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ABSTRACT	(256/350	words)	10 

1. Many	key	questions	in	evolutionary	ecology	require	the	use	of	variance	ratios	such	11 

as	heritability,	repeatability,	and	individual	resource	specialization.	These	ratios	12 

allow	to	understand	how	phenotypic	variation	is	structured	into	genetic	and	non-13 

genetic	components,	to	identify	how	much	organisms	vary	in	the	resources	they	use	14 

or	how	functional	traits	structure	species	communities.	Understanding	how	15 

evolutionary	and	ecological	processes	differs	among	populations	and	environments	16 

therefore	often	requires	the	comparison	of	these	ratios	across	groups	(i.e.	17 

populations,	sexes,	species).		18 

2. Inference	based	on	comparisons	of	ratios	can	be	limited,	however.	Variance	ratios	19 

can	remain	the	same	across	group	despite	very	different	values	in	the	numerator	20 

and	denominator	variances.	Moreover,	evolutionary	ecologists	are	most	often	21 

interested	in	differences	in	specific	variance	component	among	groups	rather	than	22 

in	differences	in	variance	ratios	per	se.		23 

3. Recommendations	for	how	to	infer	whether	groups	differ	in	variance	are	not	clear	24 

in	the	literature.	Using	simulations,	we	show	how	questions	regarding	the	25 

estimation	of	variance	components	and	their	differences	among	groups	can	be	26 

answered	with	Hierarchical	Linear	Modeling	approaches	(HLMs).		27 

4. Frequentist	and	Bayesian	frameworks	have	similar	abilities	to	identify	differences	in	28 

variance	components.	However,	variance	differences	at	higher	levels	of	organization	29 

(i.e.	the	among-unit	variance)	can	be	difficult	to	detect	with	low	sample	sizes.		30 

5. We	provide	tools	to	conduct	power	analyses	to	determine	the	appropriate	sample	31 

sizes	necessary	to	detect	differences	in	variance	of	a	given	magnitude.	We	conclude	32 
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by	supplying	guidelines	for	how	to	report	and	draw	inferences	based	on	the	33 

comparisons	of	variance	components	and	variance	ratios		34 

	35 

Running	Head:	Comparing	variation	within	datasets	36 
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INTRODUCTION	39 

Our	understanding	of	many	evolutionary	and	ecological	processes	is	underpinned	by	an	40 

estimation	of	variance	ratios.	For	example,	evolutionary	change	is	dependent	on	the	ratio	41 

of	additive	genetic	variation	(!!)	to	total	phenotypic	variation	(!"),	more	commonly	known	42 

as	narrow-sense	heritability	(#!#"	or	h
2):	43 

∆# = ℎ$&					(equation	1)	44 

where	the	change	in	a	population’s	mean	from	one	generation	to	the	next	(Δz)	is	based	on	45 

the	selection	differential	(s)	and	the	trait’s	heritability	(h2)	(breeder’s	equation,	Lush	1937).	46 

Considerable	effort	has	been	directed	toward	estimating	and	comparing	heritability	47 

estimates	among	taxa	or	among	trait	types	(Mousseau	and	Roff	1987;	Stirling	et	al.	2002;	48 

Dochtermann	et	al.	2019),	with	these	comparisons	sometimes	used	to	argue	that	some	49 

traits	are	under	greater	selection	than	others	(Mousseau	and	Roff	1987).		50 

Variance	ratios	are	similarly	important	across	ecology.	For	example,	individual	51 

resource	specialization	can	be	estimated	as	the	proportion	of	variation	in	an	individual’s	52 

resource	use	relative	to	the	species’	total	variation	in	resource	use	(Bolnick	et	al.	2002):	53 

&'()*+,*#+-*./ = 	 %&'
()%					(equation	2)	54 

where	TNW	is	a	species’	total	niche	width	(total	resource	variation)	and	WIC	is	“the	55 

average	variance	of	resources	found	within	individual’s	diets”.	56 

Interest	in	variance	ratios	spans	a	broad	swath	of	evolutionary	ecology	(Table	1).	57 

This	includes	interest	in	repeatability	and	“animal	personality”	(Lessells	and	Boag	1987;	58 

Bell	et	al.	2009;	Dingemanse	and	Dochtermann	2013;	Dochtermann	et	al.	2015)	and	59 
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interest	in	community	ecology	regarding	the	distribution	of	functional	trait	variation	60 

expressed	within	versus	among	populations	or	species	(Violle	et	al.	2012).	61 

While	the	use	of	variance	ratios	can	facilitate	comparison	among	populations,	62 

inferences	based	on	these	ratios	can	be	highly	misleading	(Houle	1992;	Wilson	2018).	If	a	63 

variance	ratio	is	compared	between	two	groups,	this	comparison	is	only	narrowly	64 

interpretable.	Specifically,	such	a	comparison	is	not	informative	regarding	the	biological	65 

basis	of	a	difference	or	lack	thereof.	This	is	the	case	because	variance	ratios	can	differ	when	66 

their	numerators	differ,	their	denominators	differ,	or	because	both	differ.	Indeed,	variance	67 

ratios	can	be	equal	despite	having	different	numerators	and	denominators	values.	68 

	69 
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Table	1.	Examples	variance	ratios	found	in	the	the	ecological	and	evolutionary	literature.		70 

Discipline	 Variance	ratio	 Definition	 Description	 References	
Quantitative	
Genetics	

Heritability	 h2	=	Va	/	Vp	 The	proportion	of	variation	attributable	to	
additive	genetic	variance	(Va)	

Mousseau	&	
Roff	1987	

Behavioral	Ecology	 Repeatability	 R	=	Vi	/	Vp	 The	proportion	of	variation	attributable	to	
among-individual	differences	(Vi)	

