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Abstract 10 

Moult is a process, usually occurring annually, in which birds replace their plumage. It is one of the 11 

most crucial life-history traits because it restores the functions of plumage and allows a bird to adapt 12 

to environmental conditions or special seasonal needs such as breeding and camouflage during non-13 

breeding season. Consequently, moulting has advantages in terms of future performance. However, it 14 

also has immediate costs related to producing protein-rich tissue, reduced thermoregulation and flight 15 

performance. Expression of such costs may depend on a wide array of physiological and environmental 16 

factors experienced by an individual. Considering a variety of factors affecting moult dynamics in single 17 

studies, we use a systematic meta-analytical approach to summarise existing evidence and look for 18 

general patterns in how moult depends on both extrinsic (environment, ecological variability) and 19 

intrinsic (physiology, energy reserves, life stage) factors.  20 

Our analysis has indicated that patterns of moult dependency on the studied moderators are 21 

multifaceted and non-uniform across different ways of measuring moulting. The moult process seems 22 
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to be conservative and tightly scheduled within an annual lifecycle of an individual, but some of its 23 

components may be more flexible and provide necessary plasticity in response to specific factors. 24 

Within the conservative framework of moult onset, duration, completion and strategy, moult intensity 25 

and score may be further modified by environment and energy reserves (diet, breeding time and 26 

breeding success). Moreover, the species-specific reliance on specific cues had likely evolved in close 27 

link to their environments. Taxa moulting in a cold/temperate climate are the most susceptible to 28 

seasonal changes, in contrast to birds which moult in (sub)tropics. The latter are influenced the most 29 

by diet and physiology. Altered seasonality observed in cold and temperate regions may disrupt 30 

phenological matches that had been fine-tuned over long evolutionary history. For birds, which have 31 

a complex annual cycle and plenty of tightly scheduled energy-demanding activities (migration, 32 

breeding, moulting), even small changes may impose fitness costs. 33 

In the meta-analysis, we detected temporal changes in effect sizes revealed by a negative correlation 34 

between effect sizes and year of publication. The reason that early studies detected bigger effect sizes 35 

may be explained by methodological quality of small trials. An alternative explanation of the observed 36 

pattern may suggest changes in phenological process involving more independent physiology from 37 

external conditions which could turn out into unreliable predictors of future conditions in time of rapid 38 

global changes.  39 
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I. INTRODUCTION 67 

Feathers perform a number of functions for a bird: they play an important role in thermoregulation 68 

(Wolf & Walsberg, 2000), water repellence (Rijke, 1970), flight (Williams & Swaddle, 2003) and in 69 

camouflage (Beltran, Burns, & Breed, 2018). Their colours and patterns are used to send signals to 70 

attract mates and scare off rivals (Peters, Kingma, & Delhey, 2013). They are regularly maintained by 71 

a variety of behaviours, but through wear and tear as they age they are continuously degraded (Weber 72 

et al., 2005). Because feathers are non-living keratinous structures, the only mechanism for damage 73 

repair is a complete replacement through the periodic process of moult. Apart from keeping the 74 

plumage in good condition, moult serves also other purposes: it allows a bird to adapt to 75 

environmental conditions or special seasonal needs such as breeding or camouflage during non-76 

breeding season (Zimova et al., 2018). Consequently, moulting has advantages in terms of future 77 

performance as it replenishes an important bodily function and adjusts it to current needs. However, 78 

it also has immediate costs. Replacing feathers requires a bird to produce large volumes of protein-79 

rich tissue, which is both energetically and nutritionally costly (Guillemette et al., 2007; Murphy & King, 80 

2007). Moreover, periods of reduced feather numbers (i.e. in between loosing old ones and completing 81 

the growth of new ones) are usually associated with reduced flight performance or agility, exposing 82 

individuals to negative factors such as predation (Lind, Gustin, & Sorace, 2004). Expression of such 83 

costs may depend on a wide array of physiological and environmental factors experienced by an 84 

individual. Because of plumage renewal being a critically important life-history stage within the annual 85 

cycle, the internal and external bases of the control of the time and rate of moulting are of considerable 86 

interest (Bridge, 2011).   87 

Moult dynamics can be characterized by its timing (onset, duration, termination) and intensity. It may 88 

show some flexibility in response to a bird’s individual features and body condition as well as 89 

ecoclimatic and external environmental factors experienced by an individual (Dawson & Sharp, 2010; 90 

Visser et al., 2011; Dominoni, Quetting, & Partecke, 2013; Machín et al., 2018; Hudin et al., 2018). A 91 
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variety of mechanisms exist to ensure that such a demanding lifecycle event never occurs under 92 

unfavourable conditions (Flinks, Helm, & Rothery, 2008). Sets of various clues and proximate 93 

mechanisms allow a bird to fit moult within a limited time during its lifecycle (Hall & Fransson, 2000). 94 

In temperate climate long daylengths are required to initiate moult (Dawson et al., 2001). Once moult 95 

has started, a decrease in photoperiod increases the rate at which moult proceeds. Such a clue allows 96 

individuals that start the moult process late still to finish moulting before unfavourable winter 97 

conditions or before the commencement of winter migration (Gwinner, Dittami, & Gwinner, 1983; 98 

Barshep et al., 2013a). However, feathers grown during a more rapid moult are of poorer quality, and 99 

this presumably reduces a bird’s future performance (Dawson et al., 2000). If the photoperiodic cue is 100 

very weak e.g. in tropics, birds may respond to low light intensity as a predictive cue for rainfall 101 

(Gwinner & Scheuerlein, 1998). The pattern of the timing of moult coinciding with rainfall periods is, 102 

perhaps, an adaptation to carry out this energy-demanding activity during periods of food abundance 103 

