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Abstract20

The recent Californian hot drought (2012-2016) precipitated unprecedented ponderosa pine (Pinus ponderosa)21

mortality, largely attributable to the western pine beetle (Dendroctonus brevicomis; WPB). Broad-scale22

climate conditions can directly shape tree mortality patterns, but mortality rates respond non-linearly to23

climate when local-scale forest characteristics influence the behavior of tree-killing bark beetles (e.g., WPB).24

To test for these cross-scale interactions, we conduct aerial drone surveys at 32 sites along a gradient of25

climatic water deficit (CWD) spanning 350 km of latitude and 1000 m of elevation in WPB-impacted Sierra26

Nevada forests. We map, measure, and classify over 450,000 trees within 9 km2, validating measurements with27

coincident field plots. We find greater size, proportion, and density of ponderosa pine (the WPB host) increase28

host mortality rates, as does greater CWD. Critically, we find a CWD/host size interaction such that larger29
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trees amplify host mortality rates in hot/dry sites. Management strategies for climate change adaptation30

should consider how bark beetle disturbances can depend on cross-scale interactions, which challenge our31

ability to predict and understand patterns of tree mortality.32

Introduction33

Bark beetles dealt the final blow to many of the nearly 150 million trees killed in the California hot drought34

of 2012 to 2016 and its aftermath.1 A harbinger of climate change effects to come, record high temperatures35

exacerbated the drought,2,3 which increased water stress in trees,4,5 making them more susceptible to36

colonization by bark beetles.6,7 Further, a century of fire suppression has enabled forests to grow into dense37

stands, which can also make them more vulnerable to bark beetles.6,8,9 This combination of environmental38

conditions and forest structural characteristics led to tree mortality events of unprecedented size across the39

state.10,1140

Tree mortality exhibited a strong latitudinal and elevational gradient4,11 that can only be partially explained41

by coarse-scale measures of environmental conditions (i.e., historic climatic water deficit; CWD) and current42

forest structure (i.e., current regional basal area).11 Progressive loss of canopy water content offers additional43

insight into tree stress and mortality risk, but cannot ultimately resolve which trees are actually killed by44

bark beetles or elucidate factors driving bark beetle population dynamics and spread.5 Bark beetles respond45

to local forest characteristics in positive feedbacks that non-linearly alter tree mortality dynamics against a46

background of environmental conditions that stress trees.12,13 Thus, an explicit consideration of local forest47

structure and composition14,15 as well as its cross-scale interaction with regional climate conditions16 can48

refine our understanding of tree mortality patterns from California’s recent hot drought. The challenge of49

simultaneously measuring the effects of both local-scale forest features (such as structure and composition)50

and broad-scale environmental conditions (e.g., CWD) on forest insect disturbance leaves their interaction51

effect relatively underexplored.14–1752

The ponderosa pine/mixed-conifer forests in California’s Sierra Nevada region are characterized by regular bark53

beetle disturbances, primarily by the influence of western pine beetle (Dendroctonus brevicomis; WPB) on its54

host ponderosa pine (Pinus ponderosa).18 WPB is a primary bark beetle– its reproductive success is contingent55

upon host tree mortality, which itself requires enough beetles to mass attack the host tree and overwhelm its56

defenses.19 This Allee effect creates a strong coupling between beetle selection behavior of host trees and57

host tree susceptibility to colonization.19–21 A key defense mechanism of conifers to bark beetle attack is to58

flood beetle bore holes with resin, which physically expels colonizing beetles, can be toxic to the colonizers59

and their fungi, and may interrupt beetle communication.22,23 Under normal conditions, weakened trees60
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with compromised defenses are the most susceptible to colonization and will be the main targets of primary61

bark beetles like WPB.13,23,24 Under severe water stress however, many trees no longer have the resources62

available to mount a defense.7,13 Drought,12,25–27 especially when paired with high temperatures,24,28–30 can63

trigger increased bark beetle-induced tree mortality as average tree vigor declines. As the local population64

density of beetles increases due to successful reproduction within spatially-aggregated susceptible trees, mass65

attacks grow in size and become capable of overwhelming formidable tree defenses. Even large healthy trees66

may be susceptible to colonization and mortality when beetle population density is high.13,23,24 Thus, water67

stress and beetle population density interact to influence whether individual trees are susceptible to bark68

beetles. When extreme or prolonged drought increases host tree vulnerability, bark beetle population growth69

rates increase, then become self-amplifying as greater beetle densities make additional host trees prone to70

successful mass attack.12,13,15,2471

WPB activity is strongly influenced by forest structure– the spatial arrangement and size distribution of trees–72

and tree species composition. Taking forest structure alone, high-density forests are more prone to bark73

beetle-induced tree mortality compared to thinned forests6,9 which may arise as greater competition for water74

resources amongst crowded trees lowers average tree resistance,31 or because smaller gaps between trees protect75

pheromone plumes from dissipation by the wind and thus enhance intraspecific beetle communication.32 Tree76

size is another aspect of forest structure that affects bark beetle host selection behavior with smaller trees77

tending to have lower capacity for resisting attack, but larger trees being more desirable targets on account78

of their thicker phloem providing greater nutritional content.13,33–35 Throughout an outbreak, some bark79

beetle species will collectively “switch” the preferred size of tree to attack in order to navigate this trade-off80

between host susceptibility and host quality.13,21,36–39 Taking forest composition alone, WPB activity in the81

Sierra Nevada mountain range of California is necessarily tied to the regional distribution of its exclusive host,82

ponderosa pine.18 Colonization by primary bark beetles can also depend on the local relative frequencies of83

tree species in forest stands, reflecting the more general pattern that specialist insect herbivory tends to be84

lower in taxonomically diverse forests compared to monocultures.40,4185

The interaction between forest structure and composition at both stand- and tree- scales also drives WPB86

activity. For instance, dense forest stands with high host availability may experience greater beetle-induced87

tree mortality because dispersal distances between potential host trees are shorter, which reduces predation88

of adults searching for hosts and facilitates higher rates of colonization.33,42,43 High host availability can also89

reduce the chance of individual beetles wasting their limited resources flying to and landing on a non-host90

tree.44,45 At a finer scale, a host tree’s defensive capacity can depend on its canopy position, with reduced91

biochemical defenses in suppressed, crowded trees.46 Coarse-scale measures of forest structure and composition92
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can therefore only partially explain mechanisms affecting bark beetle disturbance. Finer-grain information is93

also needed that explicitly recognizes tree species, size, and local density, which better capture the ecological94

processes underlying insect-induced tree mortality.28,36,38,3995

The vast spatial extent of WPB-induced tree mortality in the 2012 to 2016 California hot drought challenges96

our ability to simultaneously consider how broad-scale environmental conditions may interact with local97

forest structure and composition to affect the dynamic between bark beetle selection and colonization of host98

trees, and host tree susceptibility to attack.15,47 Measuring local forest structure generally requires expensive99

instrumentation4,48 or labor-intensive field surveys,14,15,49 which constrains survey extent and frequency.100