Lessels	&	Boag	
1987	

Ecology	 Individual	Niche	
Specialization	

S	=	WIC	/	TNW	 The	proportion	of	variation	attributable	to	
within-individual	preference	in	niche	(WIC)	
(usually	expressed	as	standard	deviations)	

Bolnick	et	al.	
2002	

Community	
Ecology	

T-ratios	 TIP/IC	=	VIP	/	VIC	 The	proportion	of	variation	attributable	to	
within-population	variance	(VIP)	relative	to	
the	community	variance	(VIC)	

Violle	et	al.	
2012	

	 	 TIC/IR	=	VIC	/	VIR	 The	proportion	of	variation	attributable	to	
community	variance	(VIC)	relative	to	the	
regional	pool	variance	(VIR)	

	

	71 

Legend:	Va:	additive	genetic	variance	in	trait,	Vi:	among-individual	variance	in	trait,	Vp:	total	(i.e.	phenotypic)	variance	in	trait,	72 
WIC:	within-individual	variance	in	niche	preference,	TNW:	Total	niche	width,	TIP:	total	amount	of	trait	variation	in	a	73 
community,	VIP:	within-population	variance	in	trait,	VIC:	community	variance	in	trait,	VIR:	regional	pool	variance.	74 
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To	illustrate	that	point	further,	let	us	consider	the	following	scenario:	researchers	75 

are	studying	the	behaviors	and	dietary	habits	of	two	populations	of	the	mythical	Dahu	76 

(Dahu	desterus;	Figure	1A)	at	different	elevations.	These	elusive	creatures	have	shorter	77 

hind-legs	on	their	left	side,	thus	only	allowing	for	clockwise	movement	(Chartois	&	Claudel	78 

1945;	Jacquat	1995).	While	measuring	aggressive	interactions,	researchers	find	no	79 

differences	in	means	between	populations	and	similar	behavioral	repeatabilities	(!	=	0.8;	80 

Figure	1B).	The	researchers	notice,	however,	that	there	are	large	differences	in	the	among-81 

and	within-individual	variances	of	each	population.	Had	researchers	only	examined	82 

repeatabilities	and	mean	differences	they	would	inappropriately	conclude	that	the	83 

populations	are	behaviorally	equivalent.	However,	paying	attention	to	the	variance	84 

components	reveals	that	individuals	from	the	high-altitude	population	are	much	more	85 

distinct	from	one	another	in	their	aggressive	tendencies	while,	at	low-altitude,	individuals	86 

show	little	departure	from	the	population	average	(Figure	1B,	C).	87 

These	researchers	are	also	curious	as	to	whether	the	harsher	climate	at	the	top	of	88 

the	mountain	range	leads	to	a	narrower	dietary	breadth.	Researchers	predict	that	89 

individual	resource	specialization	will	be	higher	in	the	low	elevation	population,	as	D.	90 

desterus	have	more	food	options	to	choose	from.	To	the	researcher’s	surprise,	they	find	91 

much	higher	individual	resource	specialization	in	the	high-altitude	population:	S1	=	0.2,	S2	=	92 

0.8.	Upon	examining	the	specific	values	of	among-	and	within-individual	variation	in	niche,	93 

they	find	that	these	differences	are	a	result	of	the	high	elevation	population	having	a	much	94 

narrower	total	niche	width	(Figure	1D)	while	the	within-individual	variation	in	niche	95 

preference	is	equal	between	populations.	This	means	that	it	is	the	difference	in	diet	96 

preference	among	individuals	that	drives	the	difference	between	the	two	populations.	With	97 
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more	diverse	resources	available	at	low	elevation	each	individual	can	specialize	along	the	98 

total	niche	axis,	yet	the	breadth	of	diet	preference	within-individuals	is	unchanged	in	both	99 

populations.	100 

For	both	traits,	exclusive	reliance	on	ratios	would	have	led	to	either	inappropriate	101 

or	incomplete	inferences.	Due	to	these	problems	with	interpretations	of	variance	ratios,	102 

what	would	be	of	greater	use	to	researchers	is	to	understand	differences	in	the	underlying	103 

variance	components	themselves.		104 
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105 
Figure	1.	Reliance	on	variance	ratios	can	lead	to	misleading	inferences.	(A)	The	elusive	Dahu	(Dahu	106 
dexterus)	in	its	natural	environment.	(B)	Two	populations	of	Dahus	living	at	different	elevations	do	107 
not	differ	in	their	repeatability	of	aggressive	interactions	(τ).	(C)	By	plotting	the	individual	108 
aggression	scores	over	the	course	of	multiple	measurements,	it	is	clear	that	individuals	are	more	109 
distinct	in	their	aggressive	behavioral	strategies	at	high	elevation.	This	inference	cannot	be	made	by	110 
investigating	repeatability	alone.	(D)	The	two	population	have	very	different	resource	111 
specialization	indices	(S).	A	more	accurate	inference	is	that	individuals	do	not	differ	in	niche	width	112 
(WIN),	it	is	instead	the	total	niche	wdith	(TNW)	that	is	narrower	in	the	high-altitude	population.	113 
Figure	code	available	here:	https://osf.io/5aw42/ 114 

Illustration:	Philippe	Semeria	(CC BY 3.0 license)	 	115 
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A	statistical	framework	for	comparing	variance	components	116 

The	statistical	procedures	necessary	for	the	estimation	of	variance	components	and	ratios	117 

within	a	single	population	have	been	the	subject	of	much	attention	(	e.g.	mixed	models	for	118 

repeatability:	Dingemanse	and	Dochtermann	2013;	animal	models	for	heritability:	Wilson	119 

et	al.	2010;	individual	niche	specialization:	Bolnick	et	al.	2002;	Coblentz	et	al.	2017;	120 

functional	trait	variation:	Nakagawa	and	Schielzeth	2012;	Violle	et	al.	2012;	Carmona	et	al.	121 

