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Abstract 
Paleoclimatic data are used in eco-evolutionary models to improve knowledge of 

biogeographical processes that drive patterns of biodiversity through time, opening 

unique windows into past climate–biodiversity dynamics. These models can 

strengthen projections of the future state of biodiversity if applied to harmonised 

simulations of past and future climatic change. StableClim provides harmonised 

continuous estimates of climate stability from the Last Glacial Maximum to the end of 

the 21st Century for ocean and terrestrial realms, measured as the trend and variability 

in air temperature and precipitation, and associated signal-to-noise ratios. Thresholds 

of natural variability in trends of annual, area-weighted regional- and global-mean 

temperature change allow periods in Earth’s history when climatic conditions were 

changing rapidly (and slowly) to be identified, permitting climate stability to be 

estimated locally during periods of accelerated warming and cooling. Model 

simulations are validated against independent paleoclimate and observational data. 

Continuous estimates of climatic stability, accessed through StableClim, will improve 

understanding of the roles of climate in shaping past, present-day and future patterns 

of biodiversity.   
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Background & Summary 
A stronger understanding of the relationships between past climatic change and 

contemporary geographic distributions, and abundances of species, and ecosystem 

structure and function, can improve capacities to anticipate, and potentially manage 

responses of biodiversity to rapid future climate change, and global change more 

generally1,2. Interdisciplinary approaches that combine macroecological models with 

inferences from paleoclimate simulations, paleoecology, and paleogenomics are 

opening windows into climate–biodiversity dynamics during the late Quaternary3,4. 

This research has shown that a primary factor constraining the distributions and 

diversity of species at macro-scales is climate stability5-7, with hotspots of biodiversity 

often occurring in regions that have experienced stable temperatures and variable rates 

of precipitation during the late Pleistocene and Holocene8-11.  

Unravelling the mechanisms that have shaped ancient and current-day patterns 

of biodiversity requires spatially detailed and temporally consistent datasets of paleo 

climatic change4. While there is a growing library of high spatial and temporal 

resolution paleo climate datasets available to researchers12-14, issues relating to 

spatiotemporal coverage and continuity persist. Furthermore, a lack of paleo climate 

simulations harmonised (i.e., consistently spatially and temporally blended to) with 

independently derived future projections is preventing a wider integration of paleo-

archives and paleo perspectives in model projections of future biodiversity change. 

Missed opportunities include providing the context and tools needed to guide 

conservation decisions regarding desired states of ecological systems under global 

warming15,16. Although there have been attempts to overcome this problem17,18, a lack 

of spatial and temporal continuity in simulations that extend from the past into the 

future remains14.  

  Blended data on centennial trends and variability of temperature and 

precipitation are needed to calculate consistent spatiotemporal changes in climatic 

stability from the Last Glacial Maximum to the end of the 21st century, enabling the 

eco-evolutionary impacts of climate change to be quantified8. Here we provide 

continuous gridded global-scale estimates of centennial trend, variability, and signal-

to-noise ratio (SNR) in temperature and precipitation between 21,000 B.P. and 2100 

C.E. We do this by harmonising, at 2.5° spatial resolution (~250km at the equator), 
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three distinct data sets: paleoclimate simulations from the TraCE-21ka coupled 

atmosphere-ocean-general-circulation-model (AOGCM)19,20, historical runs from 19 

CMIP5 AOGCMs, and future projections from the same CMIP5 19 AOGCMs under 4 

Representative Concentration Pathways (RCPs)21,22.  

We use pre-industrial control runs from CMIP5 AOGCMs to define thresholds 

that can be used to identify centuries of past and future rapid high magnitude 

temperature change at global and regional scales. We do this separately for terrestrial 

and ocean realms, for distinct IPCC AR5 climatic regions23, and for terrestrial 

zoogeographic realms30. These thresholds enable users to subset StableClim to periods 

of rapid warming (or cooling) at global and/or regional scales24, allowing rapid 

climate change events25 that occurred in the past to be identified in space and time and 

compared directly with those projected for the future. Regions that experienced past 

climate shifts that are of similar magnitude to future forecasts provide locations where 

geohistorical data can be used to better derive and strengthen conservation 

management and policy through improved knowledge of biotic responses to climatic 

stressors2, and for connecting theory to the on-ground design and implementation of 

effective measures to protect biodiversity26.  

StableClim also includes continuous coverage of gridded monthly-mean 

temperature and total monthly precipitation between 1850 and 2100 at monthly time-

step with 2.5° x 2.5° spatial resolution. When combined with PaleoView27 this 

provides users with more than 21,100 years of harmonised monthly temperature and 

precipitation climatic data. This feature, allows end-users to generate alternative 

measures of climate stability, including climate velocity28, for the past and the future 

at temporal scales different to those provided in StableClim. 

 

Methods 

Overview 

An overview of the design of StableClim is provided in Figure 1. Broadly, 19 

Atmosphere-Ocean General Circulation Models (AOGCMs), from the Coupled Model 

Inter-comparison Project phase 5 (CMIP5)29 were used to calculate continuous 

estimates of trend, variability, and signal-to-noise ratios (SNR) in pre-industrial 

control, historical, and future climates under four different emissions scenarios. 

Simulated climate data from the TraCE-21ka19 experiment was used to calculate the 
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same metrics for paleo climates since the Last Glacial Maximum. Global and regional 

estimates of trend for pre-industrial control temperatures can be used to identify past 

and future extreme centennial conditions. 