Small, unhumanned aerial systems (sUAS) enable relatively fast and cheap remote imaging over hundreds of101

hectares of forest, which can be used to measure complex forest structure and composition at the individual102

tree scale with Structure from Motion (SfM) photogrammetry.50,51 The ultra-high, centimeter-scale resolution103

of sUAS-derived measurements as well as the ability to incorporate vegetation reflectance can help overcome104

challenges in species classification and dead tree detection inherent in other remote sensing methods, such105

as airborne LiDAR.52 Distributing such surveys across an environmental gradient can overcome the data106

acquisition challenge inherent in investigating phenomena with both a strong local- and a strong broad-scale107

component.108

We used sUAS-derived remote sensing images over a network of 32 sites in Sierra Nevada ponderosa pine/mixed-109

conifer forests spanning 1000 m of elevation and 350 km of latitude14 covering a total of 9 km2, to investigate110

how broad-scale environmental conditions interacted with local forest structure and composition to shape111

patterns of tree mortality during the cumulative tree mortality event of 2012 to 2018. We asked:112

1. How does the proportion of the ponderosa pine host trees in a local area and average host tree size113

affect WPB-induced tree mortality?114

2. How does the density of all trees (hereafter “overall density”) affect WPB-induced tree mortality?115

3. How does the total basal area of all trees (hereafter “overall basal area”) affect WPB-induced tree116

mortality?117

4. How does environmentally-driven tree moisture stress affect WPB-induced tree mortality?118

5. How do the effects of forest structure, forest composition, and environmental condition interact to119

influence WPB-induced tree mortality?120

Here, we show that a greater local proportion of host trees (ponderosa pine) strongly increases the probability121

of host mortality, with greater host density amplifying this effect. We also show that larger host trees122
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increase the probability of host mortality in accordance with well-known life history of WPB. Critically,123

we find a strong interaction between host size and CWD such that larger trees exacerbate host mortality124

rates in hot/dry sites. Our results demonstrate a cross-scale interaction in the response of WPB to local125

forest structure and composition across an environmental gradient, which helps reconcile differences between126

observed ecosystem-wide tree mortality patterns and predictions from models based on coarser-scale forest127

structure.128

Results129

Tree detection algorithm performance130

We found that the experimental lmfx algorithm53 with parameter values of dist2d = 1 and ws = 2.5131

performed the best across 7 measures of forest structure as measured by Pearson’s correlation with ground132

data (Table 1).133

Table 1: Correlation and differences between the best performing tree detection algorithm (lmfx with dist2d
= 1 and ws = 2.5) and the ground data. An asterisk next to the correlation or RMSE indicates that this
value was within 5% of the value of the best-performing algorithm/parameter set. Ground mean represents
the mean value of the forest metric across the 110 field plots that were visible from the sUAS-derived imagery.
The median error is calculated as the median of the differences between the air and ground values for the
110 visible plots. Thus, a positive number indicates an overestimate by the sUAS workflow and a negative
number indicates an underestimate.

Forest structure metric Ground mean Correlation with ground RMSE Median error

total tree count 19 0.67* 8.68* 2

count of trees > 15 m 9.9 0.43 7.38 0

distance to 1st neighbor (m) 2.8 0.55* 1.16* 0.26

distance to 2nd neighbor (m) 4.3 0.61* 1.70* 0.12

height (m); 25th percentile 12 0.16 8.46 -1.2

height (m); mean 18 0.29 7.81* -2.3

height (m); 75th percentile 25 0.35 10.33* -4

Classification accuracy for live/dead and host/non-host134

The accuracy of live/dead classification on a withheld test dataset was 96.4%. The accuracy of species135

classification on a withheld testing dataset was 64.1%. The accuracy of WPB host/non-WPB-host (i.e.,136

ponderosa pine versus other tree species) on a withheld testing dataset was 71.8%.137
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Site summary based on best tree detection algorithm and classification138

Across all study sites, we detected, segmented, and classified 452,413 trees in 23,187, 20 x 20m pixels (with139

the area of each pixel being approximately equivalent to that of a field plot). Of these trees, we classified140

118,879 as dead (26.3% mortality). Estimated site-level tree mortality ranged from 6.8% to 53.6%. See141

Supplementary Information for site summaries and comparisons to site-level mortality measured from field142

data.143

Effect of local structure and regional climate on tree mortality attributed to western pine144

beetle145

Figure 1: Posterior distributions of effect size from zero-inflated binomial model predicting the probability
of ponderosa pine mortality in a 20 x 20-m cell given forest structure characteristics and site-level climatic
water deficit (CWD). The gray filled area for each model covariate represents the probability density of
the posterior distribution, the point underneath each density curve represents the median of the estimate,
the bold interval surrounding the point estimate represents the 66% credible interval, and the thin interval
surrounding the point estimate represents the 95% credible interval.

