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Abstract11

The Californian hot drought of 2012 to 2015 created favorable conditions for unprecedented ponderosa pine12

(Pinus ponderosa) mortality in the Sierra Nevada mountain range, largely attributable to the western pine13

beetle (Dendroctonus brevicomis; WPB). Climate conditions and forest density may interact to affect tree14

mortality, but density is a coarse gauge of forest structure that can affect WPB behavior in a number of15

ways. Measuring broad-scale climate conditions simultaneously with local forest composition and structure–16

the spatial distribution and size of trees– will refine our understanding of how these variables interact, but is17

generally expensive and/or labor-intensive. We use drone surveys over a network of 160 field plots along a 350-18

km latitudinal and 1000-m elevational gradient in western slope Sierra Nevada ponderosa pine/mixed-conifer19

forests and structure from motion (SfM) processing to segment and classify more than 450,000 trees over 920

km2 of forest with WPB-induced tree mortality. We modeled the probability of ponderosa pine mortality as a21

function of forest structure and composition and their interaction with site-level climatic water deficit (CWD),22

accounting for spatial covariance using exact Gaussian processes. A greater local proportion of host trees23

strongly increased the probability of host mortality, with greater host density amplifying this effect. Further,24

we found a strong interaction between host size and CWD such that larger trees increased the probability of25

host mortality at hot/dry sites, but smaller trees tended to drive mortality in cool/wet sites.26

Our results demonstrate a variable response of WPB to local forest structure and composition across an27

environmental gradient, which may help reconcile differences between observed ecosystem-wide tree mortality28

patterns and predictions from models based on coarser-scale forest structure. Climate change adaptation29

strategies should consider that future disturbance outcomes may depend on interactions between local forest30

1



structure and broad-scale environmental gradients, with the potential for cross-scale interactions that challenge31

our current understanding of forest insect dynamics.32

Introduction33

Bark beetles dealt the final blow to many of the nearly 150 million trees killed in the California hot drought34

of 2012 to 2015 and its aftermath (USDAFS 2019). A harbinger of climate change effects to come, record35

high temperatures exacerbated the drought (Griffin and Anchukaitis 2014), which increased water stress in36

trees (Asner et al. 2016), making them more susceptible to colonization by bark beetles (Fettig 2012, Kolb37

et al. 2016). Further, a century of fire suppression policy has enabled forests to grow into dense stands,38

which can also makes them more vulnerable to bark beetles (Fettig 2012). This combination of environmental39

conditions and forest structural characteristics led to tree mortality events of unprecedented size in the40

driest, densest forests across the state (Young et al. 2017). The mechanisms underlying the link between41

tree susceptibility to colonization by insects and hot, dry conditions are often directly attributed to tree42

physiology (Bentz et al. 2010, Kolb et al. 2016), while the link to forest density is multifaceted (Fettig 2012).43

Because forest density is a coarse metric of the forest features to which bark beetles respond (Raffa et al.44

2008), our understanding of the connection between forest density and insect disturbance severity could45

be enhanced with more finely-resolved measures of forest structure as well as explicit consideration of tree46

species composition (Stephenson et al. 2019, Fettig et al. 2019). Finally, the challenge of simultaneously47

measuring the effects of both local-scale forest features (such as structure and composition) and broad-scale48

environmental conditions (such as climatic water deicit; CWD) on forest insect disturbance leaves their49

interaction effect relatively underexplored (Seidl et al. 2016, Stephenson et al. 2019, Fettig et al. 2019).50

The ponderosa pine/mixed-conifer forests in California’s Sierra Nevada region are characterized by regular51

bark beetle disturbances, primarily by the influence of western pine beetle (Dendroctonus brevicomis; WPB)52

on its host ponderosa pine (Pinus ponderosa) (Fettig 2016). WPB is a “primary” bark beetle– its reproductive53

success is contingent upon host tree mortality, which itself requires enough beetles to “mass attack” the54

host tree and overwhelm its defenses (Raffa and Berryman 1983). This Allee effect creates a strong coupling55

between beetle selection behavior of host trees and host tree susceptibility to colonization (Raffa and Berryman56

1983, Logan et al. 1998). A key defense mechanism of conifers to bark beetle attack is to flood beetle bore57

holes with resin, which physically expels beetles and may interrupt beetle communication (Franceschi et al.58

2005, Raffa et al. 2015). Under normal conditions, weakened trees with compromised defenses are the most59

susceptible to colonization and will be the main targets of primary bark beetles like WPB (Bentz et al. 2010,60

Raffa et al. 2015). Under severe water stress, many trees no longer have the resources available to mount61
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a defense (Kolb et al. 2016) and thus prolonged drought can often trigger increased bark beetle-induced62

tree mortality as average tree vigor declines (Bentz et al. 2010). As the local population density of beetles63

increases due to successful reproduction within spatially-aggregated weakened trees, as might occur during64

drought, mass attacks grow in size and become capable of overwhelming formidable tree defenses such that65

even healthy trees may be susceptible to colonization and mortality (Bentz et al. 2010, Raffa et al. 2015).66

Thus, water stress can be a key determinant of whether individual trees are susceptible to bark beetles under67

many conditions, and this environmental condition may interact with beetle population dynamics to drive68

tree susceptibility under extreme conditions (Bentz et al. 2010, Stephenson et al. 2019).69

WPB activity is strongly influenced by forest structure– the spatial distribution and size of trees– and tree70

species composition. Taking forest structure alone, high-density forests are more prone to bark beetle-induced71

tree mortality (Fettig 2012) which may arise as greater competition for water resources amongst crowded trees72

and thus average tree resistance is lower (Hayes et al. 2009), or because smaller gaps between trees protect73

pheromone plumes from dissipation by the wind and thus enhance intraspecific beetle communication (Thistle74

et al. 2004). Tree size is another aspect of forest structure that affects bark beetle host selection behavior75

with smaller trees tending to have lower capacity for resisting attack, and larger trees being more desirable76

targets on account of their thicker phloem providing greater nutritional content (Chubaty et al. 2009, Graf et77

al. 2012). Taking forest composition alone, WPB activity in the Sierra Nevada mountain range of California78

is necessarily tied to the regional distribution of its exclusive host, ponderosa pine (Fettig 2016). Colonization79

by primary bark beetles can also depend on the relative frequencies of tree species in a more local area, akin80

to reduced oligophagous insect herbivory in forests comprising taxonomically-distinct tree species compared81

to monocultures (Jactel and Brockerhoff 2007). The interaction between forest structure and composition82

also drives WPB activity. For instance, high-density forests with high host availability may experience greater83

beetle-induced tree mortality because dispersal distances between potential host trees are shorter reducing84

predation of adults searcing for hosts and facilitating higher rates of colonization (Miller and Keen 1960,85