 

Pre-industrial, paleo, historical, and future climate data 

Data access 

Pre-industrial, historical, and future climate datasets with global coverages of 

modelled monthly-mean surface temperature, and monthly precipitation were 

extracted from the CMIP5 Earth System Grid Federation data portal (https://esgf-

node.llnl.gov/projects/esgf-llnl/) using customised bash scripts (available from 

https://github.com/GlobalEcologyLab/ESGF_ClimateDownloads). Paleoclimate data 

from the TraCE-21ka experiment was extracted from PaleoView27 at a monthly time-

step for the period 21,000 B.P. to 100 B.P. (1850 C.E.). 

We used four different modelled climate datasets to generate the climate data 

compiled in StableClim (Figure 1): 

1) Pre-industrial control runs for 19 AOGCMs from CMIP5 were used to 

quantify natural climate variability, 

2) Paleoclimate simulations from the TraCE-21ka experiment were used. 

TraCE-21ka simulations were done with the Community Climate System 

Model ver. 3 (CCSM3)30,31, 

3) Historical simulations (1850-2005 generally) from the same 19 CMIP5 

AOGCM’s that were used to generate the pre-industrial control 

climates29, 

4) Representative Concentration Pathway (RCP)21,22 2.6, 4.5, 6.0, and 8.5 

runs for the same 19 CMIP5 AOGCM’s used to generate pre-industrial 

control climates. 

 

While the chosen RCP scenarios are four of hundreds of future climate scenarios 

currently available, they span a wide range of possibilities. RCP 8.5 and RCP 6.0 are 

commonly thought to represent “Business As Usual” scenarios (i.e., with no new 

mitigation policies), whilst RCP 4.0 and RCP 2.6 are within the spectrum of 

mitigation policy scenarios. 

 

https://esgf-node.llnl.gov/projects/esgf-llnl/
https://esgf-node.llnl.gov/projects/esgf-llnl/
https://github.com/GlobalEcologyLab/ESGF_ClimateDownloads
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Pre-industrial climate 

Pre-industrial control runs are multi-century unforced climate simulations, where the 

initial model conditions are set based on atmospheric gas concentrations prior to large-

scale industrialisation29. They have non-evolving boundary conditions (e.g. non-

evolving land use and greenhouse gas concentrations) relevant to the chosen start 

year29 and ignore natural forcing effects such as those caused by variations in the 

Sun’s output, and relatively short-term cooling of explosive volcanic eruptions. They 

therefore capture only internally-generated variability. We elected to use only the first 

realisation (r1i1p1) from each model for the pre-industrial control runs as all models, 

with the exception of the Community Climate System Model ver. 4 (CCSM4)32, only 

had a single realisation (i.e. a single set of initial conditions). The additional pre-

industrial realisations (r2i1p1 and r3i1p1) for the CCSM4 model were too short to be 

used. The shortest duration pre-industrial control run used in this analysis was 240 

years (HadGEM2-CC; see Online-only Table 1).  

 

Paleoclimate 

The TraCE-21ka experiment was chosen to represent paleo-climate conditions 

because (i) the data are available at a high temporal (monthly) and moderate spatial 

(2.5° x 2.5°) resolution with global coverage27; and (ii) the model has been 

independently validated at multiple temporal and spatial scales27,33-35. These 

independent validations have shown that the TraCE-21ka model effectively 

reconstructs important regional-to-global paleoclimatic fluctuations during the last 

deglaciation event27,33-35 and accurately simulates present-day climate patterns27.  

 

Historical climate 

The historical simulations cover the period 1850-2005 (in some extended cases they 

continue to 2012), with the beginning of the modelling period occurring before 

significant anthropogenic forcing and climate change. The historical climate 

simulations allow simulated climatic conditions to be validated against observed 

datasets29. The historical simulations differ from the pre-industrial control conditions 

as they are forced by observed atmospheric composition changes and aerosol 

emissions (for both anthropogenic and natural sources) and include the effects of solar 

irradiance variations and major volcanic eruptions, and time-evolving land and sea-ice 

cover. All available model realisations were used for the historical period as there can 
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be significant differences in trends due to internal climate variability in the models36. 

We chose to include all model realisations, as there is no way to determine which of 

the realisations should be preferred over others, and each realisation will lead to a 

slightly different climate state37. For example, all members within an ensemble of 

historical runs (e.g. CCSM4 r1i1p1, r2i1p1, r3i1p1) are forced in the same way, but 

each is initiated at a different point in the pre-industrial control run29. The differences 

in initial conditions result in different trajectories, and multi-realisation averaging 

reduces this “noise”38.   

 

Future climate 

The RCP scenarios describe a set of possible climate outcomes as a result of changes 

in emissions, land use, and sea-ice developed specifically to allow assessment of 

future climates over a wide range of warming scenarios22. The RCP numerical 

designation indicates the radiative forcing level reached at the end of the century (e.g. 

RCP 8.5 is a high emissions warming scenario with radiative forcing level reaching 

approximately 8.5 W/m2 by 2100)22. The two intermediate scenarios feature a peak-

and-stabilise scenario, whereby the radiative warming peaks at the given level before 

stabilising by 2100 (RCP 4.5) or shortly thereafter (RCP 6.0). The low emissions RCP 

2.6 scenario has radiative forcing peaking in the middle of the 21st century before 

decreasing to an eventual nominal level of 2.6 W/m2 22. As with the historical climate 

simulations, assessment of the RCP scenarios utilised all available model realisations 

to reduce inter-model noise in the ensemble average.  

