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Abstract 14 

Evidence for age-related changes in innate and adaptive immune responses is increasing in wild 15 

populations. Such changes have been linked to fitness, and understanding the factors driving variation 16 

in immune responses is important for the evolution of immunity and senescence. Age-related changes 17 

in immune profiles may be due to sex-specific behaviour, physiology and responses to environmental 18 

conditions. Social conditions may also contribute to variation in immunological responses, for 19 

example, through transmission of pathogens and stress from resource and mate competition. Yet, the 20 

impact of the social environment on age-related changes in immune cell profile requires further 21 

investigation in the wild. Here, we tested the relationship between leukocyte cell composition 22 

(agranulocyte proportion, i.e. adaptive and innate immunity) and age, sex, and group size in a wild 23 

population of European badgers (Meles meles). We found that the proportion of agranulocytes 24 

decreased with age only in males living in small groups. In contrast, females in larger groups exhibited 25 

a greater age-related decline in the proportion of agranulocytes compared to females in smaller 26 
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groups. Our results provide evidence for age-related changes in immune cell profiles in a wild 27 

mammal, which are influenced by both the sex of the individual and their social environment. 28 

 29 
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 31 

1. Introduction 32 

The immune system involves multiple mechanisms that protect the host against pathogens [1]. The 33 

functioning of the immune system is related to sex [2, 3] and changes throughout life [4-9]. Since age-34 

related changes in immune responses have been linked to mortality in the wild [9], understanding the 35 

factors driving differences in immune responses can provide insight into the evolution of immunity 36 

and senescence. 37 

The immune system comprises two components: innate and adaptive immunity [1]. The 38 

innate immune response is the first defence against pathogens, involving phagocytic cells (e.g. 39 

neutrophils, macrophages and dendritic cells) to detect antigens and produce cytokines that trigger 40 

other parts of the immune system [10-14]. The activation of adaptive immunity includes the cell-41 

mediated immune response, with the stimulation of T lymphocytes and humoral immunity, which is 42 

controlled by activated B lymphocytes that can differentiate to produce immunoglobulins against 43 

specific antigens [13, 15]. The relative components of adaptive and innate immunity are therefore 44 

reflected in agranulocytes (i.e. lymphocytes and monocytes) and granulocytes (i.e. neutrophils, 45 

eosinophils and basophils), respectively [16-19]. 46 

The adaptive immune system generally undergoes an age-related decline in performance, i.e. 47 

immunosenescence, and evidence for this process has been emerging in wild populations [4-9]. In 48 

contrast, the innate immune response is usually maintained, or even enhanced with age [4-9]. This 49 

enhanced innate immune response can be a consequence of overstimulation of the immune system, 50 

due to a reduced T cell repertoire and bias towards CD8+ effector memory cells, leading to chronic 51 

inflammation and accelerated immunosenescence, as seen in humans [20, 21].  52 
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 The innate and adaptive immune responses, mediated by genes and hormones, are sex-53 

specific [2, 3]. For example, in the human innate immune response, males have higher frequencies of 54 

natural killer cells and higher phagocytic activity of neutrophils and macrophages than females [22, 55 

23], whereas in the adaptive immune response, females have stronger antibody responses and have 56 

higher basal immunoglobulin levels and B cell numbers than males [22, 24]. Such sex differences in 57 

immune responses may be exacerbated with age [3, 25]. For example, male Soay sheep (Ovis aries) 58 

exhibit steeper sex-specific changes in leukocyte cell composition with age [26]. However, such 59 

changes may be species-specific since no sex differences in the rate of change in leukocyte cell 60 

composition with age were detected in roe deer (Capreolus capreolus; [5]). 61 

Social stress is emerging as a potential driver of variation in immune responses in the wild [27-62 

29], where gregarious species often experience greater stress due to social interactions or increased 63 

mate competition [28, 30, 31]. For instance, polygynous males have more circulating testosterone 64 

than conspecific females or monogamous males, which has a suppressive effect on the immune 65 

system [32, 33], indicating a potential role for the social system and the environment in sex-specific 66 

immune cell profiles. Moreover, social species may experience the costs of increased pathogen 67 

exposure due to group-living compared with solitary species [29]. For example, greater early-life 68 

exposure to pathogen variety and intensity within social groups could prime the immune system and 69 

result in enhanced later-life immunity with the risk of late-life auto-immunity [34, 35]. However, to 70 

date, there has been no clear evidence for the effects of the social environment on sex-specific 71 

immune cell profiles and their age-related changes. 72 

 Here, we use blood samples collected across 2017 and 2018 from a wild population of 73 