Berryman 1982, Fettig et al. 2007) or because high host availability reduces the chance of individual beetles86

wasting their limited resources flying to and landing on a non-host tree (Moeck et al. 1981, Evenden et87

al. 2014). Stand-scale measures of forest structure and composition thus paint a fundamentally limited88

picture of the mechanisms by which these forest characteristics affect bark beetle disturbance, but finer-grain89

information explicitly recognizing tree size, tree species, and local tree density should more appropriately90

capture the ecological processes underlying insect-induced tree mortality. Additionally, considering the91

effects of local forest structure and composition with the effects of environmental conditions may help refine92

our understanding of tree mortality patterns in widespread events such as during the recent California hot93
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drought.94

The vast spatial extent of tree mortality in the 2012 to 2015 California hot drought challenges our ability to95

simultaneously consider how broad-scale environmental conditions may interact with local forest structure96

and composition to affect the dynamic between bark beetle selection and colonization of host trees, and host97

tree susceptibility to attack (Anderegg et al. 2015, Stephenson et al. 2019). Measuring local forest structure98

generally requires expensive instrumentation (Kane et al. 2014, Asner et al. 2016) or labor-intensive field99

surveys (Larson and Churchill 2012, Stephenson et al. 2019, Fettig et al. 2019), which constrains survey100

extent and frequency. Small, unhumanned aerial systems (sUAS) enable relatively fast and cheap remote101

imaging over dozens of hectares of forest, which can be used to measure complex forest structure at the102

individual tree scale (Morris et al. 2017, Shiklomanov et al. 2019). Distributing such surveys across an103

environmental gradient can overcome the data acquisition challenge inherent in investigating phenomena104

with both a strong local- and a strong broad-scale component.105

We used ultra-high resolution, sUAS-derived remote sensing data over a network of 32 sites in Sierra Nevada106

ponderosa pine/mixed-conifer forests spanning 1000 m of elevation and 350 km of latitude (see Fettig et107

al. 2019) and covering a total of 9 km2 to ask how broad-scale environmental conditions interacted with108

local forest structure and composition to affect the probability of tree mortality during the cumulative tree109

mortality event of 2012 to 2018. We asked:110

1. How does the proportion of host trees in a local area and average host tree size affect WPB-induced111

tree mortality?112

2. How does the density of all tree species (hereafter “overall density”) affect WPB-induced tree mortality?113

3. How does environmentally-driven tree moisture stress affect WPB-induced tree mortality?114

4. Do the effects of forest structure, forest composition, and environmental condition interact to influence115

WPB-induced tree mortality?116

Methods117

Study system118

We built our study coincident with 160 vegetation/forest insect monitoring plots at 32 sites established119

between 2016 and 2017 by Fettig et al. (2019) (Figure 1). The study sites were chosen to reflect typical120

west-side Sierra Nevada yellow pine/mixed-conifer forests and were dominated by ponderosa pine (Fettig121

et al. 2019). Plots were located in WPB-attacked, yellow pine/mixed-conifer forests across the Eldorado,122
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Figure 1: The network of field plots spanned a 350-km latitudinal gradient from the Eldorado National Forest
in the north to the Sequoia National Forest in the south. Plots were stratified by three elevation bands in
each forest, with the plots in the Sequoia National Forest (the southern-most National Forest) occupying
elevation bands 305 m above the three bands in the other National Forests in order to capture a similar
community composition.

5



Stanislaus, Sierra and Sequoia National Forests and were stratified by elevation (914-1219 m, 1219-1524123

m, 1524-1829 m above sea level). In the Sequoia National Forest, the southernmost National Forest in our124

study, plots were stratified with the lowest elevation band of 1219-1524 m and extended to an upper elevation125

band of 1829-2134 m to capture a more similar forest community composition as at the more northern126

National Forests. The sites have variable forest structure and plot locations were selected in areas with >35%127

ponderosa pine basal area and >10% ponderosa pine mortality. At each site, five 0.041 ha circular plots128

were installed along transects with 80 to 200m between plots. In the field, Fettig et al. (2019) mapped all129

stem locations relative to the center of each plot using azimuth/distance measurements. Tree identity to130

species, tree height, and diameter at breast height (DBH) were recorded if DBH was greater than 6.35cm.131

Year of mortality was estimated based on needle color and retention if it occurred prior to plot establishment,132

and was directly observed thereafter during annual site visits. A small section of bark (approximately 625133

cm2) on both north and south aspects was removed from dead trees to determine if bark beetle galleries134

were present. The shape, distribution, and orientation of galleries are commonly used to distinguish among135

bark beetle species (Fettig 2016). In some cases, deceased bark beetles were present beneath the bark to136

supplement identifications based on gallery formation. During the spring and early summer of 2018, all field137

plots were revisited to assess whether dead trees had fallen (Fettig et al. 2019).138

In the typical life cycle of WPBs, females initiate host colonization by tunneling through the outer bark and139

into the phloem and outer xylem where they rupture resin canals.140

As a result, oleoresin exudes and collects on the bark surface, as is commonly observed with other bark beetle141

species. During the early stages of attack, females release an aggregation pheromone component which, in142

combination with host monoterpenes released from pitch tubes, is attractive to conspecifics (Bedard et al.143