 

Pre-processing of climate data 

To address the different temporal extents and spatial resolutions of the AOGCMs used 

to generate StableClim, a number of pre-processing steps were required to ensure that 

the different datasets were consistently blended to have an adjoining timeframe for the 

period of interest, and that the data were on a spatially consistent grid. Pre-processing 

was performed using the Climate Data Operators (version 1.9.3) software39. 

Modelled years for TraCE-21ka simulations were constrained to the period 

21,000 B.P. to 100 B.P. (1850 C.E.) to limit the influence of wide scale 

industrialisation on the paleoclimate simulations40. The start-date for the CMIP5 

historical simulations is 1850. An end-date of 2005 was chosen because of the low 
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number of models (n = 3; BCC-CSM1.1, CNRM-CM5, and MIROC5) with 

simulations extending beyond this time period. The RCP scenarios simulate possible 

future climates between 2005 and 2100 and are initialised using the climate conditions 

at the end of the historical period (2005). As the RCP simulations are essentially 

continuations of the historical simulations22 and we needed to have continuous 

centennial trends between the paleo, historical, and future periods, we temporally 

harmonised the historical and RCP simulations. Following Santer, et al. 41 we spliced 

the historical simulations to the beginning of the RCP simulations ensuring that the 

realisations matched so that there were no differences in simulation forcings (e.g. 

CCSM-4 historical r1i1p1 was matched to CCSM-4 RCP r1i1p1). To account for 

intra-model variability, each model (e.g. CCSM-4) was then averaged across all 

realisations within that model to produce a multi-realisation model average.  

To enable spatially consistent comparisons with the TraCE-21ka simulation, 

the CMIP5 data were re-gridded to a 2.5° x 2.5° (latitude/longitude) global grid using 

bilinear interpolation. Re-gridding of the CMIP5 datasets to match the resolution of 

the TraCE-21 data using bilinear interpolation was chosen because (i) the source and 

destination grids were rectilinear, (ii) precipitation and temperature in the climate 

models varies smoothly spatially, and (iii) bilinear interpolation (more or less) retains 

the integrity and limitations of the original model output data, where orography is 

highly smoothed relative to the real-world27. Furthermore, the 2.5° x 2.5° grid cell 

resolution corresponds to the resolution of the TraCE-21ka data as documented in 

PaleoView27, (bilinearly downscaled to 2.5° x 2.5° from its nominal original 

resolution of ~3.75°27), and the resolution of projections from MAGICC/SCENGEN42. 

Surface temperatures and precipitation were then converted to °C (from Kelvin) and 

mm/year (from kg m2 s1) respectively. 

 

Calculating trends in global mean temperature 

Continuous estimates of trends in global-mean temperature through time allow 

comparisons of rates of change during key periods in Earth’s history and those 

projected for the future (Figure 2). Pre-industrial control-runs can be used as a 

baseline for identifying high magnitude and rapid changes in global mean temperature 

(“extreme” events) that occurred in the past and likely to occur in the future8,43 

Accordingly, we determined linear trends in area-weighted global-mean surface 
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temperature associated with natural variability44 for maximally overlapping century 

long windows for each of the CMIP5 pre-industrial control runs. This means that for a 

time series 1,2,3 … N, the 100-year windows would be years 1-100, 2-101, 3-103, etc. 

We calculated weighted global mean temperature for each year using the cosine of the 

latitude of the grid-cell centroids as weights. 

Trends for annual area-weighted global-mean temperatures were then 

calculated using Generalised Least Squares (GLS) regression with AR(1) errors. The 

GLS models were calculated using the ‘nlme’ package45 for R (version 3.5.1)46. GLS 

regression with an AR(1) error structure was chosen to minimise any effect of 

temporal auto-correlation in the model residuals45. The resulting global natural trends 

(i.e., the slope of the regression) for surface temperature were used to generate a 

multi-model, pre-industrial cumulative distribution function (CDF) using signed 

slopes.  

Because the number of years varied between pre-industrial control runs from 

different AOGCMs (Online-only Table 1) we used a bootstrap procedure to ensure 

that all models had equal weights in the CDF (i.e. we did not want to bias the CDF 

towards models that had longer simulations, or higher/lower modelled global-mean 

temperatures). The bootstrap procedure for each model involved first selecting the 

slopes for all overlapping windows for a given model, and then randomly selecting 

slopes from that model (with replacement) equal to the difference between the number 

of overlapping windows for the model, and the maximum number of overlapping 

windows across all models (n = 952). For example, for model ACCESS 1.3 which has 

500 years of simulated pre-industrial control conditions, the maximum number of 

overlapping centennial windows is 401. For the bootstrap procedure, slopes for the 

401 overlapping windows were first selected, before 551 slopes were then selected 

randomly with replacement, giving 952 slope values. The bootstrap procedure was 

repeated 1000 times for each of the 19 models before building the CDF. This process 

ensured that all intra-model variability was accounted for, while the effect of longer 

simulation runs was eliminated.  