(Barshep et al., 2013b). Energetic cost of moult may represent up to 20% of the daily energy 104 

expenditure (Murphy & King, 2007). Thus, insufficient or low-quality diet delays the peak of moult 105 

intensity (Cristol et al., 2014), reduces moult duration and adversely affects feather quality (Pap et al., 106 

2008) with potential disadvantages for flight efficiency, thermoregulation and ornamentation. Each 107 

species’ moult strategy should be adapted to attain the best plumage quality within the constraints 108 

imposed by all of the aforementioned factors. 109 

In addition to the impact of the environment itself, divergent moult strategies may vary within species 110 

in response to sex and changing states of individuals e.g. from juvenile to adult (Hemborg & Merila, 111 

1999; Pérez-Tris et al., 2001), from active breeding to failed-breeding or non-breeding (Alonso et al., 112 

2009; Bond, Konyukhov, & Jones, 2013; Crossin et al., 2013). Generally, between-sex differences in 113 

several physiological, morphological, behavioural and ecological characteristics may cause differences 114 

in moult dynamics. For example sex with less investment in parental care during chick-rearing can 115 

allocate energy more readily to feather replacement (Hemborg, 1999; Neto & Gosler, 2006). Moreover, 116 

interspecific variation in breeding effort within one sex may also affect moult timing. For example, 117 
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female willow warblers with larger broods begin their moult relatively later (which gives them a shorter 118 

time for moulting) than females with small broods (Bensch et al., 1985). In extreme situations and 119 

deficiency of energy resources, moulting may be suspended for some time (Scheiman & Dunning, 120 

2004). However, no species has been documented to skip an entire moult cycle, suggesting its key 121 

importance to life cycles (Humphrey & Parkes, 1959). Despite this huge variation in moult patterns and 122 

their great sensitivity to various factors, moulting is one of the most poorly studied life-history events. 123 

Considering a variety of factors affecting moult dynamics in single studies, we decided to use a 124 

systematic meta-analytical approach to summarise existing evidence and look for general patterns in 125 

how moult depends on those factors, and which parameters in a wide array of factors experienced by 126 

birds affect moult the most. To achieve this, we have analysed the magnitudes and directions of 127 

published effect sizes quantifying moult dynamics in relation to both individual physiological 128 

characteristics, as well as environmental conditions. Recognizing factors to which moult dynamics is 129 

the most sensitive is of great importance especially now when ecosystems face an accelerating, 130 

human-induced global change linked to the process of climate warming. Also, since the collected data 131 

consists of observational and empirical results, we also explored whether the type of study has an 132 

impact on the magnitude of the effects.  133 

In light of the abovementioned constraints and trade-offs involving moulting, we predicted it would 134 

significantly depend on both extrinsic (environment, ecological variability) and intrinsic (physiology, 135 

energy reserves, life stage) factors. In particular, in line with the published evidence, we expected that 136 

moult dynamic should vary with (i) geographical location (both between different biomes and within 137 

ranges of birds experiencing varying ecoclimatic conditions) and (ii) individual life-history correlates 138 

(e.g. migratory behaviour, age of individuals, sex). We also expected that variation will be observable 139 

between (iii) different methodological approaches to studying moult patterns, providing the first 140 
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estimate of how much observed variation in moulting may reflect methodological artefacts rather than 141 

biological phenomena. 142 

 143 

II. MATERIALS AND METHODS 144 

(1) Literature search and study selection 145 

We conducted a systematic literature survey in which the impact of environmental or physiological 146 

factors on moult dynamics was investigated in birds. We performed keyword searches in the Scopus 147 

database using combinations of the following words:  moult* OR molt* AND (condition* OR 148 

environment* OR experiment* OR dependence) AND bird*. Including the two other sources of data 149 

(reference lists from extracted papers and accidentally found studies), we identified 1361 candidate 150 

studies. The last search was conducted on the 23 January 2019. 151 

The first study was published in 1971 (Davis, 1971) and the number of published studies increased 152 

throughout the years. The highest increase of interest in moult dynamic effects was mainly during the 153 

period 1991-nowadays.  154 

As the first step of quality control, only studies published in peer-reviewed and non-poultry science 155 

journals were included in the meta-analysis. Induced moulting in laying hens is used to recycle birds in 156 

order to enhance productivity, reduce costs and reduce industry investments in breeder farms, all of 157 

which we are not of interest in this study. Moreover, such patterns of moult would hardly reflect 158 

biological reality and would therefore likely bias our results in hard to predict ways. At the beginning, 159 

we performed filtering through the title and abstracts of each article to decide whether the article 160 

matched our selection criteria. The detailed selection process was based on the Preferring Reporting 161 

Items for Systematic Reviews and Meta-analysis (PRISMA flow diagram, Figure 1). We applied the 162 

following inclusion criteria for study selection: (i) the research was conducted on birds; (ii) the study 163 
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involved experimental manipulations or field observations of moult dynamics; (iii) moult dynamics was 164 

related to environmental or physiological factors. We excluded research on the effects of date, month 165 

or year on moulting pattern when authors did not have any clear predictions for them. The reason for 166 

this exclusion is the fact that moult is an inherently temporal process, with its time dynamics. Selecting 167 

papers looking at the effect of time alone without any clear predictions would upwardly bias or effect-168 

size estimates as in such papers the flow of time necessarily has a positive association with the moult 169 

progression metrics. 170 

The steps for selecting and categorising data included in the meta-analysis are shown in Figure 1. Full-171 

text articles assessed for eligibility were scanned for suitable data to calculate the Fisher’s Zr statistic 172 

as a measure of an effect size. When the means, their standard deviation (SD) or standard errors (SE) 173 

were not provided in the publication, the minimum information required was a test statistic and/or p-174 

value, and the study’s sample size. In some articles numerical data were extracted from graphs using 175 