1969). An antiaggregation pheromone component is produced during latter stages of host colonization by144

several pathways, and is thought to reduce intraspecific competition by altering adult behavior to minimize145

overcrowding of developing brood within the host (Byers and Wood 1980). Volatiles from several nonhosts146

sympatric with ponderosa pine have been demonstrated to inhibit attraction of WPB (Shepherd et al. 2007,147

Fettig and Hilszczański 2015). In California, WPB generally has 2-3 generations in a single year and can148

often out-compete its congener, the mountain pine beetle, Dendroctonus ponderosae, in ponderosa pines,149

especially in larger trees (Miller and Keen 1960).150

Aerial data collection and processing151

Nadir-facing imagery was captured using a gimbal-stabilized DJI Zenmuse X3 broad-band red/green/blue152

(RGB) camera (DJI 2015a) and a fixed-mounted Micasense Rededge3 multispectral camera with five narrow153
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bands (Micasense 2015) on a DJI Matrice 100 aircraft (DJI 2015b). Imagery was captured from both cameras154

along preprogrammed aerial transects over ~40 hectares surrounding each of the 32 sites (each of these155

containing five field plots) and was processed in a series of steps to yield local forest structure and composition156

data suitable for our statistical analyses. Following the call by Wyngaard et al. (2019), we establish “data157

product levels” to reflect the image processing pipeline from raw imagery (Level 0) to calibrated, fine-scale158

forest structure and composition information on regular grids (Level 4), with each new data level derived159

from levels below it. Here, we outline the steps in the processing and calibration pipeline visualized in Figure160

2, and include additional details in the Supplemental Information.161
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Figure 2. Schematic of the data processing workflow for a single site with each new data product level derived163

from data at lower levels.164

Level 0 represents raw data from the sensors. From left to right: example broad-band RGB photo from165

DJI Zenmuse X3 camera, example blue photo from Rededge3 (centered on 475nm), example green photo166

from Rededge3 (centered on 560nm), example red photo from Rededge3 (centered on 668nm), example near167

infrared photo from Rededge3 (centered on 840nm), and example red edge photo from Rededge3 (centered on168

717nm).169

Level 1 represents basic outputs from the photogrammetric workflow, in this case implemented with170

Pix4Dmapper. From left to right: a dense point cloud visualized in CloudCompare (https://www.danielgm.171

net/cc/), an orthophoto generated from the RGB camera, and a digital surface model representing the172

altitude above sea level (ground height + vegetation height) for every cell.173

Level 2 represents outputs from photogrammetric processing that have been corrected radiometrically or174

geometrically. From left to right: a radiometrically-corrected surface reflectance map of the red narrow band175

from the Rededge3 camera, a radiometrically-corrected surface reflectance map of the near infrared narrow176

band from the Rededge3 camera, a rasterized version of the digital terrain model derived by a geometric177

correction of the dense point cloud, and a canopy height model derived by subtracting the terrain height178

from the digital surface model.179

Level 3 represents domain-specific information extraction from Level 2 products and is divided into two180

sub-levels. Level 3a products are derived using only spectral or only geometric data. From left to right: a181

reflectance map of Normalized Difference Vegetation Index (NDVI; Rouse et al. (1973)) derived using the red182

and near infrared Level 2 reflectance products, a map of points representing detected trees from the canopy183

height model with a red polygon highlighting the area presented in more detail for the next two images, a184

close-up of points representing detected trees, and a close-up of polygons representing segmented tree crowns.185

Level 3b products are derived using both spectral and geometric data. From left to right: a map of the point186

locations of detected trees that have been classified as alive or dead based on the pixel values within each187

segmented tree crown and a map of the point locations of detected trees classified to WPB host/non-host188

using the same spectral information. Note that our study relies on the generation of Level 3a products in189

order to combine them and create Level 3b products, but this need not be the case. For instance, deep190

learning/neural net methods may be able to use both the spectral and geometric information from Level 2191

simultaneously to locate and classify trees in a scene and directly generate Level 3b products without a need192

to first generate the Level 3a products shown in this schematic (Weinstein et al. 2019, dos Santos et al. 2019).193
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Level 4 represents aggregations of Level 3 products to regular grids which might better reflect the grain size194

of the data for which we have the best calibration and thus the most confidence or which might provide195

new information not possible at an individual-tree level (e.g., average distance between trees in a small196

neighborhood). From left to right: aggregation of live/dead classified trees as fraction of dead trees in a 20 x197

20-m cell, aggregation of host/non-host classified trees as fraction of hosts in a 20 x 20-m cell, aggregation of198

mean host height in a 20 x 20-m cell, and aggregation of tree count (including all species), in a 20 x 20-m199

cell. In our case, the 20 x 20-m aggregation produces a grid cell with an area of 400 m2, which most closely200

matches the 404-m2 area of the ground-based vegetation plots whose data we used in an aggregated form to201

calibrate our derivation of Level 3 products.202

Level 0: Raw data from sensors203

Raw data comprised approximately 1900 images per camera lens (one broad-band RGB lens and five narrow-204

band multispectral lenses) for each of the 32 sites (Figure 2; Level 0). Prior to the aerial survey, two strips of205

bright orange drop cloth (~100 x 15 cm) were positioned as an “X” over the permanent monuments marking206

the center of the 5 field plots from Fettig et al. (2019) (see Supplemental Information).207

We preprogrammed north-south aerial transects using Map Pilot for DJI on iOS flight software (Drones-208

MadeEasy 2018) at an altitude of 120 m above ground level (with “ground” defined using a 1-arc-second209

digital elevation model (Farr et al. 2007)). The resulting ground sampling distance was approximately 5210

cm/px for the Zenmuse X3 RGB camera and approximately 8 cm/px for the Rededge3 multispectral camera.211

We used 91.6% image overlap (both forward and side) at the ground for the Zenmuse X3 RGB camera and212

83.9% overlap (forward and side) for the Rededge3 multispectral camera.213

Level 1: Basic outputs from photogrammetric processing214

We used SfM photogrammetry implemented in Pix4Dmapper Cloud (www.pix4d.com) to generate dense point215

clouds (Figure 2; Level 1, left), orthophotos (Figure 2; Level 1, center), and digital surface models (Figure 2;216