For the past (21k B.P. – 1850 C.E.) and spliced historical/future climate (1850 

– 2100 C.E.) we calculated trends in global-mean temperature using the methods 

described above (Figure 2). However, we did not use a bootstrap approach because for 

the paleo period we only had a single simulation (TraCE-21ka), and the historical and 

future simulations were a multi-model ensemble average, subset to a consistent 
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temporal window which negated the need for a bootstrap. Multi-model averages for 

the spliced historical/future climate were calculated by averaging across all multi-

realisation model averages (n = 19, see Pre-processing of climate data). Whilst this 

approach may bias the results of models that have multiple realisations (as the intra-

model variability is effectively reduced by averaging across realisations), it has been 

shown that the performance of multi-model ensemble averages improves with an 

increase in models, not realisations47. This process allowed us to effectively calculate 

robust measures of global mean temperature that accounted for intra- and inter-model 

variability36,41,48. 

 

Calculating trends in regional mean temperature 

We quantified linear trends in area-weighted regional-mean surface temperature 

associated with natural variability for maximally overlapping century long windows 

for each of the CMIP5 pre-industrial control runs. The regions were defined by 18 

distinct IPCC AR5 climatic regions23, 19 Wallace Zoogeographic zones24, and 11 

zoogeographic realms24 . Temperatures were extracted for grid-cells inside the 

boundary of the region. Weights for the regions were calculated as above. The 18 

IPCC AR5 climatic regions are an amalgamation of the terrestrial regions defined by 

Working Group 1 for the IPCC Fifth Assessment Report49. The Wallace 

Zoogeographic zones and realms follow Holt, et al. 24 although the Polynesian zone 

was removed due to its small size (average island size in the Polynesian zone is ~118 

km2, or approximately 0.002 % of the area of our grid-cells). A geopackage of the 

IPCC regions, the Wallace zones, and the zoogeographic realms we used is available 

in StableClim. 

 

Identifying thresholds of extreme climate change 

To identify periods of rapid, medium and slow climate change at global and regional 

scales, we used the ensemble averaged bootstrapped pre-industrial CDF of trends in 

global/regional mean temperature at 1, 2.5, and 5% increments (e.g. 1%, 2.5%, 5%, 

10%, 15%...90, 95%, 97.5%, 99%) to identify rates of change that correspond to 

different “thresholds” of stable climate (at lower thresholds) or rapid climate change 

(at higher thresholds)8,43. Based on Fordham, et al. 43, we define a stable climate as 

having low rates of centennial change (i.e. low trend values), and an unstable climate 



10 

 

as having high rates of centennial change. Notably, these definitions do not however 

preclude high inter-annual variability (i.e. high frequency climate instability) in 

‘stable’ conditions or low inter-annual variability for ‘unstable’ conditions. The 90th 

percentile of the pre-industrial CDF has previously been used to identify periods of 

change in global mean temperature that had high absolute (i.e. unsigned) rates of 

climate change since 21,000 B.P.8,43,50.  

 Thresholds were calculated at a range of scales and for different regions and 

realms. For climate focused studies, thresholds are provided at regional scales using 

the IPCC AR5 climatic regions described above. For biogeographical or ecological 

focussed work, thresholds are provided at two scales: (i) 19 smaller scale Wallace 

Zoogeographic zones and (ii) 11 broader scale terrestrial zoogeographic realms, both 

described above. 

 

Calculating local trends, variability, and SNR 

Trend and the variability around the trend are the primary components of climate 

stability43, and they provide a distinction between low frequency (long term trend) and 

high frequency (inter-annual) climate stability. For both temperature and precipitation, 

we calculated ‘local’ measures of centennial linear trend (i.e. inter-centennial 

variability; low frequency climate in/stability) for each grid-cell (n = 10,368 cells) for 

the paleo, and the spliced historical/RCP simulations (Figure 3). We also calculated 

grid-cell estimates of variability (i.e. inter-annual variability; high frequency climate 

in/stability), where variability was defined as the standard deviation of the residuals 

about the local trend51.  

We also calculated a signal-to-noise ratio (SNR = abs(trend)/variability)52, for 

both temperature and precipitation. We opted to consider SNR in addition to trend and 

variability, because the SNR is a composite measure of the trend given background 

variability (Figure 3). Furthermore, the SNR can be useful in comparing climate 

stability as a function of long-term trend and inter-annual variability at different 

locations and times8. For the spliced historical/future climates, estimates of trend, 

variability, and SNR were determined by averaging across all multi-realisation model 

averages. 
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Ensemble estimates of monthly temperature and precipitation 

While our estimates of trend, variability, and SNR provide continuous global 

coverages for air temperature and precipitation from the Last Glacial Maximum to the 

end of the 21st Century at centennial time scales, we recognise that some researchers 

may want to work with datasets that cover different time periods, e.g. seasonal or 

decadal trends. Therefore, we also provide ensemble mean estimates of monthly 

temperature (°C) and precipitation (mm/day) for the historical and future climates at 

the same spatial resolution of our continuous trend, variability, and SNR estimates. 

These ensembles allow end users to create their own estimates of trend, variability, 

and SNR at time scales suitable for their purposes (e.g. seasonal or decadal). These 

ensemble means are provided only for the spliced historical/future climate period 

(1850 – 2100 C.E). We opted not to provide ensemble means for the pre-industrial 

control runs as these simulations are not reconstructions of temporally explicit pre-

industrial climate (unlike, e.g., TraCE-21ka), but are used to simulate internal model 

variability, which can be used as a proxy for natural (unforced) climate variability. 

When combined with the data in PaleoView, the historical/future ensemble means 

provide a spatiotemporally harmonised monthly temperature and precipitation climate 

dataset from 21,000 B.P. to 2100 C.E. Monthly ensembles were generated using 

CDO39 and NCO53, by averaging across all realisations within each model, and then 

across models, for each of the RCP scenarios. 