Site-level CWD exerted a positive main effect on the probability of ponderosa mortality (effect size: 0.85;146

95% CI: [0.70, 0.99]; Figure 1). We found a positive main effect of proportion of host trees per cell (effect size:147

0.68; 95% CI: [0.62, 0.74]), with a greater proportion of host trees (i.e., ponderosa pine) in a cell increasing148

the probability of ponderosa pine mortality. We detected no effect of overall tree density nor overall basal149

area (i.e., including both ponderosa pine and non-host species; tree density effect size: -0.01; 95% CI: [-0.11,150
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0.08]; basal area effect size: -0.13; 95% CI: [-0.29, 0.03]).151

We found a positive two-way interaction between the overall tree density per cell and the proportion of trees152

that were hosts, which is equivalent to a positive effect of the density of host trees (effect size: 0.06; 95% CI:153

[0.01, 0.12]; Figure 1).154

We found a positive main effect of mean height of ponderosa pine on the probability of ponderosa mortality155

(effect size: 0.25; 95% CI: [0.14, 0.35]). Coupled with the strong correlation between proportion of dead host156

trees and basal area killed (See Supplementary Figure 15), these results suggest that WPB attacked larger157

trees, on average. Further, there was a strong positive interaction between CWD and ponderosa pine mean158

height, such that larger trees were especially likely to increase the local probability of ponderosa mortality in159

hotter, drier sites (effect size: 0.54; 95% CI: [0.37, 0.70]; Figure 2).160

We found no effect of the site-level CWD interactions with the proportion of host trees (effect size: -0.08;161

95% CI: [-0.18, 0.03]) nor of the interaction between CWD and total basal area (effect size: -0.04; 95% CI:162

[-0.23, 0.15]; Figure 1).163

We found a negative effect of the CWD interaction with overall tree density (effect size: -0.19; 95% CI: [-0.31,164

-0.07]) as well as of the interaction between mean height of host trees and the overall basal area (effect size:165

-0.08; 95% CI: [-0.13, -0.03]; Figure 1).166

While we found no interaction between proportion of host trees and mean host tree height, we did find a167

3-way interaction between these variables with CWD (effect size: 0.14; 95% CI: [0.04, 0.24]; Figure 1).168

Discussion169

This study uses drone-derived imagery to refine our understanding of the patterns of tree mortality following170

the 2012 to 2016 California hot drought and its aftermath. By simultaneously measuring the effects of171

local forest structure and composition across broad-scale environmental gradients, we were able to better172

characterize the influence of a tree-killing insect, the WPB, compared to using correlates of tree stress alone.173

Strong positive main effect of CWD174

We found a strong positive effect of site-level CWD on ponderosa pine mortality rate. We did not measure175

tree water stress at an individual tree level as in other recent work,15 and instead treated CWD as a general176

indicator of tree stress following results of coarser-scale studies.11 When measured at a fine scale, even if not177

at an individual tree level, progressive canopy water loss can be a good indicator of tree water stress and178

increased vulnerability to mortality from drought or bark beetles.5 Though our entire study area experienced179
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Figure 2: Line version of model results with 95% credible intervals showing primary influence of ponderosa
pine structure on the probability of ponderosa pine mortality, and the interaction across climatic water deficit.
The ‘larger trees’ line represents the mean height of ponderosa pine 0.7 standard deviations above the mean
(approximately 24.1 m), and the ‘smaller trees’ line represents the mean height of ponderosa pine 0.7 standard
deviations below the mean (approximately 12.1 m).
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exceptional hot drought between 2012 and 2015,2,3 using a 30-year historic average of CWD as a site-level180

indicator of tree stress doesn’t allow us to disentangle whether water availability was lower in an absolute181

sense during the drought or whether increasing tree vulnerability to bark beetles was driven by chronic water182

stress at these historically hotter/drier sites.54183

Positive effect of host proportion and density184

A number of mechanisms associated with the relative abundance of species in a local area might underlie the185

strong effect of host proportion on the probability of host tree mortality. Frequency-dependent herbivory–186

whereby mixed-species forests experience less herbivory compared to monocultures (as an extreme example)–187

is common, especially for oligophagous insect species.40 Nonhost volatiles reduce attraction of several species188

of bark beetles to their aggregation pheromones,55 including WPB.56 Combinations of nonhost volatiles and189

an antiaggregation pheromone have been used successfully to reduce levels of tree mortality attributed to190

WPB in California.57,58 The positive relationship between host density and susceptibility to colonization by191

bark beetles has been so well-documented at the experimental plot level43,59,60 that lowering stand densities192

through selective harvest of hosts is commonly recommended for reducing future levels of tree mortality193

attributed to bark beetles,61 including WPB.18 Greater host density shortens the flight distance required194

for WPB to disperse to new hosts, which likely facilitates bark beetle spread, however we calibrated our195

aerial tree detection to ~400 m2 areas rather than to individual tree locations, so our data are insufficient to196

address these relationships. Increased density of ponderosa pine, specifically, may disproportionately increase197

the competitive environment for host trees (and thus increase their susceptibility to WPB colonization) if198

intraspecific competition amongst ponderosa pine trees is stronger than interspecific competition as would199

be predicted with coexistence theory.62 Finally, greater host densities increase the frequency that searching200

WPB land on hosts, rather than nonhosts, thus reducing the amount of energy expended during host finding201

and selection as well as the time that searching WPB spend exposed to a variety of predators outside the202

host tree.203

No main effect of overall density, but interaction with CWD204

We detected no relationship between overall tree density and ponderosa pine mortality, though work from205

the coincident ground plots showed a negative relationship.14 28 also shows greater MPB infestation in206

lower-density sites in Montana However, 31 and 14 found that measures of overall tree density explained207

more variation in tree mortality than measures of host availability, though those conclusions were based on208

broader-scale analyses31 or a different response variable.14209
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Our greater sample size may have enabled us to more finely parse the role of multi-faceted forest structure210

and composition, along with CWD and interactions, in driving ponderosa pine mortality rates. Indeed, we211

did find a negative two-way interaction between site CWD and overall density, suggesting denser stands212

experienced lower rates of ponderosa mortality in hotter, drier sites, which comports with 9 in results from213

their unmanipulated gradient of overall density in the same region during the same hot drought. In the214

absence of active management, forest structure is largely a product of climate and, with increasing importance215

at finer spatial scales, topographic conditions.63 Denser forest patches in our study may indicate greater local216

water availability, more favorable conditions for tree growth and survivorship, and increased resistance to217

beetle-induced tree mortality, especially when denser patches are found in hot, dry sites.9,63,64218

Effect of overall basal area219

While overall tree density is likely an indicator of favorable microsites in fire-suppressed forests, overall220

basal area is a better indicator of the local competitive environment especially in water-limited forests.63,64221

