) and K is the covariance structure among genotypes (relatedness). This flexibility to specify the covariance among levels of a random effect (i.e. relatedness) and the covariance among one random effect at different levels of other random effect (i.e unstructured genetic covariance matrix among environments) can be further extended to the multi-trait (j=1,..t) scenario by specifying the trait covariance matrix and taking the direct product with var(u) from the previous covariance matrices mentioned for the univariate version:



where  is the covariance matrix among traits for the kth random effect Gl is the unstructured genetic covariance matrix among environments and K is the covariance structure among genotypes (relatedness).



Text S2: Delta method
Let vector v denote the true variances and covariance, such that the function g(v) is the function of interest (e.g. the correlation). The multivariate mixed-model inferred variances and covariances vector  has a matrix  associated with it which has as diagonal the variance (uncertainty) of each inferred variance and covariance in and as off-diagonal the covariance between these. Hence,  is Fisher’s information matrix as obtained by maximum likelihood methodology. An estimate of g(v) is g(), with the first-order approximation of its variance being  t(g´()) g´(), where g´() is the first derivative of  g(v) evaluated at   and t(g´()) its transpose. This approach (delta method) makes the typical assumption of (approximate) normality (symmetry) around each inferred (co)variance  and ignores the effect of higher-order derivatives.  In R, the derivative is readily obtained numerically. 
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