 

Data Records 
Access to StableClim is through figshare (https://doi.org/10.25909/5ea59831121bc)54. 

Dataframes for the results of the global and regional regressions under pre-industrial, 

past, and historical/RCP conditions are stored as data.tables46 in named lists in a 

compressed RDS format55. The gridded datasets have been created as NetCDF files. A 

geopackage containing the aggregated IPCC regions and the Wallace zoogeographic 

regions and realms can also be found in the ‘gpkg’ folder within StableClim. 

 The naming convention for the results of the global and regional regressions is: 

StableClim_<scenario>_<var>.RDS 

where scenario is the name of the scenario (piControl, past, spliced historical), and 

var represent either global and regional regression thresholds for the pre-industrial 

https://doi.org/10.25909/5ea59831121bc
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control simulation, or the slopes for global/regional temperature regressions for the 

past and historical/RCP data. 

The naming convention for the ensemble mean monthly data is: 

StableClim_MonthlyEnsemble_<scenario>_<var>.nc 

and for the regression files: 

StableClim_Regression_<scenario>_<var>.nc 

where scenario is the name of the scenario (past, spliced historical RCP 2.6 – RCP 

8.5), and var is pr (precipitation) or ts (air temperature). 

The monthly ensemble temperature and precipitation have the following 

dimensions – 72 x latitude, 144 x longitude, 3012 x months. The units for the monthly 

ensembles are pr = mm/day, ts = °C. Each of the regression files contains three record 

variables: (1) = Trend, (2) = Variability, (3) = Signal:Noise ratio. These record 

variables have the following dimensions – 72 x latitude, 144 x longitude, and year 

[20,902 for the past, 251 for the historical/RCP]. Units for the regressions are pr = 

mm/year, ts = °C/year. 

Multi-model median estimates of trend, variability, and SNR are available on 

request. Regressions on bias corrected datasets for the past and historical/RCP 

simulations, and files for bias-correcting the multi-model ensemble monthly data can 

be generated on request. 

 

Technical Validation 
The TraCE-21ka simulation has previously been well validated across multiple spatial 

and temporal scales with regards to its ability to simulate known rapid climate change 

events27,33-35, and to accurately model contemporary climates27. As such, we have 

done no additional technical validation on the raw temperature or precipitation data 

extracted from the TraCE-21ka simulation. Validations have, however, been done on 

estimates of SNR (see below for details). 

The CMIP5 pre-industrial and RCP simulations are built using the same model 

structure as for the historical simulations but with altered forcing and boundary 

conditions29. An assessment of agreement between historical multi-model ensemble-

averaged projections of temperature and precipitation, and observed temperature and 

precipitation provides confidence that trends, variability, and SNR measures provided 

in StableClim are an accurate representation of recent and future climates27.  
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The thresholds of extreme change we provide to subset continuous estimates 

of global-mean temperature trend, variability, and SNR to periods of rapid climate 

change have been validated recently. Brown, et al. 8 identified past centuries of rapid 

change in global-mean temperature, over the period 21,000 B.P. to 100 B.P. as those 

having absolute global-mean temperature trends greater than the 90th percentile of the 

pre-industrial control CDF. To check that their definition of rapid climate change was 

appropriate, they ran two tests: 1) Brown, et al. 8 calculated the CDF for trends from 

the TraCE-21ka model and compared these to the CDF based on periods of rapid 

climate change from the pre-industrial control simulations; and 2) they determined the 

amount of time a calendar millennium was considered to be experiencing rapid rates 

of climate change by calculating the % of time that a millennium was characterised by 

trends ≥ 90th percentile of the pre-industrial control run trends. This confirmed that 

known large-scale climatic events during the last deglaciation (e.g. Bølling–Allerød) 

were being correctly identified as periods of rapid climate change in their analysis (see 

Supplementary Fig. 6 in Brown, et al. 8). The tacit assumption made here is that 

changes in grid-cell temperatures (and variability) scale approximately linearly with 

changes in global-mean temperature. 

 

Signal to Noise Ratio 

To validate our method of calculating signal-to-noise ratio (SNR), we 

calculated estimates of SNR for Antarctica and Greenland using latitudinally weighted 

temperatures and compared these to estimates based on the Vostok56  and NGRIP57,58  

ice-cores. The temporal resolution and timing of temperature estimates was matched 

between the TraCE-21 simulation and the ice-core data by sub-setting the (annual) 

TraCE-21 data to the same time steps as the Vostok (~150 years) and NGRIP data 

(~20 years). This allowed us to calculate estimates of SNR at centennial timescales 

between observed (ice-core) and simulated (TraCE-21) datasets that were directly 

comparable. Boxplots of SNR values for four different windows during which high 

and low magnitude climate fluctuations occurred at the poles (21-15k B.P.; 15-11k 

B.P.; 11-3k B.P.; >3k B.P.) were constructed for visual interpretation, before the SNR 

values were statistically compared using PERMDISP59 and PERMANOVA60 on a 

Euclidean distance matrix. The four different windows were chosen as there are 

known major rapid climate change events that occur within at least the first three 

windows: the oldest Dryas and the H1 Heinrich events occur in the period 21-15k61-66, 
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the Bølling–Allerød, Antarctic Cold Reversal, Younger Dryas, and the 11.7 event 

occur in the period 15-11k61,62,65,67, and the 8.2k event occurs within the 11-3k 

window68. Both procedures had data source (TraCE-21 or ice-core) nested within 

window and used 999 permutations to generate P-values. 