However, we found no main effect of overall basal area on the probability of ponderosa mortality, nor of its222

interaction with site-level CWD. This contrasts to the results from 11, and from analyses of coincident field223

plots.14 While the contrast to 11 might be explained by different scales of analyses (i.e., 3500 x 3500 m pixels224

vs. 20 x 20 m pixels), the contrast with the coincident ground plots is more puzzling. One explanation is that225

the drone sampling captured more area beyond the conditionally-sampled field plots (i.e., 10% ponderosa226

pine basal area mortality was a criterion for plot selection) that reflected a different relationship between227

local basal area and tree mortality. Perhaps more likely is that our measure of total basal area isn’t precise228

enough to represent the local competitive environment compared to field-derived basal area. For our study,229

basal area was derived from species-specific and inherently noisy allometric relationships with tree height,230

which itself was derived from the SfM processing of drone imagery. As remote sensing technology improves231

to enable finer-scale information extraction (e.g., individual tree measurements), more dialogue between232

ecologists of all stripes65–67 is needed to fully imagine how to best measure natural phenomena remotely,233

either by adopting wheels already invented or by innovating something brand new.234

Positive main effect of host tree mean size235

The positive main effect of host tree mean size on ponderosa mortality rates tracks the conventional wisdom236

on the dynamics of WPB in the Sierra Nevada, as well as other primary bark beetles.18 WPB exhibit a237

preference for trees 50.8 to 76.2 cm DBH,68,69 and a positive relationship between host tree size and levels of238

tree mortality attributed to WPB was reported by 14 in the coincident field plots as well as in other recent239

studies.9,15,70 Larger trees are more nutritious and are therefore ideal targets if local bark beetle density is240
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high enough to successfully initiate mass attack and overwhelm tree defenses, as can occur when many trees241

are under severe water stress.7,13,24 In the recent hot drought, we expected that most trees would be under242

severe water stress, setting the stage for increasing beetle density, successful mass attacks, and targeting of243

larger trees. Given that our dead tree height calibration was conservative (accounting for underestimates of244

drone-derived dead tree heights relative to field-measured trees), it is likely that the positive main effect of tree245

height that we report represents a lower bounds of this effect. Additionally, 14 found no tree size/mortality246

relationship for incense cedar or white fir in the coincident field plots. These species represent 22.3% of the247

total tree mortality observed in their study, yet in our study all dead trees were classified as ponderosa pine248

(see Methods) which could have further dampened the positive effect of tree size on tree mortality that we249

identified.250

Cross-scale interaction of CWD and host tree size251

In hotter, drier sites, a larger average host size increased the probability of host mortality. Notably, a similar252

pattern was shown by 65 in a study confined to the southern Sierra Nevada (i.e., the hottest, driest portion of253

the more spatially extensive results we present here) with a strong positive tree height/mortality relationship254

in areas with the greatest vapor pressure deficit and no tree height/mortality relationship in areas with the255

lowest vapor pressure deficit. Our work suggests that the WPB was cueing into different aspects of forest256

structure across an environmental gradient in a spatial context in a parallel manner to the temporal context257

noted by 65 and 70, who observed that mortality was increasingly driven by larger trees as the hot drought258

proceeded and became more severe. A temporal signal of bark beetles attacking larger and larger host trees259

reflects the positive feedback between forest structure and bark beetle population dynamics as the population260

phase cycles from endemic to epidemic.13 This positive feedback leading to eruptive population dynamics261

is well-documented as a temporal phenomenon, and here we show a similar pattern in a spatial context262

mediated through site-level CWD.263

A key difference from the endemic-to-epidemic positive feedback noted by 13 is that none of our study areas264

were considered to be in an endemic population phase by typical measures of WPB dynamics.31,33 WPB265

dynamics at all sites were considered epidemic, with >5 trees killed per ha (see Supplementary Information).266

The cross-scale interaction between broad-scale CWD and local-scale host tree size, even amongst populations267

all in an epidemic phase, highlights the dramatic implications of the positive feedback for landscape-scale268

tree mortality. The massive tree mortality in hotter/drier Sierra Nevada forests4,11 during the 2012 to 2016269

hot drought likely arose as a synergistic alignment of environmental conditions and local forest structure270

that allowed WPB to successfully colonize large trees, rapidly increase in population size, and expand. The271
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unexpectedly low mortality in cooler/wetter Sierra Nevada forests compared to model predictions based on272

coarser-scale forest structure data11 may result from a different WPB response to local forest structure due273

to a lack of an alignment with favorable climate conditions and a weaker positive feedback.274

Limitations and future directions275

We have demonstrated that drones can be effective means of collecting forest data at multiple, vastly different276

spatial scales to investigate a single, multi-scale phenomenon– from meters in between trees, to hundreds of277

meters of elevation, to hundreds of thousands of meters of latitude. Some limitations remain, but can be278

overcome with further refinements in the use of this tool for forest ecology. Most of these limitations arise279

from classification and measurement of standing dead trees, making it imperative to work with field data for280

calibration and uncertainty reporting.281

The greatest limitation in our study arising from classification uncertainty is in the assumption that all dead282

trees were ponderosa pine, which we estimate from coincident field plots is true approximately 73.4% of the283

time. Because the forest structure factors influencing the likelihood of individual tree mortality during the hot284

drought depended on tree species,15 we cannot rule out that some of the ponderosa pine mortality relationships285

to forest structure that we observed may be partially explained by those relationships in other species that286

were misclassified as ponderosa pine using our methods. However, the overall community composition across287

our study area was similar14 and we are able to reproduce similar forest structure/mortality patterns in288

drone-derived data when restricting the scope of analysis to only trees detected in the footprints of the289

coincident field plots (see Supplementary Information). Thus, we remain confident that the patterns we290

observed were driven primarily by the dynamic between WPB and ponderosa pine. While spectral information291

of foliage could help classify living trees to species, the species of standing dead trees were not spectrally292

distinct. This challenge of classifying standing dead trees to species implies that a conifer forest systems with293

less bark beetle and tree host diversity, such as mountain pine beetle outbreaks in relative monocultures of294

naturally-occurring lodgepole pine forests in the Intermountain West, should be particularly amenable to the295

methods presented here even with minimal further refinement because dead trees will almost certainly belong296

to a single species and have succumbed to colonization by a single bark beetle species. For similar reasons,297

these methods would also work particularly well if imagery were also captured prior to the mortality event.298