2016).	There	is	also	a	long	history	in	quantitative	genetics	regarding	the	comparison	of	122 

variances	and	covariance	structures	among	groups	(Shaw	1991,	Arnold	&	Phillips	1999,	123 

Roff	2002,	Roff	et	al.	2012,	Aguirre	et	al.	2014).	Unfortunately,	these	quantitative	genetic	124 

approaches	have	been	poorly	disseminated	across	fields	(but	see	Dochtermann	&	Roff	125 

2010	and	White	et	al.	2019).	Here	we	describe	and	investigate	methods	for	detecting	126 

differences	in	variance	components	amongst	groups.	Specifically,	we	compare	the	strength	127 

and	weaknesses	of	three	statistical	approaches:	comparison	of	confidence	intervals,	model	128 

comparison	with	AIC,	and	Bayesian	estimation	of	the	difference	in	variance	components.	129 

We	consider	a	scenario	where	a	phenotypic	attribute,	y,	is	measured	repeatedly	for	130 

individual	organisms	occupying	one	of	two	different	environments	(E1	and	E2)	and	in	131 

which	variation	occurs	among	and	within	experimental	units	(VH	and	VW	respectively).	We	132 

use	the	subscripts	H	and	W	to	denote	that	the	among-unit	variance	(VH)	represents	the	133 

“higher-level”	variance	used	for	comparing	differences	between	the	two	environments,	134 

while	the	within-unit	variance	(VW)	indicates	differences	in	trait	value	occurring	within	135 

environments	during	the	course	of	the	experiment.	This	is	a	broadly	applicable	scenario	136 

that	can	correspond	to	the	comparison	of	the	repeatability	of	a	phenotype	between	137 

environments,	the	comparison	of	diet	specialization	for	individuals	occupying	different	138 
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environments,	or	how	functional	traits	vary	among	and	within	species	in	two	different	139 

environments.		140 

An	easy	way	to	compare	these	variance	components	and	their	ratios	(τ	=	VH/(VH	+	141 

VW))	is	to	estimate	the	variance	components	for	each	environment	in	separate	statistical	142 

models.	We	can	then	test	for	differences	in	variance	components	and	ratio	by	143 

environments	based	on	whether	their	confidence	intervals	overlap	or	not.	While	144 

straightforward,	this	method	suffers	from	several	limitations.	First,	basing	inference	on	the	145 

overlap	of	95	%	confidence	intervals	is	overly	conservative	(Barr	1969),	especially	when	146 

sample	size	is	low.	It	is	instead	whether	the	confidence	interval	for	the	difference	in	147 

variances	excludes	0	that	is	relevant	for	drawing	inferences.	This	difference	cannot	be	148 

directly	estimated	from	the	approach	we	have	described.	However,	statistical	significance	149 

can	still	be	assessed	by	comparing	the	overlap	of	the	83%	confidence	intervals	for	variance	150 

components,	a	threshold	that	provides	a	better	approximation	for	an	α	=	0.05	for	the	null	151 

hypothesis	of	no	difference	(Austin	and	Hux	2002;	MacGregor-Fors	and	Payton	2013;	152 

Hector	2015).	Second,	by	estimating	variance	components	in	separate	statistical	models,	153 

the	hierarchical	structure	of	the	data,	i.e.	the	variance	components	nested	within	the	154 

environments,	has	been	broken.	As	a	result,	potential	average	differences	in	the	traits	of	155 

interest	are	not	appropriately	tested.		156 

Instead,	we	suggest	that	a	more	appropriate	procedure	would	be	the	use	of	a	157 

Hierarchical	Linear	Model	(HLM)	where	the	among-	and	within-unit	variance	is	estimated	158 

for	each	environment	within	the	same	statistical	model.	This	statistical	model	can	be	159 

described	by	the	following	equation:	160 

"!" = $# + $$&'()*+',-'. + /').#" + -#!" 		 	 	 	 	 (equation	3)	161 
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/').#" 	~	234(0, Ω%&!');					Ω%&!' = ;3%&!'#	&$ 0
0 3%&!'#	&)<	162 

-#!" 	~	234(0, Ω*);					Ω* = ;3*#	&$ 0
0 3*#	&)<	163 

where	"!" 	describes	the	phenotypic	traits	for	the	ith	experimental	unit	and	jth	observation.	164 

/').#" ,	is	the	deviation	from	an	overall	intercept,	$#,	for	the	jth	experimental	unit.	$$	165 

represents	the	regression	coefficient	for	the	fixed	effect	of	environment	(here	a	contrast	166 

coefficient).	The	random	intercepts	and	residual	variance	(-#!")	both	follow	a	multivariate	167 

normal	distribution,	and	Ω%&!' and	Ω* ,	are	the	variance-covariance	matrices	at	the	among-	168 

and	within-unit	levels	respectively.		169 

The	diagonal	elements	of	these	matrices	represent	the	among-	(H)	and	within-unit	170 

(W)	variances	by	environment	and	the	off-diagonal	elements	represent	the	cross-171 

environment	correlation	(set	to	0	if	units	are	only	ever	evaluated	in	one	of	the	two	172 

environments).	This	formulation	has	the	advantage	of	allowing	considerable	flexibility	in	173 

the	specification	of	the	statistical	models	considered	(Dingemanse	and	Dochtermann	174 