The PERMDISP results suggest there were significant differences in the 

dispersion of SNR values between sources (i.e. between the ice-core and simulated 

data) within windows for the Vostok core. However, after accounting for multiple 

comparisons69, only one of the results was considered significant (15-11k comparison, 

adj. P = 0.01). Likewise, unadjusted P-values were significant for comparisons 

between the NGRIP core and our simulated estimate of SNR, but after adjusting for 

multiple comparisons none of the results were considered significant (all P ≥ 0.45). 

These results suggest there were only significant differences in the dispersion of 

observed (Vostok) and simulated (TraCE-21) SNR during the period 15-11k B.P. The 

PERMANOVA results suggested significant differences between sources within 

window for the Vostok core (pseudo-F4,670 = 11.82, P = 0.001; Figure 4), with 

pairwise comparisons confirming differences in the 15-11k (t = 3.16, adj. P = 0.008) 

and the 11-3k window (t = 2.81, adj. P = 0.013). There were no differences in the 

NGRIP ice core comparison (pseudo-F3,4 = 1.64, P = 0.188; Figure 4). These results 

suggest significant differences in mean SNR values between the observed and 

simulated datasets only for the Antarctic region in the 15-11k and 11-3k windows. In 

other words, for the NGRIP-TraCE21 comparisons there were no statistically 

significant SNR differences, while for the comparisons with Vostok data, and in 

particular the 15-11k window, the results were more equivocal. 

 

Multi-model temperature and precipitation ensembles 

Our multi-model ensemble climate data was validated at global and regional scales for 

land surfaces only, at a spatial resolution of 2.5°. To validate our ensemble mean 

historical temperature and precipitation datasets, we extracted gridded high resolution 

(0.5° x 0.5°, monthly time step) data between 1901 and 2018 from the Climatic 

Research Unit (CRU) time-series database70. The data were re-gridded to the same 2.5 

x 2.5° grid of our ensemble monthly estimates and converted to annual average 

temperature and average total monthly precipitation. Annual average climatologies for 

temperature and precipitation were then calculated for both the CMIP5 ensemble-
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mean historical dataset and the re-gridded CRU dataset, for a 50-yr period centered on 

1980, globally and for a range of different regions.  

To quantify the skill of our ensemble model to recreate observed temperature 

and precipitation conditions we used a combination of visual and statistical 

approaches. Figure 5 shows the relatively high pattern correlations and low standard 

deviations between our ensemble estimates and the re-gridded CRU data at a global 

scale71. The spread in inter-model correlations and standard deviations was, as 

expected, much higher for simulated precipitation than for temperature72. We also 

calculated a range of statistical metrics to quantify the relationship between our 

ensembled data and the CRU data, namely: Percentage bend correlation73, M-

statistic74, latitudinally weighted Root-Mean-Square-Error, ratio-of-standard-

deviations, modified index of agreement75, and percentage bias. These metrics were 

calculated globally and for four latitudinal bands: High-North (50°N – 90°N), Mid-

North (20°N – 50°N), Mid-South (50°S – 20°S) and the High-Tropics (20°S – 

20°N)8,27. Five IPCC AR5 regions23 and 4 biogeographic realms24 were also included 

in the validation (Table 1). All correlations were significant at P < 0.001 with 

correlation coefficient ranging between 0.67 (Neotropical realm) and 0.99 (Table 1, 

Figure 6). The M-statistic ranged between 40.5 and 91.3, with no clear relationship 

between scale and the resultant score indicating the ensemble estimate of climate has 

varying capacities to simulate observed conditions independent of scale. Percentage 

bias in precipitation varied between -3.4 and 31.5 % with the lowest values occurring 

in the tropics and the Mediterranean (Table 1). The ensemble mean precipitation was 

shown to over-estimate precipitation across all latitudinal bands. However, with the 

exception of simulated precipitation in the Southern Africa and West Indian Ocean 

(IPCC AR5 regions), the %-bias values were satisfactory76. On average, over a range 

of spatial scales, precipitation was overestimated by ~11%. 

 

Usage Notes 
To further account for the large inter-model differences in spatial resolution, forcings, 

physics, and sensitivities within each of the AOGCMS42, we recommend using pattern 

scaling approaches77 where local (cell-based) “raw” trends in temperature and 

precipitation are standardised by the trend in global-mean temperature for the 

matching window. This technique has been applied previously8,43,50. Due to the 
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method of calculating Signal-to-Noise ratio we recommend inspecting the individual 

trend and variability components when interpreting analyses on SNR (Figure 3). See 

Brown, et al. 8 for an analysis which classifies trend and variability into a range of 

classes representing different qualitative levels of climate stability. See Appendix 1 

for an example analysis which involves subsetting the data to periods of regionally 

rapid climate change, pattern scaling the trends and producing maps of trend, 

variability, and SNR.  