PlotDigitizer (http://plotdigitizer.sourceforge.net/). In case of insufficient data available for calculating 176 

an effect size, we contacted the corresponding author (15 articles) to ask them for additional 177 

information, but the response rate was low (47%). Altogether, we included 146 relevant papers, 178 

comprising 579 effect size estimates for 91 species (Table S1). A list of articles excluded during full-text 179 

filtering and reasons for exclusion are presented in Table S2.  180 

In our meta-analysis, we focused on both the direction and magnitude of reported effect sizes. 181 

However, the direction of the outcome was not always reported, especially for a nonsignificant result. 182 

We prepared a subsample database only for records for which we were able to assess the direction of 183 

effect sizes. Rating them as negative or positive reflects the biological effects of moderator variables 184 

reported on the moult dynamics, i.e., positive signs have been assigned to longer, less intense, delayed 185 

or slower moult dynamics, whereas negative signs have been assigned to shorter, more intense, earlier 186 

or faster moult dynamics. Finally, in the subsample database we included 122 papers, comprising 414 187 

http://plotdigitizer.sourceforge.net/
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estimates for 76 species. A larger sample of studies was used to perform the meta-analysis omitting 188 

the direction of the relationship (i.e. only looking at the strength of each moderator’s impact on the 189 

moult dynamics). Below we will refer to those two subsets as Model I (subset that included directional 190 

effect sizes) and Model II (larger subset considering only directionless, absolute magnitudes of 191 

recorded effect sizes). 192 

 193 

 194 

(2) Coding of moderator variables 195 

 196 

For each effect size included in the analyses, the following 14 variables were extracted (see Table 1). 197 

Each general broad variable was divided in specific traits. The response and moult modulator variables 198 

were recorded as described in the original publications and then grouped into broad categories (Table 199 

2). 200 

 201 

(3) Statistical analyses 202 

(a) Meta-analyses models 203 

 204 

We employed a sequence of meta-analytic general linear mixed models to study variation and overall 205 

magnitude of published effect sizes of moult dynamics. The general form of the model is: 206 

xj ~ μ + aj + sj + tj + mj + ej, 207 

where a ~ N(0, σ2(a)A); s ~ N(0, σ2(s)I); t ~ N(0, σ2(t)I); m ~ N(0, σ2(m)M) and e ~ N(0, σ2(e)I). In this 208 

model, x represents the response variable; a, s and t are additive contributions of random effects of 209 

phylogeny, species and study ID (assumed to be sampled from normal distributions with means zero 210 

and respective variances of σ2(a), etc.); A is a phylogenetic correlation matrix quantifying the degree 211 

of species dependence due to share evolutionary history; e represents a random residual and m is the 212 

study-specific effect size sampling variance (all variance form the diagonal of the M matrix). 213 
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In the initial model, we tested the overall effect size model which also accounted for phylogenetic 214 

dependency of meta-analytic residuals. The phylogenetic tree was obtained from a recent phylogeny 215 

of birds (Jetz et al., 2012). Besides phylogenetic effect, the random terms included species and study 216 

ID. The phylogenetic random effect appeared non-significant (Model I, likelihood ratio test: χ2= 2.99, 217 

df=1, p=0.08; Model II, likelihood ratio test: χ2= 0.63, df=1, P=0.43). According to the Akaike’s 218 

information criterion, the model including phylogenetic effect was not significantly better than the 219 

simpler model with a non-phylogenetically structured species random effect (Model I: AICphylo =−14.2; 220 

AICnon-phylo =−13.3,  ∆AIC < 2; Model II: AICphylo =−646.9; AICnon-phylo =−648.3,  ∆AIC < 2). The inclusion of 221 

a non-significant phylogenetic effect might further erode the statistical power of the model, and thus 222 

it was excluded from further analyses. 223 

Following the above-mentioned analyses, we also tested a full model with all fixed moderators: study 224 

type, sex, age, geographical location, breeding type, developmental mode, family living, food 225 

preferences, habitat preferences, migratory status, moult modulator category, dependent variable 226 

category, data source, and random moderators: species, study ID. In the full model we considered the 227 

following interactions between moderators (representing biologically-relevant hypotheses we aimed 228 

at considering): moult modulator category*migratory status, moult modulator category*dependent 229 

variable category, moult modulator category*study type, moult modulator category*geographical 230 

location, breeding type*family living, geographical location*food preferences, moult modulator 231 

category*food preferences, geographical location*breeding type*family living. Non-significant 232 

interactions and moderators were removed, starting with the highest-order ones. All models were 233 

analysed using the ASReml-R package (Butler et al., 2007) 234 

For the above-mentioned models, we calculated heterogeneity I2 of effect sizes as the percentage of 235 

the variance between effect sizes that cannot be attributed to sampling error nor to other random 236 

effects (Nakagawa & Santos, 2012). I2 values around 25%, 50% and 75% are considered as small, 237 

moderate and high levels of heterogeneity, respectively (Higgins et al., 2003). 238 
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As mentioned above, a large portion of published studies did not provide sufficient information to 239 

correctly assign direction to the effect size estimates. We decided to include this data in a model where 240 

all directional effect sizes were also treated as magnitudes of effect (i.e. stripped of their direction 241 

information). In order to avoid biased estimates of effect sizes, resulting from using a half-folded 242 

normal distribution (instead of the conventional normal, as in the case of directional effect sizes; 243 

(Morrissey, 2016) we took into account the fact, that the expected value of a mean of absolute normal 244 

variables is √
2

𝜋
 √𝜎2(𝑚) + 𝜎2(𝑒), in contrast to the expected mean value of a centred normal 245 

distribution, which is √
2

𝜋
𝜎2(𝑚). I order to account for this upward bias, we applied a transform-then-246 

analyse (Morrissey, 2016) correction to the sampling variance of each individual effect size, 2(m)xi: 247 