Some uncertainty surrounded our ability to detect trees using the geometry of the dense point clouds derived299

with SfM. The horizontal accuracy (i.e., longitude/latitude position) of the tree detection was better than the300

vertical accuracy (i.e., height), which may result from a more significant error contribution by the field-based301

calculations of tree height compared to tree position relative to plot center (Table 1). Height measurements302
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were particularly challenging for standing dead trees, because SfM can fail to produce any points representing303

narrow, needleless treetops in the resulting dense point cloud. Our conservative calibration of drone-measured304

tree heights to field-measured heights strengthened the main effect of CWD on host mortality in our model305

and reversed the effect of host tree height (see Supplementary Information). We report that larger host trees306

increase the probability of host tree mortality, while models using uncalibrated tree heights show that larger307

trees decrease host mortality rates (see Supplementary Information). While our live/dead classification was308

fairly accurate (96.4% on a withheld dataset), our species classifier would likely benefit from better crown309

segmentation because the pixel-level reflectance values within each crown are averaged to characterize the310

“spectral signature” of each tree. With better delineation of each tree crown, the mean value of pixels within311

each tree crown will likely be more representative of that tree’s spectral signature.312

Better tree detection, crown segmentation, and dead tree height measurement would likely improve with313

better SfM point clouds which can be enhanced with greater overlap between images71 or with oblique (i.e.,314

off-nadir) imagery.72 71 found that 95% overlap was preferable for generating dense point clouds in forested315

areas, and 72 reduced dense point cloud errors using imagery taken at 30 degrees off-nadir. We only achieved316

91.6% overlap with the X3 RGB camera and 83.9% overlap with the multispectral camera, and all imagery317

was nadir-facing. We anticipate that computer vision and deep learning will also prove helpful in overcoming318

some of these detection and classification challenges.73319

Finally, we note our study is constrained by the uncertainty in measuring basal area from SfM processing of320

drone-derived imagery. This uncertainty makes it challenging to represent typical field-based measures of321

local competitive environment (e.g., total plot basal area) or ecosystem impact (e.g., proportion of dead basal322

area in a plot) in a statistical analysis. Instead, we opted to use the probability of ponderosa mortality as323

our key response variable, which is well-suited to understanding the dynamics between WPB colonization324

behavior and host tree susceptibility.325

Conclusions326

Climate change adaptation strategies emphasize management action that considers whole-ecosystem responses327

to inevitable change,74 which requires a macroecological understanding of how phenomena at multiple328

scales can interact. Tree vulnerability to environmental stressors presents only a partial explanation for329

tree mortality patterns during hot droughts, especially when bark beetles are present. We’ve shown that330

drones can be a valuable tool for investigating multi-scalar phenomena, such as how local forest structure331

combines with environmental conditions to shape forest insect disturbance. Understanding the conditions332

that drive dry western U.S. forest responses to disturbances such as bark beetle outbreaks will be vital for333
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predicting outcomes from increasing disturbance frequency and intensity exacerbated by climate change.75334

Our study suggests that outcomes will depend on interactions between local forest structure and broad-scale335

environmental gradients, with the potential for cross-scale interactions to enhance our understanding of forest336

insect dynamics.337

Methods338

Study system339

We designed the aerial survey to coincide with 160 vegetation/forest insect monitoring plots at 32 sites340

established between 2016 and 2017 by 14 (Figure 3). The study sites were chosen to reflect typical west-side341

Sierra Nevada yellow pine/mixed-conifer forests and were dominated by ponderosa pine.14 Sites were placed342

in WPB-attacked, yellow pine/mixed-conifer forests across the Eldorado, Stanislaus, Sierra and Sequoia343

National Forests and were stratified by elevation (914-1219 m, 1219-1524 m, 1524-1829 m above sea level). In344

the Sequoia National Forest, the southernmost National Forest in our study, sites were stratified with the345

lowest elevation band of 1219-1524 m and extended to an upper elevation band of 1829-2134 m to capture a346

more similar forest community composition as at the more northern National Forests. The sites have variable347

forest structure and plot locations were selected in areas with >35% ponderosa pine basal area and >10%348

ponderosa pine mortality. At each site, five 0.041-ha circular plots were installed along transects with 80349

to 200m between plots. In the field, 14 mapped all stem locations relative to the center of each plot using350

azimuth/distance measurements. Tree identity to species, tree height, and diameter at breast height (DBH)351

were recorded if DBH was greater than 6.35cm. Year of mortality was estimated based on needle color and352

retention if it occurred prior to plot establishment, and was directly observed thereafter during annual site353

visits. A small section of bark (approximately 625 cm2) on both north and south aspects was removed from354

dead trees to determine if bark beetle galleries were present. The shape, distribution, and orientation of355

galleries are commonly used to distinguish among bark beetle species.18 In some cases, deceased bark beetles356

were present beneath the bark to supplement identifications based on gallery formation. During the spring357

and early summer of 2018, all field plots were revisited to assess whether dead trees had fallen.14358

In the typical life cycle of WPBs, females initiate host colonization by tunneling through the outer bark and359

into the phloem and outer xylem where they rupture resin canals. As a result, oleoresin exudes and collects on360

the bark surface, as is commonly observed with other bark beetle species. During the early stages of attack,361

females release an aggregation pheromone component which, in combination with host monoterpenes released362

from pitch tubes, is attractive to conspecifics.76 An antiaggregation pheromone component is produced during363

latter stages of host colonization by several pathways, and is thought to reduce intraspecific competition364
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Figure 3: The network of field plots spanned a 350-km latitudinal gradient from the Eldorado National Forest
in the north to the Sequoia National Forest in the south. Plots were stratified by three elevation bands in
each forest, with the plots in the Sequoia National Forest (the southern-most National Forest) occupying
elevation bands 305 m above the three bands in the other National Forests in order to capture a similar
community composition.