Code Availability 

Code used to generate the data contained in StableClim is available on request from 

the corresponding author, with bash scripts to download the CMIP5 data from ESGF 

available at https://github.com/GlobalEcologyLab/ESGF_ClimateDownloads. 
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Figure Legends 
Figure 1: Overview of the StableClim database. Simulated climate data for 
temperature and precipitation for pre-industrial, past, historical, and future climates 
come from 19 CMIP5 climate models (a). Paleo climatic conditions come from the 
TRaCE-21ka simulation. One-hundred-year trends in mean temperature for the past, 
historical, and future climates are provided at global and regional scales (b). Gridded 
datasets (n = 10,368 cells) of trend, variability, and signal to noise-ratio for the past, 
historical, and future climates are provided at global scales (c). Thresholds are used to 
identify past and future periods of rapid warming and cooling and stable climatic 
periods based on natural variability from the pre-industrial control runs (d). 
Thresholds are applied to the continuous grid-based trends, variability, and signal-to-
noise ratio (21000 B.P. to 100 C.E.), allowing estimates of climatic stability during 
specific periods in Earth’s history and potential future (e).   
 
Figure 2: Annual global mean temperature and trend in global mean temperature from 
the Last Glacial Maximum to the end of the 21st century. The Global mean 
temperature during the past as simulated by TraCE-21ka (a), and spliced 
historical/future climate simulations to 2100 (b). Trends in global mean temperature 
for past (c), historical to 2005 (d), and for the future under four different RCP 
scenarios (e). The individual lines in b show the multi-realisation model averages, 
with the bolder lines showing the multi-model ensemble average for the respective 
scenario. The shaded areas in b and d show the multi-model variability in global mean 
temperatures and trend estimates (± 1 S.D.). The timesteps in c and d, show the end-
year of the century window (e.g. 1950 = window from 1851:1950 C.E.). Values in e 
show slopes for 2006 to 2100 C.E. Note that the y-axis differs between all plots. 
 

Figure 3: Maps of trend, variability, and signal to noise ratio (SNR) for temperature 
during periods of extreme global warming in the ocean and on land  (≥ 90th percentile 
from pre-industrial conditions). Maps of centennial trend (a), inter-annual variability 
(b), and standardised SNR (c). Rows represent rapid global warming events at 
different time periods/climate scenarios. Past = Bølling–Allerød (14.7-14.2k B.P.67); 
Historical = 1850 C.E – 2005 C.E; RCP 2.6 & 4.5 = Representative Concentration 
Pathways 2.6 and 4.5 for 2001 C.E. – 2100 C.E. Maps of the past and historical 
conditions are mean estimates for overlapping century windows during the relevant 
periods.  
 

Figure 4: Validation of our modelled Signal-to-Noise ratio (SNR) against SNR 
calculated for the Vostok (a-d) and NGRIP (e-h) ice-cores56-58. Differences between 
the shape of the distributions and the SNR values were significant in b, with 
significant differences in mean SNR for b and c, but non-significant in all other 
windows based on PERMDISP and PERMANOVA results. 
 

Figure 5: Taylor diagram showing the relationship between ensemble estimates of 
temperature (green points), precipitation (blue points), and the CRU TS v. 4.03 dataset 
(orange point) for a 50-yr period centered on 1980 calculated at global extent. Each 
circle represents a different model, with ensemble means shown by the triangles. The 
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reference (CRU) climatology is shown by the orange circle, with SD values 
normalised to 1. 
 

Figure 6: Comparison of simulated and observed historical temperatures and 
precipitation. Simulated data are ensemble mean estimates and observed data are from 
the CRU TS v. 4.03 dataset. Comparisons are shown for different latitudes for a 50-yr 
period centered on 1980. High-north (50°:90°; a, b), Mid-north (20°:50°; c, d), High-
tropics (-20°:20°; e, g), and Mid-south (-20°:-50°; g, h). All Percentage bend 
correlations are significant at P < 0.001. 
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Online-only Table 1: The 20 models used for the analysis of paleoclimate from the last glacial maximum through to pre-industrialisation (21,000 
B.P. – 100 B.P.), ‘natural’ climate conditions simulated with the CMIP5 pre-industrial control runs, historical climate simulations (1850-2005), 
and future simulated climate (2006-2100) under four Representative Concentration Pathways (2.6, 4.5, 6.0, and 8.5).  

   Atmospheric 
Resolution (°)   

Model Ensemble* Institution/s Lat Long Number 
of years† 

RCP 
scenarios 

ACCESS 1.3 r1i1p1 Commonwealth Scientific and Industrial Research 
Organisation / Bureau of Meteorology 1.9 1.2 500 4.5, 8.5 

BCC-CSM1.1 r1i1p1 Beijing Climate Center, China Meteorological 
Administration 2.8 2.8 500 2.6, 4.5, 

6.0, 8.5  

CanESM2 r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1 Canadian Centre for Climate Modelling and Analysis 2.8 2.8 996 2.6, 4.5, 

8.5 

CCSM4 r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1, r6i1p1 National Center for Atmospheric Research 0.9 1.3 1,051 2.6, 4.5, 

6.0, 8.5 

CESM1(CAM5) r1i1p1, r2i1p1, r3i1p1 National Center for Atmospheric Research 0.9 1.3 320 2.6, 4.5, 
6.0, 8.5 

CSIRO-Mk3.6.0 

r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1, r6i1p1, 
r7i1p1, r8i1p1, r9i1p1, 
r10i1p1 

Commonwealth Scientific and Industrial Research 
Organisation / Queensland Climate Change Centre of 
Excellence 

1.9 1.9 500 

2.6, 4.5, 
6.0, 8.5 

GFDL-CM3 r1i1p1 
National Oceanic and Atmospheric Administration Office 
of Oceanic and Atmospheric Research - Geophysical Fluid 
Dynamics Laboratory 