European badgers (Meles meles; hereafter ‘badger’) to explore longitudinal changes in sex-specific 74 

immune cell profiles and how this relates to social conditions. We quantify the relative components 75 

in the immune system through the proportion of agranulocytes out of the total number of leukocytes, 76 

which reflect the relative balance between adaptive and innate immunity [16-19]. Specifically, we test 77 
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whether the proportion of agranulocytes: (i) changes with age, (ii) exhibits sex differences, and (iii) is 78 

linked to group size. 79 

 80 

2. Methods 81 

(a) Study species and data collection 82 

We conducted this study in Wytham Woods, Oxfordshire, UK (51°46’24″N, 1°20’04″W), a 424 ha semi-83 

natural woodland surrounded by mixed arable pasture [36]. The resident high-density badger 84 

population (mean±SE = 36±3 badgers/km2; [37]) is segregated into large mixed-sex social groups 85 

(mean group size = 11, range = 2–29; [38]). Badgers have a polygynandrous mating system with high 86 

extra-group paternity [39, 40], where males exhibit seasonal peaks in testosterone levels [41, 42]. 87 

Badgers are exposed to pathogens such as coccidia which negatively impacts development and causes 88 

juvenile mortality [43-45]. 89 

 Trapping was undertaken three times per year, for three consecutive days per social group. 90 

Trapped badgers were anaesthetised using an intra-muscular injection of 0.2 ml ketamine 91 

hydrochloride per kg body weight [46]. Individuals were identified by a unique tattoo number on the 92 

left inguinal region, with capture date, social group affiliation and sex recorded. Age was determined 93 

as the difference between capture date and the 14th of February in the respective birth years. Badgers 94 

first caught as adults were aged through tooth wear [47], where a tooth wear score of 2 typically 95 

indicates a 1-year old adult. Blood was collected through jugular venipuncture into vacutainers with 96 

EDTA anticoagulant. Badgers were released at their setts, after full recovery from anaesthesia. 97 

Additionally, bait-marking was conducted periodically to delimit social group range sizes [48] and 98 

calculate group sizes using appropriate dispersal rules (see supporting information).  99 

 Immediately after blood collection, one drop of blood from the vacutainers was smeared on 100 

a glass microscope slide. Slides were air-dried for one hour and subsequently stained using a Kwik-Diff 101 

staining kit (Thermo Scientific, Manchester, UK) according to the manufacturer’s protocol. Leukocyte 102 

cell counts were conducted by the same observer (blind to group size and sex) by counting 100 cells 103 
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per slide (4 repeats per slide, not consecutively to avoid bias; n = 82 slides, 23 individuals; 9 females, 104 

14 males), at 40x magnification using the ‘battlement technique’ [49]. Cells were identified as 105 

neutrophils, eosinophils and basophils (i.e. granulocytes) or lymphocytes and monocytes (i.e. 106 

agranulocytes; [50]). From these data, we calculated the proportion of agranulocytes out of the total 107 

number of leukocytes. Slides containing less than 100 white blood cells were turned into proportions 108 

(n = 7 repeats, 5 slides). 109 

   110 

(b) Statistical analyses 111 

Statistical analyses were conducted in R 3.3.1 [51], using a log-likelihood ratio test to determine 112 

significance of predictors, set at p < 0.05, in lme4 1.1-14 [52]. The mixed model had a binomial error 113 

distribution (link = logit) with the proportion of agranulocytes in the leukocytes as the response 114 

variable. We first tested which age transformation (linear or logarithmic) best fitted these data using 115 

AICc values, where the relationship between the proportion of agranulocytes and age followed a 116 

negative logarithmic pattern (ΔAICc = 2.9). Logarithmic age was included in the mixed model along 117 

with sex, group size, and the interactions between the three. Season was included as a fixed factor 118 

and body condition index (log10weight/log10body length; [42, 53]) as a fixed covariate since body size 119 

and season may affect immune cell concentrations [54-56]. Body condition index can be interpreted 120 

as body-size adjusted body condition [57]. Cohort, social group, and slide nested within individual ID 121 

were included as random effects. We used parametric bootstrapping (n = 5000) to obtain 95% 122 

confidence intervals. 123 

 124 

3. Results 125 

There was an interaction between age, group size and sex on the proportion of agranulocytes (Table 126 