2013).	HLMs	are	now	available	for	most	statistical	software	and	their	generalized	175 

extensions	can	accommodate	non-normal	error	distributions	(Table	2).		176 

Upon	fitting	HLMs,	several	methods	are	then	available	to	determine	whether	a	177 

variance	ratio	or	components	of	the	ratio	differ	by	environment.	Specific	hypotheses	of	178 

which	variance	component	differs	across	environment	can	be	easily	tested	via	model	179 

comparison.	For	example,	a	model	where	only	the	among-unit	variance	differs	by	180 

environment	can	be	compared	to	a	null	model	where	the	among	and	within-unit	variance	181 

are	kept	constant	across	environments	(Royauté	et	al.	2019).	These	models	can	be	182 

estimated	within	a	frequentist	framework	via	restricted	maximum	likelihood	or	a	Bayesian	183 
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framework	and	suitable	decision	criteria	can	be	used	to	determine	which	model	best	fits	184 

the	data.	In	the	case	of	restricted	maximum	likelihood	estimation,	it	is	also	possible	to	use	185 

likelihood	ratio	tests	to	compare	these	models.	Note	however	that	the	proper	degrees	of	186 

freedom	to	apply	to	each	model	is	unclear	and	additional	care	should	be	taken	when	using	187 

this	method	(Pinheiro	and	Bates	2000;	see	Santostefano	et	al.	2016	for	a	recent	example).	188 

In	many	cases,	researchers	are	also	interested	in	whether	the	difference	in	variance	189 

components	have	a	biologically	meaningful	effect.	In	other	words,	when	asking	questions	190 

about	whether	variance	components	vary	between	environments,	we	are	mostly	interested	191 

in	the	magnitude	of	the	difference	in	these	components	across	environments.	While	model	192 

comparison	of	HLMs	can	help	us	understand	whether	a	statistically	detectable	difference	is	193 

observable	across	environments,	the	magnitude	of	the	difference	can	only	be	determined	194 

by	examining	the	difference	in	variance	components	among	environment:	ΔV	estimated	as	195 

VE2	-	VE1	in	our	case.	When	the	trait	of	interest	is	expressed	as	standard	deviation	units	(i.e.	196 

mean	centered	and	scaled	to	the	standard	deviation	of	the	dataset),	this	difference	can	be	197 

considered	an	effect	size	for	the	magnitude	of	the	difference	among	variance	components,	198 

thus	making	comparisons	across	studies	possible	(Royauté	et	al.	2015;	Hamilton	et	al.	199 

2017;	Royauté	and	Dochtermann	2017).	Note	that	ΔV	could	also	be	expressed	on	a	ratio	200 

scale	(VE2/VE1)	or	on	a	log-additive	scale	(log(VE2)	-	log	(VE1)).	We	used	ΔV	on	an	additive	201 

scale	because	it	allows	the	most	straightforward	interpretation	and	functions	in	cases	202 

where	a	variance	component	is	zero	or	approaching	zero.203 
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Table	2.	Packages	and	softwares	allowing	to	test	for	differences	in	variance	components	using	Hierarchical	Linear	Models	(HLM)	along	204 
with	parameter	estimation	method	(maximum	likelihood	(ML),	restricted	maximum	likelihood	(REML)	or	Bayesian	framework)	and	205 
inference	method	(Likelihood	Ratio	tests	(LRT),	AIC	or	credible	interval	overlap).	This	list	is	not	comprehensive	and	is	instead	based	on	206 
widely-used	commercial	softwares	and	R	packages.	207 
	 	208 
Package	or	
software	

Free	or	
commercial	

Estimation		 Testing	method	 Among-unit	
variance	by	
group	

Within-unit	
variance	by	
group	

Distributions	
handled	

Comments	 Reference	

ASREmL	 Commercial	 ML/REML	 LRT,	AIC	 Yes	 Yes	 Gaussian	 	 Gilmour	et	al.	
(2015)	

SAS	 Commercial	 ML/REML	 LRT,	AIC	 Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

	 SAS	Institute	
Inc.	

nlme	 Free	 ML/REML	 LRT,	AIC	 Yes	 Yes	 Gaussian		 	 Pinheirho	and	
Bates	(2000)	

lme4	 Free	 ML/REML	 LRT,	AIC	 Yes	 No	 Gaussian,	
Poisson,	
Binomial	
…	

	 Bates	et	al.	
(2015)	

R-INLA	 Free	 ML/REML	 LRT,	AIC	 Yes	 Yes	 Gaussian	 	 Lindgren,	and	
Rue	(2015)	

glmmTMB	 Free	 ML/REML	 LRT,	AIC	 Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

	 Brooks	et	al.	
2017	

hglm	 Free	 ML/REML	 LRT,	AIC	 Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

Within-unit	
variance	modelled	
as	Gamma	
distribution	

Rönnegård	et	
al.	(2010)	

MCMCglmm	 Free	 Bayesian	 DIC,	overlap	of	
credible	intervals	

Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

	 Hadfield	
(2010)	

brms	 Free	 Bayesian	 WAIC,	LOO,	
overlap	of	
credible	intervals	

Yes	 Yes	 Gaussian,	
Poisson,	
Binomial	
…	

Within-unit	
variance	modelled	
as	log-normal	
distribution	

Bürkner	
(2017)	
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	 ΔV	can	be	calculated	from	the	maximum	likelihood	estimates	in	a	frequentist	209 

framework	but	calculation	of	the	uncertainty	around	this	estimate	is	not	straightforward	210 

and	requires	additional	steps	such	as	bootstrapping.	In	a	Bayesian	framework,	the	211 

calculations	are	much	simpler	given	that	the	distribution	of	ΔV	can	be	directly	estimated	by	212 

taking	the	difference	in	the	posterior	distribution	of	VE2	-	VE1.	The	posterior	mode	of	ΔV	can	213 

then	be	interpreted	as	the	estimated	strength	of	ΔV,	with	credible	intervals	representing	214 

