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ABSTRACT 
[bookmark: _Hlk8230668][bookmark: _Hlk8230738]Variance ratios—including heritability, repeatability, and individual resource specialization—are an integral part of evolutionary ecology. Understanding evolutionary and ecological processes, and how these processes may differ among populations and environments, can require the comparison of these ratios across groups. Unfortunately, inference based on comparisons of ratios is limited because groups can differ due to differences in the numerator, denominator, or both. Moreover, we suggest that evolutionary ecologists are almost always more interested in specific variance component differences among groups rather than in differences in variance ratios per se. Unfortunately, recommendations for how to infer whether groups differ are not clear in the literature. Here we show how questions regarding variance components and how they vary among groups can be asked using Hierarchical Linear Model approaches (HLMs). Using simulations, we demonstrate that both frequentist and Bayesian frameworks have similar abilities to infer differences in variance components. Our simulations also show that scenarios where differences occur at higher levels of organization can be difficult to detect at low sample sizes. We conclude by providing guidelines for how to report and draw inferences based on comparisons of variance components and variance ratios. 
Running Head: Comparing variation within datasets
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[bookmark: _Hlk8230960]INTRODUCTION
Our understanding of many evolutionary and ecological processes is underpinned by a comparison or discussion of variance ratios. For example, evolutionary change as predicted by the classic breeder’s equation is dependent on the ratio of additive genetic variation () to total phenotypic variation (), more commonly known as narrow-sense heritability ( or h2):
     (equation 1)
where the change in a population’s mean from one generation to the next (Δz) is based on the selection differential (s) and the trait’s heritability (h2) (Lush 1937). Considerable effort has been directed toward estimating and comparing heritability estimates among taxa or among trait types (Mousseau and Roff 1987; Stirling et al. 2002; Dochtermann et al. 2019), with these comparisons sometimes used to argue that some traits are under greater selection than others (Mousseau and Roff 1987). 
Variance ratios are similarly important across ecology. For example, individual resource specialization can be estimated as the proportion of variation in an individual’s resource use relative to the species’ total variation in resource use (Bolnick et al. 2002):
     (equation 2)
where TNW is a species’ total niche width (total resource variation) and WIC is “the average variance of resources found within individual’s diets”.
These two examples are hardly unique, interest in variance ratios spans a broad swath of evolutionary ecology. This includes the behavioral ecological interest in repeatability and “animal personality” (Lessells and Boag 1987; Bell et al. 2009; Dingemanse and Dochtermann 2013; Dochtermann et al. 2015) and interest in community ecology regarding the distribution of phenotypic variation in functional traits expressed within versus among populations or species (Violle et al. 2012). Such variance ratios are commonly calculated and interpreted across evolution and ecology (Table 1). 
	While the use of variance ratios (and other variance standardized measurements) can ease interpretation and facilitate comparison among populations, inferences based on these ratios can be highly misleading (see Houle 1992 and Wilson 2018 for limitations to the use of heritability and repeatability). If a variance ratio—whether heritability, individual resource specialization, or trait variability within communities—is compared between two groups, this comparison is only narrowly interpretable. Specifically, such a comparison, regardless of whether a difference is detected, is not informative regarding the biological basis of a difference or lack thereof. This limited interpretability is due to the fact that variance ratios can differ because their numerators differ, their denominators differ, or because both differ. Indeed, variance ratios can even be the same despite differing in both numerators and denominators, differences with profoundly different biological meanings. 
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Table 1. Examples variance ratios found in the the ecological and evolutionary literature. 
	Discipline
	Variance ratio
	Definition
	Description
	References

	Quantitative Genetics
	Heritability
	h2 = Va / Vp
	The proportion of variation attributable to additive genetic variance (Va)
	Mousseau & Roff 1987

	Behavioral Ecology
	Repeatability
	R = Vi / Vp
	The proportion of variation attributable to among-individual differences (Vi)
	Lessels & Boag 1987

	Ecology
	Individual Niche Specialization
	S = WIC / TNW
	The proportion of variation attributable to within-individual preference in niche (WIC)
(usually expressed as standard deviations)
	Bolnick et al. 2002