1). In males, the strength of the logarithmic decrease in the proportion of agranulocytes with age 127 

depended on group size: males living in smaller groups had a higher proportion of agranulocytes in 128 

early-life which declined with age, whereas there was no clear change with age in males living in larger 129 
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groups (Figure 1). In contrast, in females the proportion of agranulocytes in early-life was similar when 130 

living in smaller and larger groups, but with a stronger decrease with age for females living in larger 131 

groups (Figure 1). 132 

 133 

4. Discussion 134 

We found a relative decrease in the proportion of agranulocytes with age. This may have arisen due 135 

to there being quantitatively fewer acquired immunity cells, or because of a greater number of innate 136 

cells being produced. In humans, this pattern has been associated with age-related reduction in 137 

thymus size [58, 59], reducing the number of naïve T cells [60] and CD4+ T and CD8+ subpopulations 138 

with age, which has detrimental implications for effective immune responses to new antigens [10, 61-139 

65]. Alternatively, innate immune mechanisms may become more active with age through increased 140 

production of pro-inflammatory cytokines [66]. Such low-grade chronic inflammation in older 141 

individuals has detrimental effects on health and contributes to biological ageing and the 142 

development of age-related pathologies [21]. While we cannot provide direct evidence of 143 

immunosenescence due to the relative nature of the proportion of agranulocytes, the relative 144 

decrease in adaptive immune cells and increase in innate immune cells with age accords with previous 145 

studies in the wild [4-6]. Furthermore, understanding changes in immune cell profiles with age in 146 

badgers is important for the interpretation of leukocyte telomere dynamics [47]. Since granulocytes 147 

have longer telomeres than agranulocytes in humans and baboons [67, 68], any change in telomere 148 

length with age in mammals could be due to a change in leukocyte cell composition, or selective loss 149 

of leukocytes, with age, and lead to spurious inferences on telomere shortening. 150 

 We also provide evidence that social conditions (i.e. group size) have sex-specific effects on 151 

changes in individual immune cell profiles with age. In larger groups, early-life exposure to a greater 152 

diversity, or higher intensity, of pathogens or greater stress associated with resource or mate 153 

competition led to a stronger bias toward innate over adaptive immune cell ratios by age. According 154 

to the ‘hygiene-hypothesis’ [27, 29, 34, 35, 43, 69], this could subsequently alleviate the detrimental 155 
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consequences of such pathogens in later-life and thus slow age-related changes in immune cell 156 

profiles. In smaller groups, lower exposure to pathogens in early-life can have the opposite effect [70, 157 

71], accelerating changes in immune cell profiles with age. Indeed, we found that the proportion of 158 

agranulocytes in early-life was greater in male badgers living in smaller social groups. Moreover, if 159 

fewer conspecifics share the pathogen burden, this could lead to a stronger pressure on the immune 160 

response and rapid changes in the proportion of agranulocytes. 161 

Even though female badgers exhibited a relative decrease in the proportion of agranulocytes 162 

with age, this was not as strong as in males. Possibly, females develop a stronger immune response 163 

against pathogens in early-life (i.e. smaller change in the proportion of agranulocytes with age), which 164 

would corroborate previous findings in Soay sheep (Ovis aries), where males had a steeper decline in 165 

agranulocyte proportion with age than did females [26]. Males, given the polygynandrous mating 166 

system of badgers, have high levels of testosterone, particularly compared to other species [42], 167 

leading to immunosuppression and stronger decreases in adaptive immunity (i.e. agranulocytes) with 168 

age [32, 33]. This accords with sex-specific responses to environmental conditions and associated sex 169 

differences in immune responses seen in other species [2, 3]. 170 

While males showed stronger relative decreases in the proportion of agranulocytes with age 171 

in smaller groups, for females this effect was stronger in larger groups. Since badgers exhibit high 172 

levels of extra-group paternity (48%), increasing in proportion to a deficit of within-group candidate 173 

fathers, males in smaller groups may be exposed to higher extra-group competition and higher 174 

pathogen diversity [39, 40]. In contrast, females compete for resources with other females within their 175 

social group [72], which could lead to detrimental effects of larger group sizes on the proportion of 176 

agranulocytes. We were, however, unable to sample individuals until at least three months of age, 177 

due to welfare legislation (Protection of Badgers Act, 1992), and thus we cannot rule out the possibility 178 

of selective disappearance of individuals with poor innate immune responses. Nonetheless, our results 179 

indicate that age-related changes in immune profiles are associated with the social environment and 180 

these effects differ between the sexes. 181 
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Tables and Figures 403 