the	precision	around	this	estimate.	215 

In	summary,	approaches	based	on	HLM	and	their	generalized	extensions	allow	great	216 

flexibility	and	are	well	suited	to	study	questions	related	to	how	variation	in	phenotypic	217 

traits	varies	at	multiple	levels	of	organization.	In	the	next	section,	we	describe	the	218 

performance	of	HLMs	to	detect	differences	in	variance	components.	219 

METHODS	220 

Data	simulations	221 

To	compare	the	performance	of	statistical	procedures	for	the	detection	of	differences	in	222 

variance	components	and	variance	ratios,	we	performed	a	series	of	simulations	based	on	223 

the	scenarios	illustrated	in	Figure	2.	In	these	scenarios	a	phenotypic	attribute	y	is	224 

measured	in	two	different	environments	(E1	and	E2)	and	variation	occurs	among	and	225 

within	experimental	units	(VH	and	VW	respectively).	In	scenarios	A	through	C	the	variance	226 

ratio	differs	by	an	equal	amount	between	the	two	environments	(∆τ	=	0.3),	but	the	227 

underlying	driver	of	this	difference	is	either	due	to	a	difference	in	the	among-unit	variance	228 

(A),	in	the	within-unit	variance	(B)	or	in	both	the	among	and	within-unit	variance	(C).	Note	229 

that	for	scenario	C,	the	total	variance	remains	the	same	between	environments.	In	230 
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scenarios	D	and	E,	we	explore	cases	where	the	variance	ratios	are	equal	among	231 

environment,	either	because	all	variance	components	are	equal	as	well	(D)	or	in	spite	of	232 

differences	in	all	other	variance	components	(E)	(see	Table	S1	for	exact	values	for	all	233 

parameters).		234 

Using	the	R	statistical	environment	(R	Core	Team	2017),	we	generated	500	datasets	for	235 

each	of	the	following	combinations:	236 

• Sample	size	varying	from	20	to	200	units	by	increments	of	20	for	each	environment	237 

(sample	size	was	equal	between	the	two	environments)	238 

• Number	of	repeated	measures	taken	on	each	unit	varying	from	2	to	6	repeated	239 

measures	by	increments	of	1		240 

• Five	different	scenarios	of	known	difference	in	variance	ratios	as	described	in	241 

Figure	1	and	Table	S1.	242 

Each	dataset	was	simulated	by	sampling	from	a	Gaussian	distribution	for	the	random	243 

(among-unit	values)	and	the	error	(within-unit)	terms.	This	resulted	in	a	total	of	125,000	244 

datasets	on	which	we	tested	three	different	statistical	procedures	to	detect	differences	in	245 

variance	components	and	variance	ratios.	We	provide	all	R	code	for	data	generation	and	246 

analysis	in	Supporting	Information	1.	247 

	 	248 
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	249 

Figure	2.	Scenarios	used	in	simulations	detailing	how	differences	or	lack	of	difference	in	250 
variance	ratios	can	arise	from	different	patterns	in	the	underlying	variance	components	251 
(Exact	values	can	be	found	in	Table	S1).	Scenarios	A-C	correspond	to	cases	where	the	total	252 
variation	differs	between	two	environments	(E1	and	E2)	due	to	differences	in	the	higher	253 
group	level	variance	(VH,	A),	the	lower	level	variance	(VW,	B)	or	both	(C).	Scenarios	D-E	254 
indicate	cases	where	the	ratios	remains	constant	across	environments,	because	all	variance	255 
components	are	indentical	(D)	or	in	spite	of	variance	component	being	different	among	256 
environments	(E).		 	257 
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Comparison	of	confidence	interval	overlap	from	separate	mixed	models	258 

We	first	compared	the	overlap	of	83	%	confidence	intervals	for	variance	component	when	259 

estimated	from	separate	linear	mixed	models.	We	specified	one	mixed	model	for	260 

environment	1	and	one	for	environment	2.	These	models	are	a	simplified	version	of	the	one	261 

presented	in	equation	(3):	262 

!!" = ## + %&'(#" + )#!" 		 	 	 	 	 (equation	4)	263 

%&'(#" 	~	,(0, 0$%!&);		264 

)#!" 	~	,(0, 0')	265 

The	experimental	units	in	the	environment	of	interest	are	included	as	random	effects	and	266 

no	additional	fixed	effect	are	needed.	Upon	fitting	these	models,	we	computed	83	%	267 

confidence	intervals	for	the	among	and	within-unit	variance.	Datasets	where	these	268 

intervals	did	not	overlap	were	considered	as	statistically	different.	269 

Frequentist	HLM	with	AIC	model	comparison		270 

Our	second	approach	was	to	fit	the	HLM	approach	described	above	and	test	for	the	for	the	271 

significance	of	the	difference	in	among-	and	within-unit	variance	using	likelihood	ratio	272 

tests.	Specifically,	we	compared	the	following	models:	273 

We	specified	four	different	mixed	models	corresponding	to	the	four	different	possibilities	274 

by	which	variance	components	may	differ	(see	also	Royauté	et	al.	2019;	Bucklaw	and	275 

Dochtermann	2021):	276 

• Model	1:	a	null	model	where	the	among	(VH)	and	within-unit	variance	(VW)	was	kept	277 

constant	among	environments.	278 
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• Model	2:	a	model	where	only	the	among-unit	variance	differs	among	environments,	279 

while	the	within-unit	variance	is	kept	constant	(VH	≠	&	VW	=)	280 

• Model	3:	a	model	where	only	the	within-unit	variance	differs	among	environments	281 

while	the	among-unit	variance	is	kept	constant	(VH	=	&	VW	≠)	282 

• Model	4:	a	model	where	both	the	among	and	within-unit	variance	were	allowed	to	283 

vary	among	environments	(VH	≠	&	VW	≠)	284 

For	each	dataset	combination,	we	then	compared	each	model’s	Aikaike’s	Information	285 