2.0 2.5 500 
2.6, 4.5, 
6.0, 8.5 

GISS-E2-H r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1, r6i1p1 NASA / GISS (Goddard Institute for Space Studies) 2.5 2.0 312 2.6, 4.5, 

6.0, 8.5 

GISS-E2-R r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1, r6i1p1 NASA / GISS (Goddard Institute for Space Studies) 2.5 2.0  2.6, 4.5, 

6.0, 8.5 
HadGEM2-CC r1i1p1, r2i1p1, r3i1p1 Met Office Hadley Centre 1.3 1.9 240 4.5, 8.5 

HadGEM2-ES r1i1p1, r2i1p1, r3i1p1, 
r4i1p1 Met Office Hadley Centre 1.3 1.9 575 2.6, 4.5, 

6.0, 8.5 
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   Atmospheric 
Resolution (°)   

Model Ensemble* Institution/s Lat Long Number 
of years† 

RCP 
scenarios 

INM-CM4 r1i1p1 Institute for Numerical Mathematics 1.5 2.0 500 4.5, 8.5 

IPSL-CM5A-LR r1i1p1, r2i1p1, r3i1p1, 
r4i1p1 Institut Pierre-Simon Laplace 1.9 3.8 1,000 2.6, 4.5, 

8.5 

IPSL-CM5A-MR r1i1p1 Institut Pierre-Simon Laplace 1.3 2.5 300 2.6, 4.5, 
8.5 

MIROC5 r1i1p1 
Atmosphere and Ocean Research Institute (The University 
of Tokyo), National Institute for Environmental Studies / 
Japan Agency for Marine-Earth Science and Technology 

1.4 1.4 670 
2.6, 4.5, 
6.0, 8.5 

MIROC-ESM r1i1p1, r2i1p1, r3i1p1, 
r4i1p1, r5i1p1 

Japan Agency for Marine-Earth Science and Technology, 
Atmosphere and Ocean Research Institute (The University 
of Tokyo) / National Institute for Environmental Studies 

2.8 2.8 630 
2.6, 4.5, 
6.0, 8.5 

MPI-ESM-LR r1i1p1, r2i1p1, r3i1p1 Max Planck Institute for Meteorology 1.9 1.9 1,000 2.6, 4.5, 
8.5 

MRI-CGCM3 r1i1p1 Meteorological Research Institute 1.1 1.1 500 2.6, 4.5, 
6.0, 8.5 

NorESM1-M r1i1p1 Norwegian Climate Centre 1.9 2.5 501 2.6, 4.5, 
6.0, 8.5 

TraCE-21ka# N/A National Center for Atmospheric Research 2.5 2.5 21,000  
*All pre-industrial control simulations only utilised ensemble r1i1p1. See methods for details. †Number of years of pre-industrial control 
simulation. All historical/RCP simulations were spliced to the matching realisation41. #TraCE-21ka data was pre-processed for PaleoView27. 
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Region 

Temperature Precipitation 

ρpb M RMSEw rSD md ρpb M 
%-

bias 
rSD md 

Global 0.99 91.3 1.98 1.03 0.95 0.89 64.5 10.9 0.93 0.76 
High-North 0.97 83.3 1.99 1.08 0.89 0.75 51.5 21.0 0.98 0.61 
Mid-North 0.97 84.3 2.17 0.99 0.89 0.91 63.8 15.5 0.99 0.78 
Mid-South 0.96 78.2 1.70 0.97 0.85 0.81 52.8 20.9 0.90 0.65 
High-Tropics 0.81 61.1 1.83 0.86 0.72 0.83 57.4 0.10 0.92 0.73 
High Latitudes* 0.96 78.9 2.28 1.12 0.87 0.72 66.1 13.6 0.94 0.61 
Mediterranean and 
Sahara* 

0.96 81.2 1.53 0.87 0.85 0.97 77.1 -2.1 0.97 0.86 

North America 
(East)* 

0.99 89.0 0.99 0.94 0.92 0.89 62.5 6.4 0.79 0.72 

Southern Africa 
and West Indian 
Ocean* 

0.79 60.4 1.72 0.89 0.75 0.90 48.1 31.5 0.76 0.55 

Australia and New 
Zealand* 

0.99 78.9 1.42 0.94 0.83 0.93 66.1 13.2 0.79 0.71 

Neotropical# 0.95 79.1 2.10 0.91 0.88 0.67 40.5 -2.1 0.77 0.59 
Oriental# 0.86 76.3 2.34 1.05 0.81 0.84 61.9 -3.4 0.95 0.75 
Palearctic# 0.98 86.5 2.13 1.05 0.91 0.88 57.5 22.8 0.89 0.67 

Table 1: Metrics used to assess the ability of our ensemble estimate of historical 
temperatures and precipitations to replicate observed conditions.  
ρpb = percentage bend correlation73, where higher values indicate more agreement 
between observed and simulated conditions; M = m statistic74 (x100), where higher 
values indicate more agreement between observed and simulated conditions; RMSEw 
= Root-Mean-Square-Error weighted by latitude, lower values indicate better 
agreement between simulated and observed conditions; rSD = ratio of standard 
deviations, values closer to 1 indicate better agreement between simulated and 
observed conditions; md = modified index of agreement75, values closer to 1 indicate 
better agreement between simulated and observed conditions; %-bias = percentage 
bias, the tendency of the simulated values to be larger or smaller than observed. * = 
IPCC AR5 regions from van Oldenborgh, et al. 23. # = Biogeographic realms following 
Holt, et al. 24. 
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