Table 1: Parameter estimates and 95% confidence intervals of fixed effects from a mixed model testing 404 

age, sex and group size effects on the proportion of agranulocytes in European badgers. β = direction 405 

and magnitude of effect, S.E. = standard error, 95% CI = 95% confidence interval from parametric 406 

bootstrapping, χ2 = chi-squared value with associated p-value; reference terms in brackets = reference 407 

level for factors; * = interaction. Significant parameters (p < 0.05) are in bold. 408 

Parameter (reference level) β S.E. 95% CI χ2 p-value 

Intercept -1.892 0.098 -2.087 to -1.703   
Log age -0.031 0.097 -0.218 to 0.156 0.143 0.741 
Sex (female) 0.099 0.104 -0.111 to 0.313 0.873 0.350 
Group size -0.047 0.086 -0.218 to 0.124 0.300 0.584 
Season (Spring)     5.341 0.069 
               Summer 0.027 0.099 -0.163 to 0.219   
               Autumn 0.346 0.154 0.042 to 0.651   
Body condition index -0.246 0.074 -0.388 to -0.102 9.831 0.002 
Log age * Sex (female) -0.014 0.102 -0.211 to 0.185 0.019 0.889 
Log age * Group size -0.052 0.091 -0.230 to 0.119 0.312 0.556 
Sex (female) * Group size 0.255 0.117 0.036 to 0.472 4.176 0.041 
Log age * Sex (female) * Group size 0.225 0.104 0.027 to 0.430 4.380 0.036 

Random effect estimates (variance): Individual ID (1.169*10-2), Slide nested in individual ID 409 

(1.249*10-1), Social group (<1.000*10-12), Cohort (5.026*10-3)  410 
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 411 

Figure 1: The interplay between age and group size on the proportion of leukocytes that are 412 

agranulocytes for males and females. Raw data points are shown. Group size was modelled as a 413 

continuous variable in the mixed model, but for visualisation is shown for males in small (range = 1 – 414 

9; n = 99 repeats; 25 slides; 9 individuals; brown triangles and dashed line) and large (range = 10 – 16; 415 

n = 96 repeats; 24 slides; 8 individuals; blue circles and solid line) groups, and for females in small 416 

(range = 1 – 9; n = 52 repeats; 13 slides; 4 individuals; brown triangles and dashed line) and large 417 

(range = 10 – 16; n = 79 repeats; 20 slides; 6 individuals; blue circles and solid line) groups. X-axis scales 418 

differ between plots. Fitted lines represent the model prediction for age interacting with sex and group 419 

size, with associated 95% confidence intervals as shaded areas. 420 
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Supporting information 422 

Social effects on age-related and sex-specific immune cell profiles in a wild mammal 423 

Sil H.J. van Lieshout, Elisa P. Badás, Michael W.T. Mason, Chris Newman, Christina D. Buesching, 424 

David W. Macdonald & Hannah L. Dugdale 425 

 426 

Group size estimation: 427 

Group sizes were determined by the number of individuals (cubs and adults) that were present in a 428 

social group in a given year. Given high natal philopatry (75.8%), low permanent dispersal rates 429 

(19.1%), and high levels of inter-group movements leading to extra-group paternity in badgers [73], 430 

individuals (n = 1726) were assigned as a resident of a social group each year, according to the 431 

following rules adapted from [40, 73]: 432 

1. Badgers first caught as cubs (n = 1241) were considered resident in the social group they were 433 

first caught, until they subsequently satisfied dispersal rules or were considered dead. 434 

2. Badgers first caught as adults (n = 490) were assigned to their lifetime modal social group, 435 

until dispersal rules applied. If an individual was captured equally between two groups (n = 436 

29), they were assigned to the social group they were initially captured in until dispersal rules 437 

applied. 438 

3. Dispersal rules were satisfied when the two most recent captures of an individual (>30 days 439 

apart), as well as 1 of 2 captures before, were made in a different social group than the current 440 

residential social group. Individuals were resident in the new social group until dispersal rules 441 

applied again.  442 

The number of individuals per social group were then calculated as the sum of individuals present in 443 

the social group in a given year. 444 