Level 1, right) for each field site (Frey et al. 2018). For 29 sites, we processed the Rededge3 multispectral217

imagery alone to generate these products. For three sites, we processed the RGB and the multispectral218

imagery together to enhance the point density of the dense point cloud. All SfM projects resulted in a single219

processing “block,” indicating that all images in the project were optimized and processed together. The220

dense point cloud represents x, y, and z coordinates as well as the color of millions of points per site. The221

orthophoto represents a radiometrically uncalibrated, top-down view of the survey site that preserves the222

relative x-y positions of objects in the scene. The digital surface model is a rasterized version of the dense223
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point cloud that shows the altitude above sea level for each pixel in the scene at the ground sampling distance224

of the camera that generated the Level 0 data.225

Level 2: Corrected outputs from photogrammetric processing226

Radiometric corrections227

A radiometrically-corrected reflectance map (Figure 2; Level 2, left two figures; i.e., a corrected version of the228

Level 1 orthophoto) was generated using the Pix4D software by incorporating incoming light conditions for229

each narrow band of the Rededge3 camera (captured simultaneously with the Rededge3 camera using an230

integrated downwelling light sensor) as well as a pre-flight image of a calibration panel of known reflectance231

(see Supplemental Information for camera and calibration panel details).232

Geometric corrections233

We implemented a geometric correction to the Level 1 dense point cloud and digital surface model by234

normalizing these data for the terrain underneath the vegetation. We generated the digital terrain model235

representing the ground underneath the vegetation at 1-m resolution (Figure 2; Level 2, third image) by236

classifying each survey area’s dense point cloud into “ground” and “non-ground” points using a cloth simulation237

filter algorithm (Zhang et al. 2016) implemented in the lidR (Roussel et al. 2019) package and rasterizing238

the ground points using the raster package (Hijmans et al. 2019). We generated a canopy height model239

(Figure 2; Level 2, fourth image) by subtracting the digital terrain model from the digital surface model.240

Level 3: Domain-specific information extraction241

Level 3a: Data derived from spectral OR geometric Level 2 product242

Using just the spectral information from the radiometrically-corrected reflectance maps, we calculated several243

vegetation indices including the normalized difference vegetation index (NDVI; Rouse et al. (1973); Figure244

2; Level 3a, first image), the normalized difference red edge (NDRE; Gitelson and Merzlyak (1994)), the245

red-green index (RGI; Coops et al. (2006)), the red edge chlorophyll index (CIred edge; Clevers and Gitelson246

(2013)), and the green chlorophyll index (CIgreen; Clevers and Gitelson (2013)).247

Table 1: Algorithm name, number of parameter sets tested for each algorithm, and references.

Algorithm Parameter sets tested Reference(s)

li2012 131 Li et al. (2012); Jakubowski et al.

(2013); Shin et al. (2018)
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Algorithm Parameter sets tested Reference(s)

lmfx 30 Roussel (2019)

localMaxima 6 Roussel et al. (2019)

multichm 1 Eysn et al. (2015)

ptrees 3 Vega et al. (2014)

vwf 3 Plowright (2018)

watershed 3 Pau et al. (2010)

Using just the geometric information from the canopy height model or terrain-normalized dense point cloud,248

we generated maps of detected trees (Figure 2; Level 3a, second and third images) by testing a total of 7249

automatic tree detection algorithms and a total of 177 parameter sets (Table 1). We used the field plot data250

to assess each tree detection algorithm/parameter set by converting the distance-from-center and azimuth251

measurements of the trees in the field plots to x-y positions relative to the field plot centers distinguishable in252

the Level 2 reflectance maps as the orange fabric X’s that we laid out prior to each flight. In the reflectance253

maps, we located 110 out of 160 field plot centers while some plot centers were obscured due to dense254

interlocking tree crowns or because a plot center was located directly under a single tree crown. For each of255

the 110 field plots with identifiable plot centers– the “validation field plots”, we calculated 7 forest structure256

metrics using the ground data collected by Fettig et al. (2019): total number of trees, number of trees greater257

than 15 m in height, mean height of trees, 25th percentile tree height, 75th percentile tree height, mean258

distance to nearest tree neighbor, and mean distance to second nearest neighbor. For each tree detection259

algorithm and parameter set described above, we calculated the same set of 7 structure metrics within the260

footprint of the validation field plots. We calculated the Pearson’s correlation and root mean square error261

(RMSE) between the ground data and the aerial data for each of the 7 structure metrics for each of the 177262

automatic tree detection algorithms/parameter sets. For each algorithm and parameter set, we calculated its263

performance relative to other algorithms as whether its Pearson’s correlation was within 5% of the highest264

Pearson’s correlation as well as whether its RMSE was within 5% of the lowest RMSE. We summed the265

number of forest structure metrics for which it reached these 5% thresholds for each algorithm/parameter266

set. For automatically detecting trees across the whole study, we selected the algorithm/parameter set that267

performed well across the most number of forest metrics (see Results).268

We delineated individual tree crowns (Figure 2; Level 3a, fourth image) with a marker controlled watershed269

segmentation algorithm (Meyer and Beucher 1990) implemented in the ForestTools package (Plowright270
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2018) using the detected treetops as markers. If the automatic segmentation algorithm failed to generate271

a crown segment for a detected tree (e.g., often snags with a very small crown footprint), a circular crown272

was generated with a radius of 0.5 m. If the segmentation generated multiple polygons for a single detected273

tree, only the polygon containing the detected tree was retained. Because image overlap decreases near the274

edges of the overall flight path and reduces the quality of the SfM processing in those areas, we excluded275

segmented crowns within 35 m of the edge of the survey area. Given the narrower field of view of the276

Rededge3 multispectral camera versus the X3 RGB camera whose optical parameters were used to define the277

~40 hectare survey area around each site, as well as the 35 m additional buffering, the survey area at each278

site was ~30 ha (see Supplemental Information).279

Level 3b: Data derived from spectral AND geometric information280

We overlaid the segmented crowns on the reflectance maps from 20 sites spanning the latitudinal and elevation281

gradient in the study. Using QGIS (https://qgis.org/en/site/), we hand classified 564 trees as live/dead282