15



by altering adult behavior to minimize overcrowding of developing brood within the host.77 Volatiles from365

several nonhosts sympatric with ponderosa pine have been demonstrated to inhibit attraction of WPB to366

its aggregation pheromones.56,78 In California, WPB generally has 2-3 generations in a single year and can367

often outcompete other primary bark beetles such as the mountain pine beetle in ponderosa pines, especially368

in larger trees.33 WPB population growth rates can, however, be reduced by competition with other beetle369

species cohabitating in the same host tree, as well as by predation during dispersal to seek a host.33370

Aerial data collection and processing371

Nadir-facing imagery was captured using a gimbal-stabilized DJI Zenmuse X3 broad-band red/green/blue372

(RGB) camera79 and a fixed-mounted Micasense Rededge3 multispectral camera with five narrow bands80 on373

a DJI Matrice 100 aircraft.81 Imagery was captured from both cameras along preprogrammed aerial transects374

over ~40 ha surrounding each of the 32 sites (each of these containing five field plots) and was processed in a375

series of steps to yield local forest structure and composition data suitable for our statistical analyses. All376

images were captured in 2018 during a 3-month period between early April and early July, and thus our work377

represents a postmortem investigation into the drivers of cumulative tree mortality. Following the call by 82,378

we establish “data product levels” to reflect the image processing pipeline from raw imagery (Level 0) to379

calibrated, fine-scale forest structure and composition information on regular grids (Level 4), with each new380

data level derived from levels below it. Here, we outline the steps in the processing and calibration pipeline381

visualized in Figure 4, and include additional details in the Supplementary Information.382
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Figure 4. Schematic of the data processing workflow for a single site with each new data product level derived384

from data at lower levels. Level 0 represents raw data from the sensors. From left to right: RGB photo from385

DJI Zenmuse X3, output images from Micasense Rededge3 (blue, green, red, near infrared, red edge). Level 1386

represents basic outputs from the SfM workflow. From left to right: dense point cloud, RGB orthophoto,387

digital surface model (DSM; ground elevation plus vegetation height). Level 2 represents radiometrically388

or geometrically corrected Level 1 products. From left to right: radiometrically-corrected “red” surface389

reflectance map, radiometrically-corrected “near infrared” surface reflectance map, digital terrain model390

(DTM) derived by a geometric correction of the dense point cloud, canopy height model (CHM; DSM - DTM).391

Level 3 represents domain-specific information extraction from Level 2 products and is divided into two392

sub-levels. Level 3a products are derived using only spectral or only geometric data. From left to right: map393

of Normalized Difference Vegetation Index,83 map of detected trees derived from the CHM, detected trees394

within red polygon, polygons representing segmented tree crowns within red polygon. Level 3b products are395

derived using both spectral and geometric data. From left to right: trees classified as alive or dead based396

on spectral reflectance within each segmented tree crown, trees classified as WPB host/non-host. Level 4397

represents aggregations of Level 3 products to regular grids that better reflects the grain size of the validation398

(e.g., to match area of validation field plots) or which provides neighborhood- rather than individual-scale399

information (e.g., stand-level proportion of host trees). From left to right: grid representing fraction of dead400

trees per cell, grid representing fraction of hosts per cell, grid representing mean host height per cell, tree401

density per cell. All cells measure 20 x 20 m.402

Level 0: Raw data from sensors403

Raw data comprised approximately 1900 images per camera lens (one broad-band RGB lens and five narrow-404

band multispectral lenses) for each of the 32 sites (Figure 4; Level 0). Prior to the aerial survey, two strips of405

bright orange drop cloth (~100 x 15 cm) were positioned as an “X” over the permanent monuments marking406

the center of the 5 field plots from 14 (see Supplementary Information).407

We preprogrammed north-south aerial transects using Map Pilot for DJI on iOS flight software84 at an408

altitude of 120 m above ground level (with “ground” defined using a 1-arc-second digital elevation model85).409

The resulting ground sampling distance was approximately 5 cm/px for the Zenmuse X3 RGB camera and410

approximately 8 cm/px for the Rededge3 multispectral camera. We used 91.6% image overlap (both forward411

and side) at the ground for the Zenmuse X3 RGB camera and 83.9% overlap (forward and side) for the412

Rededge3 multispectral camera.413

18



Level 1: Basic outputs from photogrammetric processing414

We used SfM photogrammetry implemented in Pix4Dmapper Cloud (www.pix4d.com) to generate dense point415

clouds (Figure 4; Level 1, left), orthophotos (Figure 4; Level 1, center), and digital surface models (Figure 4;416

Level 1, right) for each field site.71 For 29 sites, we processed the Rededge3 multispectral imagery alone to417

generate these products. For three sites, we processed the RGB and the multispectral imagery together to418

enhance the point density of the dense point cloud. All SfM projects resulted in a single processing “block,”419

indicating that all images in the project were optimized and processed together. The dense point cloud420

represents x, y, and z coordinates as well as the color of millions of points per site. The orthophoto represents421

a radiometrically uncalibrated, top-down view of the survey site that preserves the relative x-y positions of422

objects in the scene. The digital surface model is a rasterized version of the dense point cloud that shows423

the altitude above sea level for each pixel in the scene at the ground sampling distance of the camera that424

generated the Level 0 data.425

Level 2: Corrected outputs from photogrammetric processing426

Radiometric corrections A radiometrically-corrected reflectance map (Figure 4; Level 2, left two figures;427

i.e., a corrected version of the Level 1 orthophoto) was generated using the Pix4D software by incorporating428

incoming light conditions for each narrow band of the Rededge3 camera (captured simultaneously with the429

Rededge3 camera using an integrated downwelling light sensor) as well as a pre-flight image of a calibration430

panel of known reflectance (see Supplementary Information for camera and calibration panel details).431

Geometric corrections We implemented a geometric correction to the Level 1 dense point cloud and432

digital surface model by normalizing these data for the terrain underneath the vegetation. We generated the433

digital terrain model representing the ground underneath the vegetation at 1-m resolution (Figure 4; Level434

2, third image) by classifying each survey area’s dense point cloud into “ground” and “non-ground” points435

using a cloth simulation filter algorithm86 implemented in the lidR53 package and rasterizing the ground436

points using the raster package.87 We generated a canopy height model (Figure 4; Level 2, fourth image) by437

subtracting the digital terrain model from the digital surface model.438

Level 3: Domain-specific information extraction439

Level 3a: Data derived from spectral or geometric Level 2 product Using just the spectral440

information from the radiometrically-corrected reflectance maps, we calculated several vegetation indices441

including the normalized difference vegetation index [NDVI; 83; Figure 4; Level 3a, first image], the normalized442

difference red edge,88 the red-green index,89 the red edge chlorophyll index,90 and the green chlorophyll443
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index.90444

Table 2: Algorithm name, number of parameter sets tested for each algorithm, and references.