𝜎2(𝑚)𝑥𝑖
= 𝑥𝑖

2 + 𝜎2(𝑚)𝑖 − (√
2

𝜋
𝜎(𝑚)𝑖𝑒−𝑥𝑖

2/2𝜎2(𝑚)𝑖 + 𝑥𝑖 (1 − 2Φ (
−𝑥𝑖

𝜎(𝑚)𝑖
)))

2

, 248 

with  being the standard normal cumulative distribution function. 249 

 250 

 251 

 252 

(b) Methodological consideration 253 

 254 

Publication bias, an important source of upwardly inflated effect-sizes in meta-analyses, was assessed 255 

using the trim-and-fill method (Duval & Tweedie, 2000). The method is based on the assumption that 256 

meta-analytical funnel plots (plots of relationships between (residual) effect size and study’s sampling 257 

variance) should be symmetrical. Firstly, we created a funnel plot of meta-analysis residuals against 258 

effect sizes’ measurement errors with 95% confidence intervals outlining the cone. For trim-and-fill 259 

method we used three types of estimator: L0, R0 and Q0. We also run Egger’s regression test of funnel 260 

plot asymmetry using the meta-analytical residuals against effect sizes’ measurement errors (Egger et 261 

al., 1997).  262 
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Temporal trends in effect sizes that could indicate ‘time-lag bias’ was analysed using a simple linear 263 

model. We run a linear regression of effect size against their year of publication. All bias-control 264 

procedures were performed using metafor package (Viechtbauer, 2010).   265 

 266 

 267 

III. RESULTS 268 

(1) Model I – directions of the effect sizes 269 

 270 

In the overall effect size model taking into account the direction of the effect sizes, our meta-analysis 271 

revealed an overall negative effect size not significantly different zero (ES=-0.04, 95% CI=-0.15 to 0.08).  272 

In the final model, the study-type moderator explained significant differences among studies. For 273 

experimental studies, we found a stronger effect size than those observed in the wild (F1,263.6 = 12.53; 274 

P<0.05).  275 

Additionally, two moderators were involved in a significant two-way interaction (F36,303.1 = 1.88; 276 

P<0.01). The interaction tested for the possibility that the impact of different moult modulators 277 

depended on the type of response categories. Four of the analysed moult parameters, namely moult 278 

onset, moult duration, moult completion and moult strategy were quite conservative for almost all 279 

levels of moult modulator variable. In the moult onset group, only environmental conditions negatively 280 

affected the magnitude of the effect sizes. The other moult parameters, particularly moult intensity, 281 

and moult score was more diverse in terms of effect size direction and magnitude. In the moult 282 

intensity group, diet and seasonality negatively affected the magnitude of the effect sizes, whereas 283 

breeding time had a positive effect. In the moult score group, seasonality and physiology yielded large 284 

negative effects, whereas breeding success had a positive effect. None of the parameter for moult 285 

completion group significantly differed from zero (Figure 2, Table 3).  286 
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The overall heterogeneity in the final Model I (I2) was moderate (54%). 287 

 288 

 289 

(2) Model II – absolute magnitudes of the effect sizes 290 

 291 

In the overall effect size model taking into account the absolute magnitude of the effect size, our meta-292 

analysis revealed moderate statistically significant positive effect size (ES=0.32, 95% CI = 0.23 to 0.41). 293 

In the final model, three moderators were involved in significant two-way interactions. Firstly, the 294 

effect of moult modulators depended on geographical location (F13,376.4 = 2.23; P<0.01). In the 295 

cold/temperate group, all moult modulator levels included in the final model – namely age, diet, 296 

environmental conditions, physiology and sex – showed medium effect sizes; seasonality 297 

demonstrated a considerably stronger effect size. In the sub/tropical group, diet and physiology 298 

showed the strongest effect size; environmental condition, seasonality and sex medium effect size, 299 

whereas confidence interval of age-related effect size overlapped zero. None of the moderator levels 300 

in the widespread group showed a significant effect size (Figure 3, Table 4).  301 

Secondly,  the impact of moult modulator type depended on the type of the response variable (F40,428.6 302 

= 1.91; P<0.001). Similarly to the Model I, moult onset, moult strategy and moult score showed similar 303 

moderate effect sizes with statistically significant magnitudes for almost all moult modulator levels. 304 

Only effects of diet in moult score group and seasonality in moult strategy group overlapped zero. The 305 

large and medium magnitude of the effect size of moult duration and moult intensity was significantly 306 

affected by diet, physiology, seasonality and sex, with the additional effect of diet in moult intensity 307 

group. Moult completion was mainly driven by diet, seasonality and sex and marginally not significant 308 

environmental conditions (overlapped zero only with a small fraction of their 95% CI; Figure 4).  309 

The overall heterogeneity in the final Model II (I2) was between small and moderate threshold values 310 

(37%). 311 
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 312 

(3) Methodological considerations 313 

 314 

Visual inspection of funnel plot did not show any evidence of funnel plot asymmetry (Figure 5). The 315 

trim-and-fill method indicated no publication bias for two types of estimator used - L0 and Q0 (imputed 316 

number of missed studies was 0). Estimator R0 indicated one missing study on the right site of the 317 

funnel plot. Lack of funnel plot asymmetry was confirmed by Egger’s regression tests (z=-1.08, P=0.28).  318 

Analysis of all collected effect sizes against the year of publication provided evidence for a slightly 319 

significant temporal trend in published estimates (F(1, 412) = 4.42; P=0.04, Figure 6).  320 