Criterion	value	(AIC).	AIC	allows	to	compare	the	relative	fit	of	statistical	models	and	models	286 

with	lower	AIC	values	indicate	better	support	relative	to	competing	models.	These	287 

simulations	and	this	analytical	framework	are	similar	to	previously	used	approaches	(e.g.	288 

Jenkins	2011;	Shaw	1991;	Tüzün	et	al.	2017).	These	models	were	specified	using	the	nlme	289 

package	for	mixed	models	(Pinheiro	et	al.	2000)	using	Restricted	Maximum	Likelihood	290 

(REML).	291 

Bayesian	HLM	and	difference	in	variance	components	292 

We	next	fit	a	mixed	model	where	variances	among	and	within	units	were	allowed	to	vary	293 

between	environments	(as	in	model	4	described	above)	to	each	randomly	generated	294 

dataset.	We	calculated	the	posterior	mode	for	the	difference	in	variance	components	295 

(calculated	as	∆V	=	VE2	–	VE1)	and	estimated	the	95	%	credible	intervals	based	on	the	296 

Highest	Posterior	Density	of	this	distribution.	95	%	credible	intervals	excluding	0	were	297 

taken	to	indicate	statistically	detectable	differences	in	variance	components	among	298 

environments.	All	models	were	run	with	the	MCMCglmm	package	(Hadfield	2010)	using	299 

default	iteration	settings	to	shorten	computing	time	(13000	iterations,	3000	burn-in	300 
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iterations	and	thinning	interval	of	10	iterations).	We	used	priors	that	were	minimally	301 

informative	for	the	variance	components	(See	SI1	and	SI3	for	prior	specification	and	a	302 

discussion	on	priors).	303 

Probability	of	correct	model	identification,	precision,	bias	and	accuracy	estimations	304 

We	calculated	the	probability	of	detecting	the	model	with	the	correct	difference	in	variance	305 

components	(hereafter	abridged	to	probability	of	detecting	differences),	precision,	relative	306 

bias	and	accuracy	under	each	scenario	and	sampling	design	to	compare	the	performance	of	307 

maximum	likelihood	and	Bayesian	mixed	models.	For	Method	1	(overlap	of	83	%	intervals),	308 

we	assigned	values	of	1	when	significant	differences	in	variance	components	were	detected	309 

in	directions	predicted	by	the	data	generating	process,	and	0	otherwise.	For	Method	2,	we	310 

calculated	the	probability	of	detecting	differences	as	the	proportion	of	times	the	model	311 

with	the	lowest	AIC	matched	the	generating	model.	For	Method	3,	we	calculated	whether	a	312 

given	model	detected	a	difference	in	variance	components	based	on	the	overlap	of	the	95	%	313 

credible	intervals	of	the	ΔV	posterior	distribution	with	0.	As	in	Method	1,	we	then	assigned	314 

values	of	0	or	1	based	on	whether	the	detected	difference	matched	with	the	data	315 

generation	process	of	the	corresponding	scenario.	We	calculated	the	probability	of	316 

detecting	differences	as	the	proportion	of	analyzed	datasets	in	which	we	detected	317 

differences	in	the	direction	predicted	by	each	scenario	and	statistical	method.	Precision,	318 

indicating	the	similarity	of	the	results	produced	by	simulations	with	a	given	scenario,	was	319 

calculated	as	the	difference	between	25	%	and	75	%	quantiles	of	estimates	(van	de	Pol	320 

2012).	To	calculate	the	relative	bias	(in	%)	for	each	statistical	approach	by	scenario,	we	321 

calculated	the	mean	difference	between	the	expected	value	and	the	value	observed	in	each	322 
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of	the	500	simulations.	Finally,	we	report	the	root	mean	square	of	error	(RMSE)	for	each	323 

scenario	and	sample	sizes.	This	metric	calculates	how	close	estimates	are	to	the	expected	324 

values	and	serves	as	an	estimate	of	the	accuracy	of	each	statistical	approach	by	scenario.	325 

	326 

RESULTS	327 

The	probability	of	correctly	detecting	differences	in	variance	components	did	not	differ	328 

substantially	between	frequentist	and	Bayesian	methods	of	estimation	(Figure	3).	The	329 

highest	probability	to	detect	differences	was	observed	for	in	cases	where	the	variance	ratio	330 

differs	as	a	result	of	changes	to	the	within-unit	variance	(scenario	B)	or	when	variation	331 

remained	equal	between	environments	(scenario	D).	The	statistical	power	to	differentiate	332 

between	alternative	scenarios	(i.e.	scenarios	A,	C	and	E)	was	lower,	especially	with	small	333 

sample	sizes	and	low	number	of	repeated	measures	(Figure	3).	Importantly,	no	statistical	334 

method	seemed	to	outperform	all	others	across	scenarios.	Our	results	are	consistent	with	335 

previous	simulations	showing	that	the	among-unit	variance	component	is	particularly	336 

difficult	to	estimate	at	small	sample	sizes	(Dingemanse	&	Dochtermann	2013).	337 
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	338 
Figure	3.	Effect	of	sampling	design	on	the	probability	to	detect	differences	in	variance	339 
components	by	scenario	type	and	statistical	modeling	approach.	Each	point	represents	the	340 
probability	of	detecting	the	correct	differences	in	variance	averaged	over	500	simulated	341 
datasets.	A	represents	a	scenario	where	only	the	among-unit	variance	(VH)	varies	between	342 
environments,	B	represents	a	case	where	the	within-unit	variance	(VW)	varies	between	343 
environments,	and	both	among	and	within-unit	variance	vary	between	environments	in	344 
scenario	C.	In	scenario	D,	all	variance	components	are	equal	while	in	scenario	E,	variance	345 
components	are	different	but	variance	ratios	are	equal	across	environments.	Dashed	lines	346 
correspond	to	80	%	treshold	similar	to	recommendations	for	power	analyses.		347 
	 	348 
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	 In	scenarios	B	and	D,	the	correct	differences	among	variance	components	was	349 