Algorithm Parameter sets tested Reference(s)

li2012 131 91; 92; 93

lmfx 30 94

localMaxima 6 53

multichm 1 95

ptrees 3 96

vwf 3 97

watershed 3 98

Using just the geometric information from the canopy height model or terrain-normalized dense point cloud,445

we generated maps of detected trees (Figure 4; Level 3a, second and third images) by testing a total of 7446

automatic tree detection algorithms and a total of 177 parameter sets (Table 2). We used the field plot data447

to assess each tree detection algorithm/parameter set by converting the distance-from-center and azimuth448

measurements of the trees in the field plots to x-y positions relative to the field plot centers distinguishable in449

the Level 2 reflectance maps as the orange fabric X’s that we laid out prior to each flight. In the reflectance450

maps, we located 110 out of 160 field plot centers while some plot centers were obscured due to dense451

interlocking tree crowns or because a plot center was located directly under a single tree crown. For each of452

the 110 field plots with identifiable plot centers– the “validation field plots”, we calculated 7 forest structure453

metrics using the ground data collected by 14: total number of trees, number of trees greater than 15 m454

in height, mean height of trees, 25th percentile tree height, 75th percentile tree height, mean distance to455

nearest tree neighbor, and mean distance to second nearest neighbor. For each tree detection algorithm and456

parameter set described above, we calculated the same set of 7 structure metrics within the footprint of the457

validation field plots. We calculated the Pearson’s correlation and root mean square error (RMSE) between458

the ground data and the aerial data for each of the 7 structure metrics for each of the 177 automatic tree459

detection algorithms/parameter sets. For each algorithm and parameter set, we calculated its performance460

relative to other algorithms as whether its Pearson’s correlation was within 5% of the highest Pearson’s461

correlation as well as whether its RMSE was within 5% of the lowest RMSE. We summed the number of462

forest structure metrics for which it reached these 5% thresholds for each algorithm/parameter set. For463

automatically detecting trees across the whole study, we selected the algorithm/parameter set that performed464
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well across the most forest metrics (see Results).465

We delineated individual tree crowns (Figure 4; Level 3a, fourth image) with a marker controlled watershed466

segmentation algorithm99 implemented in the ForestTools package97 using the detected treetops as markers.467

If the automatic segmentation algorithm failed to generate a crown segment for a detected tree (e.g., often468

snags with a very small crown footprint), a circular crown was generated with a radius of 0.5 m. If the469

segmentation generated multiple polygons for a single detected tree, only the polygon containing the detected470

tree was retained. Because image overlap decreases near the edges of the overall flight path and reduces the471

quality of the SfM processing in those areas, we excluded segmented crowns within 35 m of the edge of the472

survey area. Given the narrower field of view of the Rededge3 multispectral camera versus the X3 RGB473

camera whose optical parameters were used to define the ~40 ha survey area around each site, as well as the474

35 m additional buffering, the survey area at each site was ~30 ha (see Supplementary Information).475

Level 3b: Data derived from spectral and geometric information We overlaid the segmented476

crowns on the reflectance maps from 20 sites spanning the latitudinal and elevation gradient in the study.477

Using QGIS (https://qgis.org/en/site/), we hand classified 564 trees as live/dead and as one of 5 dominant478

species in the study area (ponderosa pine, Pinus lambertiana, Abies concolor, Calocedrus decurrens, or Quercus479

kelloggi) using the mapped ground data as a guide. Each tree was further classified as “host” for ponderosa480

pine or “non-host” for all other species.18 We extracted all the pixel values within each segmented crown481

polygon from the five, Level 2 orthorectified reflectance maps (one per narrow band on the Rededge3 camera)482

as well as from the five, Level 3a vegetation index maps using the velox package.100 For each crown polygon,483

we calculated the mean value of the extracted Level 2 and Level 3a pixels and used them as ten independent484

variables in a five-fold cross validated boosted logistic regression model to predict whether the hand classified485

trees were alive or dead. For just the living trees, we similarly used all 10 mean reflectance values per crown486

polygon to predict tree species using a five-fold cross validated regularized discriminant analysis. The boosted487

logistic regression and regularized discriminant analysis were implemented using the caret package in R.101488

We used these models to classify all tree crowns in the data set as alive or dead (Figure 4; Level 3b, first489

image) as well as the species of living trees (Figure 4; Level 3b, second image).490

Because the tops of dead, needle-less trees are narrow, they may not be well-represented in the point491

clouds produced using SfM photogrammetry, which biases their height estimates downward. Further, field492

measurements can overestimate the heights of live trees relative to aerial survey methods.102 To correct these493

measurement biases, we calibrated aerial tree height measurements to ground-based height measurements.494

Specifically, we identified the crowns of 451 field-measured trees in the drone-derived tree data, modeled the495
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relationship between field- and drone-measured tree heights for both live and dead trees, and used the models496

to adjust the drone-measured tree heights (See Supplementary Methods). We applied a conservative height497

correction to live and dead trees based on trees measured by the drone to be greater than 20 m in height498

that increased dead tree height by an average of 2.8 m and reduced the heights of live trees by an average of499

0.9 m (See Supplementary Methods). Finally, we estimated the basal area of each tree from their corrected500

drone-measured height using species-specific simple linear regressions of the relationship between height and501

DBH as measured in the coincident field plots from 14.502

Level 4: Aggregations to regular grids503

We rasterized the forest structure and composition data at a spatial resolution similar to that of the field504

plots to better match the grain size at which we validated the automatic tree detection algorithms. In each505

raster cell, we calculated: number of dead trees, number of ponderosa pine trees, total number of trees, and506

mean height of ponderosa pine trees. The values of these variables in each grid cell and derivatives from507

them were used for visualization and modeling. Here, we show the fraction of dead trees per cell (Figure 4;508

Level 4, first image), the fraction of host trees per cell (Figure 4; Level 4, second image), the mean height of509

ponderosa pine trees in each cell (Figure 4; Level 4, third image), and the total count of trees per cell (Figure510