 321 

 322 

IV. DISCUSSION 323 

(1) Moult dynamics 324 

 325 

Our analysis has indicated that patterns of moult dependency on the studied moderators are 326 

multifaceted and non-uniform across different ways of measuring moulting. Depending on the moult 327 

parameter considered, moderator variables have indicated an acceleration, deceleration or lack of 328 

change in the moult dynamics of birds. Four from six analysed parameters, namely moult onset, 329 

duration, completion and strategy were insensitive to bird’s characteristics (age, sex) and manipulative 330 

forces (diet, environmental conditions, climate, seasonality, breeding success, breeding time, 331 

physiology and immunology). The remaining two: moult intensity and moult score were more flexible 332 

and responded strongly to external cues and bird strategy. 333 

Moult is a highly energy-demanding activity (Lindström, Daan, & Visser, 1994); nutritional limitation, 334 

supplementation as well as quality of diet itself may modulate its dynamic. Our meta-analysis showed 335 
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that moult intensity was the most sensitive to diet alterations. It is in line with individual results: a well-336 

balanced diet (Pap et al., 2008) and additional dietary flavonoids (Pap et al., 2009; Cecere et al., 2016) 337 

enhanced the process of feather renewal. Flavonoid-enriched food may facilitate pigment synthesis, 338 

whereas good quality food accelerates the process by providing energy required for feather keratin 339 

production, but also to compensate for altered thermoregulation and reduced foraging efficiency 340 

(Murphy, 1996).   341 

Because of high energy demand, moult is separated in time from other costly events, like reproduction 342 

or migration (Echeverry-Galvis & Hau, 2012). Such separation maximizes outcomes of both processes. 343 

Nevertheless, some species are able to overlap moult and breeding/migration. Most often, such co-344 

occurrence is observed only for a few days. In extreme cases e.g. some tropical bird species, full overlap 345 

of breeding and moulting exist. Consequences of such overlapping manifested in slower and less 346 

intense moult rates as demonstrated in our meta-analysis. It is likely that this kind of strategy is 347 

promoted in environments with little seasonal variation and high food abundance (Foster, 1974), 348 

whereas it is absent in species that experience highly seasonal variation.  349 

In mid- and high-latitude species moult is usually temporally constrained between the end of 350 

reproduction and the onset of migration or wintering (Holmgren & Hedenström, 1995). In our meta-351 

analysis, photoperiod (the annual change in day length) was one of the major seasonality-linked factors 352 

included in the analysis, and it significantly direction of moult intensity and moult score and magnitude 353 

of moult components except moult strategy. In laboratory condition, when the day length becomes 354 

rapidly shortened (decreasing photoperiod), moult speed accelerated in individuals exposed to such 355 

conditions (Griggio et al., 2009). The analogous effect was visible in moult score which describes the 356 

state to which moult has advanced at the time when a bird was examined. Seasonality change, 357 

expressed as a photoperiod shift from short-days to long-days, caused an increase in moult scores 358 

(Pereyra, Sharbaugh, & Hahn, 2005; Flahr et al., 2015). The initial predictive cue – seasonality – may 359 

be supplemented with additional external signs e.g. snow cover (Marmillot et al., 2016), temperature 360 
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(Barshep et al., 2013a) and rainfall pattern (Barshep et al., 2013b). It allows fine-tuning of moult timing 361 

to local, and year-specific, conditions. Reliance on a wide range of environmental cues allow birds to 362 

strategically manage time and energy in a way that is thought to fit moult within limited time and 363 

maximize their fitness. In order to maximize fitness bird can allocate their limited resources into self-364 

maintenance (a new set of feathers) or current reproduction. In the meta-analysis we observe a 365 

competition between feather replacement and breeding for limited time, nutrients and/or energy. 366 

Parental investment influenced the moult dynamics leading to differences in moult scores (Figure 2). 367 

Successfully breeding birds replace less feathers than non-breeders or failed breeders (Alonso et al., 368 

2009; Crossin et al., 2013). Moreover, individuals that overlapped breeding and moult tended to moult 369 

fewer feathers simultaneously and exhibited longer intervals between shedding consecutive feathers 370 

(Figure 2). Additionally, moult score was modulated by physiological state of organism not connected 371 

to breeding effort e.g. condition of the bird (Barron, Webster, & Schwabl, 2013) including endogenous 372 

rhythms (Pant & Chandola-Saklani, 1993, 1995). This association suggested that immunological 373 

challenge may also play an important role in moult dynamics. However, we did not find any positive 374 

or negative effect across all studied moult characteristics. It may, however, reflect the fact, that in our 375 

meta-analysis only 24 effect sizes represented this particular type of condition dependence.  376 

Based on sex-specific physiology and behaviour, we can predict that females moult later than males 377 

because, in general, females have higher nesting and post-fledging parental investment than males 378 

(Hemborg & Merila, 1999). Similarly, we can predict that juveniles, stressed by time and limited by 379 

their overall worse physiological condition and foraging competency moult less feathers than adults 380 

(Marchetti & Price, 1989; Wunderle, 1991). Both relations described above were not detected in our 381 

meta-analysis. Some studies included in this meta-analysis attempted to examine sex- and age-specific 382 

effects of moult characteristics but the availability of such specific results is surprisingly low. We 383 

collected only 43 effect sizes concerning age-specific effects and 109 sex-specific effect. Clearly, 384 

considerable proportion of this data loss is due to not reporting non-significant age/sex effects. We 385 
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recommend that future studies documenting moult dynamics report inter-individual variation in 386 

phenology with respect to sex or age even if they are not significantly different. 387 