identified	>	80	%	of	the	time,	even	at	low	sample	sizes	(Figure	3).	In	all	other	cases	this	350 

threshold	was	only	reached	with	high	sample	sizes	and	a	high	number	of	repeated	351 

measures.	For	scenarios	C	and	E	–	which	correspond	to	cases	where	the	variance	ratio	352 

differs	as	a	result	of	among-unit	variance	(C)	or	when	the	variance	ratio	remains	the	same	353 

despite	changes	to	both	among-	and	within-unit	variance	(E)	–	datasets	with	only	2	354 

repeated	measures	per	unit	never	achieved	a	power	above	0.8	even	with	sample	sizes	355 

above	200	units	per	environment	(i.e.	a	minimum	of	800	total	measurements,	Figure	3).	356 

Increasing	the	number	of	repeated	measures	only	marginally	alleviated	the	problem.	For	357 

example,	in	scenario	C,	only	datasets	with	4	or	more	repeated	measures	per	unit	reached	358 

statistical	power	above	0.8	with	sample	sizes	above	120	units	per	environments,	which	is	359 

higher	than	many	ecological	or	evolutionary	studies	can	provide	under	realistic	scenarios.		360 

Note	that	for	AIC	model	comparison,	we	calculated	power	as	the	number	of	times	361 

the	best	model	corresponded	to	the	generating	model.	A	more	conservative	approach	is	to	362 

calculate	the	proportion	of	times	the	best	model	is	at	least	2	AIC	units	lower	than	the	363 

second	model.	This	method	corresponds	to	a	common	threshold	to	detect	statistically	364 

distinct	models	(Burnham	and	Anderson	1998).	When	using	this	more	conservative	365 

threshold	(Figure	S1),	datasets	generated	according	to	scenarios	A	and	D	were	never	366 

statistically	distinguishable	from	non-generating	models,	although	the	correct	model	was	367 

consistently	ranked	as	the	best	model.	This	is	likely	because	when	the	generating	model	368 

does	not	include	differences	in	the	within-unit	variability	(scenarios	A	and	D),	sampling	369 

error	is	erroneously	identified	as	heterogeneity.	At	smaller	sample	sizes	this	error	is	370 

greater	on	average,	and	thus	detectable.	At	larger	sample	sizes	this	sampling	error	is	371 



24 
 

smaller	but	more	easily	detected	and	therefore	manifests	as	different	between	groups.	To	372 

address	this,	in	addition	to	measures	of	variance	differences	like	the	described	ΔV	statistic,	373 

researchers	should	also	compare	mean-standardized	variance	estimates	like	the	coefficient	374 

of	variation	or	Houle’s	evolvability	between	groups	(Houle	1992;	Hansen	et	al.	2011;	375 

Dochtermann	and	Royauté	2019).		376 

	 The	comparison	of	relative	bias,	precision,	and	accuracy	among	statistical	methods	377 

produced	mixed	results.	On	average,	Bayesian	HLMs	consistently	underestimated	the	378 

among-unit	variance	for	scenarios	in	which	the	among-unit	variance	differed	between	379 

environments	(scenarios	A,	C,	and	E)	resulting	in	a	severe	bias	at	small	sample	sizes	(Figure	380 

S2).	However,	Bayesian	HLMs	also	had	higher	precision	and	accuracy	compared	to	381 

maximum	likelihood	(Figure	S3,	S4).	This	means	that	Bayesian	estimates	tend	to	be	382 

consistently	more	conservative	than	maximum	likelihood	regarding	the	magnitude	of	the	383 

among-unit	variance	but	that	these	estimates	nonetheless	more	closely	matched	simulation	384 

conditions.	385 

DISCUSSION	386 

Comparing	variability	across	datasets	is	important	for	many	questions	in	evolutionary	387 

ecology	(e.g.	Table	1).	However,	variance	ratios	are	not	sufficient	to	address	questions	388 

about	how	variation	is	expressed	across	environments,	populations,	or	sexes.	The	inability	389 

to	determine	why	groups	differ	based	on	ratios	is	in	addition	to	the	numerous	conceptual	390 

and	theoretical	problems	inherent	to	the	estimation	of	ratios	(Houle	1992;	Hansen	et	al.	391 

2011).	Instead,	many	questions	require	the	explicit	comparison	of	variance	components.	392 
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	 Our	simulations	show	that	regardless	of	the	statistical	methods	used,	comparing	393 

variance	components	across	groups	is	a	“data	hungry”	question.	Scenarios	where	the	394 

among-unit	variance	differed	between	environments	were	particularly	hard	to	detect	at	395 

low	sample	sizes.	Our	objective	was	not	to	provide	a	full	exploration	of	parameter	space	in	396 

order	to	define	the	proper	sample	sizes	to	detect	differences	of	various	magnitude	for	each	397 

variance	component.	Instead,	we	focused	on	a	subset	of	scenarios	that	are	likely	to	be	398 

common	in	ecology	and	evolution.		399 

	 Given	the	issues	discussed	above,	how	should	researchers	interested	in	ecological	400 

and	evolutionary	variation	design	their	studies	and	report	their	findings?	Based	on	our	401 

simulations,	the	probability	to	detect	differences	in	variance	components	will	depend	in	402 

large	part	on	the	ability	to	estimate	the	among-unit	variance	component	(VH).	A	simple	rule	403 

for	sampling	can	therefore	be	to	estimate	the	sample	size	needed	to	detect	the	lowest	404 

among-unit	variance	value	of	interest	(see,	for	example,	Martin	et	al.	2011;	van	de	Pol	405 