(Figure 3) and as one of 5 dominant species in the study area (ponderosa pine, Pinus lambertiana, Abies283

concolor, Calocedrus decurrens, or Quercus kelloggi) using the mapped ground data as a guide. Each tree was284

further classified as “host” for ponderosa pine or “non-host” for all other species (Fettig 2016). We extracted285

all the pixel values within each segmented crown polygon from the five, Level 2 orthorectified reflectance286

maps (one per narrow band on the Rededge3 camera) as well as from the five, Level 3a vegetation index287

maps using the velox package (Hunziker 2017). For each crown polygon, we calculated the mean value of288

the extracted Level 2 and Level 3a pixels and used them as ten independent variables in a five-fold cross289

validated boosted logistic regression model to predict whether the hand classified trees were alive or dead.290

For just the living trees, we similarly used all 10 mean reflectance values per crown polygon to predict tree291

species using a five-fold cross validated regularized discriminant analysis. The boosted logistic regression and292

regularized discriminant analysis were implemented using the caret package in R (Kuhn 2008). Finally, we293

used these models to classify all tree crowns in the data set as alive or dead (Figure 2; Level 3b, first image)294

as well as the species of living trees (Figure 2; Level 3b, second image).295

Level 4: Aggregations to regular grids296

We rasterized the forest structure and composition data at a spatial resolution similar to that of the field297

plots to better match the grain size at which we validated the automatic tree detection algorithms. In each298

raster cell, we calculated: number of dead trees, number of ponderosa pine trees, total number of trees, and299

mean height of ponderosa pine trees. The values of these variables in each grid cell and derivatives from300

them were used for visualization and modeling. Here, we show the fraction of dead trees per cell (Figure 2;301
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Level 4, first image), the fraction of host trees per cell (Figure 2; Level 4, second image), the mean height of302

ponderosa pine trees in each cell (Figure 2; Level 4, third image), and the total count of trees per cell (Figure303

2; Level 4, fourth image).304

Note on assumptions about dead trees305

For the purposes of this study, we assumed that all dead trees were ponderosa pine and thus hosts colonized306

by WPB. This is a reasonably good assumption for our study area; for example, Fettig et al. (2019) found307

that 73.4% of dead trees in their coincident field plots were ponderosa pine. Mortality was concentrated in308

the larger-diameter classes and attributed primarily to WPB (see Figure 5 of Fettig et al. 2019). The species309

contributing to the next highest proportion of dead trees was incense cedar which represented 18.72% of the310

dead trees in the field plots. While the detected mortality is most likely to be ponderosa pine killed by WPB,311

it is critical to interpret our results with these limitations in mind.312

Environmental data313

We used CWD (Stephenson 1998) from the 1981-2010 mean value of the basin characterization model (Flint314

et al. 2013) as an integrated measure of temperature and moisture conditions for each of the 32 sites. Higher315

values of CWD correspond to hotter, drier conditions and lower values correspond to cooler, wetter conditions.316

CWD has been shown to correlate well with broad patterns of tree mortality in the Sierra Nevada (Young et317

al. 2017) as well as bark beetle-induced tree mortality (Millar et al. 2012). We converted the CWD value for318

each site into a z-score representing that site’s deviation from the mean CWD across the climatic range of319

Sierra Nevada ponderosa pine as determined from 179 herbarium records described in Baldwin et al. (2017).320

Thus, a CWD z-score of 1 would indicate that the CWD at that site is one standard deviation hotter/drier321

than the mean CWD across all geolocated herbarium records for ponderosa pine in the Sierra Nevada.322

Statistical model323

We used a generalized linear model with a zero-inflated binomial response and a logit link to predict the324

probability of ponderosa pine mortality within each 20 x 20-m cell using the total number of ponderosa325

pine trees in each cell as the number of trials, and the number of dead trees in each cell as the number of326

“successes”. As covariates, we used the proportion of trees that are WPB hosts (i.e., ponderosa pine) in each327

cell, the mean height of ponderosa pine trees in each cell, the count of trees of all species (overall density) in328

each cell, and the site-level CWD using Eq. 1. Note that the two-way interaction between the overall density329

and the proportion of trees that are hosts is equivalent to the number of ponderosa pine trees in the cell.330

To measure and account for spatial autocorrelation underlying ponderosa pine mortality, we subsampled331
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the data at each site to a random selection of 200, 20 x 20-m cells representing approximately 27.5% of the332

surveyed area. Additionally with these subsampled data, we included a separate exact Gaussian process term333

per site of the interaction between the x- and y-position of each cell using the gp() function in the brms334

package (Bürkner 2017). The Gaussian process estimates the spatial covariance in the response variable335

(log-odds of ponderosa pine mortality) jointly with the effects of the other covariates.336

yi,j ∼


0, p

Binom(ni, πi), 1− p

logit(πi) = β0 +

β1Xcwd,j + β2XpropHost,i + β3XP IP Oheight,i + β4XoverallDensity,i+

β5Xcwd,jXP IP Oheight,i + β6Xcwd,jXpropHost,i + β7Xcwd,jXoverallDensity,i+

β8XpropHost,iXP IP Oheight,i + β9XpropHost,iXoverallDensity,i+

β10Xcwd,jXpropHost,iXP IP Oheight,i +

GPj(xi, yi)

Where yi is the number of dead trees in cell i, ni is the sum of the dead trees (assumed to be ponderosa pine)337

and live ponderosa pine trees in cell i, πi is the probability of ponderosa pine tree mortality in cell i, p is338

the probability of there being zero dead trees in a cell arising as a result of an unmodeled process, Xcwd,j339

is the z-score of CWD for site j, XpropHost,i is the scaled proportion of trees that are ponderosa pine in340

cell i, XP IP Oheight,i is the scaled mean height of ponderosa pine trees in cell i, XoverallDensity,i is the scaled341

density of all trees in cell i, xi and yi are the x- and y- coordinates of the centroid of the cell in an EPSG3310342

coordinate reference system, and GPj represents the exact Gaussian process describing the spatial covariance343

between cells at site j.344

We used 4 chains with 4000 iterations each (2000 warmup, 2000 samples), and confirmed chain convergence345

by ensuring all Rhat values were less than 1.1 (Brooks and Gelman 1998) and that the bulk and tail effective346

sample sizes (ESS) for each estimated parameter were greater than 100 times the number of chains (i.e.,347

greater than 400 in our case). We used posterior predictive checks to visually confirm model performance by348

overlaying the density curves of the predicted number of dead trees per cell over the observed number (Gabry349

et al. 2019). For the posterior predictive checks, we used 50 random samples from the model fit to generate350