In conclusion, the moult process seems to be conservative and tightly scheduled within an annual life-388 

cycle of an individual, but some of its components may be more flexible and provide necessary 389 

plasticity in response to external factors. Within the conservative framework of several moult 390 

parameters, such as onset, duration, completion and strategy, moult intensity and score may be 391 

further modified by environment and energy reserves. Flexibility of these specific measures is likely 392 

due to greater ease of modifying intensities of physiological processes rather than its biological timing. 393 

In other words, seasonal activities must be accurately timed because mismatches with the 394 

environment can have severe fitness consequences. Because of this, timing of lifecycle processes is 395 

also likely to be under stronger genetic control than their resource-related intensity.  396 

 397 

(2) Type of study: experiments versus observational studies 398 

 399 

To understand ecological and evolutionary processes we can use different methods: design an 400 

experiment and/or perform observations in the natural world. Our meta-analysis considered data 401 

coming from 64 experimental studies (238 effect sizes) and 83 observational studies (341 effect sizes). 402 

The latter gave significantly weaker effect sizes than experiments. Interpretation of this difference is 403 

easiest assuming, that experiments control many confounding factors and therefore are able to deliver 404 

more precise effect size estimates, stripped of the impact of unexplained biological noise. However, 405 

the difference observed in our analysis should not prejudge on the quality of the result because each 406 

method has its own advantages and limitations. 407 

Some of the observational studies do not have their experimental analogues and vice versa – some of 408 

the experimental studies do not have equivalent observations in natural conditions. In our meta-409 
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analysis, all effect sizes studying climatic variables are exclusively observational. Profound 410 

environmental crisis we face today e.g. in the form global climate change are all very difficult to study 411 

by manipulating variables and repeating experiments (Sagarin & Pauchard, 2012). The scale and the 412 

dynamics of climate have leapt beyond the scales of time and space that are readily controlled in 413 

experiments. Similarly, from the literature survey, we extracted more than three times more effect 414 

sizes investigating the effect of environmental conditions in nature than during experimental 415 

manipulations. Simply, such systems are too large and complex for ecologists to manipulate (Macnab, 416 

1983). In turn, manipulation of diet quality and food availability, immune response and light conditions 417 

are the domain of experimental research.  418 

 419 

 420 

(3) Different factors shape moult dynamics in different geographical locations 421 

Birds are arguably the most ubiquitously distributed vertebrate taxon throughout the globe (Claramunt 422 

& Cracraft, 2015). They occupy a huge variety of habitats and are found in the tropics as well as at the 423 

extremes of latitude and elevation gradients. The cyclical replacement of feathers is the process which 424 

facilitates the global success of birds. After all, it is the feathers that allowed birds to persist in such 425 

diverse environments providing them with the ability to fly and with unique thermoregulatory 426 

capabilities. However, in a periodically changing environment, it is important for animals to properly 427 

time the major events of their life in order to maximise their lifetime fitness (Barta et al., 2006).  428 

Birds typically use a combination of physiological mechanisms and environmental cues to ensure that 429 

such energy-demanding processes like breeding, moulting and migration occur without major 430 

temporal overlap and under the most favourable conditions (Flinks et al., 2008). Significant 431 

interactions in our meta-analysis, involving geographical range of each species, clearly indicate that 432 

birds from different regions use divergent cues to time and execute the moulting process. Taxa 433 

moulting in a cold/temperate climate are the most susceptible to seasonal changes, in contrast to birds 434 
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which moult in (sub)tropics. The latter are influenced the most by diet and physiology. For widespread 435 

taxa which occur around the world, we did not find any clear factor affecting moult dynamics. It is 436 

important to note that in our analysis this group included only five species, in comparison to 437 

cold/temperate birds which included 67 species, and (sub)tropical birds counting 19 species in the 438 

analysed dataset.  439 

The species-specific reliance on specific cues had likely evolved in close link to their environments. 440 

Photoperiod (included as a predominant factor in the seasonality category) appears to be the critical 441 

driver of moult in cold and temperate regions (Beltran et al., 2018).  The adaptive significance of 442 

responding to photoperiod is that daylength is a reliable predictor of average future conditions e.g. 443 

the upcoming winter. At the same time, these species seem to remain generally unresponsive to other 444 

temporary changes in the environment because other features vary irregularly and are poorer 445 

predictors of the future (Payne, 1972). Naturally, other factors for instance temperature and nutrition 446 

can modulate moult timing, but only if photoperiod - initial predictive cue appears (Beltran et al., 447 

2018).  448 

In contrast, tropical residents and species that are subject to consistent annual daylength may rely 449 

heavily on non-photoperiodic cues e.g. food abundance. Furthermore, wild tropical birds, not 450 

constrained by migration or harsh winter weather, might have greater opportunity to replace feathers 451 

more slowly than temperate birds (Freed & Cann, 2012). They may interrupt moult to breed and are 452 

thought to be more likely to stop or start moulting if resources’ availability changes (Class & Moore, 453 

2013). Because in tropics there is no a single favourable seasonal window, any environmental 454 

disturbance that reduces food availability during the moulting season can slow down or even stop 455 

feather replacement in order to reduce daily energy expenditures (Freed & Cann, 2012). Contrary, 456 

birds with supplemental food effectively increased their ability to carry out an expensive life-history 457 

stage (Class & Moore, 2013). Food availability is strictly connected with physiology of organisms, which 458 
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is clearly visible in our results. Physiology is the second factor affecting moult dynamics with the highest 459 

magnitude of effect size (Figure 3). Taking into account energetic cost of moult ranging from 10% 460 

increase in metabolic rate in red knots Calidris canutus (Vézina, Dekinga, & Piersma, 2010) even to 82% 461 

in white-plumed honeyeaters Lichenostomus penicillatus (Lindström, Visser, & Daan, 1993) an 462 

individual has to be in good condition to bear such a big additional energetic burden.   463 