4; Level 4, fourth image).511

Note on assumptions about dead trees512

For the purposes of this study, we assumed that all dead trees were ponderosa pine and thus hosts colonized513

by WPB. This is a reasonably good assumption for our study area; for example, 14 found that 73.4% of dead514

trees in their coincident field plots were ponderosa pine. Mortality was concentrated in the larger-diameter515

classes and attributed primarily to WPB.14 The species contributing to the next highest proportion of dead516

trees was incense cedar which represented 18.72% of the dead trees in the field plots. While the detected517

mortality is most likely to be ponderosa pine killed by WPB, it is critical to interpret our results with these518

limitations in mind.519

Environmental data520

We used CWD103 from the 1981-2010 mean value of the basin characterization model104 as an integrated521

measure of historic temperature and moisture conditions for each of the 32 sites. Higher values of CWD522

correspond to historically hotter, drier conditions and lower values correspond to historically cooler, wetter523

conditions. CWD has been shown to correlate well with broad patterns of tree mortality in the Sierra524

Nevada11 as well as bark beetle-induced tree mortality.105 The forests along the entire CWD gradient used in525
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this study experienced exceptional hot drought between 2012 to 2016 with a severity of at least a 1,200-year526

event, and perhaps more severe than a 10,000-year event.2,3 We converted the CWD value for each site into a527

z-score representing that site’s deviation from the mean CWD across the climatic range of Sierra Nevada528

ponderosa pine as determined from 179 herbarium records described in 106. Thus, a CWD z-score of 1 would529

indicate that the CWD at that site is one standard deviation hotter/drier than the mean CWD across all530

geolocated herbarium records for ponderosa pine in the Sierra Nevada.531

Statistical model532

We used a generalized linear model with a zero-inflated binomial response and a logit link to predict the533

probability of ponderosa pine mortality within each 20 x 20-m cell using the total number of ponderosa534

pine trees in each cell as the number of trials, and the number of dead trees in each cell as the number of535

“successes”. As covariates, we used the proportion of trees that are WPB hosts (i.e., ponderosa pine) in each536

cell, the mean height of ponderosa pine trees in each cell, the count of trees of all species (overall density) in537

each cell, and the site-level CWD using Eq. 1. Note that the two-way interaction between the overall density538

and the proportion of trees that are hosts is directly proportional to the number of ponderosa pine trees in539

the cell. We centered and scaled all predictor values, and used weakly-regularizing default priors from the540

brms package.107 To measure and account for spatial autocorrelation underlying ponderosa pine mortality,541

we subsampled the data at each site to a random selection of 200, 20 x 20-m cells representing approximately542

27.5% of the surveyed area. Additionally with these subsampled data, we included a separate exact Gaussian543

process term per site of the noncentered/nonscaled interaction between the x- and y-position of each cell544

using the gp() function in the brms package.107 The Gaussian process estimates the spatial covariance in the545

response variable (log-odds of ponderosa pine mortality) jointly with the effects of the other covariates.546
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yi,j ∼


0, p

Binom(ni, πi), 1− p

logit(πi) = β0 +

β1Xcwd,j + β2XpropHost,i + β3XP ipoHeight,i+

β4XoverallDensity,i + β5XoverallBA,i+

β6Xcwd,jXP ipoHeight,i + β7Xcwd,jXpropHost,i+ (1)

β8Xcwd,jXoverallDensity,i + β9Xcwd,jXoverallBA,i+

β10XpropHost,iXP ipoHeight,i + β11XpropHost,iXoverallDensity,i+

β12XP ipoHeight,iXoverallBA,i+

β13Xcwd,jXpropHost,iXP ipoHeight,i +

GPj(xi, yi)

Where yi is the number of dead trees in cell i, ni is the sum of the dead trees (assumed to be ponderosa pine)547

and live ponderosa pine trees in cell i, πi is the probability of ponderosa pine tree mortality in cell i, p is the548

probability of there being zero dead trees in a cell arising as a result of an independent, unmodeled process,549

Xcwd,j is the z-score of CWD for site j, XpropHost,i is the scaled proportion of trees that are ponderosa pine550

in cell i, XP ipoHeight,i is the scaled mean height of ponderosa pine trees in cell i, XoverallDensity,i is the scaled551

density of all trees in cell i, XoverallBA,i is the scaled basal area of all trees in cell i, xi and yi are the x- and552

y- coordinates of the centroid of the cell in an EPSG3310 coordinate reference system, and GPj represents553

the exact Gaussian process describing the spatial covariance between cells at site j.554

We fit this model using the brms package107 which implements the No U-Turn Sampler extension to the555

Hamiltonian Monte Carlo algorithm108 in the Stan programming language.109 We used 4 chains with 5000556

iterations each (2000 warmup, 3000 samples), and confirmed chain convergence by ensuring all Rhat values557

were less than 1.1110 and that the bulk and tail effective sample sizes (ESS) for each estimated parameter558

were greater than 100 times the number of chains (i.e., greater than 400 in our case). We used posterior559

predictive checks to visually confirm model performance by overlaying the density curves of the predicted560

number of dead trees per cell over the observed number.111 For the posterior predictive checks, we used 50561

random samples from the model fit to generate 50 density curves and ensured curves were centered on the562

observed distribution, paying special attention to model performance at capturing counts of zero.563
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Data availability564

All field and drone data processed for this study are available via the Open Science Framework at https:565

//doi.org/10.17605/OSF.IO/3CWF9.112 The administrative boundaries file for the USDA Forest Service566

(S_USA.AdministrativeForest.shp) can be found at https://data.fs.usda.gov/geodata/edw/datasets.ph567

p?dsetCategory=boundaries. The 2014 version of the 1981-2010 thirty-year historic average climatic water568

deficit data (cwd1981_2010_ave_HST_1550861123.tif) can be found on the California Climate Commons569

at http://climate.calcommons.org/dataset/2014-CA-BCM. The dataset representing ponderosa pine570

geolocations derived from herbaria records (California_Species_clean_All_epsg_3310.csv) can be found571

at https://doi.org/10.6078/D16K5W.113 The vector file representing Jepson geographic subdivisions of572

California and used to define the Sierra Nevada region can be requested at https://ucjeps.berkeley.edu/eflora573

/geography.html.574

Code availability575

Statistical analyses were performed using the brms packages. With the exception of the SfM software576

(Pix4Dmapper Cloud) and the GIS software QGIS, all data carpentry and analyses were performed using577

R.114 All code used to generate the results from this study are available via GitHub at https://gith578

ub.com/mikoontz/local-structure-wpb-severity and is mirrored on the Open Science Framework at579

https:/doi.org/10.17605/OSF.IO/WPK5Z.115580
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