50 density curves and ensured curves were centered on the observed distribution, paying special attention to351

model performance at capturing counts of zero.352
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Software and data availability353

All data are available via the Open Science Framework. Statistical analyses were performed using the brms354

packages. With the exception of the SfM software (Pix4Dmapper Cloud) and the GIS software QGIS, all355

data carpentry and analyses were performed using R (R Core Team 2018).356

Results357

Tree detection algorithm performance358

We found that the experimental lmfx algorithm with parameter values of dist2d = 1 and ws = 2.5 (Roussel359

et al. 2019) performed the best across 7 measures of forest structure as measured by Pearson’s correlation360

with ground data (Table 2).361

Table 2: Correlation and differences between the best performing tree detection algorithm (lmfx with dist2d
= 1 and ws = 2.5) and the ground data. An asterisk next to the correlation or RMSE indicates that this
value was within 5% of the value of the best-performing algorithm/parameter set. Ground mean represents
the mean value of the forest metric across the 110 field plots that were visible from the sUAS-derived imagery.
The median error is calculated as the median of the differences between the air and ground values for the
110 visible plots. Thus, a positive number indicates an overestimate by the sUAS workflow and a negative
number indicates an underestimate.

Forest structure metric Ground mean Correlation with ground RMSE Median error

total tree count 19 0.67* 8.68* 2

count of trees > 15 m 9.9 0.43 7.38 0

distance to 1st neighbor (m) 2.8 0.55* 1.16* 0.26

distance to 2nd neighbor (m) 4.3 0.61* 1.70* 0.12

height (m); 25th percentile 12 0.16 8.46 -1.2

height (m); mean 18 0.29 7.81* -2.3

height (m); 75th percentile 25 0.35 10.33* -4

Classification accuracy for live/dead and host/non-host362

The accuracy of live/dead classification on a withheld test dataset was 97.3%. The accuracy of species363

classification on a withheld testing dataset was 66.7%. The accuracy of WPB host/non-WPB-host (i.e.,364

ponderosa pine versus other tree species) on a withheld testing dataset was 74.4%.365
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Figure 4: Posterior distributions of effect size from zero-inflated binomial model predicting the probability of
ponderosa pine mortality in a 20 x 20-m cell given forest structure characteristics and site-level climatic water
deficit (CWD). The gray density distribution for each model covariate represents the density of the posterior
distribution, the point underneath each density curve represents the median of the estimate, the bold interval
surrounding the point estimate represents the 66% credible interval, and the thin interval surrounding the
point estimate represents the 95% credible interval.

Site summary based on best tree detection algorithm and classification366

Across all study sites, we detected, segmented, and classified 452,413 trees (see Supplemental Information for367

site summaries). Of these trees, we classified 118,879 as dead (26.3% mortality). Estimated site-level tree368

mortality ranged from 6.8% to 53.6%.369

Effect of local structure and regional climate on tree mortality attributed to western pine370

beetle371

We detected a positive main effect of CWD on the probability of ponderosa pine mortality within each 20372

x 20-m cell (Figure 4). We found a positive main effect of proportion of host trees per cell, with a greater373

proportion of host trees (i.e., ponderosa pine) in a cell increasing the probability of ponderosa pine mortality.374

Conversely, we found a negative effect of overall tree density (i.e., including both ponderosa pine and non-host375

species) such that greater tree density in a 20 x 20-m cell (for the same proportion of host trees) would376

decrease the probability of ponderosa pine mortality. We found a positive two-way interaction between the377
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Figure 5: Line version of model results with 95% credible intervals showing primary influence of ponderosa
pine structure on the probability of ponderosa pine mortality, and the interaction across climatic water deficit.
The ‘larger trees’ line represents the mean height of ponderosa pine 0.7 standard deviations above the mean
(approximately 24.1 m), and the ‘smaller trees’ line represents the mean height of ponderosa pine 0.7 standard
deviations below the mean (approximately 12.1 m).

overall tree density per cell and the proportion of trees that were hosts, which is equivalent to a positive378

effect of the density of host trees (Figure 4).379

We found a negative effect of mean height of ponderosa pine on the probability of ponderosa mortality,380

suggesting that WPB attacked smaller trees, on average. However, there was a positive interaction between381

CWD and ponderosa pine mean height, such that larger trees were more likely to increase the probability of382

ponderosa mortality in hotter, drier sites (Figure 5).383

We found weakly negative effects of the site-level CWD interactions with both the proportion of host trees384

and overall tree density (Figure 4).385

Discussion386

This study represents a novel use of drones to further our understanding of the simultaneous effects of387

local forest structure and composition with broad-scale environmental gradients on tree mortality attributed388

to WPB. We found strong positive effects (effect sizes >0.4) of both the proportion of host trees and the389

interaction between site CWD and host tree mean size (height) on the probability of ponderosa pine mortality.390

18



Conversely, we found a strong negative effect (effect size <-0.4) of mean height of ponderosa pine. Site-level391

CWD exerted a positive, but relatively weak, main effect on the probability of ponderosa mortality (effect392

size: 0.16; 95% CI: [0.03, 0.29]). To that end, we did not measure tree water stress at an individual tree level393

as in other recent work (Stephenson et al. 2019), and instead treated CWD as a general indicator of tree394

stress following results of coarser-scale studies (e.g., Asner et al. 2016, Young et al. 2017), which may have395

contributed to our failure to detect a stronger CWD effect. Also, our entire study area experienced the same396

extreme hot drought between 2012 and 2015 and the variation of mortality explained by a main effect of397