 464 

 465 

(4) Phenological (mis)matches in a changing world 466 

 467 

Currently observed rapid global changes, especially global warming, may disrupt phenological matches 468 

that had been fine-tuned over long evolutionary history. One of the first evident effects is the 469 

alterations in phenology or timing of annual events across different animal and plant taxa (Tomotani 470 

et al., 2018; Kiat, Vortman, & Sapir, 2019). For birds, which have a complex annual cycle and several 471 

tightly scheduled energy-demanding activities (breeding, moulting, migration), even small changes 472 

may impose fitness costs. 473 

The fastest changes related to warming are observed in cold and temperate regions. Altered 474 

seasonality is visible in advanced or extended growing season, or by uneven warming patterns across 475 

the year. Our meta-analysis showed that seasonality was a key factor modulating moult dynamics in 476 

these areas. Changes in annual routine begin to be observed in natural populations. Long term study 477 

conducted in the Netherlands on a population of European pied flycatchers (Ficedula hypoleuca) 478 

showed different rate of advancements in the timing of phenological processes. Timing of moult 479 

advanced faster than spring migration and breeding. Even though the authors did not detect a 480 

correlation with the temperature to explain the shift, these changes may be caused by shifts in 481 

photoperiod experienced by birds at birth, which in turn may result from climate-change driven 482 

alteration of life-history (Tomotani et al., 2018). Another long-term study conducted on a passerine 483 

bird species that breed in the Western Palearctic ecozone showed a significant correlation between 484 
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increased extent of the post-juvenile moult and global warming over the last 200 years (Kiat et al., 485 

2019). 486 

In addition to individual fitness cost caused by shifting in phenological processes, climate change may 487 

also disrupt the interaction between species, as well as interactions of individuals within a species. 488 

Recent evidence suggests that response of males and females in moult timing differ (Tomotani et al., 489 

2018). Faster moulting in males may result in a shortening of the total time available for breeding 490 

through accelerated gonadal regression (Dawson, 2006; Visser et al., 2011). The mismatch has been 491 

also noticed between adults and their offspring. Synchronization between fledging of young and end 492 

of wing moult in barnacle geese Branta leucopsis decreased in the temperate populations (Van den 493 

Jeugd et al., 2009). Furthermore, seasonal processes of organisms at different trophic levels are 494 

modified at different rates. It may lead to mismatches in life-history events timing between species 495 

that are dependent on each other (Visser & Holleman, 2001). Based on the available knowledge and 496 

trends, none of the phenological processes should be considered separately.  497 

Biological systems require a holistic approach, especially in time of rapid global changes. Our meta-498 

analysis revealed that beyond physiological factors, diet (including food abundance and quality) and 499 

seasonality are critical drivers of moulting. If these cues turn out to be unreliable factors of upcoming 500 

environmental conditions, it may disrupt not only one phenological process for which they are a cue 501 

but whole annual activities.  502 

 503 

(5) Effect sizes across timeline 504 

When time-lag bias operates, the first published studies show systematically greater effect sizes 505 

compared to subsequently published investigations (Trikalinos & Ioannidis, 2005). In the meta-analysis 506 

we detected evidence for such temporal changes in effect sizes because the correlation between effect 507 

sizes and year of publication decreased over time and approached zero in recent years. The reason 508 
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that early studies are prone to overestimation of the magnitudes of the effect sizes may be smaller 509 

sample sizes than those seen nowadays (Fanelli, Costas, & Ioannidis, 2017). Moreover, it has often 510 

been suggested that such small-study effects can result also from a combination of lower 511 

methodological quality of small trials or publication bias (small studies with negative effects are 512 

unpublished or less accessible than larger studies) (Greco et al., 2013). An alternative explanation of 513 

the observed pattern may suggest changes in phenological process. Smaller effect sizes over time may 514 

indicate that along with rapid climate change, birds’ physiology becomes less and less dependent on 515 

external conditions, which gradually become unreliable predictors of future conditions. Time-lag bias 516 

is common in literature and has been detected in other ecological studies (Jennions & Moller, 2002) 517 

including meta-analyses (Santos, Scheck, & Nakagawa, 2011)(Sánchez-Tójar et al., 2018). Detecting it 518 

in our study clearly indicates, that moult and related processes are still actively studied and constitute 519 

a developing, everchanging field of avian biology and evolutionary ecology in general. 520 

 521 

V. CONCLUSIONS 522 

1. Our meta-analysis, that took into account intrinsic and extrinsic factors potentially affecting 523 

moult dynamics, revealed an average negative effect size of studied factors not significantly 524 

different from zero (when taking into account effect size directions) and moderate statistically 525 

significant positive effect size (when taking into account absolute magnitudes of effect sizes).  526 

2. Statistically significant interaction between moult modulator categories and response variable 527 

categories indicated that some moult parameters are conservative (moult onset, duration, 528 

completion and strategy), whereas others (moult intensity and moult score) are susceptible to 529 

factors like diet, seasonality, breeding time, breeding success and physiology. The annual cycle 530 

of phenological processes must be accurately timed because mismatches with the 531 

environment can have severe fitness consequences. However, intensity of life-cycle events is 532 
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much easier to modify because it depends on physiological condition and resources availability 533 

at a given moment.  534 

3. Different factors shape moult dynamics in taxa inhabiting different geographical locations. 535 

Specifically, bird moulting in cold/temperate climate are the most susceptible to abiotic 536 

stressors, namely seasonal changes, whereas diet and physiology are more important in 537 

sub/tropics. Given the predicted climate warming over the next decades, these patterns may 538 

cause cumulative phenological changes in moult patterns and also within other annual routine 539 

events associated with moulting, especially breeding and migration.  540 

4. Our meta-analysis included two types of studies, namely observational and experimental 541 

research. Experimental studies were characterised by on average larger effect sizes than those 542 

observed in the wild. Research investigating the effect of diet, immunology and light condition 543 

prevailed in the former, whereas focus on climate and environmental conditions was typical 544 

for the latter. Our results emphasize once again that studies should be aware of their values 545 

and constrains and draw conclusions eligible for the selected method.  546 

5. Beyond the knowledge revealed in our meta-analysis, we also need a deeper understanding of 547 

the mechanisms controlling the organization and flexibility of the moult dynamics. This 548 

information could then be used for making predictions of how annual routine cycles will 549 

respond to environmental change. 550 

 551 
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Table S1. List of studies used in the meta-analyses investigating the effect of intrinsic and extrinsic 1025 

factors affecting moult dynamics 1026 

Table S2. List of articles excluded on the basis of full-text analysis 1027 

Table S3. Excel file containing the dataset (available with the journal’s publication date) 1028 
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FIGURES  1030 

Figure 1. PRISMA flow diagram of our data search and collection. 1031 

 1032 

1033 



46 
 

Figure 2. Results of meta-analysis showing interaction of moult modulator categories and response 1034 

variable categories for Model I. Effect sizes are shown as squares with 95% confidence intervals; the 1035 

overall effect size is shown by the diamond. 1036 

 1037 
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Figure 3. Results of meta-analysis showing interaction of moult modulator categories and geographical 1038 

location for Model II. Effect sizes are shown as squares with 95% confidence intervals; the overall effect 1039 

size is shown by the diamond. 1040 

 1041 
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Figure 4. Results of meta-analysis showing interaction of moult modulator categories and response 1042 

variable categories for Model II. Effect sizes are shown as squares with 95% confidence intervals; the 1043 

overall effect size is shown by the diamond. 1044 

 1045 
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Figure 5. Funnel plot of effect sizes (Fisher’s Zr) standard error plotted against their corresponding 1046 

sampling variance. The continuous line represents the meta-analytic mean. Dotted lines depict 95% 1047 

confidence intervals.   1048 
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Figure 6. The overall published effect size over time. The solid black line represents the model estimate.1051 
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TABLES 1054 

Table 1. Categorization of moderator variables included in the analyses. Each general broad variable 1055 

was divided into specific traits 1056 

 1057 

1058 

Variable Specific trait 

Study ID - 

Study type Observational / experimental 

Sex Male / female / not distinguished 

Age Juvenile / adult / not distinguished 

Data source Raw data / extracted from linear model 

Geographical location Cold-temperate / subtropical-tropical / widespread 

Developmental mode Altricial / precocial 

Breeding type Cooperative / non-cooperative 

Family living Present / absent 

Food preferences Generalist / specialist 

Habitat preferences Generalist / specialist 

Migratory status Migrant / sedentary 

Response variable Moult onset / moult intensity / moult rate / moult completion / moult 

score / moult strategy 

Moult modulator Age / sex / breeding success / breeding time / climate / environmental 

condition / seasonality / physiology / immunology / diet 
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Table 2. Categorization of response and explanatory variables included in the analyses. The variables 1059 

were recorded as described in the original publications and then grouped into broad categories 1060 

(specific trait) 1061 

 1062 

Variable Specific trait Examples of traits within category 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
response variable 

moult completion moult termination  
moult end date 
complete moult 
moult closing date 
 

moult duration duration of feather renewal 
duration of primaries moult 
 

moult intensity advancement of moult  
increase in moulting score 
inflection point  
moult speed 
number of primaries replaces  
interval between moults 
 

moult onset moult initiation 
moult start date  
 

moult score moult score 
moult stage 
 

moult strategy age at moult onset 
moult asymmetry 
moult investment 
moult timing 
period of moults 
 

 
 
 
 
 
 
 
 
 
 
moult modulator 

age 
 

age 
age classes 
  

breeding success age of partner 
breeding status 
brood size 
nestling mass 
 

breeding time 
 

breeding cycle 
date of incubation 
date of last egg 
reproduction onset 
 

climate date of 50% snow cover 
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 rainfall pattern 
average temperature 
wet vs. dry season 
 

diet 
 

food availability 
food restriction 
food supplements 

environmental conditions 
 

colony location 
habitat quality 
light exposition 
temperature 
urbanization 
 

immunology 
 

infection status 
immune challenge 
immunization 
 

physiology 
 

body mass 
body condition 
fat score 
testosterone level 
total oxidant status 
 

seasonality 
 

calendar date 
day length 
photoperiod 
 

sex sex 
 

 1063 

1064 
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Table 3. Final model results for directional effect size generated in ASReml-R using a linear mixed-1065 

model approach 1066 

 1067 

 1068 

1069 

Moderator variable df Denominator 

df 

F P 

Intercept 1 45.6 0.509 0.479 

Study type 1 263.6 12.530 0.013 

Sex 2 315.9 0.380 0.955 

Age 2 298.0 5.692 0.173 

Moult modulator 9 298.7 1.814 0.053 

Response categories 5 325.4 1.232 0.294 

Moult modulator x response categories 36 303.1 1.883 0.002 
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Table 4. Final model results for absolute magnitude of the effect size generated in ASReml-R using a  1070 

linear mixed-model approach 1071 

 1072 

Moderator variable df Denominator 

df 

F P 

Intercept 1 94.7 60.98 <0.001 

Study type 1 424.5 17.08 0.209 

Sex 2 395.1 0.21 0.677 

Age 2 450.7 1.44 0.233 

Moult modulator 9 378.1 4.15 <0.001 

Response categories 5 471.7 1.70 0.409 

Geographical location 2 61.5 0.56 0.541 

Moult modulator x response categories 40 428.6 1.91 <0.001 

Moult modulator x  geographical location 13 376.4 2.24 <0.01 