	Community Ecology
	T-ratios
	TIP/IC = VIP / VIC
	The proportion of variation attributable to within-population variance (VIP) relative to the community variance (VIC)
	Violle et al. 2012

	
	
	TIC/IR = VIC / VIR
	The proportion of variation attributable to community variance (VIC) relative to the regional pool variance (VIR)
	



Legend: Va: additive genetic variance in trait, Vi: among-individual variance in trait, Vp: total (i.e. phenotypic) variance in trait, WIC: within-individual variance in niche preference, TNW: Total niche width, TIP: total amount of trait variation in a community, VIP: within-population variance in trait, VIC: community variance in trait, VIR: regional pool variance. 
That variance ratios obscure biologically interesting differences is important for the inferences these ratios are intended to facilitate. Building on the surprisingly extensive literature on “enigmatic” creatures like Unicorns (Wilson 2008; de Villemereuil et al. 2018; Dochtermann and Royauté 2019), Haggis (Houslay and Wilson 2017), Kraken (Careau et al. 2017) and superfleas (Reznick et al. 2000), let us consider the following hypothetical scenario: researchers are studying the behaviors and dietary habits of two populations of the mythical Dahu (Dahu desterus; Figure 1A) living at two different elevations. This elusive creature, endemic to the French and Swiss alps, has the characteristic of having shorter legs on its left side, thus only allowing for clockwise forward movement and counter-clockwise backwards movement (Chartois & Claudel 1945; Jacquat 1995). While repeatedly measuring aggressive interactions among individuals, the researchers find no discernable differences in means between populations and similar behavioral repeatabilities ( = 0.8; Figure 1B). The researchers notice, however, that there are large differences in the among-and within-individual variances of each population. If researchers had only examined repeatabilities and mean differences they would inappropriately conclude that the populations are behaviorally equivalent. However, paying attention to the variance components reveals that individuals from the high-altitude population are much more distinct from one another in their aggressive tendencies while, at low-altitude, individuals show little departure from the population average (Figure 1B, C). 
These same researchers are also studying the dietary habits of D. desterus and ask whether the harsher climate at the top of the mountain range lead to a narrower dietary breadth. Researchers predict that individual resource specialization will be higher in the low elevation population, as D. desterus have more food options to choose from at lower elevations. To the researcher’s surprise, they find much higher individual resource specialization in the high-altitude population: S1 = 0.2, S2 = 0.8. Upon examining the specific values of among- and within-individual variation in niche, it becomes clear that these differences are a result of the high elevation population having a much narrower total niche width (Figure 1D) while the within-individual variation in niche preference is equal between populations. Functionally, this means that it is the difference in diet preference among individuals that drives the difference between the two populations. With more diverse resources available at low elevation each individual can specialize along the total niche axis yet the breadth of diet preference within-individuals is unchanged in both populations.
For both aggression and resource specialization, exclusive reliance on interpreting ratios would have led to either inappropriate or incomplete inferences. Due to these problems with interpretations of variance ratios and the questions such ratios are used to address, what would be of greater use to researchers is to understand differences in the underlying variance components themselves. 
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Figure 1. Reliance on variance ratios can lead to misleading biological inferences. (A) The elusive Dahu (Dahu dexterus) in its natural environment (artisitic rendition by Philipe Semeria). (B) Two populations of Dahus living at different elevations do not differ in their repeatability of aggressive interactions (τ). However, the high-elevation population has much larger among-individual variance (VI) compared to the low- elevation population. This means that individuals express more distinct aggressive tendencies at high elevation compared to low elevation. (C) By plotting the individual aggression scores over the course of multiple measurements, it is clear that individuals are more distinct in their aggressive behavioral strategies at high elevation. This inference cannot be made by investigating repeatability alone. (D) The two population have very different resource specialization indices (S). Taken at face value, this leads to the conclusion that individuals from the low elevation population are less specialized. A more accurate inference is that individuals do not differ in niche width (WIN), it is instead the total niche wdith (TNW) that is narrower in the high-alttitude population. 
Photo credit: Philippe Semeria - www.philippe-semeria.com

[bookmark: _Hlk8230984]Comparing variance components in practice: a statistical framework
The statistical procedures necessary for the estimation of variance components and ratios within a single population have been the subject of much attention ( e.g. mixed models for repeatability: Dingemanse and Dochtermann 2013; animal models for heritability: Wilson et al. 2010; individual niche specialization: Bolnick et al. 2002; Coblentz et al. 2017; functional trait variation: Nakagawa and Schielzeth 2012; Violle et al. 2012; Carmona et al. 2016). There is also a long history in quantitative genetics regarding the comparison of variances (e.g. Shaw 1991) and the comparison of covariance structures among groups (Aguirre et al. 2014, Arnold & Phillips 1999, Roff 2002, Roff et al. 2012). Unfortunately, these quantitative genetic approaches have been poorly disseminated across fields (but see Dochtermann & Roff 2010 and White et al. 2019 for calls to do so and cross-discipline applications of these methods). Here we describe and investigate methods for detecting differences in relevant variance components amongst groups. Specifically, we compare the strength and weaknesses of three statistical approaches: comparison of confidence intervals, model comparison with AIC and comparison of credible intervals for the difference in variance components with a Bayesian approach.
To illustrate the comparison of variance components, we consider a scenario where a phenotypic attribute y is measured repeatedly for individual organisms occupying one of two different environments (E1 and E2) and in which variation occurs among and within experimental units (VH and VW respectively). We use the subscripts H and W to denote that the among-unit variance (VH) represents the “higher-level” variance used for comparing differences among the two environments, while the within-unit variance (VW) indicates differences in trait value occurring within environments during the course of the experiment. This is a broadly applicable scenario that can correspond to the comparison of the repeatability of a phenotype between environments, the comparison of diet specialization for individuals occupying different environments, or how functional traits vary among and within species in two different environments. 
An easy way to compare these variance components and their ratios (e.g. τ = VH/(VH + VW)) is to estimate the variance components for each environment in separate statistical models, a first model estimating VH and VW for environment 1 and second estimating VH and VW for environment 2. It is then possible to detect significant differences in variance components and ratio by environments based on whether their confidence intervals overlap or not. While straightforward, this method suffers from several limitations. First, basing inference on the overlap of 95 % confidence intervals tends to be overly conservative (Barr 1969), especially when sample size is low. It is instead whether the confidence interval for the difference in variances excludes 0 that is relevant for drawing inferences. This difference cannot be directly estimated from the approach we have described. However, statistical significance can still be assessed by comparing the overlap of the 83% confidence intervals for variance components, a threshold that provides a better approximation for an α = 0.05 for the null hypothesis of no difference (Austin and Hux 2002; MacGregor-Fors and Payton 2013; Hector 2015). Second, by estimating variance components in separate statistical models, the hierarchical structure of the data, i.e. the variance components nested within the environments, has been broken. As a result, potential average differences in the traits of interest are not appropriately tested. 
[bookmark: _Hlk8231544]Instead, we suggest that researchers interested in the comparison of variance components within datasets should strive to use statistical procedures that mimic the existing biological structure of the data and the data collection process. Consequently, a more appropriate procedure than assessing the overlap of confidence intervals would be the use of a Hierarchical Linear Model (HLM) where the among- and within-unit variance is estimated for each environment within the same statistical model. This statistical model can be described by the following equation:
 					(equation 3)


where describes the phenotypic traits for the ith experimental unit and jth observation. , is the deviation from an overall intercept, , for the jth experimental unit (i.e. this is a random intercepts model). Meanwhile,  represents the regression coefficient for the fixed effect of environment (here a contrast coefficient). The random intercepts and residual variance () both follow a multivariate normal distribution, and  and , are the variance-covariance matrices at the among- and within-unit levels respectively. 
The diagonal elements of these matrices represent the among- (H) and within-unit (W) variances by environment  and the off-diagonal elements represent the cross-environment correlation (set to 0 if units are only ever evaluated in one of the two environments). This formulation has the advantage of allowing considerable flexibility in the specification of the statistical models considered (Dingemanse and Dochtermann 2013). HLMs are now widely applied and are available for most statistical softwares while also able to accommodate non-normal distributions (Table 2). 
Upon fitting via HLM, several methods are then available to determine whether a variance ratio or specific components of the ratio differ by environment. Specific hypotheses of which variance component differs across environment can be easily tested via model comparison. For example, a model where only the among-unit variance differs by environment can be compared to a null model where the among and within-unit variance are kept constant across environments (Royauté et al. 2019). These models can be estimated within a frequentist framework via restricted maximum likelihood or a Bayesian framework and suitable decision criteria can be used to determine which model best fits the data. In the case of restricted maximum likelihood estimation, it is also possible to use likelihood ratio tests to compare these models. Note however that the proper degrees of freedom to apply to each model is unclear and additional care should be taken when using this method (Pinheiro and Bates 2000; see Santostefano et al. 2016 for a recent example).

Table 2. Packages and softwares allowing to test for differences in variance components using Hierarchical Generlized Linear Mixed models (HGLM) along with parameter estimation method (maximum likelihood (ML), restricted maximum likelihood (REML) or Bayesian framework) and inference method (Likelihood Ratio tests (LRT), AIC or credible interval overlap). Note that this list is non-representative of the diversity of option available and is based on widely-used commercial softwares and R packages.
	Package or software
	Free or commercial
	Estimation 
	Testing method
	Among-unit variance by group
	Within-unit variance by group
	Distributions handled
	Comments
	Reference

	ASREmL
	Commercial
	ML/REML
	LRT, AIC
	Yes
	Yes
	Gaussian
	
	Gilmour et al. (2015)

	SAS
	Commercial
	ML/REML
	LRT, AIC
	Yes
	Yes
	Gaussian, Poisson, Binomial
…
	
	SAS Institute Inc.

	nlme
	Free
	ML/REML
	LRT, AIC
	Yes
	Yes
	Gaussian 
	
	Pinheirho and Bates (2000)

	lme4
	Free
	ML/REML
	LRT, AIC
	Yes
	No
	Gaussian, Poisson, Binomial
…
	
	Bates et al. (2015)

	R-INLA
	Free
	ML/REML
	LRT, AIC
	Yes
	Yes
	Gaussian
	
	Lindgren, and Rue (2015)

	glmmTMB
	Free
	ML/REML
	LRT, AIC
	Yes
	Yes
	Gaussian, Poisson, Binomial
…
	
	Brooks et al. 2017

	hglm
	Free
	ML/REML
	LRT, AIC
	Yes
	Yes
	Gaussian, Poisson, Binomial
…
	Within-unit variance modelled as Gamma distribution
	Rönnegård et al. (2010)

	MCMCglmm
	Free
	Bayesian
	DIC, overlap of credible intervals
	Yes
	Yes
	Gaussian, Poisson, Binomial
…
	
	Hadfield (2010)

	brms
	Free
	Bayesian
	WAIC, LOO, overlap of credible intervals
	Yes
	Yes
	Gaussian, Poisson, Binomial
…
	Within-unit variance modelled as log-normal distribution
	Bürkner (2017)





	In many cases, researchers are also interested in whether the difference in variance components have a biologically meaningful effect. In other words, when asking questions about whether variance components vary between environments, we are mostly interested in the magnitude of the difference in these components across environments. While model comparison of HLMs can help us understand whether a statistically detectable difference is observable across environments, the magnitude of the difference can only be determined by examining the difference in variance components among environment: ΔV estimated as VE2 - VE1 in our case. When the trait of interest is expressed as standard deviation units (i.e. mean centered and scaled to the standard deviation of the dataset), this difference can be considered an effect size for the magnitude of the difference among variance components, thus making comparisons across studies possible (Royauté et al. 2015; Hamilton et al. 2017; Royauté and Dochtermann 2017). Note that ΔV could also be expressed on a ratio scale (VE2/VE1) or on a log-additive scale (log(VE2) - log (VE1)). We used ΔV on an additive scale because it allows the most straightforward interpretation and functions in cases where a variance component is zero or approaching zero.	ΔV can be calculated from the maximum likelihood estimates in a frequentist framework but calculation of the uncertainty around this estimate is not straightforward and can require additional steps such as bootstrapping. In a Bayesian framework, the calculations are much simpler given that the distribution of ΔV can be directly estimated by taking the difference in the posterior distribution of VE2 - VE1. The posterior mode of ΔV can then be interpreted as the estimated strength of ΔV, with credible intervals representing the precision around this estimate.
In summary, approaches based on HLM and their generalized extensions allow great flexibility and are well suited to study questions related to how variation in phenotypic traits varies at multiple levels of organization. In the next section, we describe the performance of HLMs to detect differences in variance components.
[bookmark: _Hlk8230996]METHODS
[bookmark: _Hlk8231005]Data simulations
In order to compare the performance of statistical procedures for the detection of differences in variance components and variance ratios, we performed a series of simulations based on the scenarios illustrated in Figure 2. In these scenarios a phenotypic attribute y is measured in two different environments (E1 and E2) and variation occurs among and within experimental units (VH and VW respectively). As detailed in Figure 2, in scenarios A through C the variance ratio differs by an equal amount between the two environments (∆τ = 0.3), but the underlying driver of this difference is either due to a difference in the among-unit variance (A), in the within-unit variance (B) or in both the among and within-unit variance (C). Note that for scenario C, the total variance remains the same between environments. In scenarios D and E, we explore cases where the variance ratios are equal among environment, either because all variance components are equal as well (D) or in spite of differences in all other variance components (E) (see Table S1 for exact values for all parameters). 
Using the R statistical environment (R Core Team 2017), we generated 500 datasets for each of the following combinations:
· Sample size varying from 20 to 200 units by increments of 20 for each environments (sample size was equal between the two environments)
· Number of repeated measures taken on each unit varying from 2 to 6 repeated measures by increments of 1 
· Five different scenarios of known difference in variance ratios as described in Figure 1 and Table S1.
Each dataset was simulated by sampling from a Gaussian distribution for the random (among-unit values) and the error (within-unit) terms. This resulted in a total of 125,000 datasets on which we tested three different statistical procedures to detect differences in variance components and variance ratios. All R code for data generation are provided in Supplemental Materials 1.
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Figure 2. Scenarios where the same and different variance ratios (a higher group level variation over total variation) can arise from different patterns in the underlying variance components used for simulation purposes (Exact values can be found in Table S1). Panels A-C indicate scenarios where the total variation differs between two environments (E1 and E2) due to differences in either the higher group level variance (A), the lower level variance (B) or both (C). Panels D-E indicate scenarios where the ratios remains constant across environments, either because all variance components are indentical (D) or in spite of variance component being different among environments (E). Depending on the study, the higher group level variation can represent variation among individuals, populations or species, while the lower-level variance represents variation within sampling units.


[bookmark: _Hlk8231024]Comparison of confidence interval overlap from separate mixed models
We first compared the overlap of 83 % confidence intervals for variance component when estimated from separate linear mixed models. We specified one mixed model for environment 1 and one for environment 2. These models are a simplified version of the one presented in equation (3):
 					(equation 4)


The experimental units in the environment of interest are included as random effects and no additional fixed effect are needed. Upon fitting these models, we computed 83 % confidence intervals for the among and within-unit variance. Datasets where these intervals did not overlap were considered as statistically different.
Frequentist HLM with AIC model comparison 
Our second approach was to fit the HLM approach described above and test for the for the significance of the difference in among- and within-unit variance using likelihood ratio tests. Specifically, we compared the following models:
We specified four different mixed models corresponding to the four different possibilities by which variance components may differ (see also Royauté et al. 2019):
· Model 1: a null model where the among (VH) and within-unit variance (VW) was kept constant among environments.
· Model 2: a model where only the among-unit variance differs among environments, while the within-unit variance is kept constant (VH ≠ & VW =)
· Model 3: a model where only the within-unit variance differs among environments while the among-unit variance is kept constant (VH = & VW ≠)
· Model 4: a model where both the among and within-unit variance were allowed to vary among environments (VH ≠ & VW ≠)
[bookmark: _Hlk8231036]For each dataset combination, we then compared each model’s Aikaike’s Information Criterion value (AIC). AIC allows to compare the relative fit of statistical models and models with lower AIC values indicate better support relative to competing models. These simulations and this analytical framework is similar to previously used approaches (e.g. Jenkins 2011; Shaw 1991; Tüzün et al. 2017). These models were specified using the nlme package for mixed models (Pinheiro et al. 2000) using Restricted Maximum Likelihood (REML).Bayesian HLM and estimation of the difference in variance components
We next fit a mixed model where variances among and within units were allowed to vary between environments (as in model 4 described above) to each randomly generated dataset. We calculated the posterior mode for the difference in variance components (calculated as ∆V = VE2 – VE1) and estimated the 95 % credible intervals based on the  Highest Posterior Density of this distribution. 95 % credible intervals excluding 0 were taken to indicate statistically detectable differences in variance components among environments. All models were run with the MCMCglmm package (Hadfield 2010) using default iteration settings to shorten computing time (13000 iterations, 3000 burn-in iterations and thinning interval of 10 iterations). We used priors that were minimally informative for the variance components (See Supplementary Materia 1 for prior specification and Supplementary Materia 3 for a discussion on priors).
[bookmark: _Hlk8231048]Probability of correct model identification, precision, bias and accuracy estimations
We calculated the probability of detecting the correct model of differences in variance components (hereafter abridged to probability of detecting differences), precision, relative bias and accuracy under each scenario and sampling design to compare the performance of maximum likelihood and Bayesian mixed models in their estimation of difference in variance components. For Method 1 (overlap of 83 % intervals), we assigned values of 1 when significant differences among variance component were detected in directions predicted by the data generating process, and 0 otherwise. For Method 2, we calculated the probability of detecting differences as the proportion of times the model with the lowest AIC matched the simulating model. For Method 3, we first calculated whether a given model detected a difference in variance components based on the overlap of the 95 % credible intervals of the ΔV posterior distribution with 0. As in Method 1, we then assigned values of 0 or 1 based on whether the detected difference matched with the data generation process of the corresponding scenario. We calculated the probability of detecting differences as the proportion of analyzed datasets in which we detected differences in the direction predicted by each scenario and statistical method. Precision, indicating the similarity of the results produced by simulations within a given scenario, was calculated as the difference between 25 % and 75 % quantiles of estimates following van de Pol (2012). To calculate the relative bias (in %) for each statistical approach by scenario, we calculated the mean difference between the expected value and the value observed in each 500 simulations. Finally, we report the root mean square of error (RMSE) for each scenario and sample sizes. This metric calculates how close estimates are to the expected values and serves as an estimate of the accuracy of each statistical approach by scenario.

[bookmark: _Hlk8231067]RESULTS
The probability of correctly detecting differences in variance components did not differ substantially between frequentist and Bayesian methods of estimation (Figure 3). The highest probability to detect differences was observed for analyses of scenario B (the variance ratio differs due to a difference in within-unit variance) and scenario D (no difference in variance components or ratio). This was the case for all statistical approaches (Figure 3). Statistical power to differentiate scenarios A, C and E was lower, especially with small sample sizes and low number of repeated measures (Figure 3) (A: the among-unit variance differs between environments, C: both among and within-unit variance differ but the total variance is equal among environments, E: all variance components differ, but the ratios remain the same between environments). Importantly, no statistical method seemed to outperform all others in across scenarios. Our results are consistent with previous simulations showing that the among-unit variance component is particularly difficult to estimate at small sample sizes (Dingemanse & Dochtermann 2013). 
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Figure 3. Effect of sampling design on the probability to detect differences in variance components by scenario type and statistical modeling approach. Each point represents the probability of detecting the correct differences in variance averaged over 500 simulated datasets. Scenarios A represents a scenario where only the among-unit variance (VH) varies between environments, scenario B represents a case where the within-unit variance (VW) varies between environments, and both among and within-unit variance vary between environments in scenario C. In scenario D, all variance components are equal while in scenario E, variance components are different but variance ratios are equal across environments. Dashed lines correspond to 80 % treshold sililar to recommendations for power analyses. See Table S1 for a full description of the parameters values in each scenario. 
	Only in scenarios B and D were the correct differences among variance components identified > 80 % of the time, even at low sample sizes (Figure 3). In all other cases this threshold was only reached with high sample sizes and a high number of repeated measures. For scenarios C and E, datasets with only 2 repeated measures per unit never achieved a power above 0.8 even with sample sizes above 200 units per environment (i.e. a minimum of 800 total measurements, Figure 3). Increasing the number of repeated measures only marginally alleviated the problem. For example, in scenario C, only datasets with 4 or more repeated measures per unit reached statistical power above 0.8 with sample sizes above 120 units per environments, which is higher than many ecological or evolutionary studies can provide under realistic scenarios. 
Note that for AIC model comparison, we calculated power as the number of times the best model corresponded to the generating model. A more conservative approach is to calculate the proportion of times the best model is at least 2 AIC units lower than the second model. This method corresponds to a common threshold to detect statistically distinct models (Burnham and Anderson 1998). When using this more conservative threshold (Figure S1), datasets generated according to scenarios A and D were never statistically distinguishable from non-generating models, although the correct model was consistently ranked as the best model. This is likely because when the generating model does not include differences in the within-unit variability (scenarios A and D), sampling error is erroneously identified as heterogeneity. At smaller sample sizes this error is greater on average, and thus detectable. At larger sample sizes this sampling error is smaller but more easily detected and therefore manifests as different between groups. To address this, in addition to measures of variance differences like the described ΔV statistic, researchers should also compare mean-standardized variance estimates like the coefficient of variation or Houle’s evolvability between groups (Houle 1992; Hansen et al. 2011; Dochtermann and Royauté 2019). 
	The comparison of relative bias, precision, and accuracy among statistical methods produced mixed results. On average, Bayesian HLMs consistently underestimated the among-unit variance for scenarios in which the among-unit variance differed between environments (scenarios A, C, and E) resulting in a severe bias at small sample sizes (Figure S2). However, Bayesian HLMs also had higher precision and accuracy compared to maximum likelihood (Figure S3, S4). This means that Bayesian estimates tend to be consistently more conservative than maximum likelihood regarding the magnitude of the among-unit variance but that these estimates nonetheless more closely matched simulation conditions.
[bookmark: _Hlk8231079]DISCUSSION
Comparing variability across datasets is important for many questions in evolutionary ecology (e.g. Table 1). However, variance ratios are not sufficient to address questions about how variance components vary across environments, populations, or sexes. The inability to determine why groups differ based on ratios is in addition to the numerous conceptual and theoretical problems, discussed primarily in the quantitative genetics literature, inherent to the estimation of ratios (Houle 1992; Hansen et al. 2011). Instead, many questions require the explicit comparison of variance components.
	Our simulations show that regardless of the statistical methods used, comparing variance components across groups is a “data hungry” question. Scenarios where the among-unit variance differed between environments were particularly hard to detect at low sample sizes. Note that our objective was not to provide a full exploration of parameter space in order to define the proper sample sizes to detect differences of various magnitude for each variance component. Instead, we focused on a subset of scenarios that are likely to be common in ecology and evolution. 
	Given the issues discussed above, how should researchers interested in ecological and evolutionary variation design their studies and report their findings? Based on our simulations, the probability to detect differences in variance components will depend in large part on the ability to estimate the among-unit variance component (VH). A simple rule for sampling can therefore be to estimate the sample size needed to detect the lowest among-unit variance value (see, for example, Martin et al. 2011; van de Pol 2012; Dingemanse and Dochtermann 2013) and multiplying that value by the number of experimental groups involved. We also recommend that power calculations be conducted prior to the experiment whenever possible. In Supplementary Material 2, we provide R code allowing researchers to conduct a priori power analyses for populations of known among- and within-unit variance and expected magnitude for the difference in these components. We also provide an R code tutorial for the various methods by which differences in variance components can be estimated from both a maximum likelihood and Bayesian perspective (Supplementary Material 3)
Consistent with general calls to emphasize effect sizes (Nakagawa and Cuthill 2007; Nakagawa et al. 2015), we suggest that researchers report their results in a manner that focuses on the magnitude of the difference in variability between experimental groups rather than solely focus on statistical significance. To this effect, we believe that reporting the results of the full model rather than just the most parsimonious model will be most appropriate in most cases (i.e. model 4 in our conceptual example). This is because model selection only gives information on whether differences among groups are statistically detectable. In contrast, questions regarding the magnitude and precision of the estimated differences are answerable only with interpretation of the most complete statistical model (see tutorial in Supplementary Material 4). In addition to presenting results of the full model, we suggest that measures of effect sizes for the differences in variance component also be presented. As reported above, ΔV provides a simple metric to estimate the magnitude of these differences, but it is by no mean the only one. In our theoretical example, the mean trait value did not differ by environments, but in many cases mean and variance are related. In such cases, using comparisons based on the Houle’s (1992) I2 value or coefficients of variation for each component as opposed to variance component themselves can be preferable (Hansen et al. 2011; Dochtermann and Royauté 2019). Effect sizes based on the coefficient of variation can also be calculated within an HLM framework as described by Nakagawa et al. (2015) (see also Carmona et al. 2016 and Fontana et al. 2018 for approaches relevant to functional trait diversity).
	While we limited our conceptual example to comparisons between two environments, the HLM approach we propose is by no mean restricted to two-groups comparisons. For example, Jenkins (2011) used model comparison to tease apart the relative influence of sex, species and their interaction on the expression of behavioral variation in kangaroo rats. Similarly, Coblentz et al. (2017) show how model selection combined with Bayesian HGLM can allow the comparison of indices of diet specialization within and among species. In both cases, model section can provide a first pass at whether differences in variance components are detectable among groups, while specific pairwise comparisons of effect sizes (using ΔV or other metrics) will allow discernment of the most pronounced differences in variance component. Regardless of the statistical approach used, we suggest it is important that researchers clearly outline the direction and, when possible, magnitude of the expected effects in their predictions (see Royauté et al. 2019 for a recent example).
	Finally, our conceptual examples focus exclusively on the case of “well-behaved” data with normal error distributions. While these comparisons can be made with generalized extensions to HLMS (HGLMs), extra care must be taken to appropriately estimate and compare the within-unit variance depending on the error distribution specified (see Nakagawa & Schielzeth 2010 for appropriate corrections).
[bookmark: _Hlk8231092]CONCLUSIONS
Variance ratios are a straightforward way to describe how various ecological and evolutionary processes occur. However, comparing these ratios across studies or group can be misleading if poor attention is given to the specific variance components making up those ratios. More importantly, as we have shown, a lack of difference in these ratios does not mean that variance components are equal among groups. Given these limitations, we advocate for techniques allowing the estimation of differences in each variance components rather than focusing solely on variance ratios. The statistical tools allowing comparison of trait variation have become increasingly sophisticated and now allow asking very precise questions. Specifically, we can now ask how trait variation is generated and how variation differs among groups. However, despite the availability of these tools, researchers interested in ecological and evolutionary variation must remain careful in their study designs. As our simulations show, scenarios involving differences in among-unit variance are particularly difficult to detect without substantial sample sizes. Finally, we hope the statistical approaches and tools for power analysis presented here will allow for appropriate comparisons of trait variation in ecological and evolutionary studies. 
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Supplementary Materials
SM1: Zip folder containing the raw data from simulations along with R code for data analysis and figures.
SM2: R code for conducting a priori power analysis. 
SM3: R tutorial for comparing variance components using the nlme, MCMCglmm and brms packages.
Table S1. Scenarios tested in simulations to estimate the power to detect differences in variance components of varying magnitude. 
Figure S1. Effect of sampling design on the probability to detect differences in variance components by scenario type and statistical modeling approach with ΔAIC > 2 threshold for model comparison.
Figure S2. Effect of sampling design on relative bias by scenario type and statistical modeling approach.
Figure S3. Effect of sampling design on estimate precision (width of the interquartile interval) by scenario type and statistical modeling approach.
Figure S4. Effect of sampling design on model accuracy (estimated as the root mean square of error, RMSE) by scenario type and statistical modeling approach. 
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