CWD may be dampened when most trees are experiencing a high degree of water stress (Floyd et al. 2009,398

Fettig et al. 2019).399

Positive effect of host density and a negative effect of overall density400

The strongest effect on the probability of ponderosa pine mortality was the positive effect of the proportion401

of trees in each 20 x 20-m cell that were ponderosa pine– the host of the WPB (effect size: 0.76; 95% CI:402

[0.70, 0.82]).403

A number of mechanisms associated with the relative abundance of species in a local area might underlie404

this relationship. Frequency-dependent herbivory–whereby mixed-species forests experience less herbivory405

compared to monocultures (as an extreme example)– is common, especially for oligophagous insect species406

(Jactel and Brockerhoff 2007). Furthermore, it has been demonstrated that nonhost volatiles reduce attraction407

of several species of bark beetles to their aggregation pheromones (Seybold et al. 2018), including WPB408

(Fettig et al. 2005). To that end, combinations of nonhost volatiles and an antiaggregation pheromone have409

been used successfully to reduce levels of tree mortality attributed to WPB (e.g., Fettig et al. 2012). In410

general, Hayes et al. (2009) and Fettig et al. (2019) found that measures of host availability explained less411

variation in mortality than measures of overall tree density, but those conclusions were based on a response412

variable of “total number of dead host trees,” rather than the number of dead host trees conditional on the413

total number of host trees as in our study (i.e., a binomial response).414

The negative relationship between overall tree density, a potential correlate of the local competitive envi-415

ronment, and the probability of ponderosa pine mortality is counter-intuitive but corroborates findings of416

coincident ground plots (Fettig et al. 2019, in their analysis using proportion of trees killed as a response)417

and other work during the same hot drought (Restaino et al. 2019). In the absence of management, the forest418

structure is itself a product of climate and, with increasing importance at finer spatial scales, topographic419

conditions (Fricker et al. 2019). Thus, the denser forest patches in our study may indicate greater local420

water availability, more favorable conditions for tree growth and survivorship, and increased resistance to421
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beetle-induced mortality (Restaino et al. 2019). The negative two-way interaction between site CWD and422

overall density that amplifies the negative overall density effect in hotter, drier sites (effect size: -0.16; 95%423

CI: [-0.24, -0.07]) supports this explanation if greater local tree density implies especially favorable growing424

conditions (and locally resistant trees) when denser patches are found in hot, dry sites.425

We found a positive two-way interaction between overall tree density (host and non-host) within each cell426

and proportion of host trees, which is equivalent to a positive effect of host density (effect size: 0.08; 95% CI:427

[0.03, 0.12]). The relationship between host density and susceptibility to colonization by bark beetles has428

been so well-documented at the experimental plot level (e.g., Raffa and Berryman 1987, Oliver 1995) that429

lowering stand densities through selective harvest of hosts is commonly recommended for reducing future430

levels of tree mortality attributed to bark beetles (Fettig and Hilszczański 2015), including WPB (Fettig431

2016). Greater host density shortens the flight distance required for WPB to disperse to new hosts, which432

likely facilitates bark beetle spread, however we calibrated our aerial tree detection to ~400 m2 areas rather433

than to individual tree locations, so our data are insufficient to address these relationships. Increased density434

of ponderosa pine, specifically, may disproportionately increase the competitive environment for host trees435

(and thus increase their susceptibility to WPB colonization) if intraspecific competition amongst ponderosa436

pine trees is stronger than interspecific competition as would be predicted with coexistence theory (Chesson437

2000). Finally, greater host densities increase the frequency that searching WPB land on hosts, rather than438

nonhosts, thus reducing the amount of energy expended during host finding and selection as well as the time439

that searching WPB spend exposed to predators.440

Negative main effect of host tree mean size, but strong positive interaction with site CWD441

Counter to our expectations, we found an overall negative effect of host tree mean size on the probability of442

host mortality (effect size: -0.40; 95% CI: [-0.46, -0.34]). WPB exhibit a preference for trees 50.8 to 76.2443

cm in diameter at breast height (Person 1928, 1931), and a positive relationship between host tree size and444

levels of tree mortality attributed to WPB was reported by Fettig et al. (2019) in the coincident field plots445

as well as in other recent studies (Restaino et al. 2019, Stephenson et al. 2019, Pile et al. 2019). Indeed,446

Fettig et al. (2019) reported no mortality in ponderosa pine trees <10.0 cm DBH attributable to WPB and447

found no tree size/mortality relationship for incense cedar or white fir in the coincident field plots. These448

species represent 22.3% of the total tree mortality observed in their study, yet in our study all dead trees449

were classified as ponderosa pine (see Methods) which could dampen positive effect of tree size on mortality.450

Larger trees are more nutritious and are therefore ideal targets if local bark beetle density is high enough451

to successfully initiate mass attack as can occur when many trees are under severe water stress (Bentz et452
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al. 2010, Kolb et al. 2016). In the recent hot drought, we expected that most trees would be under severe453

water stress, setting the stage for increasing beetle density, successful mass attacks, and targeting of larger454

trees. A possible explanation for our finding counter to this expectation is that our observations represent the455

cumulative mortality of trees during a multi-year drought event and its aftermath. Lower host tree mean size456

led to a greater probability of host mortality earlier in this drought (Pile et al. 2019, Stovall et al. 2019) and457

that signal might have persisted even as mortality continued to accumulate driven by other factors. Finally,458

tree growth rates may be a better predictor of susceptibility to WPB colonization than tree size per se, with459

slower-growing trees being most vulnerable (Miller and Keen 1960). While slow-growing trees are often also460

the largest trees, this may not be the case for our study sites especially given the legacy of fire exclusion461

in the Sierra Nevada and its effect of perturbing forest structure far outside its natural range of variation462

(Safford and Stevens 2017).463

We did observe a strong host tree size effect in its interaction with site CWD (effect size: 0.44; 95% CI: [0.34,464

0.54]). In hot, dry sites, larger average host size increased the probability of host mortality while smaller host465

sizes increased the probability of host mortality in cooler, wetter sites. Notably, a similar pattern was shown466

by Stovall et al. (2019) with a strong positive tree height/mortality relationship in areas with the greatest467

vapor pressure deficit and no tree height/mortality relationship in areas with the lowest vapor pressure468

deficit. Stovall et al. (2019) did not observe that this environmental dependence extended to a negative tree469

height/mortality relationship (as we did) even at the lowest extremes of their vapor pressure deficit gradient,470

perhaps because their entire study took place in the southern Sierra Nevada which represents a hotter, drier471

portion of the more spatially extensive results we present here. Our work suggests that the WPB was cueing472

into different aspects of forest structure across an environmental gradient in a spatial context in a parallel473

manner to the temporal context noted by Stovall et al. (2019) and Pile et al. (2019), who observed that474

mortality was increasingly driven by larger trees as the hot drought proceeded and became more severe.475

All of our sites were considered in an “epidemic” population phase for WPB (>5 trees killed per hectare; see476

Supplemental Information; Miller and Keen 1960, Hayes et al. 2009), but our results challenge the notion that477

outbreak behavior by the WPB and subsequent tree mortality is always driven by greater tree size. Despite a478

strong tree size/mortality relationship in coincident ground plots across our study area (Fettig et al. 2019),479

our results from surveying the broader context surrounding those ground plots reveals different effects of480

host tree size depending on CWD. Thus, it is possible that the massive tree mortality in hotter/drier Sierra481

Nevada forests (lower latitudes and elevations; Asner et al. 2016, Young et al. 2017) during the 2012 to482

2015 hot drought arose as a synergistic alignment of environmental conditions and local forest structure that483

allowed WPB to successfully colonize large trees, rapidly increase in population size, and expand. Conversely,484
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our results may suggest that the unexpectedly low mortality in cooler/wetter Sierra Nevada forests compared485

to model predictions based on coarser-scale forest structure data (Young et al. 2017) could be explained486

by a different WPB response to local forest structure due to a lack of an alignment with favorable climate487

conditions.488

Limitations and future directions489

We have demonstrated that drones can be effective means of collecting forest data at multiple, vastly different490

spatial scales to investigate a single, multi-scale phenomenon– from meters in between trees, to hundreds491

of meters of elevation, to hundreds of thousands of meters of latitude. Some limitations remain but can be492

overcome with further refinements in the use of this tool for forest ecology. Most of these limitations arise493

from tree detection and classification uncertainty, and thus it was imperative to work with field data for494

calibration and uncertainty reporting.495

The greatest limitation in our study arising from classification uncertainty is in the assumption that all dead496

trees were ponderosa pine, which we estimate from coincident field plots is true approximately 73.4% of497

the time. Because the forest structure factors influencing the likelihood of individual tree mortality during498

the hot drought depended on tree species (Stephenson et al. 2019), we cannot rule out that some of the499

ponderosa pine mortality relationships to forest structure that we observed may be partially explained by500

those relationships in other species that were misclassified as ponderosa pine using our methods. However,501

the overall community composition across our study area was similar (Fettig et al. 2019) and we are able502

to reproduce similar forest structure/mortality patterns in drone-derived data when restricting the scope503

of analysis to only trees detected in the footprints of the coincident field plots with dramatically different504

patterns observed when including data from the forest surrounding the coincident field plots (see Supplemental505

information). Thus, we remain confident that the patterns we observed were driven primarily by the dynamic506

between WPB and ponderosa pine. While spectral information of foliage could help classify living trees to507

species, the species of standing dead trees were not spectrally distinct. This challenge of classifying standing508

dead trees to species implies that a conifer forest system with less bark beetle and tree host diversity, such509

as mountain pine beetle outbreaks in monocultures of lodgepole pine in the Intermountain West, should be510

particularly amenable to the methods presented here even with minimal further refinement because dead511

trees will almost certainly belong to a single species and have succumbed to colonization by a single bark512

beetle species.513

Some uncertainty surrounded our ability to detect trees using the geometry of the dense point clouds derived514

with SfM. The horizontal accuracy of the tree detection was better than the vertical accuracy, which may515
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result from a more significant error contribution by the field-based calculations of tree height compared to516

tree position relative to plot center (Table 2). Both the horizontal and vertical accuracy would likely improve517

with better SfM point clouds, which can be enhanced with greater overlap between images (Frey et al. 2018)518

or with oblique (i.e., off-nadir) imagery (James and Robson 2014). Frey et al. (2018) found that 95% overlap519

was preferable for generating dense point clouds in forested areas, and James and Robson (2014) reduced520

dense point cloud errors using imagery taken at 30 degrees off-nadir. We only achieved 91.6% overlap with521

the X3 RGB camera and 83.9% overlap with the multispectral camera, and all imagery was nadir-facing.522

While our live/dead classification was fairly accurate (97.3% on a withheld dataset), our species classifier523

would likely benefit from better crown segmentation because the pixel-level reflectance values within each524

crown are averaged to characterize the “spectral signature” of each tree. With better delineation of each525

tree crown, the mean value of pixels within each tree crown will likely be more representative of that tree’s526

spectral signature. Better crown segmentation might most readily be achieved through greater overlap in527

imagery. Finally, we anticipate that computer vision and deep learning will prove helpful in overcoming some528

of these detection and classification challenges (Gray et al. 2019).529

Conclusions530

Climate change adaptation strategies emphasize management action that considers whole-ecosystem responses531

to inevitable change (Millar et al. 2007), which requires a macroecological understanding of how phenomena532

at multiple scales can interact. We’ve shown that drones can be a valuable tool for investigating multi-scalar533

phenomena, such as how local forest structure combines with environmental conditions to shape forest insect534

disturbance. Understanding the conditions that drive dry western U.S. forest responses to disturbances such535

as bark beetle outbreaks will be vital for predicting outcomes from increasing disturbance frequency and536

intensity exacerbated by climate change. Our study suggests that outcomes will depend on interactions537

between local forest structure and broad-scale environmental gradients, with the potential for cross-scale538

interactions to challenge our current understanding of forest insect dynamics.539
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