2012;	Dingemanse	and	Dochtermann	2013)	and	multiplying	that	sample	size	by	the	406 

number	of	experimental	groups	involved.	We	also	recommend	that	power	calculations	be	407 

conducted	prior	to	the	experiment	whenever	possible	(see	R	code	for	a	priori	power	408 

analyses	in	SI2	and	R	Markdown	tutorial	in	SI3).		409 

We	suggest	that	researchers	report	their	results	in	a	manner	that	focuses	on	the	410 

magnitude	of	the	difference	in	variability	between	experimental	groups	rather	than	solely	411 

focus	on	statistical	significance.	To	this	effect,	we	believe	that	reporting	the	results	of	the	412 

full	model	rather	than	just	the	most	parsimonious	model	will	be	most	appropriate	in	most	413 

cases	(i.e.	model	4	in	our	conceptual	example).	This	is	because	model	selection	only	gives	414 

information	on	whether	differences	among	groups	are	statistically	detectable.	In	contrast,	415 
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questions	regarding	the	magnitude	and	precision	of	the	estimated	differences	are	416 

answerable	only	with	interpretation	of	the	most	complete	statistical	model	(see	tutorial	in	417 

SI4).	In	addition	to	presenting	results	of	the	full	model,	we	suggest	that	measures	of	effect	418 

sizes	for	the	differences	in	variance	component	also	be	presented.	As	reported	above,	ΔV	419 

provides	a	simple	metric	to	estimate	the	magnitude	of	these	differences,	but	it	is	by	no	420 

mean	the	only	one.	In	our	theoretical	example,	the	mean	trait	value	did	not	differ	by	421 

environments,	but	in	many	cases	mean	and	variance	are	related.	In	such	cases,	using	422 

comparisons	based	on	Houle’s	(1992)	I2	value	or	coefficients	of	variation	for	each	423 

component	as	opposed	to	variance	component	themselves	can	be	preferable	(Hansen	et	al.	424 

2011;	Dochtermann	and	Royauté	2019).	Effect	sizes	based	on	the	coefficient	of	variation	425 

can	also	be	calculated	within	an	HLM	framework	as	described	by	Nakagawa	et	al.	(2015)	426 

(see	also	Carmona	et	al.	2016	and	Fontana	et	al.	2018	for	approaches	relevant	to	functional	427 

trait	diversity).	428 

	 While	we	limited	our	conceptual	example	to	comparisons	between	two	429 

environments,	the	HLM	approach	we	propose	is	by	no	mean	restricted	to	two-groups	430 

comparisons.	For	example,	Jenkins	(2011)	used	model	comparison	to	tease	apart	the	431 

relative	influence	of	sex,	species	and	their	interaction	on	the	expression	of	behavioral	432 

variation	in	kangaroo	rats.	Similarly,	Coblentz	et	al.	(2017)	show	how	model	selection	433 

combined	with	Bayesian	HGLM	can	allow	the	comparison	of	indices	of	diet	specialization	434 

within	and	among	species.	In	both	cases,	model	section	can	provide	a	first	pass	at	whether	435 

differences	in	variance	components	are	detectable	among	groups,	while	specific	pairwise	436 

comparisons	of	effect	sizes	(using	ΔV	or	other	metrics)	will	allow	discernment	of	the	most	437 

pronounced	differences	in	variance	component.	Regardless	of	the	statistical	approach	used,	438 
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we	suggest	it	is	important	that	researchers	clearly	outline	the	direction	and,	when	possible,	439 

magnitude	of	the	expected	effects	in	their	predictions.	440 

	 Finally,	our	conceptual	examples	focus	exclusively	on	the	case	of	“well-behaved”	441 

data	with	normal	error	distributions.	While	these	comparisons	can	be	made	with	442 

generalized	extensions	to	HLMS	(i.e.	HGLMs),	extra	care	must	be	taken	to	appropriately	443 

estimate	and	compare	the	within-unit	variance	depending	on	the	error	distribution	444 

specified	(Nakagawa	&	Schielzeth	2010).	445 

CONCLUSIONS	446 

Variance	ratios	are	straightforward	metrics	to	describe	how	various	ecological	and	447 

evolutionary	processes	occur.	However,	comparing	these	ratios	across	studies	or	group	can	448 

be	misleading	if	poor	attention	is	given	to	the	specific	variance	components	making	up	449 

those	ratios.	More	importantly,	as	we	have	shown,	a	lack	of	difference	in	these	ratios	does	450 

not	mean	that	variation	is	expressed	equally	among	groups.	Given	these	limitations,	we	451 

advocate	for	techniques	allowing	the	estimation	of	differences	in	each	variance	452 

components	rather	than	focusing	solely	on	variance	ratios.	The	statistical	tools	allowing	453 

comparison	of	trait	variation	have	become	increasingly	sophisticated	and	now	allow	asking	454 

very	precise	questions.	Specifically,	we	can	now	ask	how	trait	variation	is	generated	and	455 

how	variation	differs	among	groups.	However,	despite	the	availability	of	these	tools,	456 

researchers	interested	in	ecological	and	evolutionary	variation	must	remain	careful	in	their	457 

study	designs.	As	our	simulations	show,	scenarios	involving	differences	in	among-unit	458 

variance	are	particularly	difficult	to	detect	without	substantial	sample	sizes.	Finally,	we	459 

hope	the	statistical	approaches	and	tools	for	power	analysis	presented	here	will	allow	for	460 

appropriate	comparisons	of	trait	variation	in	ecological	and	evolutionary	studies.